ERLANG

Erl_Interface

Copyright © 1998-2021 Ericsson AB. All Rights Reserved.
Erl_Interface 3.13.2.1
May 9, 2021

Copyright © 1998-2021 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

May 9, 2021

1.1 Erl_Interface User's Guide

1 Erl Interface User's Guide

1.1 Erl_Interface User's Guide
1.1.1 Deprecation and Removal

Note:

The support for VxWorks is deprecated as of OTP 22, and will be removed in OTP 23.

Note:

Theold legacy er | _i nt er f ace library (functions with prefix er | _) is deprecated as of OTP 22, and will be
removed in OTP 23. This does not apply to theei library. Reasonably new gcc compilerswill issue deprecation
warnings. In order to disable these warnings, define the macro El _NO_DEPR_WARN.

1.1.2 Introduction

The Erl _I nterface library contains functions that help you integrate programs written in C and Erlang. The
functionsin Er | _I nt er f ace support the following:

e Manipulation of data represented as Erlang data types

e Conversion of data between C and Erlang formats

» Encoding and decoding of Erlang data types for transmission or storage

e Communication between C nodes and Erlang processes

e Backup and restore of C node state to and from Mnesia

Note:

By default, the Erl I nterface libraries are only guaranteed to be compatible with other Erlang/
OTP components from the same release as the libraries themselves. For information about how to
communicate with Erlang/OTP components from earlier releases, see function ei : ei _set _conpat _rel and
erl _etermerl|l_set _conpat _rel.

Scope
In the following sections, these topics are described:

e Compiling your codefor usewithEr |l _I nterface
o InitidlizingEr| _I nterface

» Encoding, decoding, and sending Erlang terms

* Building terms and patterns

e Pattern matching

« Connecting to adistributed Erlang node

» Using the Erlang Port Mapper Daemon (EPMD)

Ericsson AB. All Rights Reserved.: Erl_Interface | 1

1.1 Erl_Interface User's Guide

* Sending and receiving Erlang messages
* Remote procedure calls

» Using globa names

* Using theregistry

Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.1.3 Compiling and Linking Your Code

Touseany of theEr | _I nt er f ace functions, include the following lines in your code:

#include "erl interface.h"
#include "ei.h"

Determine where the top directory of your OTP installation is. To find this, start Erlang and enter the following
command at the Eshell prompt:

Eshell V4.7.4 (abort with ~G)
1> code:root dir().
/usr/local/otp

To compile your code, ensure that your C compiler knows where to find er| _i nt er f ace. h by specifying an
appropriate - | argument on the command line, or add it to the CFLAGS definition in your Makef i | e. The correct
value for thispathis$OTPROOT/ | i b/ er| _i nt er f ace- $EI VSN i ncl ude, where:

* $OTPROOT isthe path reported by code: r oot _di r/ 0 in the example above.
 S$ElI VSNistheversion of theEr | _| nt er f ace application, for example, er| _i nt erface- 3. 2. 3.

Compiling the code:
$ cc -c -I/usr/local/otp/lib/erl interface-3.2.3/include myprog.c
When linking:
e Specifythepathtol i berl _interface.aandli bei.awith- L$OTPROOT/ | i b/
erl _interface-3.2.3/I1ib.
* Specify the name of thelibrarieswith-1 er| _interface -l ei.
Do this on the command line or add the flags to the LDFLAGS definition in your Makef i | e.
Linking the code:

$ 1d -L/usr/local/otp/lib/erl interface-3.2.3/
lib myprog.o -lerl interface -lei -o myprog

On some systems it can be necessary to link with some more libraries (for example, | i bnsl . aandl i bsocket . a
on Solaris, or wsock32. | i b on Windows) to use the communication facilitiesof Er| _I nt er f ace.

If you use the Erl _| nt er f ace functions in a threaded application based on POSIX threads or Solaris threads,
then Erl _I nt er f ace needs access to some of the synchronization facilities in your threads package. You must
specify extra compiler flags to indicate which of the packages you use. Define_ REENTRANT and either STHREADS
or PTHREADS. The default isto use POSIX threadsif REENTRANT is specified.

2 | Ericsson AB. All Rights Reserved.: Erl_Interface

1.1 Erl_Interface User's Guide

1.1.4 Initializing the Libraries

Before calling any of the other functions in the er| _i nterface and ei libraries, call erl _i nit() exactly
once to initialize both libraries. er | _i ni t () takestwo arguments. However, the arguments are no longer used by
erl _interface andarethereforeto be specifiedaser| _i ni t (NULL, 0) .

If you only use the ei library, instead initialize it by calling ei _i ni t () exactly once before calling any other
functionsintheei library.

1.1.5 Encoding, Decoding, and Sending Erlang Terms

Data sent between distributed Erlang nodes is encoded in the Erlang external format. You must therefore encode
and decode Erlang terms into byte streams if you want to use the distribution protocol to communicate between a C
program and Erlang.

TheEr| _I nt erf ace library supportsthis activity. It has several C functionsthat create and manipulate Erlang data
structures. The library also contains an encode and a decode function. The following example shows how to create
and encode an Erlang tuple { t obbe, 3928} :

ETERM *arr[2], *tuple;
char buf[BUFSIZ];

int i;

arr[0] = erl mk atom("tobbe");
arr[1l] = erl mk integer(3928);
tuple = erl mk tuple(arr, 2);

i = erl _encode(tuple, buf);

Alternatively, you can use er | _send() and er| _r ecei ve_nsg, which handle the encoding and decoding of
messages transparently.

For a complete description, see the following modules:

e erl _et er mfor creating Erlang terms
« erl_marshal for encoding and decoding routines

1.1.6 Building Terms and Patterns

The previous example can be simplified by using theer | _f or mat module to create an Erlang term:

ETERM *ep;
ep = erl format("{~a,~i}", "tobbe", 3928);

For a complete description of the different format directives, seetheer | _f or mat module.
The following example is more complex:

ETERM *ep;

ep = erl format("[{name,~a}, {age,~i},{data,~w}]",
"madonna",
21,

erl format("[{adr,~s,~i}]", "E-street", 42));
erl free compound(ep);

Asin the previous examples, it is your responsibility to free the memory allocated for Erlang terms. In this example,
erl _free_conpound() ensuresthat the complete term pointed to by ep is released. This is necessary because
the pointer from the second call toer | _f or mat islost.

The following example shows a dlightly different solution:

Ericsson AB. All Rights Reserved.: Erl_Interface | 3

1.1 Erl_Interface User's Guide

ETERM *ep, *ep2;

ep2 = erl format("[{adr,~s,~i}]","E-street",42);

ep = erl format("[{name,~a},{age,~i},{data,~w}]",
"madonna", 21, ep2);

erl free term(ep);

erl free term(ep2);

Inthis case, you free the two termsindependently. The order in which you freethetermsep and ep2 isnot important,
becausethe Er | _I nt er f ace library uses reference counting to determine when it is safe to remove objects.

If you are unsure whether you have freed the terms properly, you can use the following function to see the status of
the fixed term alocator:

long allocated, freed;

erl eterm statistics(&allocated,&freed);
printf("currently allocated blocks: %ld\n",allocated);
printf("length of freelist: %ld\n", freed);

/* really free the freelist */
erl eterm release();

For moreinformation, seetheer | _mal | oc module.

1.1.7 Pattern Matching

An Erlang pattern is aterm that can contain unbound variablesor *do not car e" symbols. Such a pattern can be
matched against a term and, if the match is successful, any unbound variables in the pattern will be bound as a side
effect. The content of a bound variable can then be retrieved:

ETERM *pattern;
pattern = erl format("{madonna,Age, }");

The erl _format: erl _mat ch function performs pattern matching. It takes a pattern and aterm and triesto match
them. Asaside effect any unbound variablesin the pattern will be bound. Inthefollowing example, apatterniscreated
with avariable Age, which isincluded at two positionsin the tuple. The pattern match is performed as follows:

e erl _nat ch binds the contents of Age to 21 thefirst timeit reaches the variable.

» The second occurrence of Age causes atest for equality between the terms, as Age is already bound to 21. As
Age isbound to 21, the equality test succeeds and the match continues until the end of the pattern.

» If theend of the pattern is reached, the match succeeds and you can retrieve the contents of the variable.

ETERM *pattern,*term;

pattern = erl format("{madonna,Age,Age}");

term = erl format("{madonna,21,21}");

if (erl match(pattern, term)) {
fprintf(stderr, "Yes, they matched: Age = ");
ep = erl var content(pattern, "Age");
erl print term(stderr, ep);
fprintf(stderr,"\n");
erl free term(ep);

erl free term(pattern);
erl free term(term);

For moreinformation, seethe er| _f ormat : er | _mat ch function.

4 | Ericsson AB. All Rights Reserved.: Erl_Interface

1.1 Erl_Interface User's Guide

1.1.8 Connecting to a Distributed Erlang Node

To connect to a distributed Erlang node, you must first initialize the connection routine with
erl _connect: erl _connect i nit,whichstoresinformation, such asthe hostname, node name, and | P address
for later use:

int identification number = 99;

int creation=1;

char *cookie="a secret cookie string"; /* An example */
erl connect init(identification number, cookie, creation);

For moreinformation, seetheer | _connect module.

After initialization, you set up the connection to the Erlang node. To specify the Erlang node you want to connect to,
useer | _connect () . Thefollowing example sets up the connection and isto result in avalid socket file descriptor:

int sockfd;
char *nodename="xyz@chivas.du.etx.ericsson.se"; /* An example */
if ((sockfd = erl connect(nodename)) < 0)

erl _err quit("ERROR: erl connect failed");

erl _err_quit() prints the specified string and terminates the program. For more information, see the
erl _error module.

