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CHAPTER

ONE

INTRODUCTION

This document is the Reference Manual of the Coq proof assistant. To start using Coq, it is advised to first read a
tutorial. Links to several tutorials can be found at https://coq.inria.fr/documentation and https://github.com/coq/coq/
wiki#coq-tutorials
The Coq system is designed to develop mathematical proofs, and especially to write formal specifications, programs and
to verify that programs are correct with respect to their specifications. It provides a specification language named Gallina.
Terms of Gallina can represent programs as well as properties of these programs and proofs of these properties. Using
the so-called Curry-Howard isomorphism, programs, properties and proofs are formalized in the same language called
Calculus of Inductive Constructions, that is a 𝜆-calculus with a rich type system. All logical judgments in Coq are typing
judgments. The very heart of the Coq system is the type checking algorithm that checks the correctness of proofs, in
other words that checks that a program complies to its specification. Coq also provides an interactive proof assistant to
build proofs using specific programs called tactics.
All services of the Coq proof assistant are accessible by interpretation of a command language called the vernacular.
Coq has an interactive mode in which commands are interpreted as the user types them in from the keyboard and a
compiled mode where commands are processed from a file.

• In interactive mode, users can develop their theories and proofs step by step, and query the system for available the-
orems and definitions. The interactive mode is generally run with the help of an IDE, such as CoqIDE, documented
in Coq Integrated Development Environment, Emacs with Proof-General [Asp00]4, or jsCoq to run Coq in your
browser (see https://github.com/ejgallego/jscoq). The coqtop read-eval-print-loop can also be used directly, for
debugging purposes.

• The compiled mode acts as a proof checker taking a file containing a whole development in order to ensure its
correctness. Moreover, Coq’s compiler provides an output file containing a compact representation of its input.
The compiled mode is run with the coqc command.

See also:
The Coq commands.

1.1 How to read this book

This is a Reference Manual, so it is not intended for continuous reading. We recommend using the various indexes to
quickly locate the documentation you are looking for. There is a global index, and a number of specific indexes for tactics,
vernacular commands, and error messages and warnings. Nonetheless, the manual has some structure that is explained
below.

• The first part describes the specification language, Gallina. Chapters The Gallina specification language
and Extensions of Gallina describe the concrete syntax as well as the meaning of programs, theorems and proofs

4 Proof-General is available at https://proofgeneral.github.io/. Optionally, you can enhance it with the minor mode Company-Coq [PCC16] (see
https://github.com/cpitclaudel/company-coq).

1
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in the Calculus of Inductive Constructions. Chapter The Coq library describes the standard library of Coq. Chap-
ter Calculus of Inductive Constructions is a mathematical description of the formalism. Chapter The Module System
describes the module system.

• The second part describes the proof engine. It is divided into several chapters. Chapter Vernacular commands
presents all commands (we call them vernacular commands) that are not directly related to interactive proving:
requests to the environment, complete or partial evaluation, loading and compiling files. How to start and stop
proofs, do multiple proofs in parallel is explained in Chapter Proof handling. In Chapter Tactics, all commands
that realize one or more steps of the proof are presented: we call them tactics. The legacy language to combine
these tactics into complex proof strategies is given in Chapter Ltac. The currently experimental language that
will eventually replace Ltac is presented in Chapter Ltac2. Examples of tactics are described in Chapter Detailed
examples of tactics. Finally, the SSReflect proof language is presented in Chapter The SSReflect proof language.

• The third part describes how to extend the syntax of Coq in Chapter Syntax extensions and interpretation scopes
and how to define new induction principles in Chapter Proof schemes.

• In the fourth part more practical tools are documented. First in Chapter The Coq commands, the usage of coqc
(batch mode) and coqtop (interactive mode) with their options is described. Then, in Chapter Utilities, various
utilities that come with the Coq distribution are presented. Finally, Chapter Coq Integrated Development Environ-
ment describes CoqIDE.

• The fifth part documents a number of advanced features, including coercions, canonical structures, typeclasses,
program extraction, and specialized solvers and tactics. See the table of contents for a complete list.

1.2 List of additional documentation

This manual does not contain all the documentation the user may need about Coq. Various informations can be found in
the following documents:
Installation A text file INSTALL that comes with the sources explains how to install Coq.
The Coq standard library A commented version of sources of the Coq standard library (including only the specifica-

tions, the proofs are removed) is available at https://coq.inria.fr/stdlib/.

1.3 License

This material (the Coq Reference Manual) may be distributed only subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub).
Options A and B are not elected.

2 Chapter 1. Introduction
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CHAPTER

TWO

EARLY HISTORY OF COQ

2.1 Historical roots

Coq is a proof assistant for higher-order logic, allowing the development of computer programs consistent with their
formal specification. It is the result of about ten years5 of research of the Coq project. We shall briefly survey here three
main aspects: the logical language in which we write our axiomatizations and specifications, the proof assistant which
allows the development of verified mathematical proofs, and the program extractor which synthesizes computer programs
obeying their formal specifications, written as logical assertions in the language.
The logical language used by Coq is a variety of type theory, called the Calculus of Inductive Constructions. Without
going back to Leibniz and Boole, we can date the creation of what is now called mathematical logic to the work of Frege
and Peano at the turn of the century. The discovery of antinomies in the free use of predicates or comprehension prin-
ciples prompted Russell to restrict predicate calculus with a stratification of types. This effort culminated with Principia
Mathematica, the first systematic attempt at a formal foundation of mathematics. A simplification of this system along
the lines of simply typed λ-calculus occurred with Church’s Simple Theory of Types. The λ-calculus notation, originally
used for expressing functionality, could also be used as an encoding of natural deduction proofs. This Curry-Howard
isomorphism was used by N. de Bruijn in the Automath project, the first full-scale attempt to develop and mechanically
verify mathematical proofs. This effort culminated with Jutting’s verification of Landau’s Grundlagen in the 1970’s. Ex-
ploiting this Curry-Howard isomorphism, notable achievements in proof theory saw the emergence of two type-theoretic
frameworks; the first one, Martin-Löf’s Intuitionistic Theory of Types, attempts a new foundation of mathematics on con-
structive principles. The second one, Girard’s polymorphic λ-calculus 𝐹𝜔, is a very strong functional system in which we
may represent higher-order logic proof structures. Combining both systems in a higher-order extension of the Automath
language, T. Coquand presented in 1985 the first version of the Calculus of Constructions, CoC. This strong logical sys-
tem allowed powerful axiomatizations, but direct inductive definitions were not possible, and inductive notions had to be
defined indirectly through functional encodings, which introduced inefficiencies and awkwardness. The formalism was
extended in 1989 by T. Coquand and C. Paulin with primitive inductive definitions, leading to the current Calculus of
Inductive Constructions. This extended formalism is not rigorously defined here. Rather, numerous concrete examples
are discussed. We refer the interested reader to relevant research papers for more information about the formalism, its
meta-theoretic properties, and semantics. However, it should not be necessary to understand this theoretical material
in order to write specifications. It is possible to understand the Calculus of Inductive Constructions at a higher level,
as a mixture of predicate calculus, inductive predicate definitions presented as typed PROLOG, and recursive function
definitions close to the language ML.
Automated theorem-proving was pioneered in the 1960’s by Davis and Putnam in propositional calculus. A complete
mechanization (in the sense of a semidecision procedure) of classical first-order logic was proposed in 1965 by J.A.
Robinson, with a single uniform inference rule called resolution. Resolution relies on solving equations in free algebras
(i.e. term structures), using the unification algorithm. Many refinements of resolution were studied in the 1970’s, but
few convincing implementations were realized, except of course that PROLOG is in some sense issued from this effort.
A less ambitious approach to proof development is computer-aided proof-checking. The most notable proof-checkers
developed in the 1970’s were LCF, designed by R. Milner and his colleagues at U. Edinburgh, specialized in proving
properties about denotational semantics recursion equations, and the Boyer and Moore theorem-prover, an automation

5 At the time of writing, i.e. 1995.
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of primitive recursion over inductive data types. While the Boyer-Moore theorem-prover attempted to synthesize proofs
by a combination of automated methods, LCF constructed its proofs through the programming of tactics, written in a
high-level functional meta-language, ML.
The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer and Moore’s, is its possibility
to extract programs from the constructive contents of proofs. This computational interpretation of proof objects, in the
tradition of Bishop’s constructive mathematics, is based on a realizability interpretation, in the sense of Kleene, due to C.
Paulin. The user must just mark his intention by separating in the logical statements the assertions stating the existence
of a computational object from the logical assertions which specify its properties, but which may be considered as just
comments in the corresponding program. Given this information, the system automatically extracts a functional term
from a consistency proof of its specifications. This functional term may be in turn compiled into an actual computer
program. This methodology of extracting programs from proofs is a revolutionary paradigm for software engineering.
Program synthesis has long been a theme of research in artificial intelligence, pioneered by R. Waldinger. The Tablog
system of Z. Manna and R. Waldinger allows the deductive synthesis of functional programs from proofs in tableau form
of their specifications, written in a variety of first-order logic. Development of a systematic programming logic, based on
extensions of Martin-Löf’s type theory, was undertaken at Cornell U. by the Nuprl team, headed by R. Constable. The
first actual program extractor, PX, was designed and implemented around 1985 by S. Hayashi from Kyoto University.
It allows the extraction of a LISP program from a proof in a logical system inspired by the logical formalisms of S.
Feferman. Interest in this methodology is growing in the theoretical computer science community. We can foresee the
day when actual computer systems used in applications will contain certified modules, automatically generated from a
consistency proof of their formal specifications. We are however still far from being able to use this methodology in a
smooth interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time systems taking
advantage of special hardware, debuggers, and the like. We hope that Coq can be of use to researchers interested in
experimenting with this new methodology.

2.2 Versions 1 to 5

Note: This summary was written in 1995 together with the previous section and formed the initial version of the Credits
chapter.
A more comprehensive description of these early versions is available in the following subsections, which come from a
document written in September 2015 by Gérard Huet, Thierry Coquand and Christine Paulin.

A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its implementation language was CAML,
a functional programming language from theML family designed at INRIA in Rocquencourt. The core of this system was
a proof-checker for CoC seen as a typed λ-calculus, called the Constructive Engine. This engine was operated through a
high-level notation permitting the declaration of axioms and parameters, the definition of mathematical types and objects,
and the explicit construction of proof objects encoded as λ-terms. A section mechanism, designed and implemented
by G. Dowek, allowed hierarchical developments of mathematical theories. This high-level language was called the
Mathematical Vernacular. Furthermore, an interactive Theorem Prover permitted the incremental construction of proof
trees in a top-down manner, subgoaling recursively and backtracking from dead-ends. The theorem prover executed
tactics written in CAML, in the LCF fashion. A basic set of tactics was predefined, which the user could extend by his
own specific tactics. This system (Version 4.10) was released in 1989. Then, the system was extended to deal with the new
calculus with inductive types by C. Paulin, with corresponding new tactics for proofs by induction. A new standard set
of tactics was streamlined, and the vernacular extended for tactics execution. A package to compile programs extracted
from proofs to actual computer programs in CAML or some other functional language was designed and implemented by
B. Werner. A new user-interface, relying on a CAML-X interface by D. de Rauglaudre, was designed and implemented
by A. Felty. It allowed operation of the theorem-prover through the manipulation of windows, menus, mouse-sensitive
buttons, and other widgets. This system (Version 5.6) was released in 1991.
Coq was ported to the new implementation Caml-light of X. Leroy and D. Doligez by D. de Rauglaudre (Version 5.7) in
1992. A new version of Coq was then coordinated by C. Murthy, with new tools designed by C. Parent to prove properties

4 Chapter 2. Early history of Coq
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of ML programs (this methodology is dual to program extraction) and a new user-interaction loop. This system (Version
5.8) was released in May 1993. A Centaur interface CTCoq was then developed by Y. Bertot from the Croap project
from INRIA-Sophia-Antipolis.
In parallel, G. Dowek and H. Herbelin developed a new proof engine, allowing the general manipulation of existential
variables consistently with dependent types in an experimental version of Coq (V5.9).
The version V5.10 of Coq is based on a generic system for manipulating terms with binding operators due to Chet Murthy.
A new proof engine allows the parallel development of partial proofs for independent subgoals. The structure of these
proof trees is a mixed representation of derivation trees for the Calculus of Inductive Constructions with abstract syntax
trees for the tactics scripts, allowing the navigation in a proof at various levels of details. The proof engine allows generic
environment items managed in an object-oriented way. This new architecture, due to C. Murthy, supports several new
facilities which make the system easier to extend and to scale up:

• User-programmable tactics are allowed
• It is possible to separately verify development modules, and to load their compiled images without verifying them
again - a quick relocation process allows their fast loading

• A generic parsing scheme allows user-definable notations, with a symmetric table-driven pretty-printer
• Syntactic definitions allow convenient abbreviations
• A limited facility of meta-variables allows the automatic synthesis of certain type expressions, allowing generic
notations for e.g. equality, pairing, and existential quantification.

In the Fall of 1994, C. Paulin-Mohring replaced the structure of inductively defined types and families by a new structure,
allowing the mutually recursive definitions. P. Manoury implemented a translation of recursive definitions into the primi-
tive recursive style imposed by the internal recursion operators, in the style of the ProPre system. C. Muñoz implemented
a decision procedure for intuitionistic propositional logic, based on results of R. Dyckhoff. J.C. Filliâtre implemented a
decision procedure for first-order logic without contraction, based on results of J. Ketonen and R. Weyhrauch. Finally C.
Murthy implemented a library of inversion tactics, relieving the user from tedious definitions of “inversion predicates”.

Rocquencourt, Feb. 1st 1995
Gérard Huet

2.2.1 Version 1

This software is a prototype type-checker for a higher-order logical formalism known as the Theory of Constructions,
presented in his PhD thesis by Thierry Coquand, with influences from Girard’s system F and de Bruijn’s Automath. The
metamathematical analysis of the system is the PhD work of Thierry Coquand. The software is mostly the work of Gérard
Huet. Most of the mathematical examples verified with the software are due to Thierry Coquand.
The programming language of the CONSTR software (as it was called at the time) was a version of ML adapted from the
Edinburgh LCF system and running on a LISP backend. The main improvements from the original LCF ML were that
ML was compiled rather than interpreted (Gérard Huet building on the original translator by Lockwood Morris), and that
it was enriched by recursively defined types (work of Guy Cousineau). This ancestor of CAML was used and improved
by Larry Paulson for his implementation of Cambridge LCF.
Software developments of this prototype occurred from late 1983 to early 1985.
Version 1.10 was frozen on December 22nd 1984. It is the version used for the examples in Thierry Coquand’s thesis,
defended on January 31st 1985. There was a unique binding operator, used both for universal quantification (dependent
product) at the level of types and functional abstraction (λ) at the level of terms/proofs, in the manner of Automath.
Substitution (λ-reduction) was implemented using de Bruijn’s indexes.

2.2. Versions 1 to 5 5
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Version 1.11 was frozen on February 19th, 1985. It is the version used for the examples in the paper: T. Coquand, G.
Huet. Constructions: A Higher Order Proof System for Mechanizing Mathematics [CH85].
Christine Paulin joined the team at this point, for her DEA research internship. In her DEA memoir (August 1985) she
presents developments for the lambo function – lambo(𝑓)(𝑛) computes the minimal 𝑚 such that 𝑓(𝑚) is greater than
𝑛, for 𝑓 an increasing integer function, a challenge for constructive mathematics. She also encoded the majority voting
algorithm of Boyer and Moore.

2.2.2 Version 2

The formal system, now renamed as the Calculus of Constructions, was presented with a proof of consistency and compar-
isons with proof systems of Per Martin Löf, Girard, and the Automath family of N. de Bruijn, in the paper: T. Coquand
and G. Huet. The Calculus of Constructions [CH86b].
An abstraction of the software design, in the form of an abstract machine for proof checking, and a fuller sequence of
mathematical developments was presented in: T. Coquand, G. Huet. Concepts Mathématiques et Informatiques Formalisés
dans le Calcul des Constructions [CH86a].
Version 2.8 was frozen on December 16th, 1985, and served for developing the examples in the above papers.
This calculus was then enriched in version 2.9 with a cumulative hierarchy of universes. Universe levels were initially
explicit natural numbers. Another improvement was the possibility of automatic synthesis of implicit type arguments,
relieving the user of tedious redundant declarations.
Christine Paulin wrote an article Algorithm development in the Calculus of Constructions [Moh86]. Besides lambo and
majority, she presents quicksort and a text formatting algorithm.
Version 2.13 of the Calculus of Constructions with universes was frozen on June 25th, 1986.
A synthetic presentation of type theory along constructive lines with ML algorithms was given by Gérard Huet in his May
1986 CMU course notes Formal Structures for Computation and Deduction. Its chapter Induction and Recursion in the
Theory of Constructions was presented as an invited paper at the Joint Conference on Theory and Practice of Software
Development TAPSOFT’87 at Pise in March 1987, and published as Induction Principles Formalized in the Calculus of
Constructions [Hue88].

2.2.3 Version 3

This version saw the beginning of proof automation, with a search algorithm inspired from PROLOG and the applicative
logic programming programs of the course notes Formal structures for computation and deduction. The search algorithm
was implemented in ML by Thierry Coquand. The proof system could thus be used in two modes: proof verification and
proof synthesis, with tactics such as AUTO.
The implementation language was now called CAML, for Categorical Abstract Machine Language. It used as backend the
LLM3 virtual machine of Le Lisp by Jérôme Chailloux. The main developers of CAML were Michel Mauny, Ascander
Suarez and Pierre Weis.
V3.1 was started in the summer of 1986, V3.2 was frozen at the end of November 1986. V3.4 was developed in the first
half of 1987.
Thierry Coquand held a post-doctoral position in Cambridge University in 1986-87, where he developed a variant imple-
mentation in SML, with which he wrote some developments on fixpoints in Scott’s domains.

2.2.4 Version 4

This version saw the beginning of program extraction from proofs, with two varieties of the type Prop of propositions,
indicating constructive intent. The proof extraction algorithms were implemented by Christine Paulin-Mohring.
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V4.1 was frozen on July 24th, 1987. It had a first identified library of mathematical developments (directory exemples),
with libraries Logic (containing impredicative encodings of intuitionistic logic and algebraic primitives for booleans,
natural numbers and list), Peano developing second-order Peano arithmetic, Arith defining addition, multiplication,
euclidean division and factorial. Typical developments were the Knaster-Tarski theorem and Newman’s lemma from
rewriting theory.
V4.2 was a joint development of a team consisting of Thierry Coquand, Gérard Huet and Christine Paulin-Mohring. A
file V4.2.log records the log of changes. It was frozen on September 1987 as the last version implemented in CAML 2.3,
and V4.3 followed on CAML 2.5, a more stable development system.
V4.3 saw the first top-level of the system. Instead of evaluating explicit quotations, the user could develop his mathematics
in a high-level language called the mathematical vernacular (following Automath terminology). The user could develop
files in the vernacular notation (with .v extension) which were now separate from the ml sources of the implementation.
Gilles Dowek joined the team to develop the vernacular language as his DEA internship research.
A notion of sticky constant was introduced, in order to keep names of lemmas when local hypotheses of proofs were
discharged. This gave a notion of global mathematical environment with local sections.
Another significant practical change was that the system, originally developed on the VAX central computer of our lab,
was transferred on SUN personal workstations, allowing a level of distributed development. The extraction algorithm was
modified, with three annotations Pos, Null and Typ decorating the sorts Prop and Type.
Version 4.3 was frozen at the end of November 1987, and was distributed to an early community of users (among those
were Hugo Herbelin and Loic Colson).
V4.4 saw the first version of (encoded) inductive types. Now natural numbers could be defined as:

[source, coq]
Inductive NAT : Prop = O : NAT | Succ : NAT->NAT.

These inductive types were encoded impredicatively in the calculus, using a subsystem rec due to Christine Paulin. V4.4
was frozen on March 6th 1988.
Version 4.5 was the first one to support inductive types and program extraction. Its banner was Calcul des Constructions
avec Réalisations et Synthèse. The vernacular language was enriched to accommodate extraction commands.
The verification engine design was presented as: G. Huet. The Constructive Engine. Version 4.5. Invited Conference,
2nd European Symposium on Programming, Nancy, March 88. The final paper, describing the V4.9 implementation,
appeared in: A perspective in Theoretical Computer Science, Commemorative Volume in memory of Gift Siromoney,
Ed. R. Narasimhan, World Scientific Publishing, 1989.
Version 4.5 was demonstrated in June 1988 at the YoP Institute on Logical Foundations of Functional Programming
organized by Gérard Huet at Austin, Texas.
Version 4.6 was started during the summer of 1988. Its main improvement was the complete rehaul of the proof synthesis
engine by Thierry Coquand, with a tree structure of goals.
Its source code was communicated to Randy Pollack on September 2nd 1988. It evolved progressively into LEGO, proof
system for Luo’s formalism of Extended Calculus of Constructions.
The discharge tactic was modified by Gérard Huet to allow for inter-dependencies in discharged lemmas. Christine Paulin
improved the inductive definition scheme in order to accommodate predicates of any arity.
Version 4.7 was started on September 6th, 1988.
This version starts exploiting the CAML notion of module in order to improve the modularity of the implementation.
Now the term verifier is identified as a proper module Machine, which the structure of its internal data structures being
hidden and thus accessible only through the legitimate operations. This machine (the constructive engine) was the trusted
core of the implementation. The proof synthesis mechanism was a separate proof term generator. Once a complete proof
term was synthesized with the help of tactics, it was entirely re-checked by the engine. Thus there was no need to certify
the tactics, and the system took advantage of this fact by having tactics ignore the universe levels, universe consistency

2.2. Versions 1 to 5 7



The Coq Reference Manual, Release 8.11.2

check being relegated to the final type-checking pass. This induced a certain puzzlement in early users who saw, after a
successful proof search, their QED followed by silence, followed by a failure message due to a universe inconsistency…
The set of examples comprise set theory experiments by Hugo Herbelin, and notably the Schroeder-Bernstein theorem.
Version 4.8, started on October 8th, 1988, saw a major re-implementation of the abstract syntax type constr, separating
variables of the formalism and metavariables denoting incomplete terms managed by the search mechanism. A notion of
level (with three values TYPE, OBJECT and PROOF) is made explicit and a type judgement clarifies the constructions,
whose implementation is now fully explicit. Structural equality is speeded up by using pointer equality, yielding spectacular
improvements. Thierry Coquand adapts the proof synthesis to the new representation, and simplifies pattern matching to
first-order predicate calculus matching, with important performance gain.
A new representation of the universe hierarchy is then defined by Gérard Huet. Universe levels are now implemented
implicitly, through a hidden graph of abstract levels constrained with an order relation. Checking acyclicity of the graph
insures well-foundedness of the ordering, and thus consistency. This was documented in a memo Adding Type:Type to
the Calculus of Constructions which was never published.
The development version is released as a stable 4.8 at the end of 1988.
Version 4.9 is released on March 1st 1989, with the new ”elastic” universe hierarchy.
The spring of 1989 saw the first attempt at documenting the system usage, with a number of papers describing the
formalism:

• Metamathematical Investigations of a Calculus of Constructions, by Thierry Coquand [Coq89],
• Inductive definitions in the Calculus of Constructions, by Christine Paulin-Mohrin,
• Extracting Fω’s programs from proofs in the Calculus of Constructions, by Christine Paulin-Mohring* [PM89],
• The Constructive Engine, by Gérard Huet [Hue89],

as well as a number of user guides:
• A short user’s guide for the Constructions, Version 4.10, by Gérard Huet
• A Vernacular Syllabus, by Gilles Dowek.
• The Tactics Theorem Prover, User’s guide, Version 4.10, by Thierry Coquand.

Stable V4.10, released on May 1st, 1989, was then a mature system, distributed with CAML V2.6.
In the mean time, Thierry Coquand and Christine Paulin-Mohring had been investigating how to add native inductive
types to the Calculus of Constructions, in the manner of Per Martin-Löf’s Intuitionistic Type Theory. The impredicative
encoding had already been presented in: F. Pfenning and C. Paulin-Mohring. Inductively defined types in the Calculus
of Constructions [PPM89]. An extension of the calculus with primitive inductive types appeared in: T. Coquand and C.
Paulin-Mohring. Inductively defined types [CP90].
This led to the Calculus of Inductive Constructions, logical formalism implemented in Versions 5 upward of the system,
and documented in: C. Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Properties [PM93b].
The last version of CONSTR is Version 4.11, which was last distributed in the spring of 1990. It was demonstrated at
the first workshop of the European Basic Research Action Logical Frameworks In Sophia Antipolis in May 1990.

2.2.5 Version 5

At the end of 1989, Version 5.1 was started, and renamed as the system Coq for the Calculus of Inductive Constructions.
It was then ported to the new stand-alone implementation of ML called Caml-light.
In 1990 many changes occurred. Thierry Coquand left for Chalmers University in Göteborg. Christine Paulin-Mohring
took a CNRS researcher position at the LIP laboratory of École Normale Supérieure de Lyon. Project Formel was termi-
nated, and gave rise to two teams: Cristal at INRIA-Roquencourt, that continued developments in functional programming
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with Caml-light then OCaml, and Coq, continuing the type theory research, with a joint team headed by Gérard Huet at
INRIA-Rocquencourt and Christine Paulin-Mohring at the LIP laboratory of CNRS-ENS Lyon.
Chetan Murthy joined the team in 1991 and became the main software architect of Version 5. He completely rehauled
the implementation for efficiency. Versions 5.6 and 5.8 were major distributed versions, with complete documentation
and a library of users’ developments. The use of the RCS revision control system, and systematic ChangeLog files, allow
a more precise tracking of the software developments.

September 2015 +
Thierry Coquand, Gérard Huet and Christine Paulin-Mohring.

2.3 Versions 6

2.3.1 Version 6.1

The present version 6.1 of Coq is based on the V5.10 architecture. It was ported to the new language Objective Caml by
Bruno Barras. The underlying framework has slightly changed and allows more conversions between sorts.
The new version provides powerful tools for easier developments.
Cristina Cornes designed an extension of the Coq syntax to allow definition of terms using a powerful pattern matching
analysis in the style of ML programs.
Amokrane Saïbi wrote a mechanism to simulate inheritance between types families extending a proposal by Peter Aczel.
He also developed a mechanism to automatically compute which arguments of a constant may be inferred by the system
and consequently do not need to be explicitly written.
Yann Coscoy designed a command which explains a proof term using natural language. Pierre Crégut built a new tactic
which solves problems in quantifier-free Presburger Arithmetic. Both functionalities have been integrated to the Coq
system by Hugo Herbelin.
Samuel Boutin designed a tactic for simplification of commutative rings using a canonical set of rewriting rules and equality
modulo associativity and commutativity.
Finally the organisation of the Coq distribution has been supervised by Jean-Christophe Filliâtre with the help of Judicaël
Courant and Bruno Barras.

Lyon, Nov. 18th 1996
Christine Paulin

2.3.2 Version 6.2

In version 6.2 of Coq, the parsing is done using camlp4, a preprocessor and pretty-printer for CAML designed by Daniel
de Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptation of Coq for camlp4, this work was continued by
Bruno Barras who also changed the structure of Coq abstract syntax trees and the primitives to manipulate them. The
result of these changes is a faster parsing procedure with greatly improved syntax-error messages. The user-interface to
introduce grammar or pretty-printing rules has also changed.
Eduardo Giménez redesigned the internal tactic libraries, giving uniform names to Caml functions corresponding to Coq
tactic names.
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Bruno Barras wrote new, more efficient reduction functions.
Hugo Herbelin introduced more uniform notations in the Coq specification language: the definitions by fixpoints and
pattern matching have a more readable syntax. Patrick Loiseleur introduced user-friendly notations for arithmetic expres-
sions.
New tactics were introduced: Eduardo Giménez improved the mechanism to introduce macros for tactics, and designed
special tactics for (co)inductive definitions; Patrick Loiseleur designed a tactic to simplify polynomial expressions in
an arbitrary commutative ring which generalizes the previous tactic implemented by Samuel Boutin. Jean-Christophe
Filliâtre introduced a tactic for refining a goal, using a proof term with holes as a proof scheme.
David Delahaye designed the tool to search an object in the library given its type (up to isomorphism).
Henri Laulhère produced the Coq distribution for the Windows environment.
Finally, Hugo Herbelin was the main coordinator of the Coq documentation with principal contributions by Bruno Barras,
David Delahaye, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin and Patrick Loiseleur.

Orsay, May 4th 1998
Christine Paulin

2.3.3 Version 6.3

The main changes in version V6.3 were the introduction of a few new tactics and the extension of the guard condition for
fixpoint definitions.
B. Barras extended the unification algorithm to complete partial terms and fixed various tricky bugs related to universes.
D. Delahaye developed the AutoRewrite tactic. He also designed the new behavior of Intro and provided the
tacticals First and Solve.
J.-C. Filliâtre developed the Correctness tactic.
E. Giménez extended the guard condition in fixpoints.
H. Herbelin designed the new syntax for definitions and extended the Induction tactic.
P. Loiseleur developed the Quote tactic and the new design of the Auto tactic, he also introduced the index of errors
in the documentation.
C. Paulin wrote the Focus command and introduced the reduction functions in definitions, this last feature was proposed
by J.-F. Monin from CNET Lannion.

Orsay, Dec. 1999
Christine Paulin

2.4 Versions 7

2.4.1 Summary of changes

The version V7 is a new implementation started in September 1999 by Jean-Christophe Filliâtre. This is a major revision
with respect to the internal architecture of the system. The Coq version 7.0 was distributed in March 2001, version 7.1

10 Chapter 2. Early history of Coq



The Coq Reference Manual, Release 8.11.2

in September 2001, version 7.2 in January 2002, version 7.3 in May 2002 and version 7.4 in February 2003.
Jean-Christophe Filliâtre designed the architecture of the new system. He introduced a new representation for environ-
ments and wrote a new kernel for type checking terms. His approach was to use functional data-structures in order to get
more sharing, to prepare the addition of modules and also to get closer to a certified kernel.
Hugo Herbelin introduced a new structure of terms with local definitions. He introduced “qualified” names, wrote a new
pattern matching compilation algorithm and designed a more compact algorithm for checking the logical consistency of
universes. He contributed to the simplification of Coq internal structures and the optimisation of the system. He added
basic tactics for forward reasoning and coercions in patterns.
David Delahaye introduced a new language for tactics. General tactics using pattern matching on goals and context can
directly be written from the Coq toplevel. He also provided primitives for the design of user-defined tactics in Caml.
Micaela Mayero contributed the library on real numbers. Olivier Desmettre extended this library with axiomatic trigono-
metric functions, square, square roots, finite sums, Chasles property and basic plane geometry.
Jean-Christophe Filliâtre and Pierre Letouzey redesigned a new extraction procedure from Coq terms to Caml or Haskell
programs. This new extraction procedure, unlike the one implemented in previous version of Coq is able to handle all
terms in the Calculus of Inductive Constructions, even involving universes and strong elimination. P. Letouzey adapted
user contributions to extract ML programs when it was sensible. Jean-Christophe Filliâtre wrote coqdoc, a documenta-
tion tool for Coq libraries usable from version 7.2.
Bruno Barras improved the efficiency of the reduction algorithm and the confidence level in the correctness of Coq critical
type checking algorithm.
Yves Bertot designed the SearchPattern and SearchRewrite tools and the support for the pcoq interface (http:
//www-sop.inria.fr/lemme/pcoq/).
Micaela Mayero and David Delahaye introduced Field, a decision tactic for commutative fields.
Christine Paulin changed the elimination rules for empty and singleton propositional inductive types.
Loïc Pottier developed Fourier, a tactic solving linear inequalities on real numbers.
Pierre Crégut developed a new, reflection-based version of the Omega decision procedure.
Claudio Sacerdoti Coen designed an XML output for the Coq modules to be used in the Hypertextual Electronic Library
of Mathematics (HELM cf http://www.cs.unibo.it/helm).
A library for efficient representation of finite maps using binary trees contributed by Jean Goubault was integrated in the
basic theories.
Pierre Courtieu developed a command and a tactic to reason on the inductive structure of recursively defined functions.
Jacek Chrząszcz designed and implemented the module system of Coq whose foundations are in Judicaël Courant’s PhD
thesis.
The development was coordinated by C. Paulin.
Many discussions within the Démons team and the LogiCal project influenced significantly the design of Coq especially
with J. Courant, J. Duprat, J. Goubault, A. Miquel, C. Marché, B. Monate and B. Werner.
Intensive users suggested improvements of the system : Y. Bertot, L. Pottier, L. Théry, P. Zimmerman from INRIA, C.
Alvarado, P. Crégut, J.-F. Monin from France Telecom R & D.

Orsay, May. 2002
Hugo Herbelin & Christine Paulin
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2.4.2 Details of changes in 7.0 and 7.1

Notes:
• items followed by (**) are important sources of incompatibilities
• items followed by (*) may exceptionally be sources of incompatibilities
• items followed by (+) have been introduced in version 7.0

Main novelties

References are to Coq 7.1 reference manual
• New primitive let-in construct (see sections 1.2.8 and )
• Long names (see sections 2.6 and 2.7)
• New high-level tactic language (see chapter 10)
• Improved search facilities (see section 5.2)
• New extraction algorithm managing the Type level (see chapter 17)
• New rewriting tactic for arbitrary equalities (see chapter 19)
• New tactic Field to decide equalities on commutative fields (see 7.11)
• New tactic Fourier to solve linear inequalities on reals numbers (see 7.11)
• New tactics for induction/case analysis in ”natural” style (see 7.7)
• Deep restructuration of the code (safer, simpler and more efficient)
• Export of theories to XML for publishing and rendering purposes (see http://www.cs.unibo.it/helm)

Details of changes

Language: new ”let-in” construction

• New construction for local definitions (let-in) with syntax [x:=u]t (*)(+)
• Local definitions allowed in Record (a.k.a. record à la Randy Pollack)

Language: long names

• Each construction has a unique absolute names built from a base name, the name of the module in which they are
defined (Top if in coqtop), and possibly an arbitrary long sequence of directory (e.g. ”Coq.Lists.PolyList.flat_map”
where ”Coq” means that ”flat_map” is part of Coq standard library, ”Lists” means it is defined in the Lists library
and ”PolyList” means it is in the file Polylist) (+)

• Constructions can be referred by their base name, or, in case of conflict, by a ”qualified” name, where the base
name is prefixed by the module name (and possibly by a directory name, and so on). A fully qualified name is an
absolute name which always refer to the construction it denotes (to preserve the visibility of all constructions, no
conflict is allowed for an absolute name) (+)

• Long names are available for modules with the possibility of using the directory name as a component of the module
full name (with option -R to coqtop and coqc, or command Add LoadPath) (+)
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• Improved conflict resolution strategy (the Unix PATH model), allowing more constructions to be referred just by
their base name

Language: miscellaneous

• The names of variables for Record projections _and_ for induction principles (e.g. sum_ind) is now based on the
first letter of their type (main source of incompatibility) (**)(+)

• Most typing errors have now a precise location in the source (+)
• Slightly different mechanism to solve ”?” (*)(+)
• More arguments may be considered implicit at section closing (*)(+)
• Bug with identifiers ended by a number greater than 2^30 fixed (+)
• New visibility discipline for Remark, Fact and Local: Remark’s and Fact’s now survive at the end of section, but
are only accessible using a qualified names as soon as their strength expires; Local’s disappear and are moved into
local definitions for each construction persistent at section closing

Language: Cases

• Cases no longer considers aliases inferable from dependencies in types (*)(+)
• A redundant clause in Cases is now an error (*)

Reduction

• New reduction flags ”Zeta” and ”Evar” in Eval Compute, for inlining of local definitions and instantiation of exis-
tential variables

• Delta reduction flag does not perform Zeta and Evar reduction any more (*)
• Constants declared as opaque (using Qed) can no longer become transparent (a constant intended to be alternatively
opaque and transparent must be declared as transparent (using Defined)); a risk exists (until next Coq version) that
Simpl and Hnf reduces opaque constants (*)

New tactics

• New set of tactics to deal with types equipped with specific equalities (a.k.a. Setoids, e.g. nat equipped with eq_nat)
[by C. Renard]

• New tactic Assert, similar to Cut but expected to be more user-friendly
• New tactic NewDestruct and NewInduction intended to replace Elim and Induction, Case and Destruct in a more
user-friendly way (see restrictions in the reference manual)

• New tactic ROmega: an experimental alternative (based on reflexion) to Omega [by P. Crégut]
• New tactic language Ltac (see reference manual) (+)
• New versions of Tauto and Intuition, fully rewritten in the new Ltac language; they run faster and produce more
compact proofs; Tauto is fully compatible but, in exchange of a better uniformity, Intuition is slightly weaker (then
use Tauto instead) (**)(+)

• New tactic Field to decide equalities on commutative fields (as a special case, it works on real numbers) (+)
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• New tactic Fourier to solve linear inequalities on reals numbers [by L. Pottier] (+)
• New tactics dedicated to real numbers: DiscrR, SplitRmult, SplitAbsolu (+)

Changes in existing tactics

• Reduction tactics in local definitions apply only to the body
• New syntax of the form ”Compute in Type of H.” to require a reduction on the types of local definitions
• Inversion, Injection, Discriminate, ... apply also on the quantified premises of a goal (using the ”Intros until” syntax)
• Decompose has been fixed but hypotheses may get different names (*)(+)
• Tauto now manages uniformly hypotheses and conclusions of the form t=t which all are considered equivalent to
True. Especially, Tauto now solves goals of the form H : ~ t = t |- A.