1.1.9 Using EPMD

erts: epnd isthe Erlang Port Mapper Daemon. Distributed Erlang nodes register with epnd on the local host to
indicate to other nodes that they exist and can accept connections. epnd maintains aregister of node and port number
information, and when a node wishes to connect to another node, it first contacts eprrd to find the correct port number
to connect to.

When you use er | _connect to connect to an Erlang node, a connection is first made to epd and, if the node is
known, a connection is then made to the Erlang node.

C nodes can aso register themselves with epnd if they want other nodesin the system to be able to find and connect
to them.

Before registering with epnd, you must first create alisten socket and bind it to a port. Then:
int pub;
pub = erl publish(port);

pub isafile descriptor now connected to eprd. epnd monitors the other end of the connection. If it detects that the
connection has been closed, the node becomes unregistered. So, if you explicitly close the descriptor or if your node
fails, it becomes unregistered from epnd.

Notice that on some systems (such as VxWorks), a failed node is not detected by this mechanism, as the operating
system does not automatically close descriptors that were left open when the node failed. If a node has failed in this
way, epnd prevents you from registering a new node with the old name, as it thinks that the old name is till in use.
In this case, you must unregister the name explicitly:

erl unpublish(node);

This causes epnd to close the connection from the far end. Notice that if the name was in fact still in use by a node,
the results of this operation are unpredictable. Also, doing this does not cause the local end of the connection to close,
SO0 resources can be consumed.

Ericsson AB. All Rights Reserved.: Erl_Interface | 5

1.1 Erl_Interface User's Guide

1.1.10 Sending and Receiving Erlang Messages
Use one of the following two functions to send messages:
 erl_connect:erl_send

e erl_connect:erl_reg_send

Asin Erlang, messages can be sent to apid or to aregistered name. It is easier to send a message to aregistered name,
asit avoids the problem of finding a suitable pid.

Use one of the following two functions to receive messages:
 erl_connect:erl_receive
e erl_connect:erl _receive_nsg

erl _receive() receivesthe message into a buffer, whileer| _recei ve_nsg() decodesthe message into an
Erlang term.

Example of Sending Messages

In the following example, { Pi d, hel | o_wor | d} issent to aregistered process my_ser ver . The message is
encoded by er | _send() :

extern const char *erl thisnodename(void);

extern short erl thiscreation(void);

#define SELF(fd) erl mk pid(erl thisnodename(),fd,0,erl thiscreation())
ETERM *arr[2], *emsg;

int sockfd, creation=1;

arr[0] = SELF(sockfd);
arr[1] = erl_mk_atom("Hello world");
emsg = erl mk tuple(arr, 2);

erl reg send(sockfd, "my server", emsg);
erl free term(emsg);

The first element of the tuple that is sent is your own pid. Thisenablesmy_ser ver to reply. For more information
about the primitives, seetheer | _connect module.

Example of Receiving Messages
Inthisexample, { Pi d, Sonet hi ng} isreceived. The received pid isthen used to return { goodbye, Pi d} .

ETERM *arr[2], *answer;
int sockfd, rc;

char buf[BUFSIZE];
ErlMessage emsg;

if ((rc = erl receive msg(sockfd , buf, BUFSIZE, &emsg)) == ERL MSG) {

arr[0] = erl mk atom("goodbye");
arr[1l] = erl element(l, emsg.msg);
answer = erl _mk tuple(arr, 2);

erl send(sockfd, arr[l], answer);
erl free term(answer);

erl free term(emsg.msg);

erl free term(emsg.to);

}

To provide robustness, a distributed Erlang node occasionaly polls al its connected neighbors in an attempt to
detect failed nodes or communication links. A node that receives such a message is expected to respond immediately
with an ERL_TI CK message. This is done automatically by er | _recei ve() . However, when this has occurred,
erl _receive returnsERL_TI CK to the caller without storing a message into the Er | Message structure.

6 | Ericsson AB. All Rights Reserved.: Erl_Interface

1.1 Erl_Interface User's Guide

When a message has been received, it is the caller's responsibility to free the received message ensg. msg and
ensg. t o oremsg. f r om depending on the type of message received.

For more information, seetheer| _connect ander| _et er mmodules.

1.1.11 Remote Procedure Calls

An Erlang node acting as aclient to another Erlang node typically sends arequest and waitsfor areply. Such arequest
isincluded in afunction call at aremote node and is called a remote procedure call.

The following example shows how the Er | _| nt er f ace library supports remote procedure calls:

char modname[]=THE MODNAME ;
ETERM *reply, *ep;
ep = erl format("[~a,[]]", modname);

if (!(reply = erl rpc(fd, "c", "c", ep)))
erl err _msg("<ERROR> when compiling file: %s.erl !\n", modname);
erl free term(ep);
ep = erl format("{ok, }")
if ('erl match(ep, reply))
erl err _msg("<ERROR> compiler errors !\n");
erl free term(ep);
erl free term(reply);

c: c/ 1 iscaled to compile the specified module on the remote node. er | _nat ch() checks that the compilation
was successful by testing for the expected ok.

For more information about er| _r pc() and its companionser!| _rpc_to() anderl _rpc_fron{(), seethe
erl _connect module.

1.1.12 Using Global Names

A C node has access to names registered through the gl obal module in Kernel. Names can be looked up, alowing
the C node to send messages to named Erlang services. C nodes can aso register globa names, allowing them to
provide named services to Erlang processes or other C nodes.

Erl _I nt er f ace does not provide a native implementation of the global service. Instead it uses the global services
provided by a "nearby" Erlang node. To use the services described in this section, it is necessary to first open a
connection to an Erlang node.

To see what names there are:

char **names;
int count;
int i;

names = erl global names(fd,&count);

if (names)
for (i=0; i<count; i++)
printf("%ss\n",names[i]);

free(names);

erl gl obal : erl _gl obal _nanes alocatesand returnsabuffer containing all the namesknowntothegl obal
modulein Ker nel . count isinitialized to indicate the number of names in the array. The array of stringsin names
isterminated by a NULL pointer, so it is hot necessary to use count to determine when the last name is reached.

It isthe caller's responsibility to freethe array. er | _gl obal _names allocates the array and all the strings using a
singlecall toral 1 oc(),sof ree(nanmes) isal that is necessary.

To look up one of the names:

Ericsson AB. All Rights Reserved.: Erl_Interface | 7

1.1 Erl_Interface User's Guide

ETERM *pid;
char node[256];

pid = erl global whereis(fd,"schedule",node);

If “schedul e" is known to the gl obal module in Ker nel , an Erlang pid is returned that can be used to send
messages to the schedule service. Also, node is initialized to contain the name of the node where the service is
registered, so that you can make a connection to it by simply passing the variabletoer | _connect .

Before registering a name, you should already have registered your port number with epnd. This is not strictly
necessary, but if you neglect to do so, then other nodes wishing to communicate with your service cannot find or
connect to your process.

Create apid that Erlang processes can use to communicate with your service:
ETERM *pid;

pid = erl mk pid(thisnode,14,0,0);
erl global register(fd,servicename,pid);

After registering the name, use er| _connect: erl _accept towait for incoming connections.

Remember to free pi d later with erl _mal l oc: erl _free_term

To unregister aname:

erl_global unregister(fd,servicename);

1.1.13 Using the Registry

This section describes the use of the registry, a simple mechanism for storing key-value pairs in a C-node, as well as
backing them up or restoring them from an Mnesi a table on an Erlang node. For more detailed information about
theindividual API functions, seether egi st ry module.

Keys are strings, that is, NULL-terminated arrays of characters, and values are arbitrary objects. Although integers
and floating point numbers are treated specially by the registry, you can store strings or binary objects of any type
as pointers.

To start, open aregistry:

ei reg *reg;

reg = el reg open(45);
The number 45 in the example indicates the approximate number of objects that you expect to store in the registry.
Internally the registry uses hash tables with collision chaining, so there is no absolute upper limit on the number of

objectsthat theregistry can contain, but if performance or memory usageisimportant, then you are to choose a number
accordingly. Theregistry can be resized later.

Y ou can open as many registries asyou like (if memory permits).

Objects are stored and retrieved through set and get functions. The following example shows how to store integers,
floats, strings, and arbitrary binary objects:

8 | Ericsson AB. All Rights Reserved.: Erl_Interface

1.1 Erl_Interface User's Guide

struct bonk *b = malloc(sizeof(*b));
char *name = malloc(7);

ei reg setival(reg,"age",29);
ei reg setfval(reg,"height",1.85);

strcpy(name, "Martin");
ei reg setsval(reg, "name",name);

b->1 = 42;
b->m 12;
ei reg setpval(reg,"jox",b,sizeof(*b));

If you try to store an object in the registry and thereis an existing object with the same key, the new value replaces the
old one. Thisisdone regardless of whether the new object and the old one have the sametype, so you can, for example,
replace a string with an integer. If the existing value isa string or binary, it is freed before the new value is assigned.

Stored values are retrieved from the registry as follows:

long 1i;

double f;

char *s;

struct bonk *b;
int size;

ei reg getival
ei reg getfval
ei reg getsval
ei reg getpval

reg, "age");

reg, "height");
reg, "name") ;
reg,"jox",&size);

o wn —h
nonouon

_— e~ o~ —~

In al the above examples, the object must exist and it must be of the right type for the specified operation. If you do
not know the type of an object, you can ask:

struct ei reg stat buf;
ei reg stat(reg,"name",&buf);
Buf isinitialized to contain object attributes.
Objects can be removed from the registry:
ei reg delete(reg,"name");

When you are finished with aregistry, close it to remove all the objects and free the memory back to the system:

ei reg close(reg);

Backing Up the Registry to Mnesia

The contents of a registry can be backed up to Mhesi a on a "nearby" Erlang node. You must provide an open
connection to the Erlang node (seeer | _connect). Also, Mhesi a 3.0 or later must be running on the Erlang node
before the backup isinitiated:

ei reg dump(fd, reg, "mtab", dumpflags);

This example back up the contents of the registry to the specified Mhesi a table " nt ab" . Once aregistry has been
backed uptovnesi a likethis, more backups only affect objectsthat have been modified since the most recent backup,
that i's, objectsthat have been created, changed, or del eted. The backup operation isdone as asingle atomic transaction,
so that either the entire backup is performed or none of it.

Likewise, aregistry can be restored from aMhesi a table:

Ericsson AB. All Rights Reserved.: Erl_Interface | 9

1.1 Erl_Interface User's Guide

ei reg restore(fd, reg, "mtab");

This reads the entire contents of " nt ab" into the specified registry. After the restore, all the objects in the registry
are marked as unmodified, so alater backup only affects objects that you have modified since the restore.

Notice that if you restore to a non-empty registry, objects in the table overwrite objects in the registry with the same
keys. Also, the entir e contents of the registry ismarked as unmodified after the restore, including any modified objects
that were not overwritten by the restore operation. This may not be your intention.

Storing Strings and Binaries
When string or binary objects are stored in the registry it isimportant that some simple guidelines are followed.

Most importantly, the object must have been created with asingle call tomal | oc() (or similar), so that it can later
beremoved by asinglecall tof r ee() . Objects are freed by the registry when it is closed, or when you assign a new
value to an object that previously contained a string or binary.

Notice that if you store binary objects that are context-dependent (for example, containing pointers or open file
descriptors), they lose their meaning if they are backed up to alvhesi a table and later restored in a different context.

When you retrieve a stored string or binary value from the registry, the registry maintains a pointer to the object and
you are passed a copy of that pointer. You should never free an object retrieved in this manner because when the
registry later attemptsto freeit, aruntime error occurs that likely causes the C-node to crash.

Y ou are freeto modify the contents of an object retrieved thisway. However, when you do so, theregistry isnot aware
of your changes, possibly causing it to be missed the next time you make an Mhesi a backup of the registry contents.
This can be avoided if you mark the object as dirty after any such changeswith regi stry: ei _reg_markdirty,
or pass appropriate flagsto regi stry: ei _reg_dunp.

10 | Ericsson AB. All Rights Reserved.: Erl_Interface

1.1 Erl_Interface User's Guide

2 Reference Manual

The support for VxWorks is deprecated as of OTP 22, and will be removed in OTP 23.

Theold legacy er | _i nt er f ace library (functions with prefix er | _) is deprecated as of OTP 22, and will be
removed in OTP 23. This does not apply to the ei library. Reasonably new gcc compilerswill issue deprecation
warnings. In order to disable these warnings, define the macro El _NO_DEPR_WARN.

Ericsson AB. All Rights Reserved.: Erl_Interface | 11

ei

ei
C Library

The support for VxWorks is deprecated as of OTP 22, and will be removed in OTP 23.

Thelibrary ei contains macros and functions to encode and decode the Erlang binary term format.

ei allowsyouto convert atoms, lists, numbers, and binariesto and from the binary format. Thisisuseful when writing
port programs and drivers. ei uses a given buffer, no dynamic memory (except ei _decode_fun()) and is often
quite fast.

ei also handles C-nodes, C-programs that talks Erlang distribution with Erlang nodes (or other C-nodes) using the
Erlang distribution format. The difference between ei and er| _i nt erface isthat ei uses the binary format
directly when sending and receiving terms. It is also thread safe, and using threads, one process can handle multiple
C-nodes. Theer | _i nt erface library isbuilt on top of ei , but of legacy reasons, it does not allow for multiple C-
nodes. In general, ei isthe preferred way of doing C-nodes.

The decode and encode functions use a buffer and an index into the buffer, which points at the point where to encode
and decode. Theindex is updated to point right after the term encoded/decoded. No checking is done whether the term
fitsin the buffer or not. If encoding goes outside the buffer, the program can crash.

All functions take two parameters:

« buf isapointer to the buffer where the binary dataiis or will be.

* i ndex isapointer to an index into the buffer. This parameter isincremented with the size of the term decoded/
encoded.

Thedataisthusat buf [*i ndex] whenanei functioniscalled.

All encode functionsassumethat thebuf andi ndex parameters point to abuffer large enough for the data. To get the
size of an encoded term, without encoding it, pass NULL instead of abuffer pointer. Parameter i ndex isincremented,
but nothing will be encoded. Thisistheway inei to "preflight” term encoding.

There are also encode functions that use a dynamic buffer. It is often more convenient to use these to encode data. All
encode functions comes in two versions, those starting with ei _x use a dynamic buffer.

All functions return O if successful, otherwise - 1 (for example, if aterm is not of the expected type, or the data to
decodeisaninvalid Erlang term).

Some of the decode functions need a pre-allocated buffer. This buffer must be allocated large enough, and for non-
compound types the ei _get type() function returns the size required (notice that for strings an extra byte is
needed for the NUL L-terminator).

Data Types

erlang_char_encoding

typedef enum {
ERLANG ASCII = 1,
ERLANG LATIN1 = 2,
ERLANG UTF8 = 4

} erlang char _encoding;

The character encodings used for atoms. ERLANG_ASCI | represents 7-bit ASCII. Latin-1 and UTF-8 are
different extensions of 7-bit ASCII. All 7-bit ASCII characters are valid Latin-1 and UTF-8 characters. ASCI|

12 | Ericsson AB. All Rights Reserved.: Erl_Interface

ei

and L atin-1 both represent each character by one byte. An UTF-8 character can consist of 1-4 bytes. Notice that
these constants are bit-flags and can be combined with bitwise OR.

Exports

int ei decode atom(const char *buf, int *index, char *p)

Decodesan atom from the binary format. The NUL L-terminated name of theatomisplaced at p. At most MAXATOVLEN
bytes can be placed in the buffer.

int ei decode atom as(const char *buf, int *index, char *p, int plen,
erlang char encoding want, erlang char encoding* was, erlang char encoding*
result)

Decodes an atom from the binary format. The NULL-terminated name of the atom is placed in buffer at p of length
pl en bytes.

Thewanted string encoding is specified by want . The original encoding used in the binary format (Latin-1 or UTF-8)
can be obtained from *was. The encoding of the resulting string (7-bit ASCII, Latin-1, or UTF-8) can be obtained
from*resul t. Bothwas andresul t canbe NULL. *r esul t can differ from want if want isabitwise OR'd
combination like ERLANG _LATI N1| ERLANG UTF8 or if *r esul t turnsout to be pure 7-bit ASCII (compatible
with both Latin-1 and UTF-8).

This function failsif the atom istoo long for the buffer or if it cannot be represented with encoding want .
This function was introduced in Erlang/OTP R16 as part of afirst step to support UTF-8 atoms.

int ei decode bignum(const char *buf, int *index, mpz_t obj)

Decodes an integer in the binary format to a GMP npz_t integer. To use this function, the ei library must be
configured and compiled to use the GMP library.

int ei decode binary(const char *buf, int *index, void *p, long *len)

Decodes a binary from the binary format. Parameter | en is set to the actual size of the binary. Notice that
ei _decode_bi nary() assumes that there is enough room for the binary. The size required can be fetched by

ei _get_type().

int ei decode bitstring(const char *buf, int *index, const char **pp,
unsigned int *bitoffsp, size t *nbitsp)

Decodes a hit string from the binary format.

pp

Either NULL or * pp returns a pointer to the first byte of the bit string. The returned bit string is readable aslong
asthe buffer pointed to by buf is readable and not written to.

bitof fsp

Either NULL or * bi t of f sp returns the number of unused bitsin the first byte pointed to by * pp. The value of
*bi t of f sp isbetween 0 and 7. Unused hits in the first byte are the most significant bits.

nbitsp
Either NULL or * nbi t sp returnsthe length of the bit string in bits.

Returns O if it was a bit string term.

Ericsson AB. All Rights Reserved.: Erl_Interface | 13

ei

The number of bytes pointed to by * pp, which are part of the bit string, is(*bi tof fsp + *nbitsp + 7)/8.
If (*bitoffsp + *bitsp)¥ > Othenonly (*bitoffsp + *bitsp) %8 bits of the last byte are used.
Unused hitsin the last byte are the least significant bits.

The values of unused bitsin the first and last byte are undefined and cannot be relied on.

Number of bits may be divisible by 8, which means a binary decodable by ei _decode_bi nary isalso decodable
by ei _decode_bitstring.

int ei decode bhoolean(const char *buf, int *index, int *p)
Decodesaboolean valuefrom the binary format. A booleanisactually anatom, t r ue decodes1 andf al se decodesO.

int ei decode char(const char *buf, int *index, char *p)

Decodes a char (8-hit) integer between 0-255 from the binary format. For historical reasons the returned integer is of
type char . Your C code is to consider the returned value to be of type unsi gned char even if the C compilers
and system can define char to be signed.

int ei_decode double(const char *buf, int *index, double *p)
Decodes a double-precision (64-bit) floating point number from the binary format.

int ei decode ei term(const char* buf, int* index, ei term* term)

Decodes any term, or at least triesto. If the term pointed at by *i ndex in buf fitsinthet er munion, it is decoded,
and the appropriate field int er m >val ue isset, and * i ndex isincremented by the term size.