• The ”Let” tactic has been renamed ”LetTac” and is now based on the primitive ”let-in” (+)
• Elim can no longer be used with an elimination schema different from the one defined at definition time of the
inductive type. To overload an elimination schema, use ”Elim <hyp> using <name of the new schema>” (*)(+)

• Simpl no longer unfolds the recursive calls of a mutually defined fixpoint (*)(+)
• Intro now fails if the hypothesis name already exists (*)(+)
• ”Require Prolog” is no longer needed (i.e. it is available by default) (*)(+)
• Unfold now fails on a non unfoldable identifier (*)(+)
• Unfold also applies on definitions of the local context
• AutoRewrite now deals only with the main goal and it is the purpose of Hint Rewrite to deal with generated subgoals
(+)

• Redundant or incompatible instantiations in Apply ... with ... are now correctly managed (+)

Efficiency

• Excessive memory uses specific to V7.0 fixed
• Sizes of .vo files vary a lot compared to V6.3 (from -30% to +300% depending on the developments)
• An improved reduction strategy for lazy evaluation
• A more economical mechanism to ensure logical consistency at the Type level; warning: this is experimental and
may produce ”universes” anomalies (please report)

Concrete syntax of constructions

• Only identifiers starting with ”_” or a letter, and followed by letters, digits, ”_” or ”’” are allowed (e.g. ”$” and ”@”
are no longer allowed) (*)

• A multiple binder like (a:A)(a,b:(P a))(Q a) is no longer parsed as (a:A)(a0:(P a))(b:(P a))(Q a0) but as (a:A)(a0:(P
a))(b:(P a0))(Q a0) (*)(+)

• A dedicated syntax has been introduced for Reals (e.g 3+1/x) (+)
• Pretty-printing of Infix notations fixed. (+)
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Parsing and grammar extension

• More constraints when writing ast
– ”{...}” and the macros $LIST, $VAR, etc. now expect a metavariable (an identifier starting with $) (*)
– identifiers should starts with a letter or ”_” and be followed by letters, digits, ”_” or ”’” (other characters

are still supported but it is not advised to use them) (*)(+)
• Entry ”command” in ”Grammar” and quotations (<<...>> stuff) is renamed ”constr” as in ”Syntax” (+)
• New syntax ”[” sentence_1 ... sentence_n”].” to group sentences (useful for Time and to write grammar rules
abbreviating several commands) (+)

• The default parser for actions in the grammar rules (and for patterns in the pretty-printing rules) is now the one
associated to the grammar (i.e. vernac, tactic or constr); no need then for quotations as in <:vernac:<...>>; to return
an ”ast”, the grammar must be explicitly typed with tag ”: ast” or ”: ast list”, or if a syntax rule, by using <<...>>
in the patterns (expression inside these angle brackets are parsed as ”ast”); for grammars other than vernac, tactic
or constr, you may explicitly type the action with tags ”: constr”, ”: tactic”, or ”:vernac” (**)(+)

• Interpretation of names in Grammar rule is now based on long names, which allows to avoid problems (or sometimes
tricks;) related to overloaded names (+)

New commands

• New commands ”Print XML All”, ”Show XML Proof”, ... to show or export theories to XML to be used with
Helm’s publishing and rendering tools (see http://www.cs.unibo.it/helm) (by Claudio Sacerdoti Coen) (+)

• New commands to manually set implicit arguments (+)
– ”Implicits ident.” to activate the implicit arguments mode just for ident
– ”Implicits ident [num1 num2 ...].” to explicitly give which arguments have to be considered as implicit

• New SearchPattern/SearchRewrite (by Yves Bertot) (+)
• New commands ”Debug on”/”Debug off” to activate/deactivate the tactic language debugger (+)
• New commands to map physical paths to logical paths (+) - Add LoadPath physical_dir as logical_dir - Add Rec
LoadPath physical_dir as logical_dir

Changes in existing commands

• Generalization of the usage of qualified identifiers in tactics and commands about globals, e.g. Decompose, Eval
Delta; Hints Unfold, Transparent, Require

• Require synchronous with Reset; Require’s scope stops at Section ending (*)
• For a module indirectly loaded by a ”Require” but not exported, the command ”Import module” turns the construc-
tions defined in the module accessible by their short name, and activates the Grammar, Syntax, Hint, ... declared
in the module (+)

• The scope of the ”Search” command can be restricted to some modules (+)
• Final dot in command (full stop/period) must be followed by a blank (newline, tabulation or whitespace) (+)
• Slight restriction of the syntax for Cbv Delta: if present, option [-myconst] must immediately follow the Delta
keyword (*)(+)

• SearchIsos currently not supported

2.4. Versions 7 15

http://www.cs.unibo.it/helm


The Coq Reference Manual, Release 8.11.2

• Add ML Path is now implied by Add LoadPath (+)
• New names for the following commands (+)
AddPath -> Add LoadPath Print LoadPath -> Print LoadPath DelPath -> Remove LoadPath AddRecPath -> Add
Rec LoadPath Print Path -> Print Coercion Paths
Implicit Arguments On -> Set Implicit Arguments Implicit Arguments Off -> Unset Implicit Arguments
Begin Silent -> Set Silent End Silent -> Unset Silent.

Tools

• coqtop (+)
– Two executables: coqtop.byte and coqtop.opt (if supported by the platform)
– coqtop is a link to the more efficient executable (coqtop.opt if present)
– option -full is obsolete (+)

• do_Makefile renamed into coq_makefile (+)
• New option -R to coqtop and coqc to map a physical directory to a logical one (+)
• coqc no longer needs to create a temporary file
• No more warning if no initialization file .coqrc exists

Extraction

• New algorithm for extraction able to deal with ”Type” (+) (by J.-C. Filliâtre and P. Letouzey)

Standard library

• New library on maps on integers (IntMap, contributed by Jean Goubault)
• New lemmas about integer numbers [ZArith]
• New lemmas and a ”natural” syntax for reals [Reals] (+)
• Exc/Error/Value renamed into Option/Some/None (*)

New user contributions

• Constructive complex analysis and the Fundamental Theorem of Algebra [FTA] (Herman Geuvers, FreekWiedijk,
Jan Zwanenburg, Randy Pollack, Henk Barendregt, Nijmegen)

• A new axiomatization of ZFC set theory [Functions_in_ZFC] (C. Simpson, Sophia-Antipolis)
• Basic notions of graph theory [GRAPHS-BASICS] (Jean Duprat, Lyon)
• A library for floating-point numbers [Float] (Laurent Théry, Sylvie Boldo, Sophia-Antipolis)
• Formalisation of CTL and TCTL temporal logic [CtlTctl] (Carlos Daniel Luna,Montevideo)
• Specification and verification of the Railroad Crossing Problem in CTL and TCTL [RailroadCrossing] (Carlos
Daniel Luna,Montevideo)

• P-automaton and the ABR algorithm [PAutomata] (Christine Paulin, Emmanuel Freund, Orsay)
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• Semantics of a subset of the C language [MiniC] (Eduardo Giménez, Emmanuel Ledinot, Suresnes)
• Correctness proofs of the following imperative algorithms: Bresenham line drawing algorithm [Bresenham],
Marché’s minimal edition distance algorithm [Diff] (Jean-Christophe Filliâtre, Orsay)

• Correctness proofs of Buchberger’s algorithm [Buchberger] and RSA cryptographic algorithm [Rsa] (Laurent
Théry, Sophia-Antipolis)

• Correctness proof of Stalmarck tautology checker algorithm [Stalmarck] (Laurent Théry, Pierre Letouzey, Sophia-
Antipolis)

2.4.3 Details of changes in 7.2

Language
• Automatic insertion of patterns for local definitions in the type of the constructors of an inductive types (for com-
patibility with V6.3 let-in style)

• Coercions allowed in Cases patterns
• New declaration ”Canonical Structure id = t : I” to help resolution of equations of the form (proj ?)=a; if proj(e)=a
then a is canonically equipped with the remaining fields in e, i.e. ? is instantiated by e

Tactics
• New tactic ”ClearBody H” to clear the body of definitions in local context
• New tactic ”Assert H := c” for forward reasoning
• Slight improvement in naming strategy for NewInduction/NewDestruct
• Intuition/Tauto do not perform useless unfolding and work up to conversion

Extraction (details in plugins/extraction/CHANGES or documentation)
• Syntax changes: there are no more options inside the extraction commands. New commands for customization and
options have been introduced instead.

• More optimizations on extracted code.
• Extraction tests are now embedded in 14 user contributions.

Standard library
• In [Relations], Rstar.v and Newman.v now axiom-free.
• In [Sets], Integers.v now based on nat
• In [Arith], more lemmas in Min.v, new file Max.v, tail-recursive plus and mult added to Plus.v and Mult.v respec-
tively

• New directory [Sorting] with a proof of heapsort (dragged from 6.3.1 lib)
• In [Reals], more lemmas in Rbase.v, new lemmas on square, square root and trigonometric functions (R_sqr.v
- Rtrigo.v); a complementary approach and new theorems about continuity and derivability in Ranalysis.v; some
properties in plane geometry such as translation, rotation or similarity in Rgeom.v; finite sums and Chasles property
in Rsigma.v

Bugs
• Confusion between implicit args of locals and globals of same base name fixed
• Various incompatibilities wrt inference of ”?” in V6.3.1 fixed
• Implicits in infix section variables bug fixed
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• Known coercions bugs fixed
• Apply ”universe anomaly” bug fixed
• NatRing now working
• ”Discriminate 1”, ”Injection 1”, ”Simplify_eq 1” now working
• NewInduction bugs with let-in and recursively dependent hypotheses fixed
• Syntax [x:=t:T]u now allowed as mentioned in documentation
• Bug with recursive inductive types involving let-in fixed
• Known pattern-matching bugs fixed
• Known Cases elimination predicate bugs fixed
• Improved errors messages for pattern-matching and projections
• Better error messages for ill-typed Cases expressions

Incompatibilities
• New naming strategy for NewInduction/NewDestruct may affect 7.1 compatibility
• Extra parentheses may exceptionally be needed in tactic definitions.
• Coq extensions written in Ocaml need to be updated (see dev/changements.txt for a description of the main changes
in the interface files of V7.2)

• New behaviour of Intuition/Tauto may exceptionally lead to incompatibilities

2.4.4 Details of changes in 7.3

Language
• Slightly improved compilation of pattern-matching (slight source of incompatibilities)
• Record’s now accept anonymous fields ”_” which does not build projections
• Changes in the allowed elimination sorts for certain class of inductive definitions : an inductive definition without
constructors of Sort Prop can be eliminated on sorts Set and TypeA ”singleton” inductive definition (one constructor
with arguments in the sort Prop like conjunction of two propositions or equality) can be eliminated directly on sort
Type (In V7.2, only the sorts Prop and Set were allowed)

Tactics
• New tactic ”Rename x into y” for renaming hypotheses
• New tactics ”Pose x:=u” and ”Pose u” to add definitions to local context
• Pattern now working on partially applied subterms
• Ring no longer applies irreversible congruence laws of mult but better applies congruence laws of plus (slight source
of incompatibilities).

• Field now accepts terms to be simplified as arguments (as for Ring). This extension has been also implemented
using the toplevel tactic language.

• Intuition does no longer unfold constants except ”<->” and ”~”. It can be parameterized by a tactic. It also can
introduce dependent product if needed (source of incompatibilities)

• ”Match Context” now matching more recent hypotheses first and failing only on user errors and Fail tactic (possible
source of incompatibilities)
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• Tactic Definition’s without arguments now allowed in Coq states
• Better simplification and discrimination made by Inversion (source of incompatibilities)

Bugs
• ”Intros H” now working like ”Intro H” trying first to reduce if not a product
• Forward dependencies in Cases now taken into account
• Known bugs related to Inversion and let-in’s fixed
• Bug unexpected Delta with let-in now fixed

Extraction (details in plugins/extraction/CHANGES or documentation)
• Signatures of extracted terms are now mostly expunged from dummy arguments.
• Haskell extraction is now operational (tested & debugged).

Standard library
• Some additions in [ZArith]: three files (Zcomplements.v, Zpower.v and Zlogarithms.v) moved from plugins/omega
in order to be more visible, one Zsgn function, more induction principles (Wf_Z.v and tail of Zcomplements.v),
one more general Euclid theorem

• Peano_dec.v and Compare_dec.v now part of Arith.v
Tools

• new option -dump-glob to coqtop to dump globalizations (to be used by the new documentation tool coqdoc; see
http://www.lri.fr/~filliatr/coqdoc)

User Contributions
• CongruenceClosure (congruence closure decision procedure) [Pierre Corbineau, ENS Cachan]
• MapleMode (an interface to embed Maple simplification procedures over rational fractions in Coq) [David Dela-
haye, Micaela Mayero, Chalmers University]

• Presburger: A formalization of Presburger’s algorithm [Laurent Thery, INRIA Sophia Antipolis]
• Chinese has been rewritten using Z from ZArith as datatype ZChinese is the new version, Chinese the obsolete one
[Pierre Letouzey, LRI Orsay]

Incompatibilities
• Ring: exceptional incompatibilities (1 above 650 in submitted user contribs, leading to a simplification)
• Intuition: does not unfold any definition except ”<->” and ”~”
• Cases: removal of some extra Cases in configurations of the form ”Cases ... of C _ => ... | _ D => ...” (effects on 2
definitions of submitted user contributions necessitating the removal of now superfluous proof steps in 3 different
proofs)

• Match Context, in case of incompatibilities because of a now non trapped error (e.g. Not_found or Failure), use
instead tactic Fail to force Match Context trying the next clause

• Inversion: better simplification and discrimination may occasionally lead to less subgoals and/or hypotheses and
different naming of hypotheses

• Unification done by Apply/Elim has been changed and may exceptionally lead to incompatible instantiations
• Peano_dec.v and Compare_dec.v parts of Arith.v make Auto more powerful if these files were not already required
(1 occurrence of this in submitted user contribs)
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Changes in 7.3.1

Bug fixes
• Corrupted Field tactic and Match Context tactic construction fixed
• Checking of names already existing in Assert added (#1386)
• Invalid argument bug in Exact tactic solved (#1387)
• Colliding bound names bug fixed (#1412)
• Wrong non-recursivity test for Record fixed (#1394)
• Out of memory/seg fault bug related to parametric inductive fixed (#1404)
• Setoid_replace/Setoid_rewrite bug wrt ”==” fixed

Misc
• Ocaml version >= 3.06 is needed to compile Coq from sources
• Simplification of fresh names creation strategy for Assert, Pose and LetTac (#1402)

2.4.5 Details of changes in 7.4

Symbolic notations
• Introduction of a notion of scope gathering notations in a consistent set; a notation sets has been developed for nat,
Z and R (undocumented)

• New command ”Notation” for declaring notations simultaneously for parsing and printing (see chap 10 of the
reference manual)

• Declarations with only implicit arguments now handled (e.g. the argument of nil can be set implicit; use !nil to
refer to nil without arguments)

• ”Print Scope sc” and ”Locate ntn” allows to know to what expression a notation is bound
• New defensive strategy for printing or not implicit arguments to ensure re-type-checkability of the printed term
• In Grammar command, the only predefined non-terminal entries are ident, global, constr and pattern (e.g. nvar,
numarg disappears); the only allowed grammar types are constr and pattern; ast and ast list are no longer supported;
some incompatibilities in Grammar: when a syntax is a initial segment of an other one, Grammar does not work,
use Notation

Library
• Lemmas in Set from Compare_dec.v (le_lt_dec, ...) and Wf_nat.v (lt_wf_rec, ...) are now transparent. This may
be source of incompatibilities.

• Syntactic Definitions Fst, Snd, Ex, All, Ex2, AllT, ExT, ExT2, ProjS1, ProjS2, Error, Value and Except are turned
to notations. They now must be applied (incompatibilities only in unrealistic cases).

• More efficient versions of Zmult and times (30% faster)
• Reals: the library is now divided in 6 parts (Rbase, Rfunctions, SeqSeries, Rtrigo, Ranalysis, Integration). New
tactics: Sup and RCompute. See Reals.v for details.

Modules
• Beta version, see doc chap 2.5 for commands and chap 5 for theory

Language
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• Inductive definitions now accept ”>” in constructor types to declare the corresponding constructor as a coercion.
• Idem for assumptions declarations and constants when the type is mentioned.
• The ”Coercion” and ”Canonical Structure” keywords now accept the same syntax as ”Definition”, i.e. ”hyps :=c
(:t)?” or ”hyps :t”.

• Theorem-like declaration now accepts the syntax ”Theorem thm [x:t;...] : u”.
• Remark’s and Fact’s now definitively behave as Theorem and Lemma: when sections are closed, the full name of a
Remark or a Fact has no longer a section part (source of incompatibilities)

• Opaque Local’s (i.e. built by tactics and ended by Qed), do not survive section closing any longer; as a side-effect,
Opaque Local’s now appear in the local context of proofs; their body is hidden though (source of incompatibilities);
use one of Remark/Fact/Lemma/Theorem instead to simulate the old behaviour of Local (the section part of the
name is not kept though)

ML tactic and vernacular commands
• ”Grammar tactic” and ”Grammar vernac” of type ”ast” are no longer supported (only ”Grammar tactic sim-
ple_tactic” of type ”tactic” remains available).

• Concrete syntax for ML written vernacular commands and tactics is now declared at ML level using camlp4 macros
TACTIC EXTEND et VERNAC COMMAND EXTEND.

• ”Check n c” now ”n:Check c”, ”Eval n ...” now ”n:Eval ...”
• Proof with T (no documentation)
• SearchAbout id - prints all theorems which contain id in their type

Tactic definitions
• Static globalisation of identifiers and global references (source of incompatibilities, especially, Recursive keyword
is required for mutually recursive definitions).

• New evaluation semantics: no more partial evaluation at definition time; evaluation of all Tactic/Meta Definition,
even producing terms, expect a proof context to be evaluated (especially ”()” is no longer needed).

• Debugger now shows the nesting level and the reasons of failure
Tactics

• Equality tactics (Rewrite, Reflexivity, Symmetry, Transitivity) now understand JM equality
• Simpl and Change now apply to subterms also
• ”Simpl f” reduces subterms whose head constant is f
• Double Induction now referring to hypotheses like ”Intros until”
• ”Inversion” now applies also on quantified hypotheses (naming as for Intros until)
• NewDestruct now accepts terms with missing hypotheses
• NewDestruct and NewInduction now accept user-provided elimination scheme
• NewDestruct and NewInduction now accept user-provided introduction names
• Omega could solve goals such as ~x<y |- x>=y but failed when the hypothesis was unfolded to x < y ->
False. This is fixed. In addition, it can also recognize ’False’ in the hypothesis and use it to solve the goal.

• Coercions now handled in ”with” bindings
• ”Subst x” replaces all occurrences of x by t in the goal and hypotheses when an hypothesis x=t or x:=t or t=x exists
• Fresh names for Assert and Pose now based on collision-avoiding Intro naming strategy (exceptional source of
incompatibilities)
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• LinearIntuition (no documentation)
• Unfold expects a correct evaluable argument
• Clear expects existing hypotheses

Extraction (See details in plugins/extraction/CHANGES and README):
• An experimental Scheme extraction is provided.
• Concerning Ocaml, extracted code is now ensured to always type-check, thanks to automatic inserting of Obj.magic.
• Experimental extraction of Coq new modules to Ocaml modules.

Proof rendering in natural language
• Export of theories to XML for publishing and rendering purposes now includes proof-trees (see http://www.cs.
unibo.it/helm)

Miscellaneous
• Printing Coercion now used through the standard keywords Set/Add, Test, Print
• ”Print Term id” is an alias for ”Print id”
• New switch ”Unset/Set Printing Symbols” to control printing of symbolic notations
• Two new variants of implicit arguments are available

– Unset/Set Contextual Implicits tells to consider implicit also the arguments inferable from the
context (e.g. for nil or refl_eq)

– Unset/Set Strict Implicits tells to consider implicit only the arguments that are inferable in any
case (i.e. arguments that occurs as argument of rigid constants in the type of the remaining arguments; e.g.
the witness of an existential is not strict since it can vanish when applied to a predicate which does not use its
argument)

Incompatibilities
• ”Grammar tactic ... : ast” and ”Grammar vernac ... : ast” are no longer supported, use TACTIC EXTEND and
VERNAC COMMAND EXTEND on the ML-side instead

• Transparency of le_lt_dec and co (leads to some simplification in proofs; in some cases, incompatibilites is solved
by declaring locally opaque the relevant constant)

• Opaque Local do not now survive section closing (rename them into Remark/Lemma/... to get them still surviving
the sections; this renaming allows also to solve incompatibilites related to now forbidden calls to the tactic Clear)

• Remark and Fact have no longer (very) long names (use Local instead in case of name conflict)
Bugs

• Improved localisation of errors in Syntactic Definitions
• Induction principle creation failure in presence of let-in fixed (#1459)
• Inversion bugs fixed (#1427 and #1437)
• Omega bug related to Set fixed (#1384)
• Type-checking inefficiency of nested destructuring let-in fixed (#1435)
• Improved handling of let-in during holes resolution phase (#1460)

Efficiency
• Implementation of a memory sharing strategy reducing memory requirements by an average ratio of 3.

22 Chapter 2. Early history of Coq

http://www.cs.unibo.it/helm
http://www.cs.unibo.it/helm


CHAPTER

THREE

RECENT CHANGES

3.1 Version 8.11

3.1.1 Summary of changes

The main changes brought by Coq version 8.11 are:
• Ltac2, a new tactic language for writing more robust larger scale tactics, with built-in support for datatypes and the
multi-goal tactic monad.

• Primitive floats are integrated in terms and follow the binary64 format of the IEEE 754 standard, as specified in
the Coq.Float.Floats library.

• Cleanups of the section mechanism, delayed proofs and further restrictions of template polymorphism to fix sound-
ness issues related to universes.

• New unsafe flags to disable locally guard, positivity and universe checking. Reliance on these flags is always printed
by Print Assumptions.

• Fixed bugs of Export and Import that can have a significant impact on user developments (common source of
incompatibility!).

• New interactive development method based on vos interface files, allowing to work on a file without recompiling
the proof parts of their dependencies.

• New Arguments annotation for bidirectional type inference configuration for reference (e.g. constants, inductive)
applications.

• New refine attribute for Instance can be used instead of the removed Refine Instance Mode.
• Generalization of the under and over tactics of SSReflect to arbitrary relations.
• Revision of the Coq.Reals library, its axiomatisation and instances of the constructive and classical real numbers.

Additionally, while the omega tactic is not yet deprecated in this version of Coq, it should soon be the case and we already
recommend users to switch to lia in new proof scripts (see also the warning message in the corresponding chapter).
The dev/doc/critical-bugs file documents the known critical bugs of Coq and affected releases. See the Changes
in 8.11+beta1 section and following sections for the detailed list of changes, including potentially breaking changesmarked
with Changed.
Coq’s documentation is available at https://coq.github.io/doc/v8.11/api (documentation of the ML API), https://coq.
github.io/doc/v8.11/refman (reference manual), and https://coq.github.io/doc/v8.11/stdlib (documentation of the stan-
dard library).
Maxime Dénès, Emilio Jesús Gallego Arias, Gaëtan Gilbert, Michael Soegtrop and Théo Zimmermann worked on main-
taining and improving the continuous integration system and package building infrastructure.
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The OPAM repository for Coq packages has been maintained by Guillaume Claret, Karl Palmskog, Matthieu Sozeau and
Enrico Tassi with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.
The 61 contributors to this version are Michael D. Adams, Guillaume Allais, Helge Bahmann, Langston Barrett, Guil-
laume Bertholon, Frédéric Besson, Simon Boulier, Michele Caci, Tej Chajed, Arthur Charguéraud, Cyril Cohen, Frédéric
Dabrowski, Arthur Azevedo de Amorim, Maxime Dénès, Nikita Eshkeev, Jim Fehrle, Emilio Jesús Gallego Arias, Paolo
G. Giarrusso, Gaëtan Gilbert, Georges Gonthier, Jason Gross, Samuel Gruetter, Armaël Guéneau, HugoHerbelin, Florent
Hivert, Jasper Hugunin, Shachar Itzhaky, Jan-Oliver Kaiser, Robbert Krebbers, Vincent Laporte, Olivier Laurent, Samuel
Lelièvre, Nicholas Lewycky, Yishuai Li, Jose Fernando Lopez Fernandez, Andreas Lynge, Kenji Maillard, Erik Martin-
Dorel, Guillaume Melquiond, Alexandre Moine, Oliver Nash, Wojciech Nawrocki, Antonio Nikishaev, Pierre-Marie
Pédrot, Clément Pit-Claudel, Lars Rasmusson, Robert Rand, Talia Ringer, JP Rodi, Pierre Roux, Kazuhiko Sakaguchi,
Vincent Semeria, Michael Soegtrop, Matthieu Sozeau, spanjel, Claude Stolze, Enrico Tassi, Laurent Théry, James R.
Wilcox, Xia Li-yao, Théo Zimmermann
Many power users helped to improve the design of the new features via the issue and pull request system, the Coq
development mailing list, the coq-club@inria.fr mailing list or the Discourse forum6. It would be impossible to mention
exhaustively the names of everybody who to some extent influenced the development.
Version 8.11 is the sixth release of Coq developed on a time-based development cycle. Its development spanned 3 months
from the release of Coq 8.10. Pierre-Marie Pédrot is the release manager and maintainer of this release, assisted by
Matthieu Sozeau. This release is the result of 2000+ commits and 300+ PRs merged, closing 75+ issues.

Paris, November 2019,
Matthieu Sozeau for the Coq development team

3.1.2 Changes in 8.11+beta1

Kernel

• Added: A built-in support of floating-point arithmetic, allowing one to devise efficient reflection tactics involving
numerical computation. Primitive floats are added in the language of terms, following the binary64 format of
the IEEE 754 standard, and the related operations are implemented for the different reduction engines of Coq by
using the corresponding processor operators in rounding-to-nearest-even. The properties of these operators are
axiomatized in the theory Coq.Floats.FloatAxioms which is part of the library Coq.Floats.Floats.
See Section Primitive Floats (#98677, closes #82768, by Guillaume Bertholon, Erik Martin-Dorel, Pierre Roux).

• Changed: Internal definitions generated by abstract-like tactics are now inlined inside universe Qed-
terminated polymorphic definitions, similarly to what happens for their monomorphic counterparts, (#104399,
by Pierre-Marie Pédrot).

• Fixed: Section data is now part of the kernel. Solves a soundness issue in interactive mode where global monomor-
phic universe constraints would be dropped when forcing a delayed opaque proof inside a polymorphic section.
Also relaxes the nesting criterion for sections, as polymorphic sections can now appear inside a monomorphic one
(#10664,10 by Pierre-Marie Pédrot).

• Changed: Using SProp is now allowed by default, without needing to pass -allow-sprop or use Allow
StrictProp (#1081111, by Gaëtan Gilbert).

6 https://coq.discourse.group/
7 https://github.com/coq/coq/pull/9867
8 https://github.com/coq/coq/issues/8276
9 https://github.com/coq/coq/pull/10439
10 https://github.com/coq/coq/pull/10664
11 https://github.com/coq/coq/pull/10811
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Specification language, type inference

• Added: Annotation in Arguments for bidirectionality hints: it is now possible to tell type inference to use type
information from the context once the n first arguments of an application are known. The syntax is: Arguments
foo x y & z. See Arguments (bidirectionality hints) (#1004912, by Maxime Dénès with
help from Enrico Tassi).

• Added: Record fields can be annotated to prevent them from being used as canonical projections; see Canonical
Structures for details (#1007613, by Vincent Laporte).

• Changed: Require parentheses around nested disjunctive patterns, so that pattern and term syntax are consistent;
match branch patterns no longer require parentheses for notation at level 100 or more.

Warning: Incompatibilities
– In match p with (_, (0|1)) => ... parentheses may no longer be omitted around 0|1.
– Notation (p | q) now potentially clashes with core pattern syntax, and should be avoided. -w
disj-pattern-notation flags such Notation.

See Extended pattern matching for details (#1016714, by Georges Gonthier).
• Changed: Function always opens a proof when used with ameasure orwf annotation, seeAdvanced recursive
functions for the updated documentation (#1021515, by Enrico Tassi).

• Changed: The legacy command Add Morphism always opens a proof and cannot be used inside a module type.
In order to declare a module type parameter that happens to be a morphism, use Declare Morphism. See
Deprecated syntax and backward incompatibilities for the updated documentation (#1021516, by Enrico Tassi).

• Changed: The universe polymorphism setting now applies from the opening of a section. In particular, it is not
possible anymore to mix polymorphic and monomorphic definitions in a section when there are no variables nor
universe constraints defined in this section. Thismakes the behaviour consistent with the documentation. (#1044117,
by Pierre-Marie Pédrot)

• Added: The Section vernacular command now accepts the ”universes” attribute. In addition to setting the
section universe polymorphism, it also locally sets the universe polymorphic option inside the section. (#1044118,
by Pierre-Marie Pédrot)

• Fixed: Program Fixpoint now uses ex and sig to make telescopes involving Prop types (#1075819, by
Gaëtan Gilbert, fixing #1075720 reported by Xavier Leroy).

• Changed: Output of the Print and About commands. Arguments meta-data is now displayed as the corre-
sponding Arguments command instead of the human-targeted prose used in previous Coq versions. (#1098521,
by Gaëtan Gilbert).

• Added: #[refine] attribute for Instance, a more predictable version of the old Refine Instance
Mode which unconditionally opens a proof (#1099622, by Gaëtan Gilbert).

12 https://github.com/coq/coq/pull/10049
13 https://github.com/coq/coq/pull/10076
14 https://github.com/coq/coq/pull/10167
15 https://github.com/coq/coq/pull/10215
16 https://github.com/coq/coq/pull/10215
17 https://github.com/coq/coq/pull/10441
18 https://github.com/coq/coq/pull/10441
19 https://github.com/coq/coq/pull/10758
20 https://github.com/coq/coq/issues/10757
21 https://github.com/coq/coq/pull/10985
22 https://github.com/coq/coq/pull/10996
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• Changed: The unsupported attribute error is now an error-by-default warning, meaning it can be disabled
(#1099723, by Gaëtan Gilbert).

• Fixed: Bugs sometimes preventing to define valid (co)fixpoints with implicit arguments in the presence of local
definitions, see #328224 (#1113225, by Hugo Herbelin).

Example
The following features an implicit argument after a local definition. It was wrongly rejected.

Definition f := fix f (o := true) {n : nat} m {struct m} :=
match m with 0 => 0 | S m' => f (n:=n+1) m' end.

Notations
• Added: Numeral Notations now support sorts in the input to printing functions (e.g., numeral notations can be
defined for terms containing things like @cons Set nat nil). (#988326, by Jason Gross).

• Added: The Notation and Infix commands now support the deprecated attribute (#1018027, by Maxime
Dénès).

• Deprecated: The former compat annotation for notations is deprecated, and its semantics changed. It is now
made equivalent to using a deprecated attribute, and is no longer connected with the -compat command-line
flag (#1018028, by Maxime Dénès).

• Changed: A simplification of parsing rules could cause a slight change of parsing precedences for the very rare
users who defined notations with constr at level strictly between 100 and 200 and used these notations on the
right-hand side of a cast operator (:, :>, :>>) (#1096329, by Théo Zimmermann, simplification initially noticed
by Jim Fehrle).

Tactics

• Added: Syntax injection term as [= intropattern
+

] as an alternative to injection

term as simple_intropattern
+ using the standard injection_intropattern syntax

(#928830, by Hugo Herbelin).
• Changed: Reimplementation of the zify tactic. The tactic is more efficient and copes with dependent hypotheses.
It can also be extended by redefining the tactic zify_post_hook. (#985631, fixes #889832, #788633, #984834
and #515535, by Frédéric Besson).

• Changed: The goal selector tactical only now checks that the goal range it is given is valid instead of ignoring
goals out of the focus range (#1031836, by Gaëtan Gilbert).

• Added: Flags Lia Cache, Nia Cache and Nra Cache. (#1076537, by Frédéric Besson, see #1077238 for
23 https://github.com/coq/coq/pull/10997
24 https://github.com/coq/coq/issues/3282
25 https://github.com/coq/coq/pull/11132
26 https://github.com/coq/coq/pull/9883
27 https://github.com/coq/coq/pull/10180
28 https://github.com/coq/coq/pull/10180
29 https://github.com/coq/coq/pull/10963
30 https://github.com/coq/coq/pull/9288
31 https://github.com/coq/coq/pull/9856
32 https://github.com/coq/coq/issues/8898
33 https://github.com/coq/coq/issues/7886
34 https://github.com/coq/coq/issues/9848
35 https://github.com/coq/coq/issues/5155
36 https://github.com/coq/coq/pull/10318
37 https://github.com/coq/coq/pull/10765
38 https://github.com/coq/coq/issues/10772

26 Chapter 3. Recent changes

https://github.com/coq/coq/pull/10997
https://github.com/coq/coq/issues/3282
https://github.com/coq/coq/pull/11132
https://github.com/coq/coq/pull/9883
https://github.com/coq/coq/pull/10180
https://github.com/coq/coq/pull/10180
https://github.com/coq/coq/pull/10963
https://github.com/coq/coq/pull/9288
https://github.com/coq/coq/pull/9856
https://github.com/coq/coq/issues/8898
https://github.com/coq/coq/issues/7886
https://github.com/coq/coq/issues/9848
https://github.com/coq/coq/issues/5155
https://github.com/coq/coq/pull/10318
https://github.com/coq/coq/pull/10765
https://github.com/coq/coq/issues/10772


The Coq Reference Manual, Release 8.11.2

use case).
• Added: The zify tactic is now aware of Z.to_N. (#1077439, grants #916240, by Kazuhiko Sakaguchi).
• Changed: The assert_succeeds and assert_fails tactics now only run their tactic argument once,
even if it has multiple successes. This prevents blow-up and looping from using multisuccess tactics with
assert_succeeds. (#1096641 fixes #1096542, by Jason Gross).