The function returns 1 on successful decoding, - 1 on error, and O if the term seems alright, but does not fit in the
t er mstructure. If 1 isreturned, thei ndex isincremented, and t er mcontains the decoded term.

Thet er mstructure contains the arity for atuple or list, size for abinary, string, or atom. It containsatermif it isany
of the following: integer, float, atom, pid, port, or ref.

int ei decode fun(const char *buf, int *index, erlang fun *p)
void free fun(erlang fun* f)

Decodes a fun from the binary format. Parameter p is to be NULL or point to an er | ang_f un structure. Thisis
the only decode function that allocates memory. When the er | ang_f un is no longer needed, it is to be freed with
free_f un. (Thishasto do with the arbitrary size of the environment for afun.)

int ei decode list header(const char *buf, int *index, int *arity)

Decodes alist header from the binary format. The number of elementsisreturnedinari ty. Theari t y+1 elements
follow (thelast oneisthetail of thelist, normally an empty list). If ari ty isO, itisan empty list.

Notice that lists are encoded as strings if they consist entirely of integers in the range 0..255. This function do not
decode such strings, useei _decode_stri ng() instead.

int ei decode long(const char *buf, int *index, long *p)

Decodes along integer from the binary format. If the codeis 64 bits, the function ei _decode_I| ong() isthe same
asei _decode_I ongl ong() .

14 | Ericsson AB. All Rights Reserved.: Erl_Interface

ei

int ei decode longlong(const char *buf, int *index, long long *p)

Decodes a GCC | ong | ong or Visual C++ __i nt 64 (64-bit) integer from the binary format. This function is
missing in the VxWorks port.

int ei decode map header(const char *buf, int *index, int *arity)

Decodes amap header from the binary format. The number of key-value pairsisreturnedin*ari t y. Keysand values
follow inthisorder: K1, V1, K2, V2, ..., Kn, Vn.Thismakesatota ofarity*2terms. Ifarity is
zero, it isan empty map. A correctly encoded map does not have duplicate keys.

int ei decode pid(const char *buf, int *index, erlang pid *p)
Decodes a process identifier (pid) from the binary format.

int ei decode port(const char *buf, int *index, erlang port *p)

Decodes a port identifier from the binary format.

int ei decode ref(const char *buf, int *index, erlang ref *p)
Decodes a reference from the binary format.

int ei_decode string(const char *buf, int *index, char *p)

Decodes a string from the binary format. A string in Erlang isalist of integers between 0 and 255. Notice that as the
string isjust alist, sometimes lists are encoded as stringsby t er m t o_bi nar y/ 1, evenif it was not intended.

The string is copied to p, and enough space must be allocated. The returned string is NULL-terminated, so you must
add an extra byte to the memory requirement.

int ei decode term(const char *buf, int *index, void *t)

Decodes a term from the binary format. The termisreturnint asa ETERMW, sot is actualy an ETERM * (see
erl _et er m. Thetermislater to be deallocated.

This function is deprecated as of OTP 22 and will be removed in OTP 23 together with the old legacy
erl _interface library (functionswith prefix er|).

int ei decode trace(const char *buf, int *index, erlang_trace *p)
Decodes an Erlang trace token from the binary format.

int ei decode tuple header(const char *buf, int *index, int *arity)
Decodes atuple header, the number of elementsisreturnedinar i t y. Thetuple elementsfollow in order inthe buffer.

int ei decode ulong(const char *buf, int *index, unsigned long *p)

Decodes an unsigned long integer from the binary format. If the code is 64 bits, thefunctionei _decode_ul ong()
isthesameasei _decode_ul ongl ong() .

Ericsson AB. All Rights Reserved.: Erl_Interface | 15

ei

int ei decode ulonglong(const char *buf, int *index, unsigned long long *p)

Decodesa GCC unsi gned | ong | ong or Visual C++ unsi gned __i nt 64 (64-bit) integer from the binary
format. This function is missing in the VxWorks port.

int ei decode version(const char *buf, int *index, int *version)
Decodes the version magic number for the Erlang binary term format. It must be the first token in abinary term.

int ei encode atom(char *buf, int *index, const char *p)

int ei encode atom len(char *buf, int *index, const char *p, int len)

int ei x _encode atom(ei x buff* x, const char *p)

int ei x _encode atom len(ei x buff* x, const char *p, int len)

Encodes an atom in the binary format. Parameter p is the name of the atom in Latin-1 encoding.

Only up to MAXATOMLEN- 1 bytes are encoded. The name is to be NULL-terminated, except for the
ei _x_encode_at om | en() function.

int ei encode atom as(char *buf, int *index, const char *p,
erlang char encoding from enc, erlang char encoding to enc)

int ei encode atom len as(char *buf, int *index, const char *p, int len,
erlang char encoding from enc, erlang char encoding to enc)

int ei x _encode atom as(ei x buff* x, const char *p, erlang char encoding
from enc, erlang char encoding to enc)

int ei x _encode atom len as(ei x buff* x, const char *p, int len,
erlang char encoding from enc, erlang char encoding to enc)

Encodes an atom in the binary format. Parameter p is the name of the atom with character encoding f r om enc
(ASCII, Latin-1, or UTF-8). The name must either be NULL-terminated or a function variant with al en parameter
must be used.

The encoding failsif p isnot avalid string in encoding f r om_enc.

Argument t o_enc isignored. As from Erlang/OTP 20 the encoding is always done in UTF-8 which is readable by
nodes as old as Erlang/OTP R16.

int ei encode bignum(char *buf, int *index, mpz t obj)
int ei x _encode bignum(ei x buff *x, mpz t obj)

EncodesaGMPnpz_t integer to binary format. To usethisfunction, theei library must be configured and compiled
to use the GMP library.

int ei encode binary(char *buf, int *index, const void *p, long len)
int ei x _encode binary(ei x buff* x, const void *p, long len)

Encodes abinary in the binary format. The datais at p, of | en bytes length.

int ei encode bitstring(char *buf, int *index, const char *p, size t bitoffs,
size t nbits)

int ei x _encode bitstring(ei x buff* x, const char *p, size t bitoffs, size t
nbits)

Encodes a bit string in the binary format.

16 | Ericsson AB. All Rights Reserved.: Erl_Interface

ei

The datais at p. The length of the bit string isnbi t s bits. Thefirst bi t of f s bits of the dataat p are unused. The
first byte which is part of the bit string isp[bi t of f s/ 8] . The bi t of f S%8 most significant bits of the first byte
p[bi t of f s/ 8] are unused.

The number of byteswhichispart of thebit stringis(bitof fs + nbits + 7)/8.I1f(bitoffs + nbits)%8
> Othenonly (bitoffs + nbits)%8 bitsof the last byte are used. Unused bits in the last byte are the least
significant bits.

The values of unused bits are disregarded and does not need to be cleared.

int ei encode bhoolean(char *buf, int *index, int p)
int ei x _encode boolean(ei x buff* x, int p)
Encodes aboolean value astheatomt r ue if p isnot zero, or f al se if p iszero.

int ei encode char(char *buf, int *index, char p)
int ei x encode char(ei x buff* x, char p)
Encodes a char (8-bit) as an integer between 0-255 in the binary format. For historical reasons the integer argument

isof type char . Your C code is to consider the specified argument to be of type unsi gned char even if the C
compilers and system may define char to be signed.

int ei_encode double(char *buf, int *index, double p)
int ei x _encode double(ei x buff* x, double p)

Encodes a double-precision (64-bit) floating point number in the binary format.
Returns - 1 if the floating point number is not finite.

int ei encode empty list(char* buf, int* index)
int ei x _encode empty list(ei x buff* x)
Encodes an empty list. It is often used at the tail of alist.

int ei encode fun(char *buf, int *index, const erlang fun *p)
int ei x _encode fun(ei x buff* x, const erlang fun* fun)

Encodes afunin the binary format. Parameter p pointstoaner | ang_f un structure. Theer | ang_f un isnot freed
automatically, thef r ee_f un isto be called if the fun is not needed after encoding.

int ei encode list header(char *buf, int *index, int arity)
int ei x _encode list header(ei x buff* x, int arity)

Encodes a list header, with a specified arity. The next ar i t y+1 terms are the elements (actualy itsari ty cons
cells) and the tail of thelist. Lists and tuples are encoded recursively, so that alist can contain another list or tuple.

For example, to encodethelist[c, d, [e | f]]:

ei encode list header(buf, &i, 3);
ei encode atom(buf, &i, "c");
ei encode atom(buf, &i, "d");
ei encode list header(buf, &i, 1);
ei encode atom(buf, &i, "e");
ei encode atom(buf, &i, "f");
ei encode empty list(buf, &i);

Ericsson AB. All Rights Reserved.: Erl_Interface | 17

ei

It may seem that there is no way to create a list without knowing the number of elements in advance. But indeed
there isaway. Notice that the list[a, b, c¢] canbewrittenas[a | [b | [c]]].Usingthis, alist can
be written as conses.