• Fixed: The assert_succeeds and assert_fails tactics now behave correctly when their tactic fully
solves the goal. (#1096643 fixes #911444, by Jason Gross).

Tactic language

• Added: Ltac2, a new version of the tactic language Ltac, that doesn’t preserve backward compatibility, has been
integrated in the main Coq distribution. It is still experimental, but we already recommend users of advanced Ltac
to start using it and report bugs or request enhancements. See its documentation in the dedicated chapter (#1000245,
plugin authored by Pierre-Marie Pédrot, with contributions by various users, integration by Maxime Dénès, help
on integrating / improving the documentation by Théo Zimmermann and Jim Fehrle).

• Added: Ltac2 tactic notations with “constr” arguments can specify the interpretation scope for these arguments;
see Notations for details (#1028946, by Vincent Laporte).

• Changed: White spaces are forbidden in the &ident syntax for ltac2 references that are described in Built-in
quotations (#1032447, fixes #1008848, authored by Pierre-Marie Pédrot).

SSReflect

• Added: Generalize tactics under and over for any registered relation. More precisely, assume the given context
lemma has type forall f1 f2, .. -> (forall i, R1 (f1 i) (f2 i)) -> R2 f1 f2. The
first step performed by under (since Coq 8.10) amounts to calling the tactic rewrite, which itself relies on
setoid_rewrite if need be. So this step was already compatible with a double implication or setoid equality
for the conclusion head symbol R2. But a further step consists in tagging the generated subgoal R1 (f1 i) (?
f2 i) to protect it from unwanted evar instantiation, and get Under_rel _ R1 (f1 i) (?f2 i) that is
displayed as 'Under[ f1 i ]. In Coq 8.10, this second (convenience) step was only performed when R1 was
Leibniz’ eq or iff. Now, it is also performed for any relation R1 which has a RewriteRelation instance
(a RelationClasses.Reflexive instance being also needed so over can discharge the 'Under[ _ ]
goal by instantiating the hidden evar.) This feature generalizing support for setoid-like relations is enabled as soon
as we do both Require Import ssreflect. and Require Setoid. Finally, a rewrite rule UnderE
has been added if one wants to ”unprotect” the evar, and instantiate it manually with another rule than reflexivity
(i.e., without using the over tactic nor the over rewrite rule). See also Section Rewriting under binders (#1002249,
by Erik Martin-Dorel, with suggestions and review by Enrico Tassi and Cyril Cohen).

• Added: A void notation for the standard library empty type (Empty_set) (#1093250, by Arthur Azevedo de
Amorim).

39 https://github.com/coq/coq/pull/10774
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• Added: Lemma inj_compr to ssr.ssrfun (#1113651, by Cyril Cohen).
Commands and options

• Removed: Deprecated flag Refine Instance Mode (#953052, fixes #363253, #389054 and #463855 by
Maxime Dénès, review by Gaëtan Gilbert).

• Changed: Fail does not catch critical errors (including ”stack overflow”) anymore (#1017356, by Gaëtan Gilbert).
• Removed: Undocumented Instance : !type syntax (#1018557, by Gaëtan Gilbert).
• Removed: Deprecated Show Script command (#1027758, by Gaëtan Gilbert).
• Added: Unsafe commands to enable/disable guard checking, positivity checking and universes checking (providing
a local -type-in-type). See Controlling Typing Flags (#1029159 by Simon Boulier).

• Fixed: Two bugs in Export. This can have an impact on the behavior of the Import command on libraries.
Import A when A imports B which exports C was importing C, whereas Import is not transitive. Also, after
Import A B, the import of B was sometimes incomplete (#1047660, by Maxime Dénès).

Warning: This is a common source of incompatibilities in projects migrating to Coq 8.11.

• Changed: Output generated by Printing Dependent Evars Line flag used by the Prooftree tool in
Proof General. (#1048961, closes #450462, #1039963 and #1040064, by Jim Fehrle).

• Added: Optionally highlight the differences between successive proof steps in the Show Proof command. Ex-
perimental; only available in coqtop and Proof General for now, may be supported in other IDEs in the future.
(#1049465, by Jim Fehrle).

• Removed: Legacy commands AddPath, AddRecPath, and DelPath which were undocumented, broken
variants of Add LoadPath, Add Rec LoadPath, and Remove LoadPath (#1118766, by Maxime Dénès
and Théo Zimmermann).

Tools

• Added: coqc now provides the ability to generate compiled interfaces. Use coqc -vos foo.v to skip all
opaque proofs during the compilation of foo.v, and output a file called foo.vos. This feature is experimental.
It enables working on a Coq file without the need to first compile the proofs contained in its dependencies (#864267
by Arthur Charguéraud, review by Maxime Dénès and Emilio Gallego).

51 https://github.com/coq/coq/pull/11136
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61 https://github.com/coq/coq/pull/10489
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• Added: Command-line options -require-import, -require-export, -require-import-from
and -require-export-from, as well as their shorthand, -ri, -re, -refrom and -rifrom. Deprecate
confusing command line option -require (#1024568 by Hugo Herbelin, review by Emilio Gallego).

• Changed: Renamed VDFILE from .coqdeps.d to .<CoqMakefile>.d in the coq_makefile utility,
where <CoqMakefile> is the name of the output file given by the -o option. In this way two generated makefiles
can coexist in the same directory. (#1094769, by Kazuhiko Sakaguchi).

• Fixed: coq_makefile now supports environment variable COQBIN with no ending / character (#1106870, by
Gaëtan Gilbert).

Standard library
• Changed: Moved the auto hints of the OrderedTypemodule into a new ordered_type database (#977271,
by Vincent Laporte).

• Removed: Deprecated modules Coq.ZArith.Zlogarithm and Coq.ZArith.Zsqrt_compat
(#988172, by Vincent Laporte).

• Added: Module Reals.ConstructiveCauchyReals defines constructive real numbers by Cauchy se-
quences of rational numbers (#1044573, by Vincent Semeria, with the help and review of Guillaume Melquiond
and Bas Spitters).

• Added: NewmoduleReals.ClassicalDedekindReals defines Dedekind real numbers as boolean-valued
functions along with 3 logical axioms: limited principle of omniscience, excluded middle of negations, and
functional extensionality. The exposed type R in module Reals.Rdefinitions now corresponds to these
Dedekind reals, hidden behind an opaque module, which significantly reduces the number of axioms needed
(see Reals.Rdefinitions and Reals.Raxioms), while preserving backward compatibility. Classical
Dedekind reals are a quotient of constructive reals, which allows to transport many constructive proofs to the clas-
sical case (#1082774, by Vincent Semeria, based on discussions with Guillaume Melquiond, Bas Spitters and Hugo
Herbelin, code review by Hugo Herbelin).

• Added: New lemmas on combine, filter, nodup, nth, and nth_error functions on lists (#1065175, and
#1073176, by Oliver Nash).

• Changed: The lemma filter_app was moved to the List module (#1065177, by Oliver Nash).
• Added: Standard equivalence between weak excluded-middle and the classical instance of De Morgan’s law, in
module ClassicalFacts (#1089578, by Hugo Herbelin).

Infrastructure and dependencies
• Changed: Coq now officially supports OCaml 4.08. See INSTALL file for details (#1047179, by Emilio Jesús
Gallego Arias).

3.1.3 Changes in 8.11.0

Kernel
68 https://github.com/coq/coq/pull/10245
69 https://github.com/coq/coq/pull/10947
70 https://github.com/coq/coq/pull/11068
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72 https://github.com/coq/coq/pull/9811
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79 https://github.com/coq/coq/pull/10471

3.1. Version 8.11 29

https://github.com/coq/coq/pull/10245
https://github.com/coq/coq/pull/10947
https://github.com/coq/coq/pull/11068
https://github.com/coq/coq/pull/9772
https://github.com/coq/coq/pull/9811
https://github.com/coq/coq/pull/10445
https://github.com/coq/coq/pull/10827
https://github.com/coq/coq/pull/10651
https://github.com/coq/coq/pull/10731
https://github.com/coq/coq/pull/10651
https://github.com/coq/coq/pull/10895
https://github.com/coq/coq/pull/10471


The Coq Reference Manual, Release 8.11.2

• Changed: the native compilation (native_compute) now creates a directory to contain temporary files instead
of putting them in the root of the system temporary directory (#1108180, by Gaëtan Gilbert).

• Fixed: #1136081. Broken section closing when a template polymorphic inductive type depends on a section variable
through its parameters (#1136182, by Gaëtan Gilbert).

• Fixed: The type of Set+1 would be computed to be itself, leading to a proof of False (#1142283, by Gaëtan
Gilbert).

Specification language, type inference
• Changed: Heuristics for universe minimization to Set: only minimize flexible universes (#1065784, by Gaëtan
Gilbert with help from Maxime Dénès and Matthieu Sozeau).

• Fixed: A dependency was missing when looking for default clauses in the algorithm for printing pattern matching
clauses (#1123385, by Hugo Herbelin, fixing #1123186, reported by Barry Jay).

Notations
• Fixed: Print Visibilitywas failing in the presence of only-printing notations (#1127687, byHugoHerbelin,
fixing #1075088).

• Fixed: Recursive notations with custom entries were incorrectly parsing constr instead of custom grammars
(#1131189 by Maxime Dénès, fixes #953290, #949091).

Tactics
• Changed: The tactics eapply, refine and variants no longer allow shelved goals to be solved by typeclass
resolution (#1076292, by Matthieu Sozeau).

• Fixed: The optional string argument to time is now properly quoted under Print Ltac (#1120393, fixes
#1097194, by Jason Gross)

• Fixed: Efficiency regression of lia introduced in 8.10 by PR #972595 (#1126396, fixes #1106397, and #1124298,
and #1127099, by Frédéric Besson).

• Deprecated: The undocumented omega with tactic variant has been deprecated. Using lia is the recom-
mended replacement, though the old semantics of omega with * can be recovered with zify; omega
(#11337100, by Emilio Jesus Gallego Arias).
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• Fixed For compatibility reasons, in 8.11, zify does not support Z.pow_pos by default. It can be enabled by
explicitly loading the module ZifyPow (#11430101 by Frédéric Besson fixes #11191102).

Tactic language
• Fixed: Syntax of tactic cofix ... with ... was broken since Coq 8.10 (#11241103, by Hugo Herbelin).

Commands and options
• Deprecated: The -load-ml-source and -load-ml-object command line options have been deprecated;
their use was very limited, you can achieve the same by adding object files in the linking step or by using a plugin
(#11428104, by Emilio Jesus Gallego Arias).

Tools
• Fixed: coqtop --version was broken when called in the middle of an installation process (#11255105, by
Hugo Herbelin, fixing #11254106).

• Deprecated: The -quick command is renamed to -vio, for consistency with the new -vos and -vok flags.
Usage of -quick is now deprecated (#11280107, by Arthur Charguéraud).

• Fixed: coq_makefile does not break when using the CAMLPKGS variable together with an unpacked (mllib)
plugin (#11357108, by Gaëtan Gilbert).

• Fixed: coqdoc with option -g (Gallina only) now correctly prints commands with attributes (#11394109, fixes
#11353110, by Karl Palmskog).

CoqIDE
• Changed: CoqIDE now uses the GtkSourceView native implementation of the autocomplete mechanism
(#11400111, by Pierre-Marie Pédrot).

Standard library
• Removed: Export of module RList in Ranalysis and Ranalysis_reg. Module RList is still there but
must be imported explicitly where required (#11396112, by Michael Soegtrop).

Infrastructure and dependencies
• Added: Build date can now be overridden by setting the SOURCE_DATE_EPOCH environment variable
(#11227113, by Bernhard M. Wiedemann).

3.1.4 Changes in 8.11.1

Kernel
• Fixed: Allow more inductive types in Unset Positivity Checkingmode (#11811114, by SimonBoulier).

Notations
101 https://github.com/coq/coq/pull/11430
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111 https://github.com/coq/coq/pull/11400
112 https://github.com/coq/coq/pull/11396
113 https://github.com/coq/coq/pull/11227
114 https://github.com/coq/coq/pull/11811
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• Fixed: Bugs in dealing with precedences of notations in custom entries (#11530115, by Hugo Herbelin, fixing in
particular #9517116, #9519117, #9521118, #11331119).

• Added: In primitive floats, print a warning when parsing a decimal value that is not exactly a binary64 floating-
point number. For instance, parsing 0.1 will print a warning whereas parsing 0.5 won’t. (#11859120, by Pierre
Roux).

CoqIDE
• Fixed: Compiling file paths containing spaces (#10008121, by snyke7, fixing #11595122).

Infrastructure and dependencies
• Added: Bump official OCaml support and CI testing to 4.10.0 (#11131123, #11123124, #11102125, by Emilio Jesus
Gallego Arias, Jacques-Henri Jourdan, Guillaume Melquiond, and Guillaume Munch-Maccagnoni).

Miscellaneous
• Fixed: Extraction Implicit on the constructor of a record was leading to an anomaly (#11329126, by
Hugo Herbelin, fixes #11114127).

3.1.5 Changes in 8.11.2

Kernel
• Fixed: Using Require inside a section caused an anomaly when closing the section. (#11972128, by Gaëtan
Gilbert, fixing #11783129, reported by Attila Boros).

Tactics
• Fixed: Anomaly with induction schemes whose conclusion is not normalized (#12116130, by Hugo Herbelin; fixes
#12045131)

• Fixed: Loss of location of some tactic errors (#12223132, by Hugo Herbelin; fixes #12152133 and #12255134).
Commands and options

• Changed: Ignore -native-compiler option when built without native compute support. (#12070135, by Pierre
Roux).

CoqIDE
115 https://github.com/coq/coq/pull/11530
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117 https://github.com/coq/coq/pull/9519
118 https://github.com/coq/coq/pull/9521
119 https://github.com/coq/coq/pull/11331
120 https://github.com/coq/coq/pull/11859
121 https://github.com/coq/coq/pull/10008
122 https://github.com/coq/coq/pull/11595
123 https://github.com/coq/coq/pull/11131
124 https://github.com/coq/coq/pull/11123
125 https://github.com/coq/coq/pull/11123
126 https://github.com/coq/coq/pull/11329
127 https://github.com/coq/coq/pull/11114
128 https://github.com/coq/coq/pull/11972
129 https://github.com/coq/coq/issues/11783
130 https://github.com/coq/coq/pull/12116
131 https://github.com/coq/coq/pull/12045
132 https://github.com/coq/coq/pull/12223
133 https://github.com/coq/coq/pull/12152
134 https://github.com/coq/coq/pull/12255
135 https://github.com/coq/coq/pull/12070
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• Changed: CoqIDE now uses native window frames by default on Windows. The GTK window frames can be
restored by setting the GTK_CSD environment variable to 1 (#12060136, fixes #11080137, by Attila Gáspár).

• Fixed: New patch presumably fixing the random Coq 8.11 segfault issue with CoqIDE completion (#12068138, by
Hugo Herbelin, presumably fixing #11943139).

• Fixed: Highlighting style consistently applied to all three buffers of CoqIDE (#12106140, by Hugo Herbelin; fixes
#11506141).

3.2 Version 8.10

3.2.1 Summary of changes

Coq version 8.10 contains two major new features: support for a native fixed-precision integer type and a new sort SProp
of strict propositions. It is also the result of refinements and stabilization of previous features, deprecations or removals
of deprecated features, cleanups of the internals of the system and API, and many documentation improvements. This
release includes many user-visible changes, including deprecations that are documented in the next subsection, and new
features that are documented in the reference manual. Here are the most important user-visible changes:

• Kernel:
– A notion of primitive object was added to the calculus. Its first instance is primitive cyclic unsigned integers,
axiomatized in module UInt63. See Section Primitive Integers. The Coq.Numbers.Cyclic.Int31
library is deprecated (#6914142, by Maxime Dénès, Benjamin Grégoire and Vincent Laporte, with help and
reviews from many others).

– The SProp sort of definitionally proof-irrelevant propositions was introduced. SProp allows to mark
proof terms as irrelevant for conversion, and is treated like Prop during extraction. It is enabled using the
-allow-sprop command-line flag or the Allow StrictProp flag. See Chapter SProp (proof irrele-
vant propositions) (#8817143, by Gaëtan Gilbert).

– The unfolding heuristic in termination checking was made more complete, allowing more constants to be
unfolded to discover valid recursive calls. Performance regression may occur in Fixpoint declarations with-
out an explicit {struct} annotation, since guessing the decreasing argument can now be more expensive
(#9602144, by Enrico Tassi).

• Universes:
– Added Print Universes Subgraph variant of Print Universes. Try for instance Print
Universes Subgraph(sigT2.u1 sigT_of_sigT2.u1 projT3_eq.u1). (#8451145, by
Gaëtan Gilbert).

– Added private universes for opaque polymorphic constants, see the documentation for the Private
Polymorphic Universes flag, and unset it to get the previous behaviour (#8850146, by Gaëtan Gilbert).

• Notations:
136 https://github.com/coq/coq/pull/12060
137 https://github.com/coq/coq/issues/11080
138 https://github.com/coq/coq/pull/12068
139 https://github.com/coq/coq/pull/11943
140 https://github.com/coq/coq/pull/12106
141 https://github.com/coq/coq/pull/11506
142 https://github.com/coq/coq/pull/6914
143 https://github.com/coq/coq/pull/8817
144 https://github.com/coq/coq/pull/9602
145 https://github.com/coq/coq/pull/8451
146 https://github.com/coq/coq/pull/8850
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– New commandString Notation to register string syntax for custom inductive types (#8965147, by Jason
Gross).

– Experimental: Numeral Notations now parse decimal constants such as 1.02e+01 or 10.2. Parsers added
for Q and R. In the rare case when such numeral notations were used in a development along with Q or R, they
may have to be removed or disambiguated through explicit scope annotations (#8764148, by Pierre Roux).

• Ltac backtraces can be turned on using the Ltac Backtrace flag, which is off by default (#9142149, fixes
#7769150 and #7385151, by Pierre-Marie Pédrot).

• The tactics lia, nia, lra, nra are now using a novel Simplex-based proof engine. In case of regression, unset
Simplex to get the venerable Fourier-based engine (#8457152, by Fréderic Besson).

• SSReflect:
– New intro patterns:

∗ temporary introduction: => +

∗ block introduction: => [^ prefix ] [^~ suffix ]

∗ fast introduction: => >

∗ tactics as views: => /ltac:mytac

∗ replace hypothesis: => {}H

See Section Introduction in the context (#6705153, by Enrico Tassi, with help from Maxime Dénès, ideas
coming from various users).

– New tactic under to rewrite under binders, given an extensionality lemma:
∗ interactive mode: under term, associated terminator: over
∗ one-liner mode: under term do [tactic | ...]

It can take occurrence switches, contextual patterns, and intro patterns: under {2}[in RHS]eq_big
=> [i|i ?] (#9651154, by Erik Martin-Dorel and Enrico Tassi).

• Combined Scheme now works when inductive schemes are generated in sort Type. It used to be limited to sort
Prop (#7634155, by Théo Winterhalter).

• A new registration mechanism for reference from ML code to Coq constructs has been added (#186156, by Emilio
Jesús Gallego Arias, Maxime Dénès and Vincent Laporte).

• CoqIDE:
– CoqIDE now depends on gtk+3 and lablgtk3 instead of gtk+2 and lablgtk2. The INSTALL file available in
the Coq sources has been updated to list the new dependencies (#9279157, by Hugo Herbelin, with help from
Jacques Garrigue, Emilio Jesús Gallego Arias, Michael Sogetrop and Vincent Laporte).

– Smart input for Unicode characters. For example, typing \alpha then Shift+Space will insert the
greek letter alpha. A larger number of default bindings are provided, following the latex naming convention.

147 https://github.com/coq/coq/pull/8965
148 https://github.com/coq/coq/pull/8764
149 https://github.com/coq/coq/pull/9142
150 https://github.com/coq/coq/issues/7769
151 https://github.com/coq/coq/issues/7385
152 https://github.com/coq/coq/pull/8457
153 https://github.com/coq/coq/pull/6705
154 https://github.com/coq/coq/pull/9651
155 https://github.com/coq/coq/pull/7634
156 https://github.com/coq/coq/pull/186
157 https://github.com/coq/coq/pull/9279
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Bindings can be customized, either globally, or on a per-project basis. See Section Bindings for input of
Unicode symbols for details (#8560158, by Arthur Charguéraud).

• Infrastructure and dependencies:
– Coq 8.10 requires OCaml >= 4.05.0, bumped from 4.02.3 See the INSTALL file for more information on
dependencies (#7522159, by Emilio Jesús Gallego Arías).

– Coq 8.10 doesn’t need Camlp5 to build anymore. It now includes a fork of the core parsing library that Coq
uses, which is a small subset of the whole Camlp5 distribution. In particular, this subset doesn’t depend on the
OCaml AST, allowing easier compilation and testing on experimental OCaml versions. Coq also ships a new
parser coqpp that plugin authors must switch to (#7902160, #7979161, #8161162, #8667163, and #8945164,
by Pierre-Marie Pédrot and Emilio Jesús Gallego Arias).
The Coq developers would like to thank Daniel de Rauglaudre for many years of continued support.

– Coq now supports building with Dune, in addition to the traditional Makefile which is scheduled for depreca-
tion (#6857165, by Emilio Jesús Gallego Arias, with help from Rudi Grinberg).
Experimental support for building Coq projects has been integrated in Dune at the same time, providing an
improved experience166 for plugin developers. We thank the Dune team for their work supporting Coq.

Version 8.10 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system, including many additions to the standard library (see the next subsection for details).
On the implementation side, the dev/doc/changes.md file documents the numerous changes to the implementation
and improvements of interfaces. The file provides guidelines on porting a plugin to the new version and a plugin develop-
ment tutorial originallymade byYves Bertot is now indoc/plugin_tutorial. Thedev/doc/critical-bugs
file documents the known critical bugs of Coq and affected releases.
The efficiency of the whole system has seen improvements thanks to contributions from Gaëtan Gilbert, Pierre-Marie
Pédrot, and Maxime Dénès.
Maxime Dénès, Emilio Jesús Gallego Arias, Gaëtan Gilbert, Michael Soegtrop, Théo Zimmermann worked on maintain-
ing and improving the continuous integration system and package building infrastructure. Coq is now continuously tested
against OCaml trunk, in addition to the oldest supported and latest OCaml releases.
Coq’s documentation for the development branch is now deployed continuously at https://coq.github.io/doc/master/api
(documentation of the ML API), https://coq.github.io/doc/master/refman (reference manual), and https://coq.github.io/
doc/master/stdlib (documentation of the standard library). Similar links exist for the v8.10 branch.
The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
(who migrated it to opam 2) with contributions from many users. A list of packages is available at https://coq.inria.fr/
opam/www/.
The 61 contributors to this version are Tanaka Akira, Benjamin Barenblat, Yves Bertot, Frédéric Besson, Lasse Blaauw-
broek, Martin Bodin, Joachim Breitner, Tej Chajed, Frédéric Chapoton, Arthur Charguéraud, Cyril Cohen, Lukasz Cza-
jka, David A. Dalrymple, Christian Doczkal, Maxime Dénès, Andres Erbsen, Jim Fehrle, Emilio Jesus Gallego Arias,
Gaëtan Gilbert, Matěj Grabovský, Simon Gregersen, Jason Gross, Samuel Gruetter, Hugo Herbelin, Jasper Hugunin,
Mirai Ikebuchi, Chantal Keller, Matej Košík, Sam Pablo Kuper, Vincent Laporte, Olivier Laurent, Larry Darryl Lee Jr,
Nick Lewycky, Yao Li, Yishuai Li, Assia Mahboubi, Simon Marechal, Erik Martin-Dorel, Thierry Martinez, Guillaume
Melquiond, Kayla Ngan, Karl Palmskog, Pierre-Marie Pédrot, Clément Pit-Claudel, Pierre Roux, Kazuhiko Sakaguchi,
158 https://github.com/coq/coq/pull/8560
159 https://github.com/coq/coq/pull/7522
160 https://github.com/coq/coq/pull/7902
161 https://github.com/coq/coq/pull/7979
162 https://github.com/coq/coq/pull/8161
163 https://github.com/coq/coq/pull/8667
164 https://github.com/coq/coq/pull/8945
165 https://github.com/coq/coq/pull/6857
166 https://coq.discourse.group/t/a-guide-to-building-your-coq-libraries-and-plugins-with-dune/
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Ryan Scott, Vincent Semeria, Gan Shen, Michael Soegtrop, Matthieu Sozeau, Enrico Tassi, Laurent Théry, Kamil Trz-
ciński, whitequark, Théo Winterhalter, Xia Li-yao, Beta Ziliani and Théo Zimmermann.
Many power users helped to improve the design of the new features via the issue and pull request system, the Coq
development mailing list, the coq-club@inria.fr mailing list or the new Discourse forum. It would be impossible to
mention exhaustively the names of everybody who to some extent influenced the development.
Version 8.10 is the fifth release of Coq developed on a time-based development cycle. Its development spanned 6 months
from the release of Coq 8.9. Vincent Laporte is the release manager and maintainer of this release. This release is the
result of ~2500 commits and ~650 PRs merged, closing 150+ issues.

Santiago de Chile, April 2019,
Matthieu Sozeau for the Coq development team

3.2.2 Other changes in 8.10+beta1

• Command-line tools and options:
– The use of coqtop as a compiler has been deprecated, in favor of coqc. Consequently option -compile
will stop to be accepted in the next release. coqtop is now reserved to interactive use (#9095167, by Emilio
Jesús Gallego Arias).

– New option -topfile filename, which will set the current module name (à la -top) based on the
filename passed, taking into account the proper -R/-Q options. For example, given -R Foo foolib
using -topfile foolib/bar.v will set the module name to Foo.Bar. CoqIDE now properly sets
the module name for a given file based on its path (#8991168, closes #8989169, by Gaëtan Gilbert).

– Experimental: Coq flags and options can now be set on the command-line, e.g. -set "Universe
Polymorphism=true" (#9876170, by Gaëtan Gilbert).

– The -native-compiler flag of coqc and coqtop now takes an argument which can have three values:
∗ no disables native_compute
∗ yes enables native_compute and precompiles .v files to native code
∗ ondemand enables native_compute but compiles code only when native_compute is called

The default value is ondemand. Note that this flag now has priority over the configure flag of the same name.
A new -bytecode-compiler flag for coqc and coqtop controls whether conversion can use the VM.
The default value is yes.
(#8870171, by Maxime Dénès)

– The pretty timing diff scripts (flag TIMING=1 to a coq_makefile-made Makefile, also tools/
make-both-single-timing-files.py, tools/make-both-time-files.py, and
tools/make-one-time-file.py) now correctly support non-UTF-8 characters in the output of
coqc / make as well as printing to stdout, on both python2 and python3 (#9872172, closes #9767173 and
#9705174, by Jason Gross)

167 https://github.com/coq/coq/pull/9095
168 https://github.com/coq/coq/pull/8991
169 https://github.com/coq/coq/issues/8989
170 https://github.com/coq/coq/pull/9876
171 https://github.com/coq/coq/pull/8870
172 https://github.com/coq/coq/pull/9872
173 https://github.com/coq/coq/issues/9767
174 https://github.com/coq/coq/issues/9705
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– coq_makefile’s install target now errors if any file to install is missing (#9906175, by Gaëtan Gilbert).
– Preferences from coqide.keys are no longer overridden by modifiers preferences in coqiderc
(#10014176, by Hugo Herbelin).

• Specification language, type inference:
– Fixing a missing check in interpreting instances of existential variables that are bound to local definitions.
Might exceptionally induce an overhead if the cost of checking the conversion of the corresponding definitions
is additionally high (#8217177, closes #8215178, by Hugo Herbelin).

– A few improvements in inference of the return clause of match that can exceptionally introduce incompati-
bilities. This can be solved by writing an explicit return clause, sometimes even simply an explicit return
_ clause (#262179, by Hugo Herbelin).

– Using non-projection values with the projection syntax is not allowed. For instance 0.(S) is not a valid way
to write S 0. Projections from non-primitive (emulated) records are allowed with warning ”nonprimitive-
projection-syntax” (#8829180, by Gaëtan Gilbert).

– An option and attributes to control the automatic decision to declare an inductive type as template polymorphic
were added. Warning ”auto-template” (off by default) can trigger when an inductive is automatically declared
template polymorphic without the attribute.
Inductive types declared by Funind will never be template polymorphic.
(#8488181, by Gaëtan Gilbert)

• Notations:
– New command Declare Scope to explicitly declare a scope name before any use of it. Implicit declara-
tion of a scope at the time of Bind Scope, Delimit Scope, Undelimit Scope, or Notation is
deprecated (#7135182, by Hugo Herbelin).

– Various bugs have been fixed (e.g. #9214183 on removing spurious parentheses on abbreviations shortening a
strict prefix of an application, by Hugo Herbelin).

– Numeral Notation now support inductive types in the input to printing functions (e.g., numeral notations
can be defined for terms containing things like@cons nat O O), and parsing functions now fully normalize
terms including parameters of constructors (so that, e.g., a numeral notation whose parsing function outputs
a proof of Nat.gcd x y = 1 will no longer fail to parse due to containing the constant Nat.gcd in the
parameter-argument of eq_refl) (#9874184, closes #9840185 and #9844186, by Jason Gross).

– Deprecated compatibility notations have actually been removed. Uses of these notations are generally easy
to fix thanks to the hint contained in the deprecation warning emitted by Coq 8.8 and 8.9. For projects that
require more than a handful of such fixes, there is a script187 that will do it automatically, using the output of
coqc (#8638188, by Jason Gross).

175 https://github.com/coq/coq/pull/9906
176 https://github.com/coq/coq/pull/10014
177 https://github.com/coq/coq/pull/8217
178 https://github.com/coq/coq/issues/8215
179 https://github.com/coq/coq/pull/262
180 https://github.com/coq/coq/pull/8829
181 https://github.com/coq/coq/pull/8488
182 https://github.com/coq/coq/pull/7135
183 https://github.com/coq/coq/pull/9214
184 https://github.com/coq/coq/pull/9840
185 https://github.com/coq/coq/issues/9840
186 https://github.com/coq/coq/issues/9844
187 https://gist.github.com/JasonGross/9770653967de3679d131c59d42de6d17#file-replace-notations-py
188 https://github.com/coq/coq/pull/8638
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– Allow inspecting custom grammar entries by Print Custom Grammar (#10061189, fixes #9681190, by
Jasper Hugunin, review by Pierre-Marie Pédrot and Hugo Herbelin).

• The quote plugin191 was removed. If some users are interested in maintaining this plugin externally, the Coq
development team can provide assistance for extracting the plugin and setting up a new repository (#7894192, by
Maxime Dénès).

• Ltac:
– Tactic names are no longer allowed to clash, even if they are not defined in the same section. For example,
the following is no longer accepted: Ltac foo := idtac. Section S. Ltac foo := fail.
End S. (#8555193, by Maxime Dénès).

– Names of existential variables occurring in Ltac functions (e.g. ?[n] or ?n in terms - not in patterns) are now
interpreted the same way as other variable names occurring in Ltac functions (#7309194, by Hugo Herbelin).

• Tactics:
– Removed the deprecated romega tactic (#8419195, by Maxime Dénès and Vincent Laporte).
– Hint declaration and removal should now specify a database (e.g. Hint Resolve foo : database).
When the database name is omitted, the hint is added to the core database (as previously), but a deprecation
warning is emitted (#8987196, by Maxime Dénès).

– There are now tactics in PreOmega.v called Z.div_mod_to_equations, Z.
quot_rem_to_equations, and Z.to_euclidean_division_equations (which combines
the div_mod and quot_rem variants) which allow lia, nia, etc to support Z.div and Z.modulo
(Z.quot and Z.rem, respectively), by posing the specifying equation for Z.div and Z.modulo before
replacing them with atoms (#8062197, by Jason Gross).

– The syntax of the autoapply tactic was fixed to conform with preexisting documentation: it now takes a
with clause instead of a using clause (#9524198, closes #7632199, by Théo Zimmermann).

– Modes are now taken into account by typeclasses eauto for local hypotheses (#9996200, fixes
#5752201, by Maxime Dénès, review by Pierre-Marie Pédrot).

– New variant change_no_check of change, usable as a documented replacement of
convert_concl_no_check (#10012202, #10017203, #10053204, and #10059205, by Hugo Herbe-
lin and Paolo G. Giarrusso).

– The simplified value returned by field_simplify is not always a fraction anymore. When the denom-
inator is 1, it returns x while previously it was returning x/1. This change could break codes that were
post-processing application of field_simplify to get rid of these x/1 (#9854206, by Laurent Théry,
with help from Michael Soegtrop, Maxime Dénès, and Vincent Laporte).

189 https://github.com/coq/coq/pull/10061
190 http://github.com/coq/coq/pull/9681
191 https://coq.inria.fr/distrib/V8.9.0/refman/proof-engine/detailed-tactic-examples.html#quote
192 https://github.com/coq/coq/pull/7894
193 https://github.com/coq/coq/pull/8555
194 https://github.com/coq/coq/pull/7309
195 https://github.com/coq/coq/pull/8419
196 https://github.com/coq/coq/pull/8987
197 https://github.com/coq/coq/pull/8062
198 https://github.com/coq/coq/pull/9524
199 https://github.com/coq/coq/issues/7632
200 https://github.com/coq/coq/pull/9996
201 https://github.com/coq/coq/issues/5752
202 https://github.com/coq/coq/pull/10012
203 https://github.com/coq/coq/pull/10017
204 https://github.com/coq/coq/pull/10053
205 https://github.com/coq/coq/pull/10059
206 https://github.com/coq/coq/pull/9854
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• SSReflect:
– Clear discipline made consistent across the entire proof language. Whenever a clear switch {x..} comes
immediately before an existing proof context entry (used as a view, as a rewrite rule or as name for a new
context entry) then such entry is cleared too.
E.g. The following sentences are elaborated as follows (when H is an existing proof context entry):
∗ => {x..} H -> => {x..H} H

∗ => {x..} /H -> => /v {x..H}

∗ rewrite {x..} H -> rewrite E {x..H}

(#9341207, by Enrico Tassi).
– inE now expands y in r x when r is a simpl_rel. New {pred T} notation for a pred T alias
in the pred_sort coercion class, simplified predType interface: pred_class and mkPredType
deprecated, {pred T} and PredType should be used instead. if c return t then ... now
expects c to be a variable bound in t. New nonPropType interface matching types that do _not_ have
sort Prop. New relpre R f definition for the preimage of a relation R under f (#9995208, by Georges
Gonthier).

• Vernacular commands:
– Binders for an Instance now act more like binders for a Theorem. Names may not be repeated, and may
not overlap with section variable names (#8820209, closes #8791210, by Jasper Hugunin).

– Removed the deprecated Implicit Tactic family of commands (#8779211, by Pierre-Marie Pédrot).
– The Automatic Introduction option has been removed and is now the default (#9001212, by Emilio
Jesús Gallego Arias).

– Arguments now accepts names for arguments provided with extra_scopes (#9117213, by Maxime
Dénès).

– The naming scheme for anonymous binders in a Theorem has changed to avoid conflicts with explicitly
named binders (#9160214, closes #8819215, by Jasper Hugunin).

– Computation of implicit arguments now properly handles local definitions in the binders for an Instance,
and can be mixed with implicit binders {x : T} (#9307216, closes #9300217, by Jasper Hugunin).

– Declare Instance now requires an instance name.
The flag Refine Instance Mode has been turned off by default, meaning that Instance no longer
opens a proof when a body is provided. The flag has been deprecated and will be removed in the next version.
(#9270218, and #9825219, by Maxime Dénès)

– Command Instance, when no body is provided, now always opens a proof. This is a breaking
change, as instance of Instance ident1 : ident2. where ident2 is a trivial class will have

207 https://github.com/coq/coq/pull/9341
208 https://github.com/coq/coq/pull/9995
209 https://github.com/coq/coq/pull/8820
210 https://github.com/coq/coq/issues/8791
211 https://github.com/coq/coq/pull/8779
212 https://github.com/coq/coq/pull/9001
213 https://github.com/coq/coq/pull/9117
214 https://github.com/coq/coq/pull/9160
215 https://github.com/coq/coq/issues/8819
216 https://github.com/coq/coq/pull/9307
217 https://github.com/coq/coq/issues/9300
218 https://github.com/coq/coq/pull/9270
219 https://github.com/coq/coq/pull/9825
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to be changed into Instance ident1 : ident2 := {}. or Instance ident1 : ident2.
Proof. Qed. (#9274220, by Maxime Dénès).

– The flag Program Mode now means that the Program attribute is enabled for all commands that support
it. In particular, it does not have any effect on tactics anymore. May cause some incompatibilities (#9410221,
by Maxime Dénès).

– The algorithm computing implicit arguments now behaves uniformly for primitive projection and application
nodes (#9509222, closes #9508223, by Pierre-Marie Pédrot).

– Hypotheses and Variables can now take implicit binders inside sections (#9364224, closes #9363225,
by Jasper Hugunin).

– Removed deprecated option Automatic Coercions Import (#8094226, by Maxime Dénès).
– The Show Script command has been deprecated (#9829227, by Vincent Laporte).
– Coercion does not warn ambiguous paths which are obviously convertible with existing ones. The ambigu-
ous paths messages have been turned to warnings, thus now they could appear in the output of coqc. The
convertibility checking procedure for coercion paths is complete for paths consisting of coercions satisfying
the uniform inheritance condition, but some coercion paths could be reported as ambiguous even if they are
convertible with existing ones when they have coercions that don’t satisfy the uniform inheritance condition
(#9743228, closes #3219229, by Kazuhiko Sakaguchi).

– A new flag Fast Name Printing has been introduced. It changes the algorithm used for allocating
bound variable names for a faster but less clever one (#9078230, by Pierre-Marie Pédrot).

– OptionTypeclasses Axioms Are Instances (compatibility option introduced in the previous ver-
sion) is deprecated. Use Declare Instance for axioms which should be instances (#8920231, by Gaëtan
Gilbert).

– Removed option Printing Primitive Projection Compatibility (#9306232, by Gaëtan
Gilbert).

• Standard Library:
– Added Bvector.BVeq that decides whether two Bvectors are equal. Added notations for BVxor,
BVand, BVor, BVeq and BVneg (#8171233, by Yishuai Li).

– Added ByteVector type that can convert to and from string (#8365234, by Yishuai Li).
– Added lemmas about monotonicity of N.double and N.succ_double, and about the upper bound of
number represented by a vector. Allowed implicit vector length argument in Ndigits.Bv2N (#8815235,
by Yishuai Li).

220 https://github.com/coq/coq/pull/9274
221 https://github.com/coq/coq/pull/9410
222 https://github.com/coq/coq/pull/9509
223 https://github.com/coq/coq/issues/9508
224 https://github.com/coq/coq/pull/9364
225 https://github.com/coq/coq/issues/9363
226 https://github.com/coq/coq/pull/8094
227 https://github.com/coq/coq/pull/9829
228 https://github.com/coq/coq/pull/9743
229 https://github.com/coq/coq/issues/3219
230 https://github.com/coq/coq/pull/9078
231 https://github.com/coq/coq/pull/8920
232 https://github.com/coq/coq/pull/9306
233 https://github.com/coq/coq/pull/8171
234 https://github.com/coq/coq/pull/8365
235 https://github.com/coq/coq/pull/8815
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– The prelude used to be automatically Exported and is now only Imported. This should be relevant only when
importing files which don’t use -noinit into files which do (#9013236, by Gaëtan Gilbert).

– Added Coq.Structures.OrderedTypeEx.String_as_OT to make strings an ordered type, using
lexical order (#7221237, by Li Yao).

– Added lemmas about Z.testbit, Z.ones, and Z.modulo (#9425238, by Andres Erbsen).
– Moved the auto hints of the FSet library into a new fset database (#9725239, by Frédéric Besson).
– Added Coq.Structures.EqualitiesFacts.PairUsualDecidableTypeFull (#9984240,
by Jean-Christophe Léchenet and Oliver Nash).

• Some error messages that show problems with a pair of non-matching values will now highlight the differences
(#8669241, by Jim Fehrle).

• Changelog has been moved from a specific file CHANGES.md to the reference manual; former Credits chapter of
the reference manual has been split in two parts: a History chapter which was enriched with additional historical
information about Coq versions 1 to 5, and a Changes chapter which was enriched with the content formerly
in CHANGES.md and COMPATIBILITY (#9133242, #9668243, #9939244, #9964245, and #10085246, by Théo
Zimmermann, with help and ideas from Emilio Jesús Gallego Arias, Gaëtan Gilbert, Clément Pit-Claudel, Matthieu
Sozeau, and Enrico Tassi).

3.2.3 Changes in 8.10+beta2

Many bug fixes and documentation improvements, in particular:
Tactics

• Make the discriminate tactic work together with Universe Polymorphism and equality in Type.
This, in particular, makes discriminate compatible with the HoTT library https://github.com/HoTT/HoTT
(#10205247, by Andreas Lynge, review by Pierre-Marie Pédrot and Matthieu Sozeau).

SSReflect
• Make the case E: t tactic work together with Universe Polymorphism and equality in Type. This
makes case compatible with the HoTT library https://github.com/HoTT/HoTT (#10302248, fixes #10301249, by
Andreas Lynge, review by Enrico Tassi)

• Make the rewrite /t tactic work together with Universe Polymorphism. This makes rewrite com-
patible with the HoTT library https://github.com/HoTT/HoTT (#10305250, fixes #9336251, by Andreas Lynge,
review by Enrico Tassi)

CoqIDE
236 https://github.com/coq/coq/pull/9013
237 https://github.com/coq/coq/pull/7221
238 https://github.com/coq/coq/pull/9425
239 https://github.com/coq/coq/pull/9725
240 https://github.com/coq/coq/pull/9984
241 https://github.com/coq/coq/pull/8669
242 https://github.com/coq/coq/pull/9133
243 https://github.com/coq/coq/pull/9668
244 https://github.com/coq/coq/pull/9939
245 https://github.com/coq/coq/pull/9964
246 https://github.com/coq/coq/pull/10085
247 https://github.com/coq/coq/pull/10205
248 https://github.com/coq/coq/pull/10302
249 https://github.com/coq/coq/issues/10301
250 https://github.com/coq/coq/pull/10305
251 https://github.com/coq/coq/issues/9336
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• Fix CoqIDE instability on Windows after the update to gtk3 (#10360252, by Michael Soegtrop, closes #9885253).
Miscellaneous

• Proof General can now display Coq-generated diffs between proof steps in color (#10019254 and (in Proof General)
#421255, by Jim Fehrle).

3.2.4 Changes in 8.10+beta3

Kernel
• Fix soundness issue with template polymorphism (#9294256).
Declarations of template-polymorphic inductive types ignored the provenance of the universes they were abstract-
ing on and did not detect if they should be greater or equal to Set in general. Previous universes and universes
introduced by the inductive definition could have constraints that prevented their instantiation with e.g. Prop, re-
sulting in unsound instantiations later. The implemented fix only allows abstraction over universes introduced by
the inductive declaration, and properly records all their constraints by making them by default only >= Prop. It
is also checked that a template polymorphic inductive actually is polymorphic on at least one universe.
This prevents inductive declarations in sections to be universe polymorphic over section parameters. For a backward
compatible fix, simply hoist the inductive definition out of the section. An alternative is to declare the inductive
as universe-polymorphic and cumulative in a universe-polymorphic section: all universes and constraints will be
properly gathered in this case. See Template polymorphism for a detailed exposition of the rules governing template-
polymorphic types.
To help users incrementally fix this issue, a command line option -no-template-check and a global flag
Template Check are available to selectively disable the new check. Use at your own risk.
(#9918257, by Matthieu Sozeau and Maxime Dénès).

User messages
• Improve the ambiguous paths warning to indicate which path is ambiguous with new one (#10336258, closes
#3219259, by Kazuhiko Sakaguchi).

Extraction
• Fix extraction to OCaml of primitive machine integers; see Primitive Integers (#10430260, fixes #10361261, by
Vincent Laporte).

• Fix a printing bug of OCaml extraction on dependent record projections, which produced improper assert
false. This change makes the OCaml extractor internally inline record projections by default; thus the mono-
lithic OCaml extraction (Extraction and Recursive Extraction) does not produce record projection
constants anymore except for record projections explicitly instructed to extract, and records declared in opaque
modules (#10577262, fixes #7348263, by Kazuhiko Sakaguchi).

Standard library
252 https://github.com/coq/coq/pull/10360
253 https://github.com/coq/coq/issues/9885
254 https://github.com/coq/coq/pull/10019
255 https://github.com/ProofGeneral/PG/pull/421
256 https://github.com/coq/coq/issues/9294
257 https://github.com/coq/coq/pull/9918
258 https://github.com/coq/coq/pull/10336
259 https://github.com/coq/coq/issues/3219
260 https://github.com/coq/coq/pull/10430
261 https://github.com/coq/coq/issues/10361
262 https://github.com/coq/coq/pull/10577
263 https://github.com/coq/coq/issues/7348
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• Added splitat function and lemmas about splitat and uncons (#9379264, by Yishuai Li, with help of
Konstantinos Kallas, follow-up of #8365265, which added uncons in 8.10+beta1).

3.2.5 Changes in 8.10.0

• Micromega tactics (lia, nia, etc) are no longer confused by primitive projections (#10806266, fixes #9512267 by
Vincent Laporte).

3.2.6 Changes in 8.10.1

A few bug fixes and documentation improvements, in particular:
Kernel

• Fix proof of False when usingSProp (incorrect De Bruijn handling when inferring the relevancemark of a function)
(#10904268, by Pierre-Marie Pédrot).

Tactics
• Fix an anomaly when unsolved evar in Add Ring (#10891269, fixes #9851270, by Gaëtan Gilbert).

Tactic language
• Fix Ltac regression in binding free names in uconstr (#10899271, fixes #10894272, by Hugo Herbelin).

CoqIDE
• Fix handling of unicode input before space (#10852273, fixes #10842274, by Arthur Charguéraud).

Extraction
• Fix custom extraction of inductives to JSON (#10897275, fixes #4741276, by Helge Bahmann).

3.2.7 Changes in 8.10.2

Kernel
• Fixed a critical bug of template polymorphism and nonlinear universes (#11128277, fixes #11039278, by Gaëtan
Gilbert).

• Fixed an anomaly “Uncaught exception Constr.DestKO” on Inductive (#11052279, fixes #11048280, by Gaëtan
Gilbert).

264 https://github.com/coq/coq/pull/9379
265 https://github.com/coq/coq/pull/8365
266 https://github.com/coq/coq/pull/10806
267 https://github.com/coq/coq/issues/9512
268 https://github.com/coq/coq/pull/10904
269 https://github.com/coq/coq/pull/10891
270 https://github.com/coq/coq/issues/9851
271 https://github.com/coq/coq/pull/10899
272 https://github.com/coq/coq/issues/10894
273 https://github.com/coq/coq/pull/10852
274 https://github.com/coq/coq/issues/10842
275 https://github.com/coq/coq/pull/10897
276 https://github.com/coq/coq/issues/4741
277 https://github.com/coq/coq/pull/11128
278 https://github.com/coq/coq/issues/11039
279 https://github.com/coq/coq/pull/11052
280 https://github.com/coq/coq/issues/11048
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• Fixed an anomaly “not enough abstractions in fix body” (#11014281, fixes #8459282, by Gaëtan Gilbert).
Notations

• Fixed an 8.10 regression related to the printing of coercions associated to notations (#11090283, fixes #11033284,
by Hugo Herbelin).

CoqIDE
• Fixed uneven dimensions of CoqIDE panels when window has been resized (#11070285, fixes 8.10-regression
#10956286, by Guillaume Melquiond).

• Do not include final stops in queries (#11069287, fixes 8.10-regression #11058288, by Guillaume Melquiond).
Infrastructure and dependencies

• Enable building of executables when they are running (#11000289, fixes 8.9-regression #10728290, by Gaëtan
Gilbert).

3.3 Version 8.9

3.3.1 Summary of changes

Coq version 8.9 contains the result of refinements and stabilization of features and deprecations or removals of deprecated
features, cleanups of the internals of the system and API along with a few new features. This release includes many user-
visible changes, including deprecations that are documented in the next subsection and new features that are documented
in the reference manual. Here are the most important changes:

• Kernel: mutually recursive records are now supported, by Pierre-Marie Pédrot.
• Notations:

– Support for autonomous grammars of terms called “custom entries”, by Hugo Herbelin (see Section Custom
entries of the reference manual).

– Deprecated notations of the standard library will be removed in the next version of Coq, see the next subsection
for a script to ease porting, by Jason Gross and Jean-Christophe Léchenet.

– Added the Numeral Notation command for registering decimal numeral notations for custom types, by
Daniel de Rauglaudre, Pierre Letouzey and Jason Gross.

• Tactics: Introduction tactics intro/intros on a goal that is an existential variable now force a refinement of the
goal into a dependent product rather than failing, by Hugo Herbelin.

• Decision procedures: deprecation of tactic romega in favor of lia and removal of fourier, replaced by lra
which subsumes it, by Frédéric Besson, Maxime Dénès, Vincent Laporte and Laurent Théry.

• Proof language: focusing bracket{ now supports named goals, e.g. [x]:{will focus on a goal (existential variable)
named x, by Théo Zimmermann.

281 https://github.com/coq/coq/pull/11014
282 https://github.com/coq/coq/issues/8459
283 https://github.com/coq/coq/pull/11090
284 https://github.com/coq/coq/issues/11033
285 https://github.com/coq/coq/pull/11070
286 https://github.com/coq/coq/issues/10956
287 https://github.com/coq/coq/pull/11069
288 https://github.com/coq/coq/issues/11058
289 https://github.com/coq/coq/pull/11000
290 https://github.com/coq/coq/issues/10728
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• SSReflect: the implementation of delayed clear was simplified by Enrico Tassi: the variables are always renamed
using inaccessible names when the clear switch is processed and finally cleared at the end of the intro pattern. In
addition to that, the use-and-discard flag {} typical of rewrite rules can now be also applied to views, e.g. =>
{}/v applies v and then clears v. See Section Introduction in the context.

• Vernacular:
– Experimental support for attributes on commands, by Vincent Laporte, as in #[local] Lemma foo :
bar. Tactics and tactic notations now support the deprecated attribute.

– Removed deprecated commands Arguments Scope and Implicit Arguments in favor of
Arguments (scopes) and Arguments (implicits), with the help of Jasper Hugunin.

– New flag Uniform Inductive Parameters by Jasper Hugunin to avoid repeating uniform parame-
ters in constructor declarations.

– New commands Hint Variables and Hint Constants, by Matthieu Sozeau, for controlling the
opacity status of variables and constants in hint databases. It is recommended to always use these commands
after creating a hint database with Create HintDb.

– Multiple sections with the same name are now allowed, by Jasper Hugunin.
• Library: additions and changes in the VectorDef, Ascii, and String libraries. Syntax notations are now
available only when using Import of libraries and not merely Require, by various contributors (source of
incompatibility, see the next subsection for details).

• Toplevels: coqtop and coqide can now display diffs between proof steps in color, using the Diffs option, by
Jim Fehrle.

• Documentation: we integrated a large number of fixes to the new Sphinx documentation by various contributors,
coordinated by Clément Pit-Claudel and Théo Zimmermann.

• Tools: removed the gallina utility and the homebrewed Emacs mode.
• Packaging: as in Coq 8.8.2, the Windows installer now includes many more external packages that can be individ-
ually selected for installation, by Michael Soegtrop.

Version 8.9 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system. Most important ones are documented in the next subsection file.
On the implementation side, the dev/doc/changes.md file documents the numerous changes to the implementation
and improvements of interfaces. The file provides guidelines on porting a plugin to the new version and a plugin develop-
ment tutorial kept in sync with Coq was introduced by Yves Bertot http://github.com/ybertot/plugin_tutorials. The new
dev/doc/critical-bugs file documents the known critical bugs of Coq and affected releases.
The efficiency of the whole system has seen improvements thanks to contributions from Gaëtan Gilbert, Pierre-Marie
Pédrot, and Maxime Dénès.
Maxime Dénès, Emilio Jesús Gallego Arias, Gaëtan Gilbert, Michael Soegtrop, Théo Zimmermann worked on maintain-
ing and improving the continuous integration system.
The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.
The 54 contributors for this version are Léo Andrès, Rin Arakaki, Benjamin Barenblat, Langston Barrett, Siddharth Bhat,
Martin Bodin, Simon Boulier, Timothy Bourke, Joachim Breitner, Tej Chajed, Arthur Charguéraud, Pierre Courtieu,
Maxime Dénès, Andres Erbsen, Jim Fehrle, Julien Forest, Emilio Jesus Gallego Arias, Gaëtan Gilbert, Matěj Grabovský,
Jason Gross, Samuel Gruetter, Armaël Guéneau, Hugo Herbelin, Jasper Hugunin, Ralf Jung, Sam Pablo Kuper, Ambroise
Lafont, Leonidas Lampropoulos, Vincent Laporte, Peter LeFanu Lumsdaine, Pierre Letouzey, Jean-Christophe Léchenet,
Nick Lewycky, Yishuai Li, SvenM.Hallberg, AssiaMahboubi, CyprienMangin, GuillaumeMelquiond, Perry E.Metzger,
Clément Pit-Claudel, Pierre-Marie Pédrot, Daniel R. Grayson, Kazuhiko Sakaguchi, Michael Soegtrop, Matthieu Sozeau,
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Paul Steckler, Enrico Tassi, Laurent Théry, Anton Trunov, whitequark, Théo Winterhalter, Zeimer, Beta Ziliani, Théo
Zimmermann.
Many power users helped to improve the design of the new features via the issue and pull request system, the Coq
development mailing list or the coq-club@inria.fr mailing list. It would be impossible to mention exhaustively the names
of everybody who to some extent influenced the development.
Version 8.9 is the fourth release of Coq developed on a time-based development cycle. Its development spanned 7 months
from the release of Coq 8.8. The development moved to a decentralized merging process during this cycle. Guillaume
Melquiond was in charge of the release process and is the maintainer of this release. This release is the result of ~2,000
commits and ~500 PRs merged, closing 75+ issues.
The Coq development team welcomed Vincent Laporte, a new Coq engineer working with Maxime Dénès in the Coq
consortium.

Paris, November 2018,
Matthieu Sozeau for the Coq development team

3.3.2 Details of changes in 8.9+beta1

Kernel
• Mutually defined records are now supported.

Notations
• New support for autonomous grammars of terms, called ”custom entries” (see chapter ”Syntax extensions” of the
reference manual).

• Deprecated compatibility notations will actually be removed in the next version of Coq. Uses of these notations
are generally easy to fix thanks to the hint contained in the deprecation warnings. For projects that require more
than a handful of such fixes, there is a script291 that will do it automatically, using the output of coqc. The script
contains documentation on its usage in a comment at the top.

Tactics
• Added toplevel goal selector!which expects a single focused goal. Use withSet Default Goal Selector
to force focusing before tactics are called.

• The undocumented ”nameless” forms fix N, cofix that were deprecated in 8.8 have been removed from Ltac’s
syntax; please use fix ident N/cofix ident to explicitly name the (co)fixpoint hypothesis to be intro-
duced.

• Introduction tactics intro/intros on a goal that is an existential variable now force a refinement of the goal
into a dependent product rather than failing.

• Support for fix/cofix added in Ltac match and lazymatch.
• Ltac backtraces now include trace information about tactics called by OCaml-defined tactics.
• Option Ltac Debug now applies also to terms built using Ltac functions.
• Deprecated the Implicit Tactic family of commands.
• The default program obligation tactic uses a bounded proof search instead of an unbounded and potentially non-
terminating one now (source of incompatibility).

291 https://gist.github.com/JasonGross/9770653967de3679d131c59d42de6d17#file-replace-notations-py
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• The simple apply tactic now respects the Opaque flag when called from Ltac (auto still does not respect
it).

• Tactic constr_eq now adds universe constraints needed for the identity to the context (it used to ignore them).
New tactic constr_eq_strict checks that the required constraints already hold without adding new ones.
Preexisting tactic constr_eq_nounivs can still be used if you really want to ignore universe constraints.

• Tactics and tactic notations now understand the deprecated attribute.
• The fourier tactic has been removed. Please now use lra instead. You may need to add Require Import
Lra to your developments. For compatibility, we now define fourier as a deprecated alias of lra.

• The romega tactics have been deprecated; please use lia instead.
Focusing

• Focusing bracket { now supports named goal selectors, e.g. [x]: { will focus on a goal (existential variable)
named x. As usual, unfocus with } once the sub-goal is fully solved.

Specification language
• A fix to unification (which was sensitive to the ascii name of variables) may occasionally change type inference in
incompatible ways, especially regarding the inference of the return clause of match.

Standard Library
• Added Ascii.eqb and String.eqb and the =? notation for them, and proved some lemmas about them.
Note that this might cause incompatibilities if you have, e.g., string_scope and Z_scope both open with
string_scope on top, and expect =? to refer to Z.eqb. Solution: wrap _ =? _ in (_ =? _)%Z (or
whichever scope you want).

• Added Ndigits.N2Bv_sized, and proved some lemmas about it. Deprecated Ndigits.N2Bv_gen.
• The scopesint_scope anduint_scope have been renamed todec_int_scope anddec_uint_scope,
to clash less with ssreflect and other packages. They are still delimited by %int and %uint.

• Syntax notations for string, ascii, Z, positive, N, R, and int31 are no longer available
merely by Requireing the files that define the inductives. You must Import Coq.Strings.
String.StringSyntax (after Require Coq.Strings.String), Coq.Strings.Ascii.
AsciiSyntax (after Require Coq.Strings.Ascii), Coq.ZArith.BinIntDef, Coq.
PArith.BinPosDef, Coq.NArith.BinNatDef, Coq.Reals.Rdefinitions, and Coq.
Numbers.Cyclic.Int31.Int31, respectively, to be able to use these notations. Note that pass-
ing -compat 8.8 or issuing Require Import Coq.Compat.Coq88 will make these nota-
tions available. Users wishing to port their developments automatically may download fix.py from
https://gist.github.com/JasonGross/5d4558edf8f5c2c548a3d96c17820169 and run a command like while
true; do make -Okj 2>&1 | /path/to/fix.py; done and get a cup of coffee. (This command
must be manually interrupted once the build finishes all the way though. Note also that this method is not
fail-proof; you may have to adjust some scopes if you were relying on string notations not being available even
when string_scope was open.)

• Numeral syntax for nat is no longer available without loading the entire prelude (Require Import Coq.
Init.Prelude). This only impacts users running Coq without the init library (-nois or -noinit) and also
issuing Require Import Coq.Init.Datatypes.

Tools
• Coq_makefile lets one override or extend the following variables from the command line: COQFLAGS,
COQCHKFLAGS, COQDOCFLAGS. COQFLAGS is now entirely separate from COQLIBS, so in custom Makefiles
$(COQFLAGS) should be replaced by $(COQFLAGS) $(COQLIBS).

• Removed the gallina utility (extracts specification from Coq vernacular files). If you would like to maintain
this tool externally, please contact us.
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• Removed the Emacs modes distributed with Coq. You are advised to use Proof-General292 (and optionally
Company-Coq293) instead. If your use case is not covered by these alternative Emacs modes, please open an issue.
We can help set up external maintenance as part of Proof-General, or independently as part of coq-community.

Vernacular Commands
• Removed deprecated commands Arguments Scope and Implicit Arguments (not the option). Use the
Arguments command instead.

• Nested proofs may be enabled through the option Nested Proofs Allowed. By default, they are disabled
and produce an error. The deprecation warning which used to occur when using nested proofs has been removed.

• Added option Uniform Inductive Parameters which abstracts over parameters before typechecking
constructors, allowing to write for example Inductive list (A : Type) := nil : list | cons
: A -> list -> list.

• New Set Hint Variables/Constants Opaque/Transparent commands for setting globally the
opacity flag of variables and constants in hint databases, overwriting the opacity set of the hint database.

• Added generic syntax for ”attributes”, as in: #[local] Lemma foo : bar.

• Added the Numeral Notation command for registering decimal numeral notations for custom types
• The Set SsrHave NoTCResolution command no longer has special global scope. If you want the previous
behavior, use Global Set SsrHave NoTCResolution.

• Multiple sections with the same name are allowed.
Coq binaries and process model

• Before 8.9, Coq distributed a single coqtop binary and a set of dynamically loadable plugins that used to take
over the main loop for tasks such as IDE language server or parallel proof checking.
These plugins have been turned into full-fledged binaries so each different process has associated a particular binary
now, in particular coqidetop is the CoqIDE language server, and coq{proof,tactic,query}worker
are in charge of task-specific and parallel proof checking.

SSReflect
• The implementation of delayed clear switches in intro patterns is now simpler to explain:

1. The immediate effect of a clear switch like {x} is to rename the variable x to _x_ (i.e. a reserved identifier
that cannot be mentioned explicitly)

2. The delayed effect of {x} is that _x_ is cleared at the end of the intro pattern
3. A clear switch immediately before a view application like {x}/v is translated to /v{x}.

In particular, the third rule lets one write {x}/v even if v uses the variable x: indeed the view is executed before
the renaming.

• An empty clear switch is now accepted in intro patterns before a view application whenever the view is a variable.
One can now write {}/v to mean {v}/v. Remark that {}/x is very similar to the idiom {}e for the rewrite
tactic (the equation e is used for rewriting and then discarded).

Standard Library
• There are now conversions between string and positive, Z, nat, and N in binary, octal, and hex.

Display diffs between proof steps
292 https://proofgeneral.github.io/
293 https://github.com/cpitclaudel/company-coq
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• coqtop and coqide can now highlight the differences between proof steps in color. This can be enabled from
the command line or the Set Diffs "on"/"off"/"removed" command. Please see the documentation
for details. Showing diffs in Proof General requires small changes to PG (under discussion).

Notations
• Added ++ infix for VectorDef.append. Note that this might cause incompatibilities if you have, e.g.,
list_scope and vector_scope both open with vector_scope on top, and expect ++ to refer to app.
Solution: wrap _ ++ _ in (_ ++ _)%list (or whichever scope you want).

3.3.3 Changes in 8.8.0

Various bug fixes.

3.3.4 Changes in 8.8.1

• Some quality-of-life fixes.
• Numerous improvements to the documentation.
• Fix a critical bug related to primitive projections and native_compute.
• Ship several additional Coq libraries with the Windows installer.

3.4 Version 8.8

3.4.1 Summary of changes

Coq version 8.8 contains the result of refinements and stabilization of features and deprecations, cleanups of the internals
of the system along with a few new features. The main user visible changes are:

• Kernel: fix a subject reduction failure due to allowing fixpoints on non-recursive values, by Matthieu Sozeau. Han-
dling of evars in the VM (the kernel still does not accept evars) by Pierre-Marie Pédrot.

• Notations: many improvements on recursive notations and support for destructuring patterns in the syntax of nota-
tions by Hugo Herbelin.

• Proof language: tacticals for profiling, timing and checking success or failure of tactics by JasonGross. The focusing
bracket { supports single-numbered goal selectors, e.g. 2:{, by Théo Zimmermann.

• Vernacular: deprecation of commands and more uniform handling of the Local flag, by Vincent Laporte and
Maxime Dénès, part of a larger attribute system overhaul. Experimental Show Extraction command by
Pierre Letouzey. Coercion now accepts Prop or Type as a source by Arthur Charguéraud. Exportmodifier for
options allowing to export the option to modules that Import and not only Require a module, by Pierre-Marie
Pédrot.

• Universes: many user-level and API level enhancements: qualified naming and printing, variance annotations for
cumulative inductive types, more general constraints and enhancements of the minimization heuristics, interaction
with modules by Gaëtan Gilbert, Pierre-Marie Pédrot and Matthieu Sozeau.

• Library: Decimal Numbers library by Pierre Letouzey and various small improvements.
• Documentation: a large community effort resulted in the migration of the reference manual to the Sphinx docu-
mentation tool. The result is this manual. The new documentation infrastructure (based on Sphinx) is by Clément
Pit-Claudel. The migration was coordinated by Maxime Dénès and Paul Steckler, with some help of Théo Zim-
mermann during the final integration phase. The 14 people who ported the manual are Calvin Beck, Heiko Becker,

3.4. Version 8.8 49



The Coq Reference Manual, Release 8.11.2

Yves Bertot, Maxime Dénès, Richard Ford, Pierre Letouzey, Assia Mahboubi, Clément Pit-Claudel, Laurence
Rideau, Matthieu Sozeau, Paul Steckler, Enrico Tassi, Laurent Théry, Nikita Zyuzin.

• Tools: experimental -mangle-names option to coqtop/coqc for linting proof scripts, by Jasper Hugunin.
On the implementation side, the dev/doc/changes.md file documents the numerous changes to the implementation
and improvements of interfaces. The file provides guidelines on porting a plugin to the new version.
Version 8.8 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system. Most important ones are documented in the next subsection file.
The efficiency of the whole system has seen improvements thanks to contributions from Gaëtan Gilbert, Pierre-Marie
Pédrot, Maxime Dénès and Matthieu Sozeau and performance issue tracking by Jason Gross and Paul Steckler.
The official wiki and the bugtracker of Coq migrated to the GitHub platform, thanks to the work of Pierre Letouzey and
Théo Zimmermann. Gaëtan Gilbert, Emilio Jesús Gallego Arias worked on maintaining and improving the continuous
integration system.
The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.
The 44 contributors for this version are Yves Bertot, Joachim Breitner, Tej Chajed, Arthur Charguéraud, Jacques-Pascal
Deplaix, Maxime Dénès, Jim Fehrle, Julien Forest, Yannick Forster, Gaëtan Gilbert, Jason Gross, Samuel Gruetter,
Thomas Hebb, Hugo Herbelin, Jasper Hugunin, Emilio Jesus Gallego Arias, Ralf Jung, Johannes Kloos, Matej Košík,
Robbert Krebbers, Tony Beta Lambda, Vincent Laporte, Peter LeFanu Lumsdaine, Pierre Letouzey, Farzon Lotfi, Cy-
prien Mangin, Guillaume Melquiond, Raphaël Monat, Carl Patenaude Poulin, Pierre-Marie Pédrot, Clément Pit-Claudel,
Matthew Ryan, Matt Quinn, Sigurd Schneider, Bernhard Schommer, Michael Soegtrop, Matthieu Sozeau, Arnaud Spi-
wack, Paul Steckler, Enrico Tassi, Anton Trunov, Martin Vassor, Vadim Zaliva and Théo Zimmermann.
Version 8.8 is the third release of Coq developed on a time-based development cycle. Its development spanned 6 months
from the release of Coq 8.7 and was based on a public roadmap. The development process was coordinated by Matthieu
Sozeau. Maxime Dénès was in charge of the release process. Théo Zimmermann is the maintainer of this release.
Many power users helped to improve the design of the new features via the bug tracker, the pull request system, the Coq
development mailing list or the coq-club@inria.fr mailing list. Special thanks to the users who contributed patches and
intensive brain-storming and code reviews, starting with Jason Gross, Ralf Jung, Robbert Krebbers and Amin Timany.
It would however be impossible to mention exhaustively the names of everybody who to some extent influenced the
development.
The Coq consortium, an organization directed towards users and supporters of the system, is now running and employs
Maxime Dénès. The contacts of the Coq Consortium are Yves Bertot and Maxime Dénès.

Santiago de Chile, March 2018,
Matthieu Sozeau for the Coq development team

3.4.2 Details of changes in 8.8+beta1

Kernel
• Support for template polymorphism for definitions was removed. May trigger more ”universe inconsistency” errors
in rare occasions.

• Fixpoints are no longer allowed on non-recursive inductive types.
Notations

• Recursive notations with the recursive pattern repeating on the right (e.g. ”( x ; .. ; y ; z )”) now supported.
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• Notations with a specific level for the leftmost nonterminal, when printing-only, are supported.
• Notations can now refer to the syntactic category of patterns (as in ”fun ’pat =>” or ”match p with pat => ... end”).
Two variants are available, depending on whether a single variable is considered as a pattern or not.

• Recursive notations now support ”..” patterns with several occurrences of the recursive term or binder, possibly
mixing terms and binders, possibly in reverse left-to-right order.

• ”Locate” now working also on notations of the form ”x + y” (rather than ”_ + _”).
Specification language

• When printing clauses of a ”match”, clauses with same right-hand side are factorized and the last most factorized
clause with no variables, if it exists, is turned into a default clause. Use ”Unset Printing Allow Default Clause” do
deactivate printing of a default clause. Use ”Unset Printing Factorizable Match Patterns” to deactivate factorization
of clauses with same right-hand side.

Tactics
• On Linux, ”native_compute” calls can be profiled using the ”perf” utility. The command ”Set NativeCompute
Profiling” enables profiling, and ”Set NativeCompute Profile Filename” customizes the profile filename.

• The tactic ”omega” is now aware of the bodies of context variables such as ”x := 5 : Z” (see #1362). This could be
disabled via Unset Omega UseLocalDefs.

• The tactic ”romega” is also aware now of the bodies of context variables.
• The tactic ”zify” resp. ”omega with N” is now aware of N.pred.
• Tactic ”decide equality” now able to manage constructors which contain proofs.
• Added tactics reset ltac profile, show ltac profile (and variants)
• Added tactics restart_timer, finish_timing, and time_constr as an experimental way of timing Ltac’s evaluation
phase

• Added tactic optimize_heap, analogous to the Vernacular Optimize Heap, which performs a major garbage collec-
tion and heap compaction in the OCaml run-time system.

• The tactics ”dtauto”, ”dintuition”, ”firstorder” now handle inductive types with let bindings in the parameters.
• The tactic dtauto now handles some inductives such as @sigT A (fun _ => B) as non-dependent con-
junctions.

• A bug fixed in rewrite H in * and rewrite H in * |- may cause a few rare incompatibilities (it was
unintendedly recursively rewriting in the side conditions generated by H).

• Added tactics ”assert_succeeds tac” and ”assert_fails tac” to ensure properties of the execution of a tactic without
keeping the effect of the execution.

• vm_compute now supports existential variables.
• Calls to shelve and give_up within calls to tactic refine now working.
• Deprecated tactic appcontext was removed.