To encode alist, without knowing the arity in advance:

while (something()) {

ei x encode list header(&x, 1);

ei x encode ulong(&x, 1); /* just an example */
}

ei x encode empty list(&x);

int ei encode long(char *buf, int *index, long p)
int ei x _encode long(ei x buff* x, long p)

Encodes a long integer in the binary format. If the code is 64 bits, the function ei _encode_I| ong() isthe same
asei _encode_Il ongl ong() .

int ei encode longlong(char *buf, int *index, long long p)
int ei x _encode longlong(ei x buff* x, long long p)

EncodesaGCC| ong | ong or Visual C++ __i nt 64 (64-bit) integer in the binary format. Thisfunctionis missing
in the VxWorks port.

int ei encode map header(char *buf, int *index, int arity)
int ei x _encode map header(ei x buff* x, int arity)

Encodes a map header, with a specified arity. The next ar i t y* 2 terms encoded will be the keys and values of the
map encoded in the following order: K1, V1, K2, V2, ..., Kn, Vn.

For example, to encodethemap #{a => "Appl e", b => "Banana"}:

ei x encode map header(&x, 2);

ei x encode atom(&x, "a");

ei x encode string(&x, "Apple");
ei x encode atom(&x, "b");

ei x encode string(&x, "Banana");

A correctly encoded map cannot have duplicate keys.

int ei encode pid(char *buf, int *index, const erlang pid *p)
int ei x _encode pid(ei x buff* x, const erlang pid *p)

Encodes an Erlang process identifier (pid) in the binary format. Parameter p points to an er | ang_pi d structure
(which should have been obtained earlier withei _decode_pi d()).

int ei encode port(char *buf, int *index, const erlang port *p)
int ei x encode port(ei x buff* x, const erlang port *p)

Encodes an Erlang port in the binary format. Parameter p pointsto aer | ang_port structure (which should have
been obtained earlier with ei _decode_port ()).

18 | Ericsson AB. All Rights Reserved.: Erl_Interface

ei

int ei_encode_ref(char *buf, int *index, const erlang_ref *p)
int ei x _encode ref(ei x buff* x, const erlang ref *p)

Encodes an Erlang referencein the binary format. Parameter p pointstoaer | ang_r ef structure (which should have
been obtained earlier withei _decode_ref ()).

int ei encode string(char *buf, int *index, const char *p)

int ei encode string len(char *buf, int *index, const char *p, int len)
int ei x _encode string(ei x buff* x, const char *p)

int ei x _encode string len(ei x_buff* x, const char* s, int len)

Encodes a string in the binary format. (A string in Erlang is a list, but is encoded as a character array in the binary
format.) The string isto be NULL-terminated, except for theei _x_encode_stri ng_| en() function.

int ei encode term(char *buf, int *index, void *t)
int ei x _encode term(ei x buff* x, void *t)

Encodes an ETERM as obtained fromer | _i nt er f ace. Parameter t is actually an ETERMpointer. This function
does not free the ETERM

These functions are deprecated as of OTP 22 and will be removed in OTP 23 together with the old legacy
erl _interface library (functionswith prefix er|).

int ei_encode trace(char *buf, int *index, const erlang trace *p)
int ei x _encode trace(ei x buff* x, const erlang trace *p)

Encodes an Erlang trace token in the binary format. Parameter p pointstoaer | ang_t r ace structure (which should
have been obtained earlier with ei _decode_trace()).

int ei encode tuple header(char *buf, int *index, int arity)

int ei x _encode tuple header(ei x buff* x, int arity)

Encodes atuple header, with aspecified arity. Thenext ar i t y termsencoded will be the elements of thetuple. Tuples
and lists are encoded recursively, so that a tuple can contain another tuple or list.

For example, to encodethetuple{a, {b, {}}}:

ei encode tuple header(buf, &i, 2);
ei encode atom(buf, &i, "a");
ei encode tuple header(buf, &i, 2);
ei encode atom(buf, &i, "b");
ei encode tuple header(buf, &i, 0);

int ei encode ulong(char *buf, int *index, unsigned long p)
int ei x _encode ulong(ei x buff* x, unsigned long p)

Encodes an unsigned long integer in the binary format. If the code is 64 bits, the function ei _encode_ul ong()
isthesameasei _encode_ul ongl ong() .

Ericsson AB. All Rights Reserved.: Erl_Interface | 19

ei

int ei encode ulonglong(char *buf, int *index, unsigned long long p)
int ei x_encode ulonglong(ei x buff* x, unsigned long long p)

Encodes a GCC unsi gned | ong | ong or Visual C++ unsi gned __i nt 64 (64-bit) integer in the binary
format. This function is missing in the VxWorks port.

int ei_encode version(char *buf, int *index)
int ei x encode version(ei x buff* x)
Encodes a version magic number for the binary format. Must be the first token in abinary term.

int ei get type(const char *buf, const int *index, int *type, int *size)

Returns the type in *t ype and size in *si ze of the encoded term. For strings and atoms, size is the number of
characters not including the terminating NULL. For binaries and bitstrings, * si ze isthe number of bytes. For lists,
tuples and maps, * si ze isthe arity of the object. For other types, * si ze isO. Inall cases, i ndex isleft unchanged.

int ei_init(void)
Initializetheei library. Thisfunction should be called once (and only once) before calling any other functionality in
theei library. However, note the exception below.

If theei library isusedtogether withtheer | _i nt er f ace library, thisfunction should not be called directly. It will
becaledbytheer| _i nit () functionwhich should be used toinitialize the combination of thetwo librariesinstead.

On success zero is returned. On failure a posix error code is returned.

int ei_print_term(FILE* fp, const char* buf, int* index)

int ei s print term(char** s, const char* buf, int* index)

Prints a term, in clear text, to the file specified by f p, or the buffer pointed to by s. It tries to resemble the term
printing in the Erlang shell.

Inei _s_print_term), parameter s isto point to adynamically (malloc) allocated string of BUFSI Z bytesor a
NULL pointer. The string can bereallocated (and * s can be updated) by thisfunctionif theresult ismore than BUFSI Z
characters. The string returned is NULL-terminated.

The return value is the number of characters written to the file or string, or - 1 if buf [i ndex] does not contain a
valid term. Unfortunately, 1/0 errorson f p is not checked.

Argument i ndex is updated, that is, this function can be viewed as a decode function that decodes a term into a
human-readable format.

void ei set compat rel(release number)
Types:
unsi gned rel ease_nunber;

In general, theei library isguaranteed to be compatible with other Erlang/OTP components that are 2 major releases
older or newer thantheei library itself.

Sometimes an exception to the above rule has to be made to make new features (or even bug fixes) possible. A
cal toei _set _conpat _rel (rel ease_nunber) setsthe ei library in compatibility mode of OTP release
rel ease_nunber.

Theonly useful valueforr el ease_nunber iscurrently 21. Thiswill only be useful and have an effect if bit strings
or export funs are received from a connected node. Before OTP 22, bit strings and export funs were not supported by
ei . They were instead encoded using an undocumented fallback tuple format when sent from the emulator to ei :

20 | Ericsson AB. All Rights Reserved.: Erl_Interface

ei

Bit string
Theterm<<42, 1:1>>wasencodedas{<<42, 128>>, 1}.Thefirst element of thetupleisabinary and

the second element denotes how many bits of the last bytes are part of the bit string. In this example only the
most significant bit of the last byte (128) is part of the bit string.

Export fun

Thetermfun | i sts: map/ 2wasencodedas{ | i st's, map}.A tuplewiththemodule, functionand amissing
arity.
Ifei _set conpat _rel (21) isnot calledthenaconnected emulator will send bit stringsand export funs correctly
encoded. The functions ei _decode_bi tstring and ei _decode_f un has to be used to decode such terms.
Cdling ei _set conpat _rel (21) should only be done as a workaround to keep an old implementation alive,
which expects to receive the undocumented tuple formats for bit strings and/or export funs.

If thisfunction is called, it can only be called once and must be called before any other functionsinthe ei library
are caled.

int ei skip term(const char* buf, int* index)

Skips aterm in the specified buffer; recursively skips elements of lists and tuples, so that afull term is skipped. This
isaway to get the size of an Erlang term.

buf isthe buffer.
i ndex isupdated to point right after the term in the buffer.

| This can be useful when you want to hold arbitrary terms: skip them and copy the binary term datato some buffer. |

Returns 0 on success, otherwise - 1.

int ei x _append(ei x buff* x, const ei x buff* x2)
int ei x append buf(ei x buff* x, const char* buf, int len)
Appends data at the end of buffer x.

int ei_x format(ei x buff* x, const char* fmt, ...)
int ei x format wo ver(ei x buff* x, const char *fmt, ...)

Formats aterm, given asastring, to abuffer. Works like a sprintf for Erlang terms. f nt contains aformat string, with
arguments like ~d, to insert terms from variables. The following formats are supported (with the C types given):

~a An atom, char*

~c A character, char

~s A string, char*

~i An integer, int

~1L A long integer, long int

~u A unsigned long integer, unsigned long int
~f A float, float

~d A double float, double float

~p An Erlang pid, erlang pid*

Ericsson AB. All Rights Reserved.: Erl_Interface | 21

ei

For example, to encode a tuple with some stuff:

ei x format("{~a,~i,~d}", "numbers", 12, 3.14159)
encodes the tuple {numbers,12,3.14159}

ei _x_format _wo_ver () formatsinto abuffer, without theinitial version byte.

int ei x free(ei_ x buff* x)
Freesanei _x_buf f buffer. The memory used by the buffer is returned to the OS.

int ei x new(ei x buff* x)
int ei x new with version(ei x buff* x)

Allocatesanew ei _x_buf f buffer. The fields of the structure pointed to by parameter x isfilled in, and a default
buffer is allocated. ei _x_new wi t h_versi on() aso puts an initial version byte, which is used in the binary
format (sothatei _Xx_encode_ver si on() will not be needed.)