Focusing
• Focusing bracket { now supports single-numbered goal selector, e.g. 2: { will focus on the second sub-goal. As
usual, unfocus with } once the sub-goal is fully solved. The Focus and Unfocus commands are now deprecated.

Vernacular Commands
• Proofs ending in ”Qed exporting ident, .., ident” are not supported anymore. Constants generated during
abstract are kept private to the local environment.
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• The deprecated Coercion Local, Open Local Scope, Notation Local syntax was removed. Use Local as a prefix
instead.

• For the Extraction Language command, ”OCaml” is spelled correctly. The older ”Ocaml” is still accepted, but
deprecated.

• Using “Require” inside a section is deprecated.
• An experimental command ”Show Extraction” allows to extract the content of the current ongoing proof (grant
wish #4129).

• Coercion now accepts the type of its argument to be ”Prop” or ”Type”.
• The ”Export” modifier can now be used when setting and unsetting options, and will result in performing the same
change when the module corresponding the command is imported.

• The Axiom command does not automatically declare axioms as instances when their type is a class. Previous
behavior can be restored using Set Typeclasses Axioms Are Instances.

Universes
• Qualified naming of global universes now works like other namespaced objects (e.g. constants), with a separate
namespace, inside and across module and library boundaries. Global universe names introduced in an inductive /
constant / Let declaration get qualified with the name of the declaration.

• Universe cumulativity for inductive types is now specified as a variance for each polymorphic universe. See the
reference manual for more information.

• Inference of universe constraints with cumulative inductive types produces more general constraints. Unsetting
new option Cumulativity Weak Constraints produces even more general constraints (but may produce too many
universes to be practical).

• Fix #5726: Notations that start with Type now support universe instances with @{u}.
• with Definition now understands universe declarations (like @{u| Set < u}).

Tools
• Coq can now be run with the option -mangle-names to change the auto-generated name scheme. This is intended
to function as a linter for developments that want to be robust to changes in auto-generated names. This feature is
experimental, and may change or disappear without warning.

• GeoProof support was removed.
Checker

• The checker now accepts filenames in addition to logical paths.
CoqIDE

• Find and Replace All report the number of occurrences found; Find indicates when it wraps.
coqdep

• Learned to read -I, -Q, -R and filenames from _CoqProject files. This is used by coq_makefile when generating
dependencies for .v files (but not other files).

Documentation
• The Coq FAQ, formerly located at https://coq.inria.fr/faq, has been moved to the GitHub wiki section of this
repository; the main entry page is https://github.com/coq/coq/wiki/The-Coq-FAQ.

• Documentation: a large community effort resulted in the migration of the reference manual to the Sphinx docu-
mentation tool. The result is partially integrated in this version.

Standard Library
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• New libraries Coq.Init.Decimal, Coq.Numbers.DecimalFacts, Coq.Numbers.DecimalNat,
Coq.Numbers.DecimalPos, Coq.Numbers.DecimalN, Coq.Numbers.DecimalZ, Coq.Numbers.DecimalString
providing a type of decimal numbers, some facts about them, and conversions between decimal numbers and nat,
positive, N, Z, and string.

• Added [Coq.Strings.String.concat] to concatenate a list of strings inserting a separator between each item
• Notation ' for Zpos in QArith was removed.
• Some deprecated aliases are now emitting warnings when used.

Compatibility support
• Support for compatibility with versions before 8.6 was dropped.

Options
• The following deprecated options have been removed:

– Refolding Reduction

– Standard Proposition Elimination

– Dependent Propositions Elimination

– Discriminate Introduction

– Shrink Abstract

– Tactic Pattern Unification

– Intuition Iff Unfolding

– Injection L2R Pattern Order

– Record Elimination Schemes

– Match Strict

– Tactic Compat Context

– Typeclasses Legacy Resolution

– Typeclasses Module Eta

– Typeclass Resolution After Apply

3.4.3 Details of changes in 8.8.0

Tools
• Asynchronous proof delegation policy was fixed. Since version 8.7 Coq was ignoring previous runs and the
-async-proofs-delegation-threshold option did not have the expected behavior.

Tactic language
• The undocumented ”nameless” forms fix N, cofix have been deprecated; please use fix ident N /
cofix ident to explicitly name the (co)fixpoint hypothesis to be introduced.

Documentation
• The reference manual is now fully ported to Sphinx.

Other small deprecations and bug fixes.

3.4. Version 8.8 53



The Coq Reference Manual, Release 8.11.2

3.4.4 Details of changes in 8.8.1

Kernel
• Fix a critical bug with cofixpoints and vm_compute/native_compute (#7333).
• Fix a critical bug with modules and algebraic universes (#7695)
• Fix a critical bug with inlining of polymorphic constants (#7615).
• Fix a critical bug with universe polymorphism and vm_compute (#7723). Was present since 8.5.

Notations
• Fixed unexpected collision between only-parsing and only-printing notations (issue #7462).

Windows installer
• TheWindows installer now includes external packages Ltac2 and Equations (it included the Bignums package since
8.8+beta1).

Many other bug fixes, documentation improvements (including fixes of regressions due to the Sphinx migration), and user
message improvements (for details, see the 8.8.1 milestone at https://github.com/coq/coq/milestone/13?closed=1).

3.4.5 Details of changes in 8.8.2

Documentation
• A PDF version of the reference manual is available once again.

Tools
• The coq-makefile targets print-pretty-timed, print-pretty-timed-diff, and
print-pretty-single-time-diff now correctly label the ”before” and ”after” columns, rather
than swapping them.

Kernel
• The kernel does not tolerate capture of global universes by polymorphic universe binders, fixing a soundness break
(triggered only through custom plugins)

Windows installer
• The Windows installer now includes many more external packages that can be individually selected for installation.

Many other bug fixes and lots of documentation improvements (for details, see the 8.8.2 milestone at https://github.com/
coq/coq/milestone/15?closed=1).

3.5 Version 8.7

3.5.1 Summary of changes

Coq version 8.7 contains the result of refinements, stabilization of features and cleanups of the internals of the system
along with a few new features. The main user visible changes are:

• New tactics: variants of tactics supporting existential variables eassert, eenough, etc... by Hugo Herbelin.
Tactics extensionality in H and inversion_sigma by Jason Gross, specialize with ... ac-
cepting partial bindings by Pierre Courtieu.
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• Cumulative Polymorphic Inductive types, allowing cumulativity of universes to go through applied
inductive types, by Amin Timany and Matthieu Sozeau.

• Integration of the SSReflect plugin and its documentation in the reference manual, by Enrico Tassi, AssiaMahboubi
and Maxime Dénès.

• The coq_makefile tool was completely redesigned to improve its maintainability and the extensibility of gen-
erated Makefiles, and to make _CoqProject files more palatable to IDEs by Enrico Tassi.

Coq 8.7 involved a large amount of work on cleaning and speeding up the code base, notably the work of Pierre-Marie
Pédrot on making the tactic-level system insensitive to existential variable expansion, providing a safer API to plugin
writers and making the code more robust. The dev/doc/changes.txt file documents the numerous changes to the
implementation and improvements of interfaces. An effort to provide an official, streamlined API to plugin writers is in
progress, thanks to the work of Matej Košík.
Version 8.7 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system. We shall only list a few of them.
The efficiency of the whole system has been significantly improved thanks to contributions from Pierre-Marie Pédrot,
Maxime Dénès and Matthieu Sozeau and performance issue tracking by Jason Gross and Paul Steckler.
Thomas Sibut-Pinote and Hugo Herbelin added support for side effect hooks in cbv, cbn and simpl. The side effects are
provided via a plugin available at https://github.com/herbelin/reduction-effects/.
The BigN, BigZ, BigQ libraries are no longer part of the Coq standard library, they are now provided by a separate
repository https://github.com/coq/bignums, maintained by Pierre Letouzey.
In the Reals library, IZR has been changed to produce a compact representation of integers and real constants are now
represented using IZR (work by Guillaume Melquiond).
Standard library additions and improvements by Jason Gross, Pierre Letouzey and others, documented in the next sub-
section file.
The mathematical proof language/declarative mode plugin was removed from the archive.
The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.
Packaging tools and software development kits were prepared by Michael Soegtrop with the help of Maxime Dénès and
Enrico Tassi for Windows, and Maxime Dénès for MacOS X. Packages are regularly built on the Travis continuous
integration server.
The contributors for this version are Abhishek Anand, C.J. Bell, Yves Bertot, Frédéric Besson, Tej Chajed, Pierre
Courtieu, Maxime Dénès, Julien Forest, Gaëtan Gilbert, Jason Gross, Hugo Herbelin, Emilio Jesús Gallego Arias, Ralf
Jung, Matej Košík, Xavier Leroy, Pierre Letouzey, Assia Mahboubi, Cyprien Mangin, Erik Martin-Dorel, Olivier Marty,
Guillaume Melquiond, Sam Pablo Kuper, Benjamin Pierce, Pierre-Marie Pédrot, Lars Rasmusson, Lionel Rieg, Valentin
Robert, Yann Régis-Gianas, Thomas Sibut-Pinote, Michael Soegtrop, Matthieu Sozeau, Arnaud Spiwack, Paul Steckler,
George Stelle, Pierre-Yves Strub, Enrico Tassi, Hendrik Tews, Amin Timany, Laurent Théry, Vadim Zaliva and Théo
Zimmermann.
The development process was coordinated by Matthieu Sozeau with the help of Maxime Dénès, who was also in charge
of the release process. Théo Zimmermann is the maintainer of this release.
Many power users helped to improve the design of the new features via the bug tracker, the pull request system, the Coq
development mailing list or the Coq-Club mailing list. Special thanks to the users who contributed patches and intensive
brain-storming and code reviews, starting with Jason Gross, Ralf Jung, Robbert Krebbers, Xavier Leroy, Clément Pit–
Claudel and Gabriel Scherer. It would however be impossible to mention exhaustively the names of everybody who to
some extent influenced the development.
Version 8.7 is the second release of Coq developed on a time-based development cycle. Its development spanned 9 months
from the release of Coq 8.6 and was based on a public road-map. It attracted many external contributions. Code reviews
and continuous integration testing were systematically used before integration of new features, with an important focus
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given to compatibility and performance issues, resulting in a hopefully more robust release than Coq 8.6 while maintaining
compatibility.
Coq Enhancement Proposals (CEPs for short) and open pull request discussions were used to discuss publicly the new
features.
The Coq consortium, an organization directed towards users and supporters of the system, is now upcoming and will rely
on Inria’s newly created Foundation.

Paris, August 2017,
Matthieu Sozeau and the Coq development team

3.5.2 Potential compatibility issues

• Extra superfluous names in introduction patterns may now raise an error rather than a warning when the superfluous
name is already in use. The easy fix is to remove the superfluous name.

3.5.3 Details of changes in 8.7+beta1

Tactics
• New tactic ”extensionality in H” which applies (possibly dependent) functional extensionality in H supposed to be
a quantified equality until giving a bare equality.

• New tactic inversion_sigma which turns equalities of dependent pairs (e.g., existT P x p = existT
P y q, frequently left over by inversion on a dependent type family) into pairs of equalities (e.g., a hypothesis
H : x = y and a hypothesis of type rew H in p = q); these hypotheses can subsequently be simplified
using subst, without ever invoking any kind of axiom asserting uniqueness of identity proofs. If you want to
explicitly specify the hypothesis to be inverted, or name the generated hypotheses, you can invoke induction
H as [H1 H2] using eq_sigT_rect. The tactic also works for sig, sigT2, and sig2, and there are
similar eq_sig*_rect induction lemmas.

• Tactic ”specialize with ...” now accepts any partial bindings. Missing bindings are either solved by unification or
left quantified in the hypothesis.

• New representation of terms that statically ensure stability by evar-expansion. This has several consequences.
– In terms of performance, this adds a cost to every term destructuration, but at the same time most eager evar
normalizations were removed, which couterbalances this drawback and even sometimes outperforms the old
implementation. For instance, many operations that would require O(n) normalization of the term are now
O(1) in tactics. YMMV.

– This triggers small changes in unification, which was not evar-insensitive. Most notably, the new implemen-
tation recognizes Miller patterns that were missed before because of a missing normalization step. Hopefully
this should be fairly uncommon.

• Tactic ”auto with real” can now discharge comparisons of literals.
• The types of variables in patterns of ”match” are now beta-iota-reduced after type-checking. This has an impact
on the type of the variables that the tactic ”refine” introduces in the context, producing types a priori closer to the
expectations.

• In ”Tactic Notation” or ”TACTIC EXTEND”, entry ”constr_with_bindings” now uses type classes and rejects
terms with unresolved holes, like entry ”constr” does. To get the former behavior use ”open_constr_with_bindings”
(possible source of incompatibility).
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• New e-variants eassert, eenough, epose proof, eset, eremember, epose which behave like the corresponding variants
with no ”e” but turn unresolved implicit arguments into existential variables, on the shelf, rather than failing.

• Tactic injection has become more powerful (closes bug #4890) and its documentation has been updated.
• New variants of the first and solve tacticals that do not rely on parsing rules, meant to define tactic notations.
• Added support for side effects hooks in cbv, cbn and simpl. The side effects are provided via a plugin: https:
//github.com/herbelin/reduction-effects/

• It is now possible to take hint database names as parameters in a Ltac definition or a Tactic Notation.
• New option Set Ltac Batch Debug on top of Set Ltac Debug for non-interactive Ltac debug output.

Gallina
• Now supporting all kinds of binders, including ’pat, in syntax of record fields.

Vernacular Commands
• Goals context can be printed in a more compact way when Set Printing Compact Contexts is activated.
• Unfocused goals can be printed with the Set Printing Unfocused option.
• Print now shows the types of let-bindings.
• The compatibility options for printing primitive projections (Set Printing Primitive Projection
Parameters and Set Printing Primitive Projection Compatibility) are now off by de-
fault.

• Possibility to unset the printing of notations in amore fine grained fashion thanUnset Printing Notations
is provided without any user-syntax. The goal is that someone creates a plugin to experiment such a user-syntax,
to be later integrated in Coq when stabilized.

• About now tells if a reference is a coercion.
• The deprecated Save vernacular and its form Save Theorem id to close proofs have been removed from the
syntax. Please use Qed.

• Search now sorts results by relevance (the relevance metric is a weighted sum of number of distinct symbols and
size of the term).

Standard Library
• New file PropExtensionality.v to explicitly work in the axiomatic context of propositional extensionality.
• New file SetoidChoice.v axiomatically providing choice over setoids, and, consequently, choice of representatives
in equivalence classes. Various proof-theoretic characterizations of choice over setoids in file ChoiceFacts.v.

• New lemmas about iff and about orders on positive and Z.
• New lemmas on powerRZ.
• Strengthened statement of JMeq_eq_dep (closes bug #4912).
• The BigN, BigZ, BigZ libraries are no longer part of the Coq standard library, they are now provided by a separate
repository https://github.com/coq/bignums The split has been done just after the Int31 library.

• IZR (Reals) has been changed to produce a compact representation of integers. As a consequence, IZR is no longer
convertible to INR and lemmas such as INR_IZR_INZ should be used instead.

• Real constants are now represented using IZR rather than R0 and R1; this might cause rewriting rules to fail to
apply to constants.

• Added new notation {x & P} for sigT (without a type for x)
Plugins
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• The Ssreflect plugin is now distributed with Coq. Its documentation has been integrated as a chapter of the reference
manual. This chapter is work in progress so feedback is welcome.

• The mathematical proof language (also known as declarative mode) was removed.
• A new command Extraction TestCompile has been introduced, not meant for the general user but instead for Coq’s
test-suite.

• The extraction plugin is no longer loaded by default. It must be explicitly loaded with [Require Extraction], which
is backwards compatible.

• The functional induction plugin (which provides the [Function] vernacular) is no longer loaded by default. It must
be explicitly loaded with [Require FunInd], which is backwards compatible.

Dependencies
• Support for camlp4 has been removed.

Tools
• coq_makefile was completely redesigned to improve its maintainability and the extensibility of generatedMakefiles,
and to make _CoqProject files more palatable to IDEs. Overview:

– _CoqProject files contain only Coq specific data (i.e. the list of files, -R options, ...)
– coq_makefile translates _CoqProject to Makefile.conf and copies in the desired location a standard Makefile
(that reads Makefile.conf)

– Makefile extensions can be implemented in a Makefile.local file (read by the main Makefile) by installing a
hook in the extension points provided by the standard Makefile

The current version contains code for retro compatibility that prints warnings when a deprecated feature is used.
Please upgrade your _CoqProject accordingly.

– Additionally, coq_makefile-made Makefiles now support experimental timing targets pretty-timed,
pretty-timed-before, pretty-timed-after, print-pretty-timed-diff,
print-pretty-single-time-diff, all.timing.diff, and the variable TIMING=1 (or
TIMING=before or TIMING=after); see the documentation for more details.

Build Infrastructure
• Note that ’make world’ does not build the bytecode binaries anymore. For that, you can use ’make byte’ (and ’make
install-byte’ afterwards). Warning: native and byte compilations should not be mixed in the same instance of ’make
-j’, otherwise both ocamlc and ocamlopt might race for access to the same .cmi files. In short, use ”make -j &&
make -j byte” instead of ”make -j world byte”.

Universes
• Cumulative inductive types. see prefixes ”Cumulative”, ”NonCumulative” for inductive definitions and the option
”Set Polymorphic Inductive Cumulativity” in the reference manual.

• New syntax foo@{_} to instantiate a polymorphic definition with anonymous universes (can also be used with
Type).

XML Protocol and internal changes
See dev/doc/changes.txt
Many bugfixes including #1859, #2884, #3613, #3943, #3994, #4250, #4709, #4720, #4824, #4844, #4911, #5026,
#5233, #5275, #5315, #5336, #5360, #5390, #5414, #5417, #5420, #5439, #5449, #5475, #5476, #5482, #5501, #5507,
#5520, #5523, #5524, #5553, #5577, #5578, #5589, #5597, #5598, #5607, #5618, #5619, #5620, #5641, #5648, #5651,
#5671.
Many bugfixes on OS X and Windows (now the test-suite passes on these platforms too).
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Many optimizations.
Many documentation improvements.

3.5.4 Details of changes in 8.7+beta2

Tools
• In CoqIDE, the ”Compile Buffer” command takes account of flags in _CoqProject or other project file.

Improvements around some error messages.
Many bug fixes including two important ones:

• Bug #5730: CoqIDE becomes unresponsive on file open.
• coq_makefile: make sure compile flags for Coq and coq_makefile are in sync (in particular, make sure the
-safe-string option is used to compile plugins).

3.5.5 Details of changes in 8.7.0

OCaml
• Users can pass specific flags to the OCaml optimizing compiler by -using the flambda-opts configure-time option.
Beware that compiling Coq with a flambda-enabled compiler is experimental and may require large amounts of
RAM and CPU, see INSTALL for more details.

3.5.6 Details of changes in 8.7.1

Compatibility with OCaml 4.06.0.
Many bug fixes, documentation improvements, and user message improvements (for details see the 8.7.1 milestone at
https://github.com/coq/coq/milestone/10?closed=1).

3.5.7 Details of changes in 8.7.2

Fixed a critical bug in the VM handling of universes (#6677). This bug affected all releases since 8.5.
Improved support for building with OCaml 4.06.0 and external num package.
Many other bug fixes, documentation improvements, and user message improvements (for details, see the 8.7.2 milestone
at https://github.com/coq/coq/milestone/11?closed=1).

3.6 Version 8.6

3.6.1 Summary of changes

Coq version 8.6 contains the result of refinements, stabilization of 8.5’s features and cleanups of the internals of the system.
Over the year of (now time-based) development, about 450 bugs were resolved and over 100 contributions integrated. The
main user visible changes are:

• A new, faster state-of-the-art universe constraint checker, by Jacques-Henri Jourdan.
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• In CoqIDE and other asynchronous interfaces, more fine-grained asynchronous processing and error reporting by
Enrico Tassi, making Coq capable of recovering from errors and continue processing the document.

• More access to the proof engine features from Ltac: goal management primitives, range selectors and a
typeclasses eauto engine handling multiple goals and multiple successes, by Cyprien Mangin, Matthieu
Sozeau and Arnaud Spiwack.

• Tactic behavior uniformization and specification, generalization of intro-patterns by Hugo Herbelin and others.
• A brand new warning system allowing to control warnings, turn them into errors or ignore them selectively by
Maxime Dénès, Guillaume Melquiond, Pierre-Marie Pédrot and others.

• Irrefutable patterns in abstractions, by Daniel de Rauglaudre.
• The ssreflect subterm selection algorithm by Georges Gonthier and Enrico Tassi is now accessible to tactic writers
through the ssrmatching plugin.

• Integration of LtacProf, a profiler for Ltac by Jason Gross, Paul Steckler, Enrico Tassi and Tobias Tebbi.
Coq 8.6 also comes with a bunch of smaller-scale changes and improvements regarding the different components of the
system. We shall only list a few of them.
The iota reduction flag is now a shorthand for match, fix and cofix flags controlling the corresponding reduction rules (by
Hugo Herbelin and Maxime Dénès).
Maxime Dénès maintained the native compilation machinery.
Pierre-Marie Pédrot separated the Ltac code from general purpose tactics, and generalized and rationalized the handling
of generic arguments, allowing to create new versions of Ltac more easily in the future.
In patterns and terms, @, abbreviations and notations are now interpreted the same way, by Hugo Herbelin.
Name handling for universes has been improved by Pierre-Marie Pédrot and Matthieu Sozeau. The minimization algo-
rithm has been improved by Matthieu Sozeau.
The unifier has been improved by Hugo Herbelin and Matthieu Sozeau, fixing some incompatibilities introduced in Coq
8.5. Unification constraints can now be left floating around and be seen by the user thanks to a new option. The Keyed
Unification mode has been improved by Matthieu Sozeau.
The typeclass resolution engine and associated proof-search tactic have been reimplemented on top of the proof-engine
monad, providing better integration in tactics, and new options have been introduced to control it, by Matthieu Sozeau
with help from Théo Zimmermann.
The efficiency of the whole system has been significantly improved thanks to contributions from Pierre-Marie Pédrot,
Maxime Dénès and Matthieu Sozeau and performance issue tracking by Jason Gross and Paul Steckler.
Standard library improvements by Jason Gross, Sébastien Hinderer, Pierre Letouzey and others.
Emilio Jesús Gallego Arias contributed many cleanups and refactorings of the pretty-printing and user interface commu-
nication components.
Frédéric Besson maintained the micromega tactic.
The OPAM repository for Coq packages has been maintained by Guillaume Claret, Guillaume Melquiond, Matthieu
Sozeau, Enrico Tassi and others. A list of packages is now available at https://coq.inria.fr/opam/www/.
Packaging tools and software development kits were prepared by Michael Soegtrop with the help of Maxime Dénès and
Enrico Tassi for Windows, and Maxime Dénès and Matthieu Sozeau for MacOS X. Packages are now regularly built on
the continuous integration server. Coq now comes with a META file usable with ocamlfind, contributed by Emilio Jesús
Gallego Arias, Gregory Malecha, and Matthieu Sozeau.
Matej Košík maintained and greatly improved the continuous integration setup and the testing of Coq contributions. He
also contributed many API improvements and code cleanups throughout the system.
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The contributors for this version are Bruno Barras, C.J. Bell, Yves Bertot, Frédéric Besson, Pierre Boutillier, Tej Cha-
jed, Guillaume Claret, Xavier Clerc, Pierre Corbineau, Pierre Courtieu, Maxime Dénès, Ricky Elrod, Emilio Jesús
Gallego Arias, Jason Gross, Hugo Herbelin, Sébastien Hinderer, Jacques-Henri Jourdan, Matej Košík, Xavier Leroy,
Pierre Letouzey, Gregory Malecha, Cyprien Mangin, Erik Martin-Dorel, Guillaume Melquiond, Clément Pit–Claudel,
Pierre-Marie Pédrot, Daniel de Rauglaudre, Lionel Rieg, Gabriel Scherer, Thomas Sibut-Pinote, Matthieu Sozeau, Ar-
naud Spiwack, Paul Steckler, Enrico Tassi, Laurent Théry, Nickolai Zeldovich and Théo Zimmermann. The development
process was coordinated by Hugo Herbelin and Matthieu Sozeau with the help of Maxime Dénès, who was also in charge
of the release process.
Many power users helped to improve the design of the new features via the bug tracker, the pull request system, the Coq
development mailing list or the Coq-Club mailing list. Special thanks to the users who contributed patches and intensive
brain-storming and code reviews, starting with Cyril Cohen, Jason Gross, Robbert Krebbers, Jonathan Leivent, Xavier
Leroy, Gregory Malecha, Clément Pit–Claudel, Gabriel Scherer and Beta Ziliani. It would however be impossible to
mention exhaustively the names of everybody who to some extent influenced the development.
Version 8.6 is the first release of Coq developed on a time-based development cycle. Its development spanned 10 months
from the release of Coq 8.5 and was based on a public roadmap. To date, it contains more external contributions than
any previous Coq system. Code reviews were systematically done before integration of new features, with an important
focus given to compatibility and performance issues, resulting in a hopefully more robust release than Coq 8.5.
Coq Enhancement Proposals (CEPs for short) were introduced by Enrico Tassi to provide more visibility and a discussion
period on new features, they are publicly available https://github.com/coq/ceps.
Started during this period, an effort is led by Yves Bertot and Maxime Dénès to put together a Coq consortium.

Paris, November 2016,
Matthieu Sozeau and the Coq development team

3.6.2 Potential sources of incompatibilities

• Symptom: An obligation generated by Program or an abstracted subproof has different arguments.
Cause: Set Shrink Abstract and Set Shrink Obligations are on by default and the subproof does not use the argument.
Remedy:

– Adapt the script.
– Write an explicit lemma to prove the obligation/subproof and use it instead (compatible with 8.4).
– Unset the option for the program/proof the obligation/subproof originates from.

• Symptom: In a goal, order of hypotheses, or absence of an equality of the form ”x = t” or ”t = x”, or no unfolding
of a local definition.
Cause: This might be connected to a number of fixes in the tactic ”subst”. The former behavior can be reactivated
by issuing ”Unset Regular Subst Tactic”.

3.6.3 Details of changes in 8.6beta1

Kernel
• A new, faster state-of-the-art universe constraint checker.

Specification language
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• Giving implicit arguments explicitly to a constant with multiple choices of implicit arguments does not break any
more insertion of further maximal implicit arguments.

• Ability to put any pattern in binders, prefixed by quote, e.g. ”fun ’(a,b) => ...”, ”λ ’(a,(b,c)), ...”, ”Definition foo
’(x,y) := ...”. It expands into a ”let ’pattern := ...”

Tactics
• Flag ”Bracketing Last Introduction Pattern” is now on by default.
• Flag ”Regular Subst Tactic” is now on by default: it respects the initial order of hypothesis, it contracts cycles, it
unfolds no local definitions (common source of incompatibilities, fixable by ”Unset Regular Subst Tactic”).

• New flag ”Refolding Reduction”, now disabled by default, which turns on refolding of constants/fixpoints (as in
cbn) during the reductions done during type inference and tactic retyping. Can be extremely expensive. When set
off, this recovers the 8.4 behaviour of unification and type inference. Potential source of incompatibility with 8.5
developments (the option is set on in Compat/Coq85.v).

• New flag ”Shrink Abstract” that minimalizes proofs generated by the abstract tactical w.r.t. variables appearing
in the body of the proof. On by default and deprecated. Minor source of incompatibility for code relying on the
precise arguments of abstracted proofs.

• Serious bugs are fixed in tactic ”double induction” (source of incompatibilities as soon as the inductive types have
dependencies in the type of their constructors; ”double induction” remains however deprecated).

• In introduction patterns of the form (pat1,...,patn), n should match the exact number of hypotheses introduced
(except for local definitions for which pattern can be omitted, as in regular pattern-matching).

• Tactic scopes in Ltac like constr: and ltac: now require parentheses around their argument.
• Every generic argument type declares a tactic scope of the form ”name:(...)” where name is the name of the argu-
ment. This generalizes the constr: and ltac: instances.

• When in strict mode (i.e. in a Ltac definition), if the ”intro” tactic is given a free identifier, it is not bound in
subsequent tactics anymore. In order to introduce a binding, use e.g. the ”fresh” primitive instead (potential source
of incompatibilities).

• New tactics is_ind, is_const, is_proj, is_constructor for use in Ltac.
• New goal selectors. Sets of goals can be selected by listing integers ranges. Example: ”1,4-7,24: tac” focuses ”tac”
on goals 1,4,5,6,7,24.

• For uniformity with ”destruct”/”induction” and for a more natural behavior, ”injection” can now work in place by
activating option ”Structural Injection”. In this case, hypotheses are also put in the context in the natural left-to-right
order and the hypothesis on which injection applies is cleared.

• Tactic ”contradiction” (hence ”easy”) now also solve goals with hypotheses of the form ”~True” or ”t<>t” (possible
source of incompatibilities because of more successes in automation, but generally a more intuitive strategy).

• Option ”Injection On Proofs” was renamed ”Keep Proof Equalities”. When enabled, injection and inversion do not
drop equalities between objects in Prop. Still disabled by default.

• New tactics ”notypeclasses refine” and ”simple notypeclasses refine” that disallow typeclass resolution when type-
checking their argument, for use in typeclass hints.

• Integration of LtacProf, a profiler for Ltac.
• Reduction tactics now accept more fine-grained flags: iota is now a shorthand for the new flags match, fix and cofix.
• The ssreflect subterm selection algorithm is now accessible to tactic writers through the ssrmatching plugin.
• When used as an argument of an ltac function, ”auto” without ”with” nor ”using” clause now correctly uses only
the core hint database by default.

Hints
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• Revised the syntax of [Hint Cut] to follow standard notation for regexps.
• Hint Mode now accepts ”!” which means that the mode matches only if the argument’s head is not an evar (it goes
under applications, casts, and scrutinees of matches and projections).

• Hints can now take an optional user-given pattern, used only by [typeclasses eauto] with the [Filtered Unification]
option on.

Typeclasses
• Many new options and new engine based on the proof monad. The [typeclasses eauto] tactic is now a multi-goal,
multi-success tactic. See reference manual for more information. It is planned to replace auto and eauto in the
following version. The 8.5 resolution engine is still available to help solve compatibility issues.

Program
• The ”Shrink Obligations” flag now applies to all obligations, not only those solved by the automatic tactic.
• ”Shrink Obligations” is on by default and deprecated. Minor source of incompatibility for code relying on the
precise arguments of obligations.

Notations
• ”Bind Scope” can once again bind ”Funclass” and ”Sortclass”.

General infrastructure
• New configurable warning system which can be controlled with the vernacular command ”Set Warnings”, or, under
coqc/coqtop, with the flag ”-w”. In particular, the default is now that warnings are printed by coqc.

• In asynchronous mode, Coq is now capable of recovering from errors and continue processing the document.
Tools

• coqc accepts a -o option to specify the output file name
• coqtop accepts –print-version to print Coq and OCaml versions in easy to parse format
• Setting [Printing Dependent Evars Line] can be unset to disable the computation associated with printing the
”dependent evars: ” line in -emacs mode

• Removed the -verbose-compat-notations flag and the corresponding Set Verbose Compat vernacular, since these
warnings can now be silenced or turned into errors using ”-w”.

XML protocol
• message format has changed, see dev/doc/changes.txt for more details.

Many bug fixes, minor changes and documentation improvements are not mentioned here.

3.6.4 Details of changes in 8.6

Kernel
• Fixed critical bug #5248 in VM long multiplication on 32-bit architectures. Was there only since 8.6beta1, so no
stable release impacted.

Other bug fixes in universes, type class shelving,...

3.6.5 Details of changes in 8.6.1

• Fix #5380: Default colors for CoqIDE are actually applied.
• Fix plugin warnings
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• Document named evars (including Show ident)
• Fix Bug #5574, document function scope
• Adding a test case as requested in bug 5205.
• Fix Bug #5568, no dup notation warnings on repeated module imports
• Fix documentation of Typeclasses eauto :=
• Refactor documentation of records.
• Protecting from warnings while compiling 8.6
• Fixing an inconsistency between configure and configure.ml
• Add test-suite checks for coqchk with constraints
• Fix bug #5019 (looping zify on dependent types)
• Fix bug 5550: ”typeclasses eauto with” does not work with section variables.
• Bug 5546, qualify datatype constructors when needed in Show Match
• Bug #5535, test for Show with -emacs
• Fix bug #5486, don’t reverse ids in tuples
• Fixing #5522 (anomaly with free vars of pat)
• Fix bug #5526, don’t check for nonlinearity in notation if printing only
• Fix bug #5255
• Fix bug #3659: -time should understand multibyte encodings.
• FIx bug #5300: Anomaly: Uncaught exception Not_found” in ”Print Assumptions”.
• Fix outdated description in RefMan.
• Repairing Set Rewriting Schemes

• Fixing #5487 (v8.5 regression on ltac-matching expressions with evars).
• Fix description of command-line arguments for Add (Rec) LoadPath
• Fix bug #5377: @? patterns broken.
• add XML protocol doc
• Fix anomaly when doing [all:Check _.] during a proof.
• Correction of bug #4306
• Fix #5435: [Eval native_compute in] raises anomaly.
• Instances should obey universe binders even when defined by tactics.
• Intern names bound in match patterns
• funind: Ignore missing info for current function
• Do not typecheck twice the type of opaque constants.
• show unused intro pattern warning
• [future] Be eager when ”chaining” already resolved future values.
• Opaque side effects
• Fix #5132: coq_makefile generates incorrect install goal
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• Run non-tactic comands without resilient_command
• Univs: fix bug #5365, generation of u+k <= v constraints
• make emit tail recursive
• Don’t require printing-only notation to be productive
• Fix the way setoid_rewrite handles bindings.
• Fix for bug 5244 - set printing width ignored when given enough space
• Fix bug 4969, autoapply was not tagging shelved subgoals correctly

3.7 Version 8.5

3.7.1 Summary of changes

Coq version 8.5 contains the result of five specific long-term projects:
• A new asynchronous evaluation and compilation mode by Enrico Tassi with help from Bruno Barras and Carst
Tankink.

• Full integration of the new proof engine by Arnaud Spiwack helped by Pierre-Marie Pédrot,
• Addition of conversion and reduction based on native compilation by Maxime Dénès and Benjamin Grégoire.
• Full universe polymorphism for definitions and inductive types by Matthieu Sozeau.
• An implementation of primitive projections with 𝜂-conversion bringing significant performance improvements
when using records by Matthieu Sozeau.