Debug Information
Some tips on what to check when the emulator does not seem to receive the terms that you send:

e Becareful with the version header, useei _x_new w t h_ver si on() when appropriate.
e Turnon distribution tracing on the Erlang node.
e Check theresult codesfromei _decode_-cal | s.

See Also

erl _eterm

22 | Ericsson AB. All Rights Reserved.: Erl_Interface

ei_connect

ei_connect
C Library

The support for VxWorks is deprecated as of OTP 22, and will be removed in OTP 23.

This module enables C-programs to communicate with Erlang nodes, using the Erlang distribution over TCP/IP.

A C-node appears to Erlang as a hidden node. That is, Erlang processes that know the name of the C-node
can communicate with it in a norma manner, but the node name is not shown in the listing provided by
erl ang: nodes/ 0 in ERTS.

The environment variable ERL_EPMD_PORT can be used to indicate which logical cluster a C-node belongs to.

Time-Out Functions

Most functions appear in a version with the suffix _t no appended to the function name. Those functions take an
extra argument, a time-out in milliseconds. The semantics is this: for each communication primitive involved in the
operation, if the primitive does not complete within the time specified, the function returnsan error ander | _errno
isset to ETI MEDOUT. With communication primitive is meant an operation on the socket, like connect , accept ,
recv,orsend.

Clearly the time-outs are for implementing fault tolerance, not to keep hard real-time promises. The _t no functions
are for detecting non-responsive peers and to avoid blocking on socket operations.

A time-out value of 0 (zero) means that time-outs are disabled. Calling a_t no function with the last argument as 0
is therefore the same thing as calling the function without the _t no suffix.

Aswith all other functions starting with ei _, you are not expected to put the socket in non-blocking mode yourself
in the program. Every use of non-blocking mode is embedded inside the time-out functions. The socket will always
be back in blocking mode after the operations are completed (regardless of the result). To avoid problems, leave the
socket options alone. ei handles any socket options that need modification.

In al other senses, the _t no functions inherit all the return values and the semantics from the functions without the
_t no suffix.

User Supplied Socket Implementation

By default ei supplies a TCP/IPv4 socket interface that is used when communicating. The user can however plug
in hissher own 1Pv4 socket implementation. This, for example, in order to communicate over TLS. A user supplied
socket implementation is plugged in by passing a callback structure to either ei _connect _init_ussi () or
ei _connect _xinit_ussi().

All callbacksintheei _socket _cal | backs structure should return zero on success; and a posix error code on
failure.

The addr argument of thel i st en, accept, and connect callbacks refer to appropriate address structure for
currently used protocol. Currently ei only supports IPv4. That is, at this time addr always points to a st r uct
sockaddr _i n structure.

Theei _socket cal | backs structure may be enlarged in the future. All fields not set, needs to be zeroed out.

Ericsson AB. All Rights Reserved.: Erl_Interface | 23

ei_connect

typedef struct {

int flags;

int (*socket)(void **ctx, void *setup ctx);

int (*close)(void *ctx);

int (*listen)(void *ctx, void *addr, int *1len, int backlog);

int (*accept)(void **ctx, void *addr, int *len, unsigned tmo);

int (*connect)(void *ctx, void *addr, int len, unsigned tmo);

int (*writev)(void *ctx, const void *iov, int iovcnt, ssize t *len, unsigned tmo);
int (*write)(void *ctx, const char *buf, ssize t *len, unsigned tmo);
int (*read)(void *ctx, char *buf, ssize t *len, unsigned tmo);

int (*handshake packet header size)(void *ctx, int *sz);

int (*connect handshake complete) (void *ctx);

int (*accept _handshake complete) (void *ctx);

int (*get fd)(void *ctx, int *fd);

} ei socket callbacks;

flags

Flagsinforming ei about the behaviour of the callbacks. Flags should be bitwise or:ed together. If no flag, is set,
thef | ags field should contain 0. Currently, supported flags:

El _SCLBK_FLG FULL_I MPL

If set, theaccept (),connect () ,witev(),wite(),andread() calbacksimplementstimeouts.
The timeout is passed in the t mo argument and is given in milli seconds. Note that the t no argument to
these callbacks differ from the timeout argumentsintheei API. Zero meansazero timeout. That is, poll and
timeout immediately unless the operation is successful. El _SCLBK_| NF_TMO (max unsi gned) means
infinite timeout. Thefile descriptor isin blocking mode when a callback is called, and it must bein blocking
mode when the callback returns.

If not set, ei will implement thetimeout using sel ect () in order to determine when to call the callbacks
and when to time out. Thet no arguments of theaccept (),connect (), witev(),wite(),and
read() callbacksshould beignored. The callbacks may be called in non-blocking mode. The callbacksare
not allowed to change between blocking and non-blocking mode. In order for thistowork, sel ect () needs
to interact with the socket primitives used the same way as it interacts with the ordinary socket primitives.
If thisis not the case, the callbacks need to implement timeouts and this flag should be set.

More flags may be introduced in the future.
(*socket)(void **ctx, void *setup_ctx)
Create a socket and a context for the socket.

On success it should set * ¢t x to point to a context for the created socket. This context will be passed to all
other socket callbacks. This function will be passed the same set up_cont ext as passed to the preceeding
ei _connect _init_ussi() orei _connect_xinit_ussi() cal.

During the lifetime of a socket, the pointer * ct x hasto remain the same. That is, it cannot later be rel ocated. ‘

This callback is mandatory.
(*cl ose) (void *ctx)
Close the socket identified by ct x and destroy the context.
This callback is mandatory.
(*listen)(void *ctx, void *addr, int *len, int backl og)
Bind the socket identified by ct x to alocal interface and then listen oniit.

24 | Ericsson AB. All Rights Reserved.: Erl_Interface

ei_connect

The addr and | en arguments are both input and output arguments. When called addr points to an address
structure of lenght * I en containing information on how to bind the socket. Uppon return this callback should
haveupdated the structurereferred by addr with information on how the socket actually wasbound. * | en should
be updated to reflect the size of * addr updated. back! og identifiesthe size of the backlog for the listen socket.

This callback is mandatory.

int (*accept)(void **ctx, void *addr, int *len, unsigned tno)
Accept connections on the listen socket identified by * ct x.
When a connection is accepted, a new context for the accepted connection should be created and * ct x should
be updated to point to the new context for the accepted connection. When called addr pointsto an uninitialized
address structure of lenght * | en. Uppon return this callback should have updated this structure with information
about the client address. * | en should be updated to reflect the size of * addr updated.
If theEl _SCLBK_FLG FULL_I MPL flag has been set, t mo contains timeout time in milliseconds.
During the lifetime of a socket, the pointer * ct x hasto remain the same. That is, it cannot later be rel ocated. ‘
This callback is mandatory.
int (*connect)(void *ctx, void *addr, int |en, unsigned tno)
Connect the socket identified by ct x to the address identified by addr .
When called addr pointsto an address structure of lenght | en containing information on where to connect.
IftheEl _SCLBK FLG FULL_| MPL flag has been set, t no contains timeout time in milliseconds.
This callback is mandatory.
int (*witev)(void *ctx, const void *iov, long iovcnt, ssize_t *len, unsigned
t o)
Write data on the connected socket identified by ct x.
i ov pointsto an array of st ruct i ovec structures of lengthi ovent containing data to write to the socket.
On success, this callback should set * | en to the amount of bytes successfully written on the socket.
If theEl _SCLBK_FLG FULL_I MPL flag has been set, t mo contains timeout time in milliseconds.
This callback is optional. Set thewr i t ev field inthetheei _socket _cal | backs structure to NULL if not
implemented.
int (*wite)(void *ctx, const char *buf, ssize_ t *len, unsigned tno)
Write data on the connected socket identified by ct x.
When called buf pointsto a buffer of length * | en containing the data to write on the socket. On success, this
callback should set * | en to the amount of bytes successfully written on the socket.
IftheEl SCLBK FLG FULL_| MPL flag has been set, t no contains timeout time in milliseconds.
This callback is mandatory.
int (*read)(void *ctx, char *buf, ssize_t *len, unsigned tno)

Read data on the connected socket identified by ct x.

buf pointsto a buffer of length *| en where the read data should be placed. On success, this callback should
update * | en to the amount of bytes successfully read on the socket.

IftheEl _SCLBK FLG FULL_I MPL flag has been set, t no contains timeout time in milliseconds.

Ericsson AB. All Rights Reserved.: Erl_Interface | 25

ei_connect

This callback is mandatory.
i nt (*handshake_packet header_size)(void *ctx, int *sz)
Inform about handshake packet header size to use during the Erlang distribution handshake.

On success, * sz should be set to the handshake packet header sizeto use. Valid valuesare 2 and 4. Erlang TCP
distribution use a handshake packet size of 2 and Erlang TL S distribution use a handshake packet size of 4.

This callback is mandatory.
i nt (*connect handshake_conpl ete) (void *ctx)
Called when alocally started handshake has completed successfully.

Thiscallback isoptional. Settheconnect _handshake_conpl et e fieldintheei _socket _cal | backs
structure to NULL if not implemented.

i nt (*accept_handshake_conpl ete)(void *ctx)
Called when aremotely started handshake has completed successfully.

This callback is optional. Set the accept _handshake_conpl et e fieldintheei _socket cal | backs
structure to NULL if not implemented.

int (*get_fd)(void *ctx, int *fd)
Inform about file descriptor used by the socket which isidentified by ct x.