The full integration of the proof engine, by Arnaud Spiwack and Pierre-Marie Pédrot, brings to primitive tactics and
the user level Ltac language dependent subgoals, deep backtracking and multiple goal handling, along with miscellaneous
features and an improved potential for future modifications. Dependent subgoals allow statements in a goal to mention the
proof of another. Proofs of unsolved subgoals appear as existential variables. Primitive backtracking makes it possible to
write a tactic with several possible outcomes which are tried successively when subsequent tactics fail. Primitives are also
available to control the backtracking behavior of tactics. Multiple goal handling paves the way for smarter automation
tactics. It is currently used for simple goal manipulation such as goal reordering.
The way Coq processes a document in batch and interactive mode has been redesigned by Enrico Tassi with help from
Bruno Barras. Opaque proofs, the text between Proof andQed, can be processed asynchronously, decoupling the checking
of definitions and statements from the checking of proofs. It improves the responsiveness of interactive development,
since proofs can be processed in the background. Similarly, compilation of a file can be split into two phases: the first one
checking only definitions and statements and the second one checking proofs. A file resulting from the first phase – with
the .vio extension – can be already Required. All .vio files can be turned into complete .vo files in parallel. The same
infrastructure also allows terminating tactics to be run in parallel on a set of goals via the par: goal selector.
CoqIDE was modified to cope with asynchronous checking of the document. Its source code was also made separate
from that of Coq, so that CoqIDE no longer has a special status among user interfaces, paving the way for decoupling its
release cycle from that of Coq in the future.
Carst Tankink developed a Coq back-end for user interfaces built on Makarius Wenzel’s Prover IDE framework (PIDE),
like PIDE/jEdit (with help from Makarius Wenzel) or PIDE/Coqoon (with help from Alexander Faithfull and Jesper
Bengtson). The development of such features was funded by the Paral-ITP French ANR project.
The full universe polymorphism extension was designed by Matthieu Sozeau. It conservatively extends the universes
system and core calculus with definitions and inductive declarations parameterized by universes and constraints. It is
based on a modification of the kernel architecture to handle constraint checking only, leaving the generation of constraints
to the refinement/type inference engine. Accordingly, tactics are now fully universe aware, resulting in more localized

3.7. Version 8.5 65



The Coq Reference Manual, Release 8.11.2

error messages in case of inconsistencies and allowing higher-level algorithms like unification to be entirely type safe. The
internal representation of universes has been modified but this is invisible to the user.
The underlying logic has been extended with 𝜂-conversion for records defined with primitive projections by Matthieu
Sozeau. This additional form of 𝜂-conversion is justified using the same principle than the previously added 𝜂-conversion
for function types, based on formulations of the Calculus of Inductive Constructions with typed equality. Primitive
projections, which do not carry the parameters of the record and are rigid names (not defined as a pattern matching
construct), make working with nested records more manageable in terms of time and space consumption. This extension
and universe polymorphism were carried out partly while Matthieu Sozeau was working at the IAS in Princeton.
The guard condition has been made compliant with extensional equality principles such as propositional extensionality
and univalence, thanks to Maxime Dénès and Bruno Barras. To ensure compatibility with the univalence axiom, a new
flag -indices-matter has been implemented, taking into account the universe levels of indices when computing the
levels of inductive types. This supports using Coq as a tool to explore the relations between homotopy theory and type
theory.
Maxime Dénès and Benjamin Grégoire developed an implementation of conversion test and normal form computation
using the OCaml native compiler. It complements the virtual machine conversion offering much faster computation for
expensive functions.
Coq 8.5 also comes with a bunch of many various smaller-scale changes and improvements regarding the different com-
ponents of the system. We shall only list a few of them.
Pierre Boutillier developed an improved tactic for simplification of expressions called cbn.
MaximeDénès maintained the bytecode-based reductionmachine. Pierre Letouzeymaintained the extraction mechanism.
Pierre-Marie Pédrot has extended the syntax of terms to, experimentally, allow holes in terms to be solved by a locally
specified tactic.
Existential variables are referred to by identifiers rather than mere numbers, thanks to Hugo Herbelin who also improved
the tactic language here and there.
Error messages for universe inconsistencies have been improved by Matthieu Sozeau. Error messages for unification and
type inference failures have been improved by Hugo Herbelin, Pierre-Marie Pédrot and Arnaud Spiwack.
Pierre Courtieu contributed new features for using Coq through Proof General and for better interactive experience
(bullets, Search, etc).
The efficiency of the whole system has been significantly improved thanks to contributions from Pierre-Marie Pédrot.
A distribution channel for Coq packages using the OPAM tool has been initiated by Thomas Braibant and developed by
Guillaume Claret, with contributions by Enrico Tassi and feedback from Hugo Herbelin.
Packaging tools were provided by Pierre Letouzey and Enrico Tassi (Windows), Pierre Boutillier, Matthieu Sozeau and
Maxime Dénès (MacOS X). Maxime Dénès improved significantly the testing and benchmarking support.
Many power users helped to improve the design of the new features via the bug tracker, the coq development mailing list
or the Coq-Club mailing list. Special thanks are going to the users who contributed patches and intensive brain-storming,
starting with Jason Gross, Jonathan Leivent, Greg Malecha, Clément Pit-Claudel, Marc Lasson, Lionel Rieg. It would
however be impossible to mention with precision all names of people who to some extent influenced the development.
Version 8.5 is one of the most important releases of Coq. Its development spanned over about 3 years and a half with
about one year of beta-testing. General maintenance during part or whole of this period has been done by Pierre Boutillier,
Pierre Courtieu, Maxime Dénès, Hugo Herbelin, Pierre Letouzey, Guillaume Melquiond, Pierre-Marie Pédrot, Matthieu
Sozeau, Arnaud Spiwack, Enrico Tassi as well as Bruno Barras, Yves Bertot, Frédéric Besson, Xavier Clerc, Pierre
Corbineau, Jean-Christophe Filliâtre, Julien Forest, Sébastien Hinderer, Assia Mahboubi, Jean-Marc Notin, Yann Régis-
Gianas, François Ripault, Carst Tankink. Maxime Dénès coordinated the release process.

Paris, January 2015, revised December 2015,
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Hugo Herbelin, Matthieu Sozeau and the Coq development team

3.7.2 Potential sources of incompatibilities

List of typical changes to be done to adapt files from Coq 8.4 to Coq 8.5 when not using compatibility option -compat
8.4.

• Symptom: ”The reference omega was not found in the current environment”.
Cause: ”Require Omega” does not import the tactic ”omega” any more
Possible solutions:

– use ”Require Import OmegaTactic” (not compatible with 8.4)
– use ”Require Import Omega” (compatible with 8.4)
– add definition ”Ltac omega := Coq.omega.Omega.omega.”

• Symptom: ”intuition” cannot solve a goal (not working anymore on non standard connective)
Cause: ”intuition” had an accidental non uniform behavior fixed on non standard connectives
Possible solutions:

– use ”dintuition” instead; it is stronger than ”intuition” and works uniformly on non standard connectives, such
as n-ary conjunctions or disjunctions (not compatible with 8.4)

– do the script differently
• Symptom: The constructor foo (in type bar) expects n arguments.
Cause: parameters must now be given in patterns
Possible solutions:

– use option ”Set Asymmetric Patterns” (compatible with 8.4)
– add ”_” for the parameters (not compatible with 8.4)
– turn the parameters into implicit arguments (compatible with 8.4)

• Symptom: ”NPeano.Nat.foo” not existing anymore
Possible solutions:

– use ”Nat.foo” instead
Symptom: typing problems with proj1_sig or similar
Cause: coercion from sig to sigT and similar coercions have been removed so as to make the initial state easier to
understand for beginners
Solution: change proj1_sig into projT1 and similarly (compatible with 8.4)

Other detailed changes
• options for coq compilation (see below for ocaml).

– [-I foo] is now deprecated and will not add directory foo to the coq load path (only for ocaml, see below). Just
replace [-I foo] by [-Q foo ””] in your project file and re-generate makefile. Or perform the same operation
directly in your makefile if you edit it by hand.

– Option -R Foo bar is the same in v8.5 than in v8.4 concerning coq load path.
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– Option [-I foo -as bar] is unchanged but discouraged unless you compile ocaml code. Use -Q foo bar instead.
for more details: see section ”Customization at launch time” of the reference manual.

• Command line options for ocaml Compilation of ocaml code (plugins)
– [-I foo] is not deprecated to add foo to the ocaml load path.
– [-I foo -as bar] adds foo to the ocaml load path and adds foo to the coq load path with logical name bar
(shortcut for -I foo -Q foo bar).

for more details: section ”Customization at launch time” of the reference manual.
• Universe Polymorphism.
• Refinement, unification and tactics are now aware of universes, resulting in more localized errors. Universe incon-
sistencies should no more get raised at Qed time but during the proof. Unification always produces well-typed
substitutions, hence some rare cases of unifications that succeeded while producing ill-typed terms before will now
fail.

• The [change p with c] tactic semantics changed, now typechecking [c] at each matching occurrence [t] of the
pattern [p], and converting [t] with [c].

• Template polymorphic inductive types: the partial application of a template polymorphic type (e.g. list) is not
polymorphic. An explicit parameter application (e.g [fun A => list A]) or [apply (list _)] will result in a polymorphic
instance.

• The type inference algorithm now takes opacity of constants into account. This may have effects on tactics using
type inference (e.g. induction). Extra ”Transparent” might have to be added to revert opacity of constants.

Type classes.
• When writing an Instance foo : Class A := {| proj := t |} (note the vertical bars), support
for typechecking the projections using the type information and switching to proof mode is no longer available.
Use { } (without the vertical bars) instead.

Tactic abstract.
• Auxiliary lemmas generated by the abstract tactic are removed from the global environment and inlined in the proof
term when a proof is ended with Qed. The behavior of 8.4 can be obtained by ending proofs with ”Qed exporting”
or ”Qed exporting ident, .., ident”.

3.7.3 Details of changes in 8.5beta1

Logic
• Primitive projections for records allow for a compact representation of projections, without parameters and avoid
the behavior of defined projections that can unfold to a case expression. To turn the use of native projections on, use
[Set Primitive Projections]. Record, Class and Structure types defined while this option is set will be defined with
primitive projections instead of the usual encoding as a case expression. For compatibility, when p is a primitive
projection, @p can be used to refer to the projection with explicit parameters, i.e. [@p] is definitionally equal to [λ
params r. r.(p)]. Records with primitive projections have eta-conversion, the canonical form being [mkR pars (p1
t) ... (pn t)].

• New universe polymorphism (see reference manual)
• New option -type-in-type to collapse the universe hierarchy (this makes the logic inconsistent).
• The guard condition for fixpoints is now a bit stricter. Propagation of subterm value through pattern matching is
restricted according to the return predicate. Restores compatibility of Coq’s logic with the propositional extension-
ality axiom. May create incompatibilities in recursive programs heavily using dependent types.
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• Trivial inductive types are no longer defined in Type but in Prop, which leads to a non-dependent induction principle
being generated in place of the dependent one. To recover the old behavior, explicitly define your inductive types
in Set.

Vernacular commands
• A command ”Variant” allows to define non-recursive variant types.
• The command ”Record foo ...” does not generate induction principles (foo_rect, foo_rec, foo_ind) anymore by
default (feature wish #2693). The command ”Variant foo ...” does not either. A flag ”Set/Unset Nonrecursive
Elimination Schemes” allows changing this. The tactic ”induction” on a ”Record” or a ”Variant” is now actually
doing ”destruct”.

• The ”Open Scope” command can now be given also a delimiter (e.g. Z).
• The ”Definition” command now allows the ”Local” modifier, allowing for non-importable definitions. The same
goes for ”Axiom” and ”Parameter”.

• Section-specific commands such as ”Let” (resp. ”Variable”, ”Hypothesis”) used out of a section now behave like
the corresponding ”Local” command, i.e. ”Local Definition” (resp. ”Local Parameter”, ”Local Axiom”). (potential
source of rare incompatibilities).

• The ”Let” command can now define local (co)fixpoints.
• Command ”Search” has been renamed into ”SearchHead”. The command name ”Search” now behaves like former
”SearchAbout”. The latter name is deprecated.

• ”Search”, ”About”, ”SearchHead”, ”SearchRewrite” and ”SearchPattern” now search for hypothesis (of the current
goal by default) first. They now also support the goal selector prefix to specify another goal to search: e.g. ”n:Search
id”. This is also true for SearchAbout although it is deprecated.

• The coq/user-contrib directory and the XDG directories are no longer recursively added to the load path, so files
from installed libraries now need to be fully qualified for the ”Require” command to find them. The tools/update-
require script can be used to convert a development.

• A new Print Strategies command allows visualizing the opacity status of the whole engine.
• The ”Locate” command now searches through all sorts of qualified namespaces of Coq: terms, modules, tactics,
etc. The old behavior of the command can be retrieved using the ”Locate Term” command.

• New ”Derive” command to help writing program by derivation.
• New ”Refine Instance Mode” option that allows to deactivate the generation of obligations in incomplete typeclass
instances, raising an error instead.

• ”Collection” command to name sets of section hypotheses. Named collections can be used in the syntax of ”Proof
using” to assert which section variables are used in a proof.

• The ”Optimize Proof” command can be placed in themiddle of a proof to force the compaction of the data structure
used to represent the ongoing proof (evar map). This may result in a lower memory footprint and speed up the
execution of the following tactics.

• ”Optimize Heap” command to tell the OCaml runtime to perform a major garbage collection step and heap com-
paction.

• Instance no longer treats the {|...|} syntax specially; it handles it in the same way as other commands, e.g.
”Definition”. Use the {...} syntax (no pipe symbols) to recover the old behavior.

Specification Language
• Slight changes in unification error messages.
• Added a syntax $(...)$ that allows putting tactics in terms (may break user notations using ”$(”, fixable by inserting
a space or rewriting the notation).
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• Constructors in pattern-matching patterns now respect the same rules regarding implicit arguments as in applicative
position. The old behavior can be recovered by the command ”Set Asymmetric Patterns”. As a side effect, notations
for constructors explicitly mentioning non-implicit parameters can now be used in patterns. Considering that the
pattern language is already rich enough, binding local definitions is however now forbidden in patterns (source of
incompatibilities for local definitions that delta-reduce to a constructor).

• Type inference algorithm now granting opacity of constants. This might also affect behavior of tactics (source of
incompatibilities, solvable by re-declaring transparent constants which were set opaque).

• Existential variables are now referred to by an identifier and the relevant part of their instance is displayed by default.
They can be reparsed. The naming policy is yet unstable and subject to changes in future releases.

Tactics
• New tactic engine allowing dependent subgoals, fully backtracking (also known as multiple success) tactics, as
well as tactics which can consider multiple goals together. In the new tactic engine, instantiation information of
existential variables is always propagated to tactics, removing the need to manually use the ”instantiate” tactics to
mark propagation points.

– New tactical (a+b) inserts a backtracking point. When (a+b);c fails during the execution of c, it can backtrack
and try b instead of a.

– New tactical (once a) removes all the backtracking points from a (i.e. it selects the first success of a).
– Tactic ”constructor” is now fully backtracking. In case of incompatibilities (e.g. combinatoric explosion),
the former behavior of ”constructor” can be retrieved by using instead ”[> once constructor ..]”. Thanks to
backtracking, undocumented ”constructor <tac>” syntax is now equivalent to ”[> once (constructor; tac) ..]”.

– New ”multimatch” variant of ”match” tactic which backtracks to new branches in case of a later failure. The
”match” tactic is equivalent to ”once multimatch”.

– New selector ”all:” such that ”all:tac” applies tactic ”tac” to all the focused goals, instead of just the first one
as is the default.

– A corresponding new option Set Default Goal Selector ”all” makes the tactics in scripts be applied to all the
focused goal by default

– New selector ”par:” such that ”par:tac” applies the (terminating) tactic ”tac” to all the focused goal in parallel.
The number of worker can be selected with -async-proofs-tac-j and also limited using the coqworkmgr utility.

– New tactics ”revgoals”, ”cycle” and ”swap” to reorder goals.
– The semantics of recursive tactics (introduced with ”Ltac t := ...” or ”let rec t := ... in ...”) changed slightly as
t is now applied to every goal, not each goal independently. In particular it may be applied when no goals are
left. This may cause tactics such as ”let rec t := constructor;t” to loop indefinitely. The simple fix is to rewrite
the recursive calls as follows: ”let rec t := constructor;[t..]” which recovers the earlier behavior (source of rare
incompatibilities).

– New tactic language feature ”numgoals” to count number of goals. It is accompanied by a ”guard” tactic
which fails if a Boolean test over integers does not pass.

– New tactical ”[> ... ]” to apply tactics to individual goals.
– New tactic ”gfail” which works like ”fail” except it will also fail if every goal has been solved.
– The refine tactic is changed not to use an ad hoc typing algorithm to generate subgoals. It also uses the
dependent subgoal feature to generate goals to materialize every existential variable which is introduced by
the refinement (source of incompatibilities).

– A tactic shelve is introduced to manage the subgoals which may be solved by unification: shelve removes every
goal it is applied to from focus. These goals can later be called back into focus by the Unshelve command.
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– A variant shelve_unifiable only removes those goals which appear as existential variables in other goals. To
emulate the old refine, use ”refine c;shelve_unifiable”. This can still cause incompatibilities in rare occasions.

– New ”give_up” tactic to skip over a goal. A proof containing given up goals cannot be closed with ”Qed”, but
only with ”Admitted”.

• The implementation of the admit tactic has changed: no axiom is generated for the admitted sub proof. ”admit” is
now an alias for ”give_up”. Code relying on this specific behavior of ”admit” can be made to work by:

– Adding an ”Axiom” for each admitted subproof.
– Adding a single ”Axiom proof_admitted : False.” and the Ltac definition ”Ltac admit := case
proof_admitted.”.

• Matching using ”lazymatch” was fundamentally modified. It now behaves like ”match” (immediate execution of
the matching branch) but without the backtracking mechanism in case of failure.

• New ”tryif t then u else v” tactical which executes ”u” in case of success of ”t” and ”v” in case of failure.
• New conversion tactic ”native_compute”: evaluates the goal (or an hypothesis) with a call-by-value strategy, using
the OCaml native compiler. Useful on very intensive computations.

• New ”cbn” tactic, a well-behaved simpl.
• Repeated identical calls to omega should now produce identical proof terms.
• Tactics btauto, a reflexive Boolean tautology solver.
• Tactic ”tauto” was exceptionally able to destruct other connectives than the binary connectives ”and”, ”or”, ”prod”,
”sum”, ”iff”. This non-uniform behavior has been fixed (bug #2680) and tauto is slightly weaker (possible source
of incompatibilities). On the opposite side, new tactic ”dtauto” is able to destruct any record-like inductive types,
superseding the old version of ”tauto”.

• Similarly, ”intuition” has been made more uniform and, where it now fails, ”dintuition” can be used (possible source
of incompatibilities).

• New option ”Unset Intuition Negation Unfolding” for deactivating automatic unfolding of ”not” in intuition.
• Tactic notations can now be defined locally to a module (use ”Local” prefix).
• Tactic ”red” now reduces head beta-iota redexes (potential source of rare incompatibilities).
• Tactic ”hnf” now reduces inner beta-iota redexes (potential source of rare incompatibilities).
• Tactic ”intro H” now reduces beta-iota redexes if these hide a product (potential source of rare incompatibilities).
• In Ltac matching on patterns of the form ”_ pat1 ... patn” now behaves like if matching on ”?X pat1 ... patn”, i.e.
accepting ”_” to be instantiated by an applicative term (experimental at this stage, potential source of incompati-
bilities).

• In Ltac matching on goal, types of hypotheses are now interpreted in the %type scope (possible source of incom-
patibilities).

• ”change ... in ...” and ”simpl ... in ...” now properly consider nested occurrences (possible source of incompatibilities
since this alters the numbering of occurrences), but do not support nested occurrences.

• Tactics simpl, vm_compute and native_compute can be given a notation string to a constant as argument.
• When given a reference as argument, simpl, vm_compute and native_compute now strictly interpret it as the head
of a pattern starting with this reference.

• The ”change p with c” tactic semantics changed, now type-checking ”c” at each matching occurrence ”t” of the
pattern ”p”, and converting ”t” with ”c”.

• Now ”appcontext” and ”context” behave the same. The old buggy behavior of ”context” can be retrieved at parse
time by setting the ”Tactic Compat Context” flag (possible source of incompatibilities).
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• New introduction pattern p/c which applies lemma c on the fly on the hypothesis under consideration before con-
tinuing with introduction pattern p.

• New introduction pattern [= x1 .. xn] applies ”injection as [x1 .. xn]” on the fly if injection is applicable to the
hypothesis under consideration (idea borrowed from Georges Gonthier). Introduction pattern [=] applies ”discrim-
inate” if a discriminable equality.

• New introduction patterns * and ** to respectively introduce all forthcoming dependent variables and all vari-
ables/hypotheses dependent or not.

• Tactic ”injection c as ipats” now clears c if c refers to an hypothesis and moves the resulting equations in the
hypotheses independently of the number of ipats, which has itself to be less than the number of new hypotheses
(possible source of incompatibilities; former behavior obtainable by ”Unset Injection L2R Pattern Order”).

• Tactic ”injection” now automatically simplifies subgoals ”existT n p = existT n p’” into ”p = p’” when ”n” is in an
inductive type for which a decidable equality scheme has been generated with ”Scheme Equality” (possible source
of incompatibilities).

• New tactic ”rewrite_strat” for generalized rewriting with user-defined strategies, subsuming autorewrite.
• Injection can now also deduce equality of arguments of sort Prop, by using the option ”Set Injection On Proofs”
(disabled by default). Also improved the error messages.

• Tactic ”subst id” now supports id occurring in dependent local definitions.
• Bugs fixed about intro-pattern ”*” might lead to some rare incompatibilities.
• New tactical ”time” to display time spent executing its argument.
• Tactics referring or using a constant dependent in a section variable which has been cleared or renamed in the current
goal context now fail (possible source of incompatibilities solvable by avoiding clearing the relevant hypotheses).

• New construct ”uconstr:c” and ”type_term c” to build untyped terms.
• Binders in terms defined in Ltac (either ”constr” or ”uconstr”) can now take their names from identifiers defined in
Ltac. As a consequence, a name cannot be used in a binder ”constr:(fun x => ...)” if an Ltac variable of that name
already exists and does not contain an identifier. Source of occasional incompatibilities.

• The ”refine” tactic now accepts untyped terms built with ”uconstr” so that terms with holes can be constructed
piecewise in Ltac.

• New bullets –, ++, , —, +++, *, ... made available.
• More informative messages when wrong bullet is used.
• Bullet suggestion when a subgoal is solved.
• New tactic ”enough”, symmetric to ”assert”, but with subgoals swapped, as a more friendly replacement of ”cut”.
• In destruct/induction, experimental modifier ”!” prefixing the hypothesis name to tell not erasing the hypothesis.
• Bug fixes in ”inversion as” may occasionally lead to incompatibilities.
• Behavior of introduction patterns -> and <- made more uniform (hypothesis is cleared, rewrite in hypotheses and
conclusion and erasing the variable when rewriting a variable).

• New experimental option ”Set Standard Proposition Elimination Names” so that case analysis or induction on
schemes in Type containing propositions now produces ”H”-based names.

• Tactics from plugins are now active only when the corresponding module is imported (source of incompatibilities,
solvable by adding an ”Import”; in the particular case of Omega, use ”Require Import OmegaTactic”).

• Semantics of destruct/induction has been made more regular in some edge cases, possibly leading to incompatibil-
ities:
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– new goals are now opened when the term does not match a subterm of the goal and has unresolved holes,
while in 8.4 these holes were turned into existential variables

– when no ”at” option is given, the historical semantics which selects all subterms syntactically identical to the
first subterm matching the given pattern is used

– non-dependent destruct/induction on an hypothesis with premises in an inductive type with indices is fixed
– residual local definitions are now correctly removed.

• The rename tactic may now replace variables in parallel.
• A new ”Info” command replaces the ”info” tactical discontinued in v8.4. It still gives informative results in many
cases.

• The ”info_auto” tactic is known to be broken and does not print a trace anymore. Use ”Info 1 auto” instead. The
same goes for ”info_trivial”. On the other hand ”info_eauto” still works fine, while ”Info 1 eauto” prints a trivial
trace.

• When using a lemma of the prototypical form ”forall A, {a:A & P a}”, ”apply” and ”apply in” do not instantiate
anymore ”A” with the current goal and use ”a” as the proof, as they were sometimes doing, now considering that it
is a too powerful decision.

Program
• ”Solve Obligations using” changed to ”Solve Obligations with”, consistent with ”Proof with”.
• Program Lemma, Definition now respect automatic introduction.
• Program Lemma, Definition, etc.. now interpret ”->” like Lemma and Definition as a non-dependent arrow (po-
tential source of incompatibility).

• Add/document ”Set Hide Obligations” (to hide obligations in the final term inside an implicit argument) and ”Set
Shrink Obligations” (to minimize dependencies of obligations defined by tactics).

Notations
• The syntax ”x -> y” is now declared at level 99. In particular, it has now a lower priority than ”<->”: ”A -> B <->
C” is now ”A -> (B <-> C)” (possible source of incompatibilities)

• Notations accept term-providing tactics using the $(...)$ syntax.
• ”Bind Scope” can no longer bind ”Funclass” and ”Sortclass”.
• A notation can be given a (compat ”8.x”) annotation, making it behave like a ”only parsing” notation, but the
annotation may lead to eventually issue warnings or errors in further versions when this notation is used.

• More systematic insertion of spaces as a default for printing notations (”format” still available to override the de-
fault).

• In notations, a level modifier referring to a non-existent variable is now considered an error rather than silently
ignored.

Tools
• Option -I now only adds directories to the ml path.
• Option -Q behaves as -R, except that the logical path of any loaded file has to be fully qualified.
• Option -R no longer adds recursively to the ml path; only the root directory is added. (Behavior with respect to the
load path is unchanged.)

• Option -nois prevents coq/theories and coq/plugins to be recursively added to the load path. (Same behavior as
with coq/user-contrib.)

• coqdep accepts a -dumpgraph option generating a dot file.
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• Makefiles generated through coq_makefile have three new targets ”quick” ”checkproofs” and ”vio2vo”, allowing
respectively to asynchronously compile the files without playing the proof scripts, asynchronously checking that the
quickly generated proofs are correct and generating the object files from the quickly generated proofs.

• The XML plugin was discontinued and removed from the source.
• A new utility called coqworkmgr can be used to limit the number of concurrent workers started by independent
processes, like make and CoqIDE. This is of interest for users of the par: goal selector.

Interfaces
• CoqIDE supports asynchronous edition of the document, ongoing tasks and errors are reported in the bottom right
window. The number of workers taking care of processing proofs can be selected with -async-proofs-j.

• CoqIDE highlights in yellow ”unsafe” commands such as axiom declarations, and tactics like ”give_up”.
• CoqIDE supports Proof General like key bindings; to activate the PG mode go to Edit -> Preferences -> Editor.
For the documentation see Help -> Help for PG mode.

• CoqIDE automatically retracts the locked area when one edits the locked text.
• CoqIDE search and replace got regular expressions power. See the documentation of OCaml’s Str module for the
supported syntax.

• Many CoqIDE windows, including the query one, are now detachable to improve usability on multi screen work
stations.

• Coqtop/coqc outputs highlighted syntax. Colors can be configured thanks to the COQ_COLORS environment
variable, and their current state can be displayed with the -list-tags command line option.

• Third party user interfaces can install their main loop in $COQLIB/toploop and call coqtop with the -toploop flag
to select it.

Internal Infrastructure
• Many reorganizations in the ocaml source files. For instance, many internal a.s.t. of Coq are now placed in mli
files in a new directory intf/, for instance constrexpr.mli or glob_term.mli. More details in dev/doc/changes.

• The file states/initial.coq does not exist anymore. Instead, coqtop initially does a ”Require” of Prelude.vo (or nothing
when given the options -noinit or -nois).

• The format of vo files has slightly changed: cf final comments in checker/cic.mli.
• The build system does not produce anymore programs named coqtop.opt and a symbolic link to coqtop. Instead,
coqtop is now directly an executable compiled with the best OCaml compiler available. The bytecode program
coqtop.byte is still produced. Same for other utilities.

• Some options of the ./configure script slightly changed:
– The -coqrunbyteflags and its blank-separated argument is replaced by option -vmbyteflags which expects a
comma-separated argument.

– The -coqtoolsbyteflags option is discontinued, see -no-custom instead.
Miscellaneous

• ML plugins now require a ”DECLARE PLUGIN ”foo”” statement. The ”foo” name must be exactly the name of
the ML module that will be loaded through a ”Declare ML ”foo”” command.

3.7.4 Details of changes in 8.5beta2

Logic
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• The VM now supports inductive types with up to 8388851 non-constant constructors and up to 8388607 constant
ones.

Specification language
• Syntax ”$(tactic)$” changed to ”ltac: tactic”.

Tactics
• A script using the admit tactic can no longer be concluded by either Qed or Defined. In the first case, Admitted
can be used instead. In the second case, a subproof should be used.

• The easy tactic and the now tactical now have a more predictable behavior, but they might now discharge some
previously unsolved goals.

Extraction
• Definitions extracted to Haskell GHC should no longer randomly segfault when some Coq types cannot be repre-
sented by Haskell types.

• Definitions can now be extracted to Json for post-processing.
Tools

• Option -I -as has been removed, and option -R -as has been deprecated. In both cases, option -R can be used
instead.

• coq_makefile now generates double-colon rules for rules such as clean.
API

• The interface of [change] has changed to take a [change_arg], which can be built from a [constr] using
[make_change_arg].

3.7.5 Details of changes in 8.5beta3

Vernacular commands
• New command ”Redirect” to redirect the output of a command to a file.
• New command ”Undelimit Scope” to remove the delimiter of a scope.
• New option ”Strict Universe Declaration”, set by default. It enforces the declaration of all polymorphic universes
appearing in a definition when introducing it.

• New command ”Show id” to show goal named id.
• Option ”Virtual Machine” removed.

Tactics
• New flag ”Regular Subst Tactic” which fixes ”subst” in situations where it failed to substitute all substitutable equa-
tions or failed to simplify cycles, or accidentally unfolded local definitions (flag is off by default).

• New flag ”Loose Hint Behavior” to handle hints loaded but not imported in a special way. It accepts three distinct
flags: * ”Lax”, which is the default one, sets the old behavior, i.e. a non-imported hint behaves the same as an im-
ported one. * ”Warn” outputs a warning when a non-imported hint is used. Note that this is an over-approximation,
because a hint may be triggered by an eauto run that will eventually fail and backtrack. * ”Strict” changes the
behavior of an unloaded hint to the one of the fail tactic, allowing to emulate the hopefully future import-scoped
hint mechanism.

• New compatibility flag ”Universal Lemma Under Conjunction” which let tactics working under conjunctions apply
sublemmas of the form ”forall A, ... -> A”.
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• New compatibility flag ”Bracketing Last Introduction Pattern” which can be set so that the last disjunctive-
conjunctive introduction pattern given to ”intros” automatically complete the introduction of its subcomponents, as
the the disjunctive-conjunctive introduction patterns in non-terminal position already do.

• New flag ”Shrink Abstract” that minimalizes proofs generated by the abstract tactical w.r.t. variables appearing in
the body of the proof.

Program
• The ”Shrink Obligations” flag now applies to all obligations, not only those solved by the automatic tactic.
• Importing Program no longer overrides the ”exists” tactic (potential source of incompatibilities).
• Hints costs are now correctly taken into account (potential source of incompatibilities).
• Documented the Hint Cut command that allows control of the proof-search during typeclass resolution (see refer-
ence manual).

API
• Some functions from pretyping/typing.ml and their derivatives were potential source of evarmap leaks, as they
dropped their resulting evarmap. The situation was clarified by renaming them according to a unsafe_* scheme.
Their sound variant is likewise renamed to their old name. The following renamings were made.

– Typing.type_of -> unsafe_type_of
– Typing.e_type_of -> type_of
– A new e_type_of function that matches the e_ prefix policy
– Tacmach.pf_type_of -> pf_unsafe_type_of
– A new safe pf_type_of function.

All uses of unsafe_* functions should be eventually eliminated.
Tools

• Added an option -w to control the output of coqtop warnings.
• Configure now takes an optional -native-compiler (yes|no) flag replacing -no-native-compiler. The new flag is set
to no by default under Windows.

• Flag -no-native-compiler was removed and became the default for coqc. If precompilation of files for native con-
version test is desired, use -native-compiler.

• The -compile command-line option now takes the full path of the considered file, including the ”.v” extension, and
outputs a warning if such an extension is lacking.

• The -require and -load-vernac-object command-line options now take a logical path of a given library rather than
a physical path, thus they behave like Require [Import] path.

• The -vm command-line option has been removed.
Standard Library

• There is now a Coq.Compat.Coq84 library, which sets the various compatibility options and does a few redefinitions
to make Coq behave more like Coq v8.4. The standard way of putting Coq in v8.4 compatibility mode is to pass
the command line flags ”-require Coq.Compat.Coq84 -compat 8.4”.

3.7.6 Details of changes in 8.5

Tools

76 Chapter 3. Recent changes



The Coq Reference Manual, Release 8.11.2

• Flag ”-compat 8.4” now loads Coq.Compat.Coq84. The standard way of putting Coq in v8.4 compatibility mode
is to pass the command line flag ”-compat 8.4”. It can be followed by ”-require Coq.Compat.AdmitAxiom” if the
8.4 behavior of admit is needed, in which case it uses an axiom.

Specification language
• Syntax ”$(tactic)$” changed to ”ltac:(tactic)”.

Tactics
• Syntax ”destruct !hyp” changed to ”destruct (hyp)”, and similarly for induction (rare source of incompatibilities
easily solvable by removing parentheses around ”hyp” when not for the purpose of keeping the hypothesis).

• Syntax ”p/c” for on-the-fly application of a lemma c before introducing along pattern p changed to p%c1..%cn.
The feature and syntax are in experimental stage.

• ”Proof using” does not clear unused section variables.
• Tactic ”refine” has been changed back to the 8.4 behavior of shelving subgoals that occur in other subgoals. The
”refine” tactic of 8.5beta3 has been renamed ”simple refine”; it does not shelve any subgoal.

• New tactical ”unshelve tac” which grab existential variables put on the tactic shelve by the execution of ”tac”.

3.7.7 Details of changes in 8.5pl1

Critical bugfix
• The subterm relation for the guard condition was incorrectly defined on primitive projections (#4588)

Plugin development tools
• add a .merlin target to the makefile

Various performance improvements (time, space used by .vo files)
Other bugfixes

• Fix order of arguments to Big.compare_case in ExtrOcamlZBigInt.v
• Added compatibility coercions from Specif.v which were present in Coq 8.4.
• Fixing a source of inefficiency and an artificial dependency in the printer in the congruence tactic.
• Allow to unset the refinement mode of Instance in ML
• Fixing an incorrect use of prod_appvect on a term which was not a product in setoid_rewrite.
• Add -compat 8.4 econstructor tactics, and tests
• Add compatibility Nonrecursive Elimination Schemes
• Fixing the ”No applicable tactic” non informative error message regression on apply.
• Univs: fix get_current_context (bug #4603, part I)
• Fix a bug in Program coercion code
• Fix handling of arity of definitional classes.
• #4630: Some tactics are 20x slower in 8.5 than 8.4.
• #4627: records with no declared arity can be template polymorphic.
• #4623: set tactic too weak with universes (regression)
• Fix incorrect behavior of CS resolution
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• #4591: Uncaught exception in directory browsing.
• CoqIDE is more resilient to initialization errors.
• #4614: ”Fully check the document” is uninterruptible.
• Try eta-expansion of records only on non-recursive ones
• Fix bug when a sort is ascribed to a Record
• Primitive projections: protect kernel from erroneous definitions.
• Fixed bug #4533 with previous Keyed Unification commit
• Win: kill unreliable hence do not waitpid after kill -9 (Close #4369)
• Fix strategy of Keyed Unification
• #4608: Anomaly ”output_value: abstract value (outside heap)”.
• #4607: do not read native code files if native compiler was disabled.
• #4105: poor escaping in the protocol between CoqIDE and coqtop.
• #4596: [rewrite] broke in the past few weeks.
• #4533 (partial): respect declared global transparency of projections in unification.ml
• #4544: Backtrack on using full betaiota reduction during keyed unification.
• #4540: CoqIDE bottom progress bar does not update.
• Fix regression from 8.4 in reflexivity
• #4580: [Set Refine Instance Mode] also used for Program Instance.
• #4582: cannot override notation [ x ]. MAY CREATE INCOMPATIBILITIES, see #4683.
• STM: Print/Extraction have to be skipped if -quick
• #4542: CoqIDE: STOP button also stops workers
• STM: classify some variants of Instance as regular ‘‘ Fork ` nodes.
• #4574: Anomaly: Uncaught exception Invalid_argument(”splay_arity”).
• Do not give a name to anonymous evars anymore. See bug #4547.
• STM: always stock in vio files the first node (state) of a proof
• STM: not delegate proofs that contain Vernac(Module|Require|Import), #4530
• Don’t fail fatally if PATH is not set.
• #4537: Coq 8.5 is slower in typeclass resolution.
• #4522: Incorrect ”Warning...” on windows.
• #4373: coqdep does not know about .vio files.
• #3826: ”Incompatible module types” is uninformative.
• #4495: Failed assertion in metasyntax.ml.
• #4511: evar tactic can create non-typed evars.
• #4503: mixing universe polymorphic and monomorphic variables and definitions in sections is unsupported.
• #4519: oops, global shadowed local universe level bindings.
• #4506: Anomaly: File ”pretyping/indrec.ml”, line 169, characters 14-20: Assertion failed.
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• #4548: Coqide crashes when going back one command

3.7.8 Details of changes in 8.5pl2

Critical bugfix
• Checksums of .vo files dependencies were not correctly checked.
• Unicode-to-ASCII translation was not injective, leading in a soundness bug in the native compiler.

Other bugfixes
• #4097: more efficient occur-check in presence of primitive projections
• #4398: type_scope used consistently in ”match goal”.
• #4450: eauto does not work with polymorphic lemmas
• #4677: fix alpha-conversion in notations needing eta-expansion.
• Fully preserve initial order of hypotheses in ”Regular Subst Tactic” mode.
• #4644: a regression in unification.
• #4725: Function (Error: Conversion test raised an anomaly) and Program (Error: Cannot infer this placeholder of
type)

• #4747: Problem building Coq 8.5pl1 with OCaml 4.03.0: Fatal warnings
• #4752: CoqIDE crash on files not ended by ”.v”.
• #4777: printing inefficiency with implicit arguments
• #4818: ”Admitted” fails due to undefined universe anomaly after calling ”destruct”
• #4823: remote counter: avoid thread race on sockets
• #4841: -verbose flag changed semantics in 8.5, is much harder to use
• #4851: [nsatz] cannot handle duplicated hypotheses
• #4858: Anomaly: Uncaught exception Failure(”hd”). Please report. in variant of nsatz
• #4880: [nsatz_compute] generates invalid certificates if given redundant hypotheses
• #4881: synchronizing ”Declare Implicit Tactic” with backtrack.
• #4882: anomaly with Declare Implicit Tactic on hole of type with evars
• Fix use of ”Declare Implicit Tactic” in refine. triggered by CoqIDE
• #4069, #4718: congruence fails when universes are involved.

Universes
• Disallow silently dropping universe instances applied to variables (forward compatible)
• Allow explicit universe instances on notations, when they can apply to the head reference of their expansion.

Build infrastructure
• New update on how to find camlp5 binary and library at configure time.
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3.7.9 Details of changes in 8.5pl3

Critical bugfix
• #4876: Guard checker incompleteness when using primitive projections

Other bugfixes
• #4780: Induction with universe polymorphism on was creating ill-typed terms.
• #4673: regression in setoid_rewrite, unfolding let-ins for type unification.
• #4754: Regression in setoid_rewrite, allow postponed unification problems to remain.
• #4769: Anomaly with universe polymorphic schemes defined inside sections.
• #3886: Program: duplicate obligations of mutual fixpoints.
• #4994: Documentation typo.
• #5008: Use the ”md5” command on OpenBSD.
• #5007: Do not assume the ”TERM” environment variable is always set.
• #4606: Output a break before a list only if there was an empty line.
• #5001: metas not cleaned properly in clenv_refine_in.
• #2336: incorrect glob data for module symbols (bug #2336).
• #4832: Remove extraneous dot in error message.
• Anomaly in printing a unification error message.
• #4947: Options which take string arguments are not backwards compatible.
• #4156: micromega cache files are now hidden files.
• #4871: interrupting par:abstract kills coqtop.
• #5043: [Admitted] lemmas pick up section variables.
• Fix name of internal refine (”simple refine”).
• #5062: probably a typo in Strict Proofs mode.
• #5065: Anomaly: Not a proof by induction.
• Restore native compiler optimizations, they were disabled since 8.5!
• #5077: failure on typing a fixpoint with evars in its type.
• Fix recursive notation bug.
• #5095: non relevant too strict test in let-in abstraction.
• Ensuring that the evar name is preserved by ”rename”.
• #4887: confusion between using and with in documentation of firstorder.
• Bug in subst with let-ins.
• #4762: eauto weaker than auto.
• Remove if_then_else (was buggy). Use tryif instead.
• #4970: confusion between special ”{” and non special ”{{” in notations.
• #4529: primitive projections unfolding.
• #4416: Incorrect ”Error: Incorrect number of goals”.
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• #4863: abstract in typeclass hint fails.
• #5123: unshelve can impact typeclass resolution
• Fix a collision about the meta-variable ”..” in recursive notations.
• Fix printing of info_auto.
• #3209: Not_found due to an occur-check cycle.
• #5097: status of evars refined by ”clear” in ltac: closed wrt evars.
• #5150: Missing dependency of the test-suite subsystems in prerequisite.
• Fix a bug in error printing of unif constraints
• #3941: Do not stop propagation of signals when Coq is busy.
• #4822: Incorrect assertion in cbn.
• #3479 parsing of ”{” and ”}” when a keyword starts with ”{” or ”}”.
• #5127: Memory corruption with the VM.
• #5102: bullets parsing broken by calls to parse_entry.

Various documentation improvements

3.8 Version 8.4

3.8.1 Summary of changes

Coq version 8.4 contains the result of three long-term projects: a new modular library of arithmetic by Pierre Letouzey,
a new proof engine by Arnaud Spiwack and a new communication protocol for CoqIDE by Vincent Gross.
The new modular library of arithmetic extends, generalizes and unifies the existing libraries on Peano arithmetic (types
nat, N and BigN), positive arithmetic (type positive), integer arithmetic (Z and BigZ) and machine word arithmetic (type
Int31). It provides with unified notations (e.g. systematic use of add and mul for denoting the addition and multiplication
operators), systematic and generic development of operators and properties of these operators for all the types mentioned
above, including gcd, pcm, power, square root, base 2 logarithm, division, modulo, bitwise operations, logical shifts,
comparisons, iterators, ...
The most visible feature of the new proof engine is the support for structured scripts (bullets and proof brackets) but, even
if yet not user-available, the new engine also provides the basis for refining existential variables using tactics, for applying
tactics to several goals simultaneously, for reordering goals, all features which are planned for the next release. The new
proof engine forced Pierre Letouzey to reimplement info and Show Script differently.
Before version 8.4, CoqIDE was linked to Coq with the graphical interface living in a separate thread. From version
8.4, CoqIDE is a separate process communicating with Coq through a textual channel. This allows for a more robust
interfacing, the ability to interrupt Coq without interrupting the interface, and the ability to manage several sessions in
parallel. Relying on the infrastructure work made by Vincent Gross, Pierre Letouzey, Pierre Boutillier and Pierre-Marie
Pédrot contributed many various refinements of CoqIDE.
Coq 8.4 also comes with a bunch of various smaller-scale changes and improvements regarding the different components
of the system.
The underlying logic has been extended with 𝜂-conversion thanks to Hugo Herbelin, Stéphane Glondu and Benjamin
Grégoire. The addition of 𝜂-conversion is justified by the confidence that the formulation of the Calculus of Inductive
Constructions based on typed equality (such as the one considered in Lee and Werner to build a set-theoretic model of
CIC [LW11]) is applicable to the concrete implementation of Coq.
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The underlying logic benefited also from a refinement of the guard condition for fixpoints by Pierre Boutillier, the point
being that it is safe to propagate the information about structurally smaller arguments through 𝛽-redexes that are blocked
by the “match” construction (blocked commutative cuts).
Relying on the added permissiveness of the guard condition, HugoHerbelin could extend the patternmatching compilation
algorithm so that matching over a sequence of terms involving dependencies of a term or of the indices of the type of a
term in the type of other terms is systematically supported.
Regarding the high-level specification language, Pierre Boutillier introduced the ability to give implicit arguments to
anonymous functions, Hugo Herbelin introduced the ability to define notations with several binders (e.g. exists x y
z, P), Matthieu Sozeau made the typeclass inference mechanism more robust and predictable, Enrico Tassi introduced
a command Arguments that generalizes Implicit Arguments and Arguments Scope for assigning various properties to
arguments of constants. Various improvements in the type inference algorithm were provided by Matthieu Sozeau and
Hugo Herbelin with contributions from Enrico Tassi.
Regarding tactics, Hugo Herbelin introduced support for referring to expressions occurring in the goal by pattern in tactics
such as set or destruct. Hugo Herbelin also relied on ideas from Chung-Kil Hur’s Heq plugin to introduce automatic
computation of occurrences to generalize when using destruct and induction on types with indices. Stéphane Glondu
introduced new tactics constr_eq, is_evar, and has_evar, to be used when writing complex tactics. Enrico
Tassi added support to fine-tuning the behavior of simpl. Enrico Tassi added the ability to specify over which variables
of a section a lemma has to be exactly generalized. Pierre Letouzey added a tactic timeout and the interruptibility of
vm_compute. Bug fixes and miscellaneous improvements of the tactic language came from Hugo Herbelin, Pierre
Letouzey and Matthieu Sozeau.
Regarding decision tactics, Loïc Pottier maintained nsatz, moving in particular to a typeclass based reification of goals
while Frédéric Besson maintained Micromega, adding in particular support for division.
Regarding vernacular commands, Stéphane Glondu provided new commands to analyze the structure of type universes.
Regarding libraries, a new library about lists of a given length (called vectors) has been provided by Pierre Boutillier. A
new instance of finite sets based on Red-Black trees and provided by Andrew Appel has been adapted for the standard
library by Pierre Letouzey. In the library of real analysis, Yves Bertot changed the definition of 𝜋 and provided a proof
of the long-standing fact yet remaining unproved in this library, namely that 𝑠𝑖𝑛 𝜋

2 = 1.
Pierre Corbineau maintained the Mathematical Proof Language (C-zar).
Bruno Barras and Benjamin Grégoire maintained the call-by-value reduction machines.
The extraction mechanism benefited from several improvements provided by Pierre Letouzey.
Pierre Letouzey maintained the module system, with contributions from Élie Soubiran.
Julien Forest maintained the Function command.
Matthieu Sozeau maintained the setoid rewriting mechanism.
Coq related tools have been upgraded too. In particular, coq_makefile has been largely revised by Pierre Boutillier. Also,
patches from Adam Chlipala for coqdoc have been integrated by Pierre Boutillier.
Bruno Barras and Pierre Letouzey maintained the coqchk checker.
Pierre Courtieu and Arnaud Spiwack contributed new features for using Coq through Proof General.
The Dp plugin has been removed. Use the plugin provided with Why 3 instead (http://why3.lri.fr/).
Under the hood, the Coq architecture benefited from improvements in terms of efficiency and robustness, especially
regarding universes management and existential variables management, thanks to Pierre Letouzey and Yann Régis-Gianas
with contributions from Stéphane Glondu and Matthias Puech. The build system is maintained by Pierre Letouzey with
contributions from Stéphane Glondu and Pierre Boutillier.
A new backtracking mechanism simplifying the task of external interfaces has been designed by Pierre Letouzey.

82 Chapter 3. Recent changes

http://why3.lri.fr/


The Coq Reference Manual, Release 8.11.2

The general maintenance was done by Pierre Letouzey, Hugo Herbelin, Pierre Boutillier, Matthieu Sozeau and Stéphane
Glondu with also specific contributions from Guillaume Melquiond, Julien Narboux and Pierre-Marie Pédrot.
Packaging tools were provided by Pierre Letouzey (Windows), Pierre Boutillier (MacOS), Stéphane Glondu (Debian).
Releasing, testing and benchmarking support was provided by Jean-Marc Notin.
Many suggestions for improvements were motivated by feedback from users, on either the bug tracker or the Coq-Club
mailing list. Special thanks are going to the users who contributed patches, starting with Tom Prince. Other patch
contributors include Cédric Auger, David Baelde, Dan Grayson, Paolo Herms, Robbert Krebbers, Marc Lasson, Hendrik
Tews and Eelis van der Weegen.

Paris, December 2011
Hugo Herbelin

3.8.2 Potential sources of incompatibilities

The main known incompatibilities between 8.3 and 8.4 are consequences of the following changes:
• The reorganization of the library of numbers:
Several definitions have new names or are defined in modules of different names, but a special care has been taken
to have this renaming transparent for the user thanks to compatibility notations.
However some definitions have changed, what might require some adaptations. The most noticeable examples are:

– The ”?=” notation which now bind to Pos.compare rather than former Pcompare (now Pos.compare_cont).
– Changes in names may induce different automatically generated names in proof scripts (e.g. when issuing
”destruct Z_le_gt_dec”).

– Z.add has a new definition, hence, applying ”simpl” on subterms of its body might give different results than
before.

– BigN.shiftl and BigN.shiftr have reversed arguments order, the power function in BigN now takes two BigN.
• Other changes in libraries:

– The definition of functions over ”vectors” (list of fixed length) have changed.
– TheoryList.v has been removed.

• Slight changes in tactics:
– Less unfolding of fixpoints when applying destruct or inversion on a fixpoint hiding an inductive type (add an
extra call to simpl to preserve compatibility).

– Less unexpected local definitions when applying ”destruct” (incompatibilities solvable by adapting name hy-
potheses).

– Tactic ”apply” might succeed more often, e.g. by now solving pattern-matching of the form ?f x y = g(x,y)
(compatibility ensured by using ”Unset Tactic Pattern Unification”), but also because it supports (full) betaiota
(using ”simple apply” might then help).

– Tactic autorewrite does no longer instantiate pre-existing existential variables.
– Tactic ”info” is now available only for auto, eauto and trivial.

• Miscellaneous changes:
– The command ”Load” is now atomic for backtracking (use ”Unset Atomic Load” for compatibility).
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3.8.3 Details of changes in 8.4beta

Logic
• Standard eta-conversion now supported (dependent product only).
• Guard condition improvement: subterm property is propagated through beta-redex blocked by pattern-matching,
as in ”(match v with C .. => fun x => u end) x”; this allows for instance to use ”rewrite ... in ...” without breaking
the guard condition.

Specification language and notations
• Maximal implicit arguments can now be set locally by { }. The registration traverses fixpoints and lambdas. Because
there is conversion in types, maximal implicit arguments are not taken into account in partial applications (use eta
expanded form with explicit { } instead).

• Added support for recursive notations with binders (allows for instance to write ”exists x y z, P”).
• Structure/Record printing can be disable by ”Unset Printing Records”. In addition, it can be controlled on type by
type basis using ”Add Printing Record” or ”Add Printing Constructor”.

• Pattern-matching compilation algorithm: in ”match x, y with ... end”, possible dependencies of x (or of the indices
of its type) in the type of y are now taken into account.

Tactics
• New proof engine.
• Scripts can now be structured thanks to bullets - * + and to subgoal delimitation via { }. Note: for use with Proof
General, a cvs version of Proof General no older than mid-July 2011 is currently required.

• Support for tactical ”info” is suspended.
• Support for command ”Show Script” is suspended.
• New tactics constr_eq, is_evar and has_evar for use in Ltac (DOC TODO).
• Removed the two-argument variant of ”decide equality”.
• New experimental tactical ”timeout <n> <tac>”. Since <n> is a time in second for the moment, this feature should
rather be avoided in scripts meant to be machine-independent.

• Fix in ”destruct”: removal of unexpected local definitions in context might result in some rare incompatibilities
(solvable by adapting name hypotheses).

• Introduction pattern ”_” made more robust.
• Tactic (and Eval command) vm_compute can now be interrupted via Ctrl-C.
• Unification in ”apply” supports unification of patterns of the form ?f x y = g(x,y) (compatibility ensured by using
”Unset Tactic Pattern Unification”). It also supports (full) betaiota.

• Tactic autorewrite does no longer instantiate pre-existing existential variables (theoretical source of possible incom-
patibilities).

• Tactic ”dependent rewrite” now supports equality in ”sig”.
• Tactic omega now understands Zpred (wish #1912) and can prove any goal from a context containing an arithmetical
contradiction (wish #2236).

• Using ”auto with nocore” disables the use of the ”core” database (wish #2188). This pseudo-database ”nocore” can
also be used with trivial and eauto.

• Tactics ”set”, ”destruct” and ”induction” accepts incomplete terms and use the goal to complete the pattern assuming
it is non ambiguous.
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• When used on arguments with a dependent type, tactics such as ”destruct”, ”induction”, ”case”, ”elim”, etc. now try
to abstract automatically the dependencies over the arguments of the types (based on initial ideas from Chung-Kil
Hur, extension to nested dependencies suggested by Dan Grayson)

• Tactic ”injection” now failing on an equality showing no constructors while it was formerly generalizing again the
goal over the given equality.

• In Ltac, the ”context [...]” syntax has now a variant ”appcontext [...]” allowing to match partial applications in larger
applications.

• When applying destruct or inversion on a fixpoint hiding an inductive type, recursive calls to the fixpoint now remain
folded by default (rare source of incompatibility generally solvable by adding a call to simpl).

• In an ltac pattern containing a ”match”, a final ”| _ => _” branch could be used now instead of enumerating all
remaining constructors. Moreover, the pattern ”match _ with _ => _ end” now allows to match any ”match”. A
”in” annotation can also be added to restrict to a precise inductive type.

• The behavior of ”simpl” can be tuned using the ”Arguments” vernacular. In particular constants can be marked so
that they are always/never unfolded by ”simpl”, or unfolded only when a set of arguments evaluates to a constructor.
Last one can mark a constant so that it is unfolded only if the simplified term does not expose a match in head
position.

Vernacular commands
• It is now mandatory to have a space (or tabulation or newline or end-of-file) after a ”.” ending a sentence.
• In SearchAbout, the [ ] delimiters are now optional.
• New command ”Add/Remove Search Blacklist <substring> ...”: a Search or SearchAbout or similar query will never
mention lemmas whose qualified names contain any of the declared substrings. The default blacklisted substrings
are _subproof, Private_.

• When the output file of ”Print Universes” ends in ”.dot” or ”.gv”, the universe graph is printed in the DOT language,
and can be processed by Graphviz tools.

• New command ”Print Sorted Universes”.
• The undocumented and obsolete option ”Set/Unset Boxed Definitions” has been removed, as well as syntaxes like
”Boxed Fixpoint foo”.

• A new option ”Set Default Timeout n / Unset Default Timeout”.
• Qed now uses information from the reduction tactics used in proof script to avoid conversion at Qed time to go into
a very long computation.

• New command ”Show Goal ident” to display the statement of a goal, even a closed one (available from Proof
General).

• Command ”Proof” accept a new modifier ”using” to force generalization over a given list of section variables at
section ending (DOC TODO).

• New command ”Arguments” generalizing ”Implicit Arguments” and ”Arguments Scope” and that also allows to
rename the parameters of a definition and to tune the behavior of the tactic ”simpl”.

Module System
• During subtyping checks, an opaque constant in a module type could now be implemented by anything of the
right type, even if bodies differ. Said otherwise, with respect to subtyping, an opaque constant behaves just as a
parameter. Coqchk was already implementing this, but not coqtop.

• The inlining done during application of functors can now be controlled more precisely, by the annotations (no
inline) or (inline at level XX). With the latter annotation, only functor parameters whose levels are lower or equal
than XX will be inlined. The level of a parameter can be fixed by ”Parameter Inline(30) foo”. When levels aren’t
given, the default value is 100. One can also use the flag ”Set Inline Level ...” to set a level (DOC TODO).
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• Print Assumptions should now handle correctly opaque modules (#2168).
• Print Module (Type) now tries to print more details, such as types and bodies of the module elements. Note that
Print Module Type could be used on a module to display only its interface. The option ”Set Short Module Printing”
could be used to switch back to the earlier behavior were only field names were displayed.

Libraries
• Extension of the abstract part of Numbers, which now provide axiomatizations and results about many more integer
functions, such as pow, gcd, lcm, sqrt, log2 and bitwise functions. These functions are implemented for nat, N, BigN,
Z, BigZ. See in particular file NPeano for new functions about nat.

• The definition of types positive, N, Z is now in file BinNums.v
• Major reorganization of ZArith. The initial file ZArith/BinInt.v now contains an internal module Z implementing
the Numbers interface for integers. This module Z regroups:

– all functions over type Z : Z.add, Z.mul, ...
– the minimal proofs of specifications for these functions : Z.add_0_l, ...
– an instantiation of all derived properties proved generically in Numbers : Z.add_comm, Z.add_assoc, ...

A large part of ZArith is now simply compatibility notations, for instance Zplus_comm is an alias for Z.add_comm.
The direct use of module Z is now recommended instead of relying on these compatibility notations.

• Similar major reorganization of NArith, via a module N in NArith/BinNat.v
• Concerning the positive datatype, BinPos.v is now in a specific directory PArith, and contains an internal submodule
Pos. We regroup there functions such as Pos.add Pos.mul etc as well as many results about them. These results are
here proved directly (no Number interface for strictly positive numbers).

• Note that in spite of the compatibility layers, all these reorganizations may induce some marginal incompatibilies
in scripts. In particular:

– the ”?=” notation for positive now refers to a binary function Pos.compare, instead of the infamous ternary
Pcompare (now Pos.compare_cont).

– some hypothesis names generated by the system may changed (typically for a ”destruct Z_le_gt_dec”) since
naming is done after the short name of the head predicate (here now ”le” in module Z instead of ”Zle”, etc).

– the internals of Z.add has changed, now relying of Z.pos_sub.
• Also note these new notations:

– ”<?” ”<=?” ”=?” for boolean tests such as Z.ltb Z.leb Z.eqb.
– ”÷” for the alternative integer division Z.quot implementing the Truncate convention (former ZOdiv), while
the notation for the Coq usual division Z.div implementing the Flooring convention remains ”/”. Their cor-
responding modulo functions are Z.rem (no notations) for Z.quot and Z.modulo (infix ”mod” notation) for
Z.div.

• Lemmas about conversions between these datatypes are also organized in modules, see for instance modules Z2Nat,
N2Z, etc.

• When creating BigN, the macro-generated part NMake_gen is much smaller. The generic part NMake has been
reworked and improved. Some changes may introduce incompatibilities. In particular, the order of the arguments
for BigN.shiftl and BigN.shiftr is now reversed: the number to shift now comes first. By default, the power function
now takes two BigN.

• Creation of Vector, an independent library for lists indexed by their length. Vectors’ names overwrite lists’ one
so you should not ”Import” the library. All old names changed: function names follow the ocaml ones and, for
example, Vcons becomes Vector.cons. You can get [..;..;..]-style notations by importing Vector.VectorNotations.

• Removal of TheoryList. Requiring List instead should work most of the time.
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• New syntax ”rew Heq in H” and ”rew <- Heq in H” for eq_rect and eq_rect_r (available by importing module
EqNotations).

• Wf.iter_nat is now Peano.nat_iter (with an implicit type argument).
Internal infrastructure

• Opaque proofs are now loaded lazily by default. This allows to be almost as fast as -dont-load-proofs, while being
safer (no creation of axioms) and avoiding feature restrictions (Print and Print Assumptions work ok).

• Revised hash-consing code allowing more sharing of memory
• Experimental support added for camlp4 (the one provided alongside ocaml), simply pass option -usecamlp4 to
./configure. By default camlp5 is used.

• Revised build system: no more stages in Makefile thanks to some recursive aspect of recent gnu make, use of
vo.itarget files containing .v to compile for both make and ocamlbuild, etc.

• Support of cross-compilation via mingw from unix toward Windows, contact P. Letouzey for more informations.
• New Makefile rules mli-doc to make html of mli in dev/doc/html and full-stdlib to get a (huge) pdf reflecting the
whole standard library.

Extraction
• By default, opaque terms are now truly considered opaque by extraction: instead of accessing their body, they
are now considered as axioms. The previous behaviour can be reactivated via the option ”Set Extraction Acces-
sOpaque”.

• The pretty-printer for Haskell now produces layout-independent code
• A new command ”Separate Extraction cst1 cst2 ...” that mixes a minimal extracted environment a la ”Recursive
Extraction” and the production of several files (one per coq source) a la ”Extraction Library” (DOC TODO).

• New option ”Set/Unset Extraction KeepSingleton” for preventing the extraction to optimize singleton container
types (DOC TODO).

• The extraction now identifies and properly rejects a particular case of universe polymorphism it cannot handle yet
(the pair (I,I) being Prop).

• Support of anonymous fields in record (#2555).
CoqIDE

• Coqide now runs coqtop as separated process, making it more robust: coqtop subprocess can be interrupted, or
even killed and relaunched (cf button ”Restart Coq”, ex-”Go to Start”). For allowing such interrupts, the Windows
version of coqide now requires Windows >= XP SP1.

• The communication between CoqIDE and Coqtop is now done via a dialect of XML (DOC TODO).
• The backtrack engine of CoqIDE has been reworked, it now uses the ”Backtrack” command similarly to Proof
General.

• The Coqide parsing of sentences has be reworked and now supports tactic delimitation via { }.
• Coqide now accepts the Abort command (wish #2357).
• Coqide can read coq_makefile files as ”project file” and use it to set automatically options to send to coqtop.
• Preference files have moved to $XDG_CONFIG_HOME/coq and accelerators are not stored as a list anymore.

Tools
• Coq now searches directories specified in COQPATH, $XDG_DATA_HOME/coq, $XDG_DATA_DIRS/coq,
and user-contribs before the standard library.

• Coq rc file has moved to $XDG_CONFIG_HOME/coq.
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• Major changes to coq_makefile:
– mli/mlpack/mllib taken into account, ml not preproccessed anymore, ml4 work;
– mlihtml generates doc of mli, install-doc install the html doc in DOCDIR with the same policy as vo in
COQLIB;

– More variables are given by coqtop -config, others are defined only if the users doesn’t have defined them
elsewhere. Consequently, generated makefile should work directly on any architecture;

– Packagers can take advantage of $(DSTROOT) introduction. Installation can be made in
$XDG_DATA_HOME/coq;

– -arg option allows to send option as argument to coqc.

3.8.4 Details of changes in 8.4beta2

Vernacular commands
• Commands ”Back” and ”BackTo” are now handling the proof states. They may perform some extra steps of
backtrack to avoid states where the proof state is unavailable (typically a closed proof).

• The commands ”Suspend” and ”Resume” have been removed.
• A basic Show Script has been reintroduced (no indentation).
• New command ”Set Parsing Explicit” for deactivating parsing (and printing) of implicit arguments (useful for
teaching).

• New command ”Grab Existential Variables” to transform the unresolved evars at the end of a proof into goals.
Tactics

• Still no general ”info” tactical, but new specific tactics info_auto, info_eauto, info_trivial which provides information
on the proofs found by auto/eauto/trivial. Display of these details could also be activated by ”Set Info Auto”/”Set
Info Eauto”/”Set Info Trivial”.

• Details on everything tried by auto/eauto/trivial during a proof search could be obtained by ”debug auto”, ”debug
eauto”, ”debug trivial” or by a global ”Set Debug Auto”/”Set Debug Eauto”/”Set Debug Trivial”.

• New command ”r string” in Ltac debugger that interprets ”idtac string” in Ltac code as a breakpoint and jumps to
its next use.

• Tactics from the Dp plugin (simplify, ergo, yices, cvc3, z3, cvcl, harvey, zenon, gwhy) have been removed, since
Why2 has not been maintained for the last few years. The Why3 plugin should be a suitable replacement in most
cases.

Libraries
• MSetRBT: a new implementation of MSets via Red-Black trees (initial contribution by Andrew Appel).
• MSetAVL: for maximal sharing with the new MSetRBT, the argument order of Node has changed (this should be
transparent to regular MSets users).

Module System
• The names of modules (and module types) are now in a fully separated namespace from ordinary definitions:
”Definition E:=0. Module E. End E.” is now accepted.

CoqIDE
• Coqide now supports the ”Restart” command, and ”Undo” (with a warning). Better support for ”Abort”.
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3.8.5 Details of changes in 8.4

Vernacular commands
• The ”Reset” command is now supported again in files given to coqc or Load.
• ”Show Script” now indents again the displayed scripts. It can also work correctly across Load’ed files if the option
”Unset Atomic Load” is used.

• ”Open Scope” can now be given the delimiter (e.g. Z) instead of the full scope name (e.g. Z_scope).
Notations

• Most compatibility notations of the standard library are now tagged as (compat xyz), where xyz is a former Coq ver-
sion, for instance ”8.3”. These notations behave as (only parsing) notations, except that they may triggers warnings
(or errors) when used while Coq is not in a corresponding -compat mode.

• To activate these compatibility warnings, use ”Set Verbose Compat Notations” or the command-line flag -verbose-
compat-notations.

• For a strict mode without these compatibility notations, use ”Unset Compat Notations” or the command-line flag
-no-compat-notations.

Tactics
• An annotation ”eqn:H” or ”eqn:?” can be added to a ”destruct” or ”induction” to make it generate equations in the
spirit of ”case_eq”. The former syntax ”_eqn” is discontinued.

• The name of the hypothesis introduced by tactic ”remember” can be set via the new syntax ”remember t as x eqn:H”
(wish #2489).

Libraries
• Reals: changed definition of PI, no more axiom about sin(PI/2).
• SetoidPermutation: a notion of permutation for lists modulo a setoid equality.
• BigN: fixed the ocaml code doing the parsing/printing of big numbers.
• List: a couple of lemmas added especially about no-duplication, partitions.
• Init: Removal of the coercions between variants of sigma-types and subset types (possible source of incompatibil-
ity).

3.9 Version 8.3

3.9.1 Summary of changes

Coq version 8.3 is before all a transition version with refinements or extensions of the existing features and libraries and
a new tactic nsatz based on Hilbert’s Nullstellensatz for deciding systems of equations over rings.
With respect to libraries, the main evolutions are due to Pierre Letouzey with a rewriting of the library of finite sets FSets
and a new round of evolutions in the modular development of arithmetic (library Numbers). The reason for making
FSets evolve is that the computational and logical contents were quite intertwined in the original implementation, leading
in some cases to longer computations than expected and this problem is solved in the new MSets implementation. As
for the modular arithmetic library, it was only dealing with the basic arithmetic operators in the former version and its
current extension adds the standard theory of the division, min and max functions, all made available for free to any
implementation of ℕ, ℤ or ℤ/𝑛ℤ.
The main other evolutions of the library are due to Hugo Herbelin who made a revision of the sorting library (including
a certified merge-sort) and to Guillaume Melquiond who slightly revised and cleaned up the library of reals.
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The module system evolved significantly. Besides the resolution of some efficiency issues and a more flexible construction
of module types, Élie Soubiran brought a new model of name equivalence, the Δ-equivalence, which respects as much as
possible the names given by the users. He also designed with Pierre Letouzey a new, convenient operator <+ for nesting
functor application that provides a light notation for inheriting the properties of cascading modules.
The new tactic nsatz is due to Loïc Pottier. It works by computing Gröbner bases. Regarding the existing tactics, various
improvements have been done by Matthieu Sozeau, Hugo Herbelin and Pierre Letouzey.
Matthieu Sozeau extended and refined the typeclasses and Program features (the Russell language). Pierre Letouzey
maintained and improved the extraction mechanism. Bruno Barras and Élie Soubiran maintained the Coq checker, Julien
Forest maintained the Function mechanism for reasoning over recursively defined functions. Matthieu Sozeau, Hugo
Herbelin and Jean-Marc Notin maintained coqdoc. Frédéric Besson maintained the Micromega platform for deciding
systems of inequalities. Pierre Courtieu maintained the support for the Proof General Emacs interface. Claude Marché
maintained the plugin for calling external provers (dp). Yves Bertot made some improvements to the libraries of lists and
integers. Matthias Puech improved the search functions. GuillaumeMelquiond usefully contributed here and there. Yann
Régis-Gianas grounded the support for Unicode on a more standard and more robust basis.
Though invisible from outside, Arnaud Spiwack improved the general process of management of existential variables.
Pierre Letouzey and Stéphane Glondu improved the compilation scheme of the Coq archive. Vincent Gross provided
support to CoqIDE. Jean-Marc Notin provided support for benchmarking and archiving.
Many users helped by reporting problems, providing patches, suggesting improvements or making useful comments, either
on the bug tracker or on the Coq-Club mailing list. This includes but not exhaustively Cédric Auger, Arthur Charguéraud,
François Garillot, Georges Gonthier, Robin Green, Stéphane Lescuyer, Eelis van der Weegen, ...
Though not directly related to the implementation, special thanks are going to Yves Bertot, Pierre Castéran, Adam Chli-
pala, and Benjamin Pierce for the excellent teaching materials they provided.

Paris, April 2010
Hugo Herbelin

3.9.2 Details of changes

Rewriting tactics
• Tactic ”rewrite” now supports rewriting on ad hoc equalities such as eq_true.
• ”Hint Rewrite” now checks that the lemma looks like an equation.
• New tactic ”etransitivity”.
• Support for heterogeneous equality (JMeq) in ”injection” and ”discriminate”.
• Tactic ”subst” now supports heterogeneous equality and equality proofs that are dependent (use ”simple subst” for
preserving compatibility).

• Added support for Leibniz-rewriting of dependent hypotheses.
• Renamed ”Morphism” into ”Proper” and ”respect” into ”proper_prf” (possible source of incompatibility). A partial
fix is to define ”Notation Morphism R f := (Proper (R%signature) f).”

• New tactic variants ”rewrite* by” and ”autorewrite*” that rewrite respectively the first and all matches whose side-
conditions are solved.

• ”Require Import Setoid” does not export all of ”Morphisms” and ”RelationClasses” anymore (possible source of
incompatibility, fixed by importing ”Morphisms” too).
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• Support added for using Chung-Kil Hur’s Heq library for rewriting over heterogeneous equality (courtesy of the
library’s author).

• Tactic ”replace” supports matching terms with holes.
Automation tactics

• Tactic intuition now preserves inner iff and not (exceptional source of incompatibilities solvable by redefin-
ing intuition as unfold iff, not in *; intuition, or, for iff only, by using Set Intuition
Iff Unfolding.)

• Tactic tauto now proves classical tautologies as soon as classical logic (i.e. library Classical_Prop or
Classical) is loaded.

• Tactic gappa has been removed from the Dp plugin.
• Tactic firstorder now supports the combination of its using and with options.
• New Hint Resolve -> (or <-) for declaring iff’s as oriented hints (wish #2104).
• An inductive type as argument of the using option of auto / eauto / firstorder is interpreted as using
the collection of its constructors.

• New decision tactic ”nsatz” to prove polynomial equations by computation of Groebner bases.
Other tactics

• Tactic ”discriminate” now performs intros before trying to discriminate an hypothesis of the goal (previously it
applied intro only if the goal had the form t1<>t2) (exceptional source of incompatibilities - former behavior can
be obtained by ”Unset Discriminate Introduction”).