During thelifetime of asocket, thefile descriptor hasto remainthe same. That is, repeated callsto thiscallback
with the same context shoul d aways report the same file descriptor.

The file descriptor has to be areal file descriptor. That is, no other operation should be able to get the same
file descriptor until it has been released by thecl ose() callback.

This callback is mandatory.

Exports

struct hostent *ei gethostbyaddr(const char *addr, int len, int type)

struct hostent *ei gethostbyaddr r(const char *addr, int length, int type,
struct hostent *hostp, char *buffer, int buflen, int *h _errnop)

struct hostent *ei gethostbyname(const char *name)

struct hostent *ei gethostbyname r(const char *name, struct hostent *hostp,
char *buffer, int buflen, int *h_errnop)

Convenience functions for some common name lookup functions.

int ei accept(ei cnode *ec, int listensock, ErlConnect *conp)
Used by a server process to accept a connection from a client process.

* ec isthe C-node structure.
« |listensock isan open socket descriptor on which | i st en() has previously been called.

26 | Ericsson AB. All Rights Reserved.: Erl_Interface

ei_connect

e conpisapointertoan Er |l Connect struct, described as follows:

typedef struct {

char ipadr[4];

char nodename[MAXNODELEN];
} ErlConnect;

On success, conp isfilled in with the address and node name of the connecting client and afile descriptor is returned.
Onfailure, ERL_ERRORIisreturnedander| _errnoissettoEl O

int ei_accept tmo(ei cnode *ec, int listensock, ErlConnect *conp, unsigned
timeout ms)

Equivalent to ei _accept with an optional time-out argument, see the description at the beginning of this manual
page.

int ei close connection(int fd)
Closes a previously opened connection or listen socket.

int ei connect(ei cnode* ec, char *nodename)
int ei_xconnect(ei cnode* ec, Erl IpAddr adr, char *alivename)

Sets up a connection to an Erlang node.

ei _xconnect () requiresthe IP address of the remote host and the alive name of the remote node to be specified.
ei _connect () providesan dternative interface and determines the information from the node name provided.

e addr isthe 32-hit IP address of the remote host.

« al i ve isthe aivename of the remote node.

* node isthe name of the remote node.

These functions return an open file descriptor on success, or a hegative value indicating that an error occurred. In the
latter casethey seter | _er r no to one of the following:

EHOSTUNREACH

The remote host node isunreachable.
ENOVEM

No more memory is available.
El O

1/O error.

Also, er r no valuesfrom socket (2) and connect (2) system calls may be propagated intoer | _er r no.
Example:

#define NODE "madonna@chivas.du.etx.ericsson.se"
#define ALIVE "madonna"
#define IP_ADDR "150.236.14.75"

/*** Variant 1 ***/
int fd = ei connect(&ec, NODE);

/*** Variant 2 ***/

struct in addr addr;

addr.s addr = inet addr(IP_ADDR);

fd = ei xconnect(&ec, &addr, ALIVE);

Ericsson AB. All Rights Reserved.: Erl_Interface | 27

ei_connect

int ei connect init(ei cnode* ec, const char* this node name, const char
*cookie, short creation)

int ei connect init ussi(ei cnode* ec, const char* this node name, const
char *cookie, short creation, ei socket callbacks *cbs, int cbs sz, void
*setup context)

int ei connect xinit(ei cnode* ec, const char *thishostname, const char
*thisalivename, const char *thisnodename, Erl IpAddr thisipaddr, const char
*cookie, short creation)

int ei connect xinit ussi(ei cnode* ec, const char *thishostname, const
char *thisalivename, const char *thisnodename, Erl IpAddr thisipaddr, const
char *cookie, short creation, ei socket callbacks *cbs, int cbs sz, void
*setup context)

Initializestheec structure, to identify the node name and cookie of the server. One of them must be called before other
functions that worksonthe ei _cnode type or afile descriptor associated with a connection to another node is used.

ec is astructure containing information about the C-node. It is used in other ei functions for connecting and
receiving data.

t hi s_node_nane istheregistered name of the process (the name before'@").

cooki e isthe cookie for the node.

creat i on identifies a specific instance of a C-node. It can help prevent the node from receiving messages sent
to an earlier process with the same registered name.

t hi shost nane isthe name of the machine we are running on. If long names are to be used, they are to be fully
qualified (that is, duri n. eri x. eri csson. se instead of dur i n).

t hi sal i venan® isthe registered name of the process.

t hi snodenan® isthe full name of the node, that is, ei node@lur i n.

t hi spaddr if the P address of the host.

cbs isapointer to a callback structure implementing and alternative socket interface.
cbs_sz isthe size of the structure pointed to by cbs.

set up_cont ext isapointer to a structure that will be passed as second argument to the socket callback
inthe cbs structure.

A C-node acting as a server is assigned a creation number when it callsei _publ i sh() .

A connection is closed by simply closing the socket. For information about how to close the socket gracefully (when
there are outgoing packets before close), see the relevant system documentation.

These functions return a negative value indicating that an error occurred.

Example 1:

int n = 0;
struct in addr addr;
ei cnode ec;
addr.s addr = inet addr("150.236.14.75");
if (ei connect xinit(&ec,
"chivas",
"madonna",
"madonna@chivas.du.etx.ericsson.se",
&addr;
"cookie...",
n++) < 0) {
fprintf(stderr,"ERROR when initializing: %d",erl errno);
exit(-1);

28 | Ericsson AB. All Rights Reserved.: Erl_Interface

ei_connect

Example 2:
if (ei connect init(&ec, "madonna", "cookie...", n++) < 0) {
fprintf(stderr,"ERROR when initializing: %d",erl errno);
exit(-1);
}

int ei_connect tmo(ei cnode* ec, char *nodename, unsigned timeout ms)
int ei xconnect tmo(ei cnode* ec, Erl IpAddr adr, char *alivename, unsigned
timeout ms)

Equivalent to ei _connect and ei _xconnect with an optional time-out argument, see the description at the
beginning of this manual page.

int ei get tracelevel(void)
void ei set tracelevel(int level)

Used to set tracing on the distribution. Thelevelsaredifferent verbosity levels. A higher level meansmoreinformation.
See also section Debug I nformation.

These functions are not thread safe.

int ei listen(ei cnode *ec, int *port, int backlog)
int ei xlisten(ei cnode *ec, Erl IpAddr adr, int *port, int backlog)

Used by aserver processto setup alisten socket which later can be used for accepting connectionsfrom client processes.

* ec isthe C-node structure.
e adr islocal interface to bind to.

e port is a pointer to an integer containing the port number to bind to. If *port equals O when calling
ei _listen(), the socket will be bound to an ephemeral port. On success, ei _| i st en() will update the
value of * port to the port actually bound to.

e backl og is maximum backlog of pending connections.
ei _|i sten will create a socket, bind to a port on the local interface identified by adr (or all local interfaces if

ei _listen() iscaled), and mark the socket as a passive socket (that is, a socket that will be used for accepting
incoming connections).

On success, afile descriptor is returned which can be used in acal to ei _accept () . On failure, ERL_ERROR s
returnedander| _errnoissettoEl O

int ei publish(ei cnode *ec, int port)

Used by a server process to register with the local name server EPMD, thereby allowing other processes to send
messages by using the registered name. Before calling either of thesefunctions, the process should havecaled bi nd()

and | i st en() on an open socket.

* ec isthe C-node structure.

e port istheloca nametoregister, and isto bethe same asthe port number that was previously bound to the socket.
e addr isthe 32-bit IP address of the local host.

To unregister with EPMD, simply close the returned descriptor. Do not useei _unpubl i sh() , whichisdeprecated
anyway.

On success, the function returns a descriptor connecting the calling process to EPMD. On failure, - 1 isreturned and
erl _errnoissettoEl O

Ericsson AB. All Rights Reserved.: Erl_Interface | 29

ei_connect

Also, er r no valuesfrom socket (2) and connect (2) system calls may be propagated intoer | _er r no.

int ei publish tmo(ei cnode *ec, int port, unsigned timeout ms)

Equivalent to ei _publ i sh with an optional time-out argument, see the description at the beginning of this manual
page.

int ei receive(int fd, unsigned char* bufp, int bufsize)
Receives a message consisting of a sequence of bytesin the Erlang external format.

« fdisanopen descriptor to an Erlang connection. It is obtained from apreviousei _connect orei _accept.
* buf p isabuffer large enough to hold the expected message.
e buf si ze indicates the size of buf p.

If atick occurs, that is, the Erlang node on the other end of the connection has polled this node to seeif itis still aive,
the function returns ERL_ Tl CK and no message is placed in the buffer. Also, er | _err no isset to EAGAI N.

On success, the message is placed in the specified buffer and the function returns the number of bytes actually read.
On failure, the function returns ERL_ERROR and setser | _er r no to one of the following:

EAGAI N

Temporary error: Try again.
EMSCGSI ZE

Buffer istoo small.
El O

1/O error.

int ei receive encoded(int fd, char **mbufp, int *bufsz, erlang msg *msg, int
*msglen)

This function is retained for compatibility with code generated by the interface compiler and with code following
examples in the same application.

In essence, the function performs the same operation asei _xr ecei ve_nsg, but instead of usinganei _x_buf f,
the function expects a pointer to a character pointer (mbuf p), where the character pointer is to point to a memory
area allocated by mal | oc. Argument buf sz is to be a pointer to an integer containing the exact size (in bytes) of
the memory area. The function may reallocate the memory area and will in such cases put the new sizein * buf sz
and update * nbuf p.

Returns either ERL_TI CK or the msgt ype field of theer | ang_nmsg *mnsg. The length of the message is put in
*nmegl en. Onerror avalue< 0 isreturned.

It is recommended to use ei _xr ecei ve_nsg instead when possible, for the sake of readability. However, the
function will be retained in the interface for compatibility and will not be removed in future releases without prior
notice.

int ei receive encoded tmo(int fd, char **mbufp, int *bufsz, erlang msg *msg,
int *msglen, unsigned timeout ms)

Equivalenttoei _r ecei ve_encoded with an optional time-out argument, see the description at the beginning of
this manual page.

30 | Ericsson AB. All Rights Reserved.: Erl_Interface

ei_connect

int ei receive msg(int fd, erlang msg* msg, ei x buff* x)
int ei xreceive msg(int fd, erlang msg* msg, ei x buff* x)

Receives amessage to the bufferinx. ei _xr ecei ve_nsg alowsthebuffer inx to grow, butei _recei ve_nsg
failsif the messageislarger than the pre-allocated buffer in x.

« fdisanopen descriptor to an Erlang connection.
e megisapointertoaner| ang_nsg structure and contains information on the message received.
e X isbuffer obtained fromei _x_new.

On success, the functions return ERL_ M5G and the ms g struct isinitialized. er | ang_ns(g is defined asfollows:

typedef struct {
long msgtype;
erlang pid from;
erlang pid to;
char toname[MAXATOMLEN+1];
char cookie[MAXATOMLEN+1];
erlang trace token;

} erlang msg;

negt ype identifies the type of message, and is one of the following:
ERL_SEND
Indicates that an ordinary send operation has occurred. msg- >t o contains the pid of the recipient (the C-node).
ERL_REG _SEND
A registered send operation occurred. nsg- >f r omcontains the pid of the sender.
ERL_LI NKor ERL_UNLI NK
nmsg- >t 0 and msg- >f r omcontain the pids of the sender and recipient of the link or unlink.
ERL_EXIT
Indicates abroken link. msg- >t o and nsg- >f r omcontain the pids of the linked processes.

Thereturn valueisthe sameasforei _r ecei ve.

int ei receive msg tmo(int fd, erlang msg* msg, ei x buff* x, unsigned
imeout ms)

int ei xreceive msg tmo(int fd, erlang msg* msg, ei x buff* x, unsigned
timeout ms)

Equivalenttoei _recei ve_nsgandei _xr ecei ve_nsg with an optional time-out argument, see the description
at the beginning of this manual page.

int ei receive tmo(int fd, unsigned char* bufp, int bufsize, unsigned
timeout ms)

Equivalentto ei _r ecei ve with an optional time-out argument, see the description at the beginning of this manual
page.

int ei reg send(ei cnode* ec, int fd, char* server name, char* buf, int len)
Sends an Erlang term to aregistered process.

« fdisan open descriptor to an Erlang connection.
e server_nane istheregistered name of the intended recipient.

Ericsson AB. All Rights Reserved.: Erl_Interface | 31

ei_connect

* buf isthe buffer containing the term in binary format.
e | enisthelength of the messagein bytes.

Returns O if successful, otherwise - 1. Inthe latter caseit setser| _errnoto El O
Example:
Send the atom "ok™ to the process "worker":

ei x buff x;

ei x new with version(&x);

el x_encode atom(&x, "ok");

if (ei reg send(&ec, fd, x.buff, x.index) < 0)
handle error();

int ei reg send tmo(ei cnode* ec, int fd, char* server name, char* buf, int
len, unsigned timeout ms)

Equivalenttoei _r eg_send with an optional time-out argument, see the description at the beginning of this manual
page.

int ei rpc(ei cnode *ec, int fd, char *mod, char *fun, const char *argbuf,
int argbuflen, ei x buff *x)

int ei rpc to(ei cnode *ec, int fd, char *mod, char *fun, const char *argbuf,
int argbuflen)
int ei rpc from(ei cnode *ec, int fd, int timeout, erlang msg *msg, ei x buff

Supports calling Erlang functions on remote nodes. ei _r pc_t o() sends an RPC request to a remote node and
ei _rpc_from) receivestheresultsof suchacall. ei _r pc() combines the functionality of these two functions
by sending an RPC request and waiting for the results. Seealso r pc: cal | / 4 in Kernel.

* ecistheC-nodestructureprevioudly initiated by acall toei _connect _init() orei _connect _xinit().
» fdisan open descriptor to an Erlang connection.

e tinmeout isthemaximum time (in milliseconds) to wait for results. Specify ERL_NO_TI MEQUT towait forever.
ei _rpc() waitsinfinitely for the answer, that is, the call will never time out.

* nod isthe name of the module containing the function to be run on the remote node.
» fun isthe name of the function to run.

e argbuf isapointer to a buffer with an encoded Erlang list, without a version magic number, containing the
arguments to be passed to the function.

» argbufl enisthelength of the buffer containing the encoded Erlang list.

e msg isstructure of type er | ang_nsg and contains information on the message received. For a description of
theer | ang_nsg format, see ei _recei ve_nsg.

* X pointsto the dynamic buffer that receivestheresult. Forei _r pc() thisisthe result without the version magic
number. For ei _rpc_fron() theresult returns aversion magic number and a 2-tuple{r ex, Repl y}.

ei _rpc() returnsthe number of bytes in the result on success and - 1 on failure. ei _rpc_from() returns the
number of bytes, otherwise one of ERL_ Tl CK, ERL_TI MEQUT, and ERL_ ERROR. When failing, all three functions
seter| _errno to one of the following:

El O
1/O error.

ETI MEDOUT
Time-out expired.

32 | Ericsson AB. All Rights Reserved.: Erl_Interface

ei_connect

EAGAI N
Temporary error: Try again.

Example:

Check to see if an Erlang processis alive:

int index = 0, is alive;
ei x buff args, result;

ei x new(&result);

ei x new(&args);

ei x encode list header(&args, 1);
ei x encode pid(&args, &check pid);
ei x encode empty list(&args);

if (ei rpc(&ec, fd, "erlang", "is process alive",
args.buff, args.index, &result) < 0)
handle error();

if (ei decode version(result.buff, &index) < 0
|| ei decode bool(result.buff, &index, &is alive) < 0)
handle error();

erlang pid *ei self(ei cnode *ec)

Retrieves the pid of the C-node. Every C-node has a (pseudo) pidusedinei _send_reg, ei _r pc, and others. This
iscontained in afieldinthe ec structure. It will be safefor along timeto fetch thisfield directly fromtheei _cnode
structure.

int ei send(int fd, erlang pid* to, char* buf, int len)
Sends an Erlang term to a process.

« fdisanopen descriptor to an Erlang connection.

* toisthepid of theintended recipient of the message.
e buf isthebuffer containing the term in binary format.
* | enisthelength of the message in bytes.

Returns O if successful, otherwise - 1. In the latter caseit setser| _errno to El O.

int ei send encoded(int fd, erlang pid* to, char* buf, int len)

Works exactly as ei _send, the aternative name is retained for backward compatibility. The function will not be
removed without prior notice.

int ei send encoded tmo(int fd, erlang pid* to, char* buf, int len, unsigned
timeout ms)

Equivalent toei _send_encoded with an optional time-out argument, see the description at the beginning of this
manual page.

int ei_send reg encoded(int fd, const erlang pid *from, const char *to, const
char *buf, int len)

This function is retained for compatibility with code generated by the interface compiler and with code following
examples in the same application.

Ericsson AB. All Rights Reserved.: Erl_Interface | 33

ei_connect

The function works as ei _r eg_send with one exception. Instead of taking ei _cnode asfirst argument, it takes
a second argument, an er | ang_pi d, which is to be the process identifier of the sending process (in the Erlang
distribution protocol).

A suitableer | ang_pi d can be constructed from the ei _cnode structure by the following example code:

el cnode ec;
erlang pid *self;
int fd; /* the connection fd */

self = ei self(&ec);
self->num = fd;

int ei_send reg encoded tmo(int fd, const erlang pid *from, const char *to,
const char *buf, int len, unsigned timeout ms)

Equivalent to ei _send_r eg_encoded with an optional time-out argument, see the description at the beginning
of this manual page.

int ei send tmo(int fd, erlang pid* to, char* buf, int len, unsigned
timeout ms)

Equivalent toei _send with an optional time-out argument, see the description at the beginning of this manual page.

const char *ei thisnodename(ei cnode *ec)
const char *ei thishostname(ei cnode *ec)
const char *ei thisalivename(ei cnode *ec)

Can be used to retrieve information about the C-node. These values areinitially set withei _connect _init () or
ei _connect _xinit().

These function simply fetch the appropriate field from the ec structure. Read the field directly will probably be safe
for along time, so these functions are not really needed.

int ei unpublish(ei cnode *ec)

Can be called by a process to unregister a specified node from EPMD on the local host. Thisis, however, usually not
allowed, unless EPMD was started with flag - r el axed_comand_check, which it normally is not.

To unregister anode you have published, you should close the descriptor that was returned by ei _publ i sh() .

This function is deprecated and will be removed in a future release. ‘

ec isthe node structure of the node to unregister.

If the node was successfully unregistered from EPMD, the function returns 0. Otherwise, - 1 is returned and
erl _errnoissettoEl O

int ei unpublish tmo(ei cnode *ec, unsigned timeout ms)

Equivalenttoei _unpubl i sh wit