• Tactic ”quote” now supports quotation of arbitrary terms (not just the goal).
• Tactic ”idtac” now displays its ”list” arguments.
• New introduction patterns ”*” for introducing the next block of dependent variables and ”**” for introducing all
quantified variables and hypotheses.

• Pattern Unification for existential variables activated in tactics and new option ”Unset Tactic Evars Pattern Unifi-
cation” to deactivate it.

• Resolution of canonical structure is now part of the tactic’s unification algorithm.
• New tactic ”decide lemma with hyp” for rewriting decidability lemmas when one knows which side is true.
• Improved support of dependent goals over objects in dependent types for ”destruct” (rare source of incompatibility
that can be avoided by unsetting option ”Dependent Propositions Elimination”).

• Tactic ”exists”, ”eexists”, ”destruct” and ”edestruct” supports iteration using comma-separated arguments.
• Tactic names ”case” and ”elim” now support clauses ”as” and ”in” and become then synonymous of ”destruct” and
”induction” respectively.

• A new tactic name ”exfalso” for the use of ’ex-falso quodlibet’ principle. This tactic is simply a shortcut for ”elimtype
False”.

• Made quantified hypotheses get the name they would have if introduced in the context (possible but rare source of
incompatibilities).

• When applying a component of a conjunctive lemma, ”apply in” (and sequences of ”apply in”) now leave the side
conditions of the lemmas uniformly after the main goal (possible source of rare incompatibilities).

• In ”simpl c” and ”change c with d”, c can be a pattern.
• Tactic ”revert” now preserves let-in’s making it the exact inverse of ”intro”.
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• New tactics ”clear dependent H” and ”revert dependent H” that clears (resp. reverts) H and all the hypotheses that
depend on H.

• Ltac’s pattern-matching now supports matching metavariables that depend on variables bound upwards in the pat-
tern.

Tactic definitions
• Ltac definitions support Local option for non-export outside modules.
• Support for parsing non-empty lists with separators in tactic notations.
• New command ”Locate Ltac” to get the full name of an Ltac definition.

Notations
• Record syntax {|x=...; y=...|} now works inside patterns too.
• Abbreviations from non-imported module now invisible at printing time.
• Abbreviations now use implicit arguments and arguments scopes for printing.
• Abbreviations to pure names now strictly behave like the name they refer to (make redirections of qualified names
easier).

• Abbreviations for applied constant now propagate the implicit arguments and arguments scope of the underly-
ing reference (possible source of incompatibilities generally solvable by changing such abbreviations from e.g.
Notation foo' := (foo x) to Notation foo' y := (foo x (y:=y))).

• The ”where” clause now supports multiple notations per defined object.
• Recursive notations automatically expand one step on the left for better factorization; recursion notations inner
separators now ensured being tokens.

• Added ”Reserved Infix” as a specific shortcut of the corresponding ”Reserved Notation”.
• Open/Close Scope command supports Global option in sections.

Specification language
• New support for local binders in the syntax of Record/Structure fields.
• Fixpoint/CoFixpoint now support building part or all of bodies using tactics.
• Binders given before ”:” in lemmas and in definitions built by tactics are now automatically introduced (possible
source of incompatibility that can be resolved by invoking ”Unset Automatic Introduction”).

• New support for multiple implicit arguments signatures per reference.
Module system

• Include Type is now deprecated since Include now accept both modules and module types.
• Declare ML Module supports Local option.
• The sharing between non-logical object and the management of the name-space has been improved by the new
”Delta-equivalence” on qualified name.

• The include operator has been extended to high-order structures
• Sequences of Include can be abbreviated via new syntax ”<+”.
• A module (or module type) can be given several ”<:” signatures.
• Interactive proofs are now permitted in module type. Functors can hence be declared as Module Type and be used
later to type themselves.
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• A functor application can be prefixed by a ”!” to make it ignore any ”Inline” annotation in the type of its argument(s)
(for examples of use of the new features, see libraries Structures and Numbers).

• Coercions are now active only when modules are imported (use ”Set Automatic Coercions Import” to get the
behavior of the previous versions of Coq).

Extraction
• When using (Recursive) Extraction Library, the filenames are directly the Coq ones with new appropriate extensions
: we do not force anymore uncapital first letters for Ocaml and capital ones for Haskell.

• The extraction now tries harder to avoid code transformations that can be dangerous for the complexity. In particular
many eta-expansions at the top of functions body are now avoided, clever partial applications will likely be preserved,
let-ins are almost always kept, etc.

• In the same spirit, auto-inlining is now disabled by default, except for induction principles, since this feature was
producing more frequently weird code than clear gain. The previous behavior can be restored via ”Set Extraction
AutoInline”.

• Unicode characters in identifiers are now transformed into ascii strings that are legal in Ocaml and other languages.
• Harsh support of module extraction to Haskell and Scheme: module hierarchy is flattened, module abbreviations
and functor applications are expanded, module types and unapplied functors are discarded.

• Less unsupported situations when extracting modules to Ocaml. In particular module parameters might be alpha-
renamed if a name clash is detected.

• Extract Inductive is now possible toward non-inductive types (e.g. nat => int)
• Extraction Implicit: this new experimental command allows to mark some arguments of a function or constructor
for removed during extraction, even if these arguments don’t fit the usual elimination principles of extraction, for
instance the length n of a vector.

• Files ExtrOcaml*.v in plugins/extraction try to provide a library of common extraction commands: mapping of
basics types towardOcaml’s counterparts, conversions from/to int and big_int, or even completemapping of nat,Z,N
to int or big_int, or mapping of ascii to char and string to char list (in this case recognition of ascii constants is
hard-wired in the extraction).

Program
• Streamlined definitions using well-founded recursion and measures so that they can work on any subset of the
arguments directly (uses currying).

• Try to automatically clear structural fixpoint prototypes in obligations to avoid issues with opacity.
• Use return type clause inference in pattern-matching as in the standard typing algorithm.
• Support [Local Obligation Tactic] and [Next Obligation with tactic].
• Use [Show Obligation Tactic] to print the current default tactic.
• [fst] and [snd] have maximal implicit arguments in Program now (possible source of incompatibility).

Type classes
• Declaring axiomatic type class instances inModule Type should be now done via new command ”Declare Instance”,
while the syntax ”Instance” now always provides a concrete instance, both in and out of Module Type.

• Use [Existing Class foo] to declare foo as a class a posteriori. [foo] can be an inductive type or a constant definition.
No projections or instances are defined.

• Various bug fixes and improvements: support for defined fields, anonymous instances, declarations giving terms,
better handling of sections and [Context].

Vernacular commands
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• New command ”Timeout <n> <command>.” interprets a command and a timeout interrupts the interpretation after
<n> seconds.

• New command ”Compute <expr>.” is a shortcut for ”Eval vm_compute in <expr>”.
• New command ”Fail <command>.” interprets a command and is successful iff the command fails on an error (but
not an anomaly). Handy for tests and illustration of wrong commands.

• Most commands referring to constant (e.g. Print or About) now support referring to the constant by a notation
string.

• New option ”Boolean Equality Schemes” to make generation of boolean equality automatic for datatypes (together
with option ”Decidable Equality Schemes”, this replaces deprecated option ”Equality Scheme”).

• Made support for automatic generation of case analysis schemes available to user (governed by option ”Set Case
Analysis Schemes”).

• New command Global
?

Generalizable All No Variable Variables ident
*

to declare which identifiers are generalizable in ‘‘ {} ` and ‘‘ () ` binders.
• New command ”Print Opaque Dependencies” to display opaque constants in addition to all variables, parameters
or axioms a theorem or definition relies on.

• New command ”Declare Reduction <id> := <conv_expr>”, allowing to write later ”Eval <id> in ...”. This command
accepts a Local variant.

• Syntax of Implicit Type now supports more than one block of variables of a given type.
• Command ”Canonical Structure” now warns when it has no effects.
• Commands of the form ”Set X” or ”Unset X” now support ”Local” and ”Global” prefixes.

Library
• Use ”standard” Coq names for the properties of eq and identity (e.g. refl_equal is now eq_refl). Support for
compatibility is provided.

• The function Compare_dec.nat_compare is now defined directly, instead of relying on lt_eq_lt_dec. The earlier
version is still available under the name nat_compare_alt.

• Lemmas in library Relations and Reals have been homogenized a bit.
• The implicit argument of Logic.eq is now maximally inserted, allowing to simply write ”eq” instead of ”@eq _” in
morphism signatures.

• Wrongly named lemmas (Zlt_gt_succ and Zlt_succ_gt) fixed (potential source of incompatibilities)
• List library:

– Definitions of list, length and app are now in Init/Datatypes. Support for compatibility is provided.
– Definition of Permutation is now in Sorting/Permtation.v
– Some other light revisions and extensions (possible source of incompatibilities solvable by qualifying names
accordingly).

• In ListSet, set_map has been fixed (source of incompatibilities if used).
• Sorting library:

– new mergesort of worst-case complexity O(n*ln(n)) made available in Mergesort.v;
– former notion of permutation up to setoid from Permutation.v is deprecated and moved to PermutSetoid.v;
– heapsort from Heap.v of worst-case complexity O(n*n) is deprecated;
– new file Sorted.v for some definitions of being sorted.
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• Structure library. This new library is meant to contain generic structures such as types with equalities or orders,
either in Module version (for now) or Type Classes (still to do):

– DecidableType.v and OrderedType.v: initial notions for FSets/FMaps, left for compatibility but considered
as deprecated.

– Equalities.v and Orders.v: evolutions of the previous files, with fine-grain Module architecture, many variants,
use of Equivalence and other relevant Type Classes notions.

– OrdersTac.v: a generic tactic for solving chains of (in)equalities over variables. See
{Nat,N,Z,P}OrderedType.v for concrete instances.

– GenericMinMax.v: any ordered type can be equipped with min and max. We derived here all the generic
properties of these functions.

• MSets library: an important evolution of the FSets library. ”MSets” stands for Modular (Finite) Sets, by contrast
with a forthcoming library of Class (Finite) Sets contributed by S. Lescuyer which will be integrated with the next
release of Coq. The main features of MSets are:

– The use of Equivalence, Proper and other Type Classes features easing the handling of setoid equalities.
– The interfaces are now stated in iff-style. Old specifications are now derived properties.
– The compare functions are now pure, and return a ”comparison” value. Thanks to the CompSpec inductive
type, reasoning on them remains easy.

– Sets structures requiring invariants (i.e. sorted lists) are built first as ”Raw” sets (pure objects and separate
proofs) and attached with their proofs thanks to a generic functor. ”Raw” sets have now a proper interface
and can be manipulated directly.

Note: No Maps yet in MSets. The FSets library is still provided for compatibility, but will probably be considered
as deprecated in the next release of Coq.

• Numbers library:
– The abstract layer (NatInt, Natural/Abstract, Integer/Abstract) has been simplified and enhance thanks to new
features of the module system such as Include (see above). It has been extended to Euclidean division (three
flavors for integers: Trunc, Floor and Math).

– The arbitrary-large efficient numbers (BigN, BigZ, BigQ) has also been reworked. They benefit from the
abstract layer improvements (especially for div and mod). Note that some specifications have slightly changed
(compare, div, mod, shift{r,l}). Ring/Field should work better (true recognition of constants).

Tools
• Option -R now supports binding Coq root read-only.
• New coqtop/coqc option -beautify to reformat .v files (usable e.g. to globally update notations).
• New tool beautify-archive to beautify a full archive of developments.
• New coqtop/coqc option -compat X.Y to simulate the general behavior of previous versions of Coq (provides e.g.
support for 8.2 compatibility).

Coqdoc
• List have been revamped. List depth and scope is now determined by an ”offside” whitespace rule.
• Text may be italicized by placing it in _underscores_.
• The ”–index <string>” flag changes the filename of the index.
• The ”–toc-depth <int>” flag limits the depth of headers which are included in the table of contents.
• The ”–lib-name <string>” flag prints ”<string> Foo” instead of ”Library Foo” where library titles are called for.
The ”–no-lib-name” flag eliminates the extra title.
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• New option ”–parse-comments” to allow parsing of regular (* *) comments.
• New option ”–plain-comments” to disable interpretation inside comments.
• New option ”–interpolate” to try and typeset identifiers in Coq escapings using the available globalization informa-
tion.

• New option ”–external url root” to refer to external libraries.
• Links to section variables and notations now supported.

Internal infrastructure
• To avoid confusion with the repository of user’s contributions, the subdirectory ”contrib” has been renamed into
”plugins”. On platforms supporting ocaml native dynlink, code located there is built as loadable plugins for coqtop.

• An experimental build mechanism via ocamlbuild is provided. From the top of the archive, run ./configure as
usual, and then ./build. Feedback about this build mechanism is most welcome. Compiling Coq on platforms such
as Windows might be simpler this way, but this remains to be tested.

• The Makefile system has been simplified and factorized with the ocamlbuild system. In particular ”make” takes
advantage of .mllib files for building .cma/.cmxa. The .vo files to compile are now listed in several vo.itarget files.

3.10 Version 8.2

3.10.1 Summary of changes

Coq version 8.2 adds new features, new libraries and improves on many various aspects.
Regarding the language of Coq, the main novelty is the introduction by Matthieu Sozeau of a package of commands
providing Haskell-style typeclasses. Typeclasses, which comewith a few convenient features such as type-based resolution
of implicit arguments, play a new landmark role in the architecture of Coqwith respect to automation. For instance, thanks
to typeclass support, Matthieu Sozeau could implement a new resolution-based version of the tactics dedicated to rewriting
on arbitrary transitive relations.
Another major improvement of Coq 8.2 is the evolution of the arithmetic libraries and of the tools associated to them.
Benjamin Grégoire and Laurent Théry contributed a modular library for building arbitrarily large integers from bounded
integers while Evgeny Makarov contributed a modular library of abstract natural and integer arithmetic together with a
few convenient tactics. On his side, Pierre Letouzey made numerous extensions to the arithmetic libraries on ℤ and ℚ,
including extra support for automation in presence of various number-theory concepts.
Frédéric Besson contributed a reflective tactic based on Krivine-Stengle Positivstellensatz (the easy way) for validating
provability of systems of inequalities. The platform is flexible enough to support the validation of any algorithm able to
produce a “certificate” for the Positivstellensatz and this covers the case of Fourier-Motzkin (for linear systems in ℚ and
ℝ), Fourier-Motzkin with cutting planes (for linear systems in ℤ) and sum-of-squares (for non-linear systems). Evgeny
Makarov made the platform generic over arbitrary ordered rings.
Arnaud Spiwack developed a library of 31-bits machine integers and, relying on Benjamin Grégoire and Laurent Théry’s
library, delivered a library of unbounded integers in base 231. As importantly, he developed a notion of “retro-knowledge”
so as to safely extend the kernel-located bytecode-based efficient evaluation algorithm of Coq version 8.1 to use 31-bits
machine arithmetic for efficiently computing with the library of integers he developed.
Beside the libraries, various improvements were contributed to provide a more comfortable end-user language and more
expressive tactic language. Hugo Herbelin and Matthieu Sozeau improved the pattern matching compilation algorithm
(detection of impossible clauses in pattern matching, automatic inference of the return type). Hugo Herbelin, Pierre
Letouzey and Matthieu Sozeau contributed various new convenient syntactic constructs and new tactics or tactic features:
more inference of redundant information, better unification, better support for proof or definition by fixpoint, more
expressive rewriting tactics, better support for meta-variables, more convenient notations...
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Élie Soubiran improved the module system, adding new features (such as an “include” command) and making it more
flexible and more general. He and Pierre Letouzey improved the support for modules in the extraction mechanism.
Matthieu Sozeau extended the Russell language, ending in an convenient way to write programs of given specifications,
Pierre Corbineau extended theMathematical Proof Language and the automation tools that accompany it, Pierre Letouzey
supervised and extended various parts of the standard library, Stéphane Glondu contributed a few tactics and improve-
ments, Jean-Marc Notin provided help in debugging, general maintenance and coqdoc support, Vincent Siles contributed
extensions of the Scheme command and of injection.
Bruno Barras implemented the coqchk tool: this is a stand-alone type checker that can be used to certify .vo files.
Especially, as this verifier runs in a separate process, it is granted not to be “hijacked” by virtually malicious extensions
added to Coq.
Yves Bertot, Jean-Christophe Filliâtre, Pierre Courtieu and Julien Forest acted as maintainers of features they imple-
mented in previous versions of Coq.
Julien Narboux contributed to CoqIDE. Nicolas Tabareau made the adaptation of the interface of the old “setoid rewrite”
tactic to the new version. Lionel Mamane worked on the interaction between Coq and its external interfaces. With Samuel
Mimram, he also helped making Coq compatible with recent software tools. Russell O’Connor, Cezary Kaliszyk, Milad
Niqui contributed to improve the libraries of integers, rational, and real numbers. We also thank many users and partners
for suggestions and feedback, in particular Pierre Castéran and Arthur Charguéraud, the INRIA Marelle team, Georges
Gonthier and the INRIA-Microsoft Mathematical Components team, the Foundations group at Radboud university in
Nijmegen, reporters of bugs and participants to the Coq-Club mailing list.

Palaiseau, June 2008
Hugo Herbelin

3.10.2 Details of changes

Language
• If a fixpoint is not written with an explicit { struct ... }, then all arguments are tried successively (from left to right)
until one is found that satisfies the structural decreasing condition.

• New experimental typeclass system giving ad-hoc polymorphism and overloading based on dependent records and
implicit arguments.

• New syntax ”let ’pat := b in c” for let-binding using irrefutable patterns.
• New syntax ”forall {A}, T” for specifying maximally inserted implicit arguments in terms.
• Sort of Record/Structure, Inductive and CoInductive defaults to Type if omitted.
• (Co)Inductive types can be defined as records (e.g. ”CoInductive stream := { hd : nat; tl : stream }.”)
• New syntax ”Theorem id1:t1 ... with idn:tn” for proving mutually dependent statements.
• Support for sort-polymorphism on constants denoting inductive types.
• Several evolutions of the module system (handling of module aliases, functorial module types, an Include feature,
etc).

• Prop now a subtype of Set (predicative and impredicative forms).
• Recursive inductive types in Prop with a single constructor of which all arguments are in Prop is now considered to
be a singleton type. It consequently supports all eliminations to Prop, Set and Type. As a consequence, Acc_rect has
now a more direct proof [possible source of easily fixed incompatibility in case of manual definition of a recursor
in a recursive singleton inductive type].
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Vernacular commands
• Added option Global to ”Arguments Scope” for section surviving.
• Added option ”Unset Elimination Schemes” to deactivate the automatic generation of elimination schemes.
• Modification of the Scheme command so you can ask for the name to be automatically computed (e.g. Scheme
Induction for nat Sort Set).

• New command ”Combined Scheme” to build combined mutual induction principles from existing mutual induction
principles.

• New command ”Scheme Equality” to build a decidable (boolean) equality for simple inductive datatypes and a
decision property over this equality (e.g. Scheme Equality for nat).

• Added option ”Set Equality Scheme” to make automatic the declaration of the boolean equality when possible.
• Source of universe inconsistencies now printed when option ”Set Printing Universes” is activated.
• New option ”Set Printing Existential Instances” for making the display of existential variable instances explicit.
• Support for option ”[id1 ... idn]”, and ”-[id1 ... idn]”, for the ”compute”/”cbv” reduction strategy, respectively
meaning reduce only, or everything but, the constants id1 ... idn. ”lazy” alone or followed by ”[id1 ... idn]”, and
”-[id1 ... idn]” also supported, meaning apply all of beta-iota-zeta-delta, possibly restricting delta.

• New command ”Strategy” to control the expansion of constants during conversion tests. It generalizes commands
Opaque and Transparent by introducing a range of levels. Lower levels are assigned to constants that should be
expanded first.

• New options Global and Local to Opaque and Transparent.
• New command ”Print Assumptions” to display all variables, parameters or axioms a theorem or definition relies
on.

• ”Add Rec LoadPath” now provides references to libraries using partially qualified names (this holds also for coq-
top/coqc option -R).

• SearchAbout supports negated search criteria, reference to logical objects by their notation, and more generally
search of subterms.

• ”Declare ML Module” now allows to import .cmxs files when Coq is compiled in native code with a version of
OCaml that supports native Dynlink (>= 3.11).

• Specific sort constraints on Record now taken into account.
• ”Print LoadPath” supports a path argument to filter the display.

Libraries
• Several parts of the libraries are now in Type, in particular FSets, SetoidList, ListSet, Sorting, Zmisc. This may
induce a few incompatibilities. In case of trouble while fixing existing development, it may help to simply declare
Set as an alias for Type (see file SetIsType).

• New arithmetical library in theories/Numbers. It contains:
– an abstract modular development of natural and integer arithmetics in Numbers/Natural/Abstract and Num-
bers/Integer/Abstract

– an implementation of efficient computational bounded and unbounded integers that can be mapped to pro-
cessor native arithmetics. See Numbers/Cyclic/Int31 for 31-bit integers and Numbers/Natural/BigN for un-
bounded natural numbers and Numbers/Integer/BigZ for unbounded integers.

– some proofs that both older libraries Arith, ZArith and NArith and newer BigN and BigZ implement the
abstract modular development. This allows in particular BigN and BigZ to already come with a large database
of basic lemmas and some generic tactics (ring),
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This library has still an experimental status, as well as the processor-acceleration mechanism, but both its abstract
and its concrete parts are already quite usable and could challenge the use of nat, N and Z in actual developments.
Moreover, an extension of this framework to rational numbers is ongoing, and an efficient Q structure is already
provided (see Numbers/Rational/BigQ), but this part is currently incomplete (no abstract layer and generic lemmas).

• Many changes in FSets/FMaps. In practice, compatibility with earlier version should be fairly good, but some
adaptations may be required.

– Interfaces of unordered (”weak”) and ordered sets have been factorized thanks to new features of Coqmodules
(in particular Include), see FSetInterface. Same for maps. Hints in these interfaces have been reworked (they
are now placed in a ”set” database).

– To allow full subtyping between weak and ordered sets, a field ”eq_dec” has been added to OrderedType.
The old version of OrderedType is now called MiniOrderedType and functor MOT_to_OT allow to convert
to the new version. The interfaces and implementations of sets now contain also such a ”eq_dec” field.

– FSetDecide, contributed byAaron Bohannon, contains a decision procedure allowing to solve basic set-related
goals (for instance, is a point in a particular set ?). See FSetProperties for examples.

– Functors of properties have been improved, especially the ones about maps, that now propose some induction
principles. Some properties of fold need less hypothesis.

– More uniformity in implementations of sets and maps: they all use implicit arguments, and no longer export
unnecessary scopes (see bug #1347)

– Internal parts of the implementations based on AVL have evolved a lot. The main files FSetAVL and FMa-
pAVL are now much more lightweight now. In particular, minor changes in some functions has allowed
to fully separate the proofs of operational correctness from the proofs of well-balancing: well-balancing is
critical for efficiency, but not anymore for proving that these trees implement our interfaces, hence we have
moved these proofs into appendix files FSetFullAVL and FMapFullAVL. Moreover, a few functions like
union and compare have been modified in order to be structural yet efficient. The appendix files also contains
alternative versions of these few functions, much closer to the initial Ocaml code and written via the Function
framework.

• Library IntMap, subsumed by FSets/FMaps, has been removed from Coq Standard Library and moved into a user
contribution Cachan/IntMap

• Better computational behavior of some constants (eq_nat_dec and le_lt_dec more efficient, Z_lt_le_dec and Posi-
tive_as_OT.compare transparent, ...) (exceptional source of incompatibilities).

• Boolean operators moved from module Bool to module Datatypes (may need to rename qualified references in
script and force notations || and && to be at levels 50 and 40 respectively).

• The constructors xI and xO of type positive now have postfix notations ”~1” and ”~0”, allowing to write numbers
in binary form easily, for instance 6 is 1~1~0 and 4*p is p~0~0 (see BinPos.v).

• Improvements to NArith (Nminus, Nmin, Nmax), and to QArith (in particular a better power function).
• Changes in ZArith: several additional lemmas (used in theories/Numbers), especially in Zdiv, Znumtheory, Zpower.
Moreover, many results in Zdiv have been generalized: the divisor may simply be non-null instead of strictly positive
(see lemmas with name ending by ”_full”). An alternative file ZOdiv proposes a different behavior (the one of
Ocaml) when dividing by negative numbers.

• Changes in Arith: EqNat and Wf_nat now exported from Arith, some constructions on nat that were outside Arith
are now in (e.g. iter_nat).

• In SetoidList, eqlistA now expresses that two lists have similar elements at the same position, while the predicate
previously called eqlistA is now equivlistA (this one only states that the lists contain the same elements, nothing
more).

• Changes in Reals:
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– Most statement in ”sigT” (including the completeness axiom) are now in ”sig” (in case of incompatibility, use
proj1_sig instead of projT1, sig instead of sigT, etc).

– More uniform naming scheme (identifiers in French moved to English, consistent use of 0 – zero – instead of
O – letter O –, etc).

– Lemma on prod_f_SO is now on prod_f_R0.
– Useless hypothesis of ln_exists1 dropped.
– New Rlogic.v states a few logical properties about R axioms.
– RIneq.v extended and made cleaner.

• Slight restructuration of the Logic library regarding choice and classical logic. Addition of files providing intuition-
istic axiomatizations of descriptions: Epsilon.v, Description.v and IndefiniteDescription.v.

• Definition of pred and minus made compatible with the structural decreasing criterion for use in fixpoints.
• Files Relations/Rstar.v and Relations/Newman.v moved out to the user contribution repository (contribution
CoC_History). New lemmas about transitive closure added and some bound variables renamed (exceptional risk
of incompatibilities).

• Syntax for binders in terms (e.g. for ”exists”) supports anonymous names.
Notations, coercions, implicit arguments and type inference

• More automation in the inference of the return clause of dependent pattern-matching problems.
• Experimental allowance for omission of the clauses easily detectable as impossible in pattern-matching problems.
• Improved inference of implicit arguments.
• New options ”Set Maximal Implicit Insertion”, ”Set Reversible Pattern Implicit”, ”Set Strongly Strict Implicit” and
”Set Printing Implicit Defensive” for controlling inference and use of implicit arguments.

• New modifier in ”Implicit Arguments” to force an implicit argument to be maximally inserted.
• New modifier of ”Implicit Arguments” to enrich the set of implicit arguments.
• New options Global and Local to ”Implicit Arguments” for section surviving or non export outside module.
• Level ”constr” moved from 9 to 8.
• Structure/Record now printed as Record (unless option Printing All is set).
• Support for parametric notations defining constants.
• Insertion of coercions below product types refrains to unfold constants (possible source of incompatibility).
• New support for fix/cofix in notations.

Tactic Language
• Second-order pattern-matching now working in Ltac ”match” clauses (syntax for second-order unification variable
is ”@?X”).

• Support for matching on let bindings in match context using syntax ”H := body” or ”H := body : type”.
• Ltac accepts integer arguments (syntax is ”ltac:nnn” for nnn an integer).
• The general sequence tactical ”expr_0 ; [ expr_1 | ... | expr_n ]” is extended so that at most one expr_i may have
the form ”expr ..” or just ”..”. Also, n can be different from the number of subgoals generated by expr_0. In this
case, the value of expr (or idtac in case of just ”..”) is applied to the intermediate subgoals to make the number of
tactics equal to the number of subgoals.
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• A name used as the name of the parameter of a lemma (like f in ”apply f_equal with (f:=t)”) is now interpreted as
a ltac variable if such a variable exists (this is a possible source of incompatibility and it can be fixed by renaming
the variables of a ltac function into names that do not clash with the lemmas parameter names used in the tactic).

• New syntax ”Ltac tac ::= ...” to rebind a tactic to a new expression.
• ”let rec ... in ... ” now supported for expressions without explicit parameters; interpretation is lazy to the contrary
of ”let ... in ...”; hence, the ”rec” keyword can be used to turn the argument of a ”let ... in ...” into a lazy one.

• Patterns for hypotheses types in ”match goal” are now interpreted in type_scope.
• A bound variable whose name is not used elsewhere now serves as metavariable in ”match” and it gets instantiated
by an identifier (allow e.g. to extract the name of a statement like ”exists x, P x”).

• New printing of Ltac call trace for better debugging.
Tactics

• New tactics ”apply -> term”, ”apply <- term”, ”apply -> term in ident”, ”apply <- term in ident” for applying
equivalences (iff).

• Slight improvement of the hnf and simpl tactics when applied on expressions with explicit occurrences of match or
fix.

• New tactics ”eapply in”, ”erewrite”, ”erewrite in”.
• New tactics ”ediscriminate”, ”einjection”, ”esimplify_eq”.
• Tactics ”discriminate”, ”injection”, ”simplify_eq” now support any term as argument. Clause ”with” is also sup-
ported.

• Unfoldable references can be given by notation’s string rather than by name in unfold.
• The ”with” arguments are now typed using informations from the current goal: allows support for coercions and
more inference of implicit arguments.

• Application of ”f_equal”-style lemmas works better.
• Tactics elim, case, destruct and induction now support variants eelim, ecase, edestruct and einduction.
• Tactics destruct and induction now support the ”with” option and the ”in” clause option. If the option ”in” is used,
an equality is added to remember the term to which the induction or case analysis applied (possible source of
parsing incompatibilities when destruct or induction is part of a let-in expression in Ltac; extra parentheses are then
required).

• New support for ”as” clause in tactics ”apply in” and ”eapply in”.
• Some new intro patterns:

– intro pattern ”?A” genererates a fresh name based on A. Caveat about a slight loss of compatibility: Some
intro patterns don’t need space between them. In particular intros ?a?b used to be legal and equivalent to
intros ? a ? b. Now it is still legal but equivalent to intros ?a ?b.

– intro pattern ”(A & ... & Y& Z)” synonym to ”(A,....,(Y,Z)))))” for right-associative constructs like /or exists.
• Several syntax extensions concerning ”rewrite”:

– ”rewrite A,B,C” can be used to rewrite A, then B, then C. These rewrites occur only on the first subgoal: in
particular, side-conditions of the ”rewrite A” are not concerned by the ”rewrite B,C”.

– ”rewrite A by tac” allows to apply tac on all side-conditions generated by the ”rewrite A”.
– ”rewrite A at n” allows to select occurrences to rewrite: rewrite only happen at the n-th exact occurrence of
the first successful matching of A in the goal.

– ”rewrite 3 A” or ”rewrite 3!A” is equivalent to ”rewrite A,A,A”.
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– ”rewrite !A” means rewriting A as long as possible (and at least once).
– ”rewrite 3?A” means rewriting A at most three times.
– ”rewrite ?A” means rewriting A as long as possible (possibly never).
– many of the above extensions can be combined with each other.

• Introduction patterns better respect the structure of context in presence of missing or extra names in nested
disjunction-conjunction patterns [possible source of rare incompatibilities].

• New syntax ”rename a into b, c into d” for ”rename a into b; rename c into d”
• New tactics ”dependent induction/destruction H [ generalizing id_1 .. id_n ]” to do induction-inversion on instan-
tiated inductive families à la BasicElim.

• Tactics ”apply” and ”apply in” now able to reason modulo unfolding of constants (possible source of incompatibility
in situations where apply may fail, e.g. as argument of a try or a repeat and in a ltac function); versions that do not
unfold are renamed into ”simple apply” and ”simple apply in” (usable for compatibility or for automation).

• Tactics ”apply” and ”apply in” now able to traverse conjunctions and to select the first matching lemma among the
components of the conjunction; tactic ”apply” also able to apply lemmas of conclusion an empty type.

• Tactic ”apply” now supports application of several lemmas in a row.
• Tactics ”set” and ”pose” can set functions using notation ”(f x1..xn := c)”.
• New tactic ”instantiate” (without argument).
• Tactic firstorder ”with” and ”using” options have their meaning swapped for consistency with auto/eauto (source of
incompatibility).

• Tactic ”generalize” now supports ”at” options to specify occurrences and ”as” options to name the quantified hy-
potheses.

• New tactic ”specialize H with a” or ”specialize (H a)” allows to transform in-place a universally-quantified hypoth-
esis (H : forall x, T x) into its instantiated form (H : T a). Nota: ”specialize” was in fact there in earlier versions of
Coq, but was undocumented, and had a slightly different behavior.

• New tactic ”contradict H” can be used to solve any kind of goal as long as the user can provide afterwards a proof
of the negation of the hypothesis H. If H is already a negation, say ~T, then a proof of T is asked. If the current
goal is a negation, say ~U, then U is saved in H afterwards, hence this new tactic ”contradict” extends earlier tactic
”swap”, which is now obsolete.

• Tactics f_equal is now done in ML instead of Ltac: it now works on any equality of functions, regardless of the
arity of the function.

• New options ”before id”, ”at top”, ”at bottom” for tactics ”move”/”intro”.
• Some more debug of reflexive omega (romega), and internal clarifications. Moreover, romega now has a variant
romega with * that can be also used on non-Z goals (nat, N, positive) via a call to a translation tactic named
zify (its purpose is to Z-ify your goal...). This zify may also be used independently of romega.

• Tactic ”remember” now supports an ”in” clause to remember only selected occurrences of a term.
• Tactic ”pose proof” supports name overwriting in case of specialization of an hypothesis.
• Semi-decision tactic ”jp” for first-order intuitionistic logic moved to user contributions (subsumed by ”firstorder”).

Program
• Moved useful tactics in theories/Program and documented them.
• Add Program.Basics which contains standard definitions for functional programming (id, apply, flip...)
• More robust obligation handling, dependent pattern-matching and well-founded definitions.
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• New syntax ” dest term as pat in term ” for destructing objects using an irrefutable pattern while keeping equalities
(use this instead of ”let” in Programs).

• Program CoFixpoint is accepted, Program Fixpoint uses the new way to infer which argument decreases struc-
turally.

• Program Lemma, Axiom etc... now permit to have obligations in the statement iff they can be automatically solved
by the default tactic.

• Renamed ”Obligations Tactic” command to ”Obligation Tactic”.
• New command ”Preterm [ of id ]” to see the actual term fed to Coq for debugging purposes.
• New option ”Transparent Obligations” to control the declaration of obligations as transparent or opaque. All obli-
gations are now transparent by default, otherwise the system declares them opaque if possible.

• Changed the notations ”left” and ”right” to ”in_left” and ”in_right” to hide the proofs in standard disjunctions, to
avoid breaking existing scripts when importing Program. Also, put them in program_scope.

Type Classes
• New ”Class”, ”Instance” and ”Program Instance” commands to define classes and instances documented in the
reference manual.

• New binding construct ” [ Class_1 param_1 .. param_n, Class_2 ... ] ” for binding type classes, usable everywhere.
• New command ” Print Classes ” and ” Print Instances some_class ” to print tables for typeclasses.
• New default eauto hint database ”typeclass_instances” used by the default typeclass instance search tactic.
• New theories directory ”theories/Classes” for standard typeclasses declarations. Module Classes.RelationClasses is
a typeclass port of Relation_Definitions plus a generic development of algebra on n-ary heterogeneous predicates.

Setoid rewriting
• Complete (and still experimental) rewrite of the tactic based on typeclasses. The old interface and semantics are
almost entirely respected, except:

– Import Setoid is now mandatory to be able to call setoid_replace and declare morphisms.
– ”–>”, ”++>” and ”==>” are now right associative notations declared at level 55 in scope signature_scope.
Their introduction may break existing scripts that defined them as notations with different levels.

– One needs to use [Typeclasses unfold [cst]] if [cst] is used as an abbreviation hiding products in types of
morphisms, e.g. if ones redefines [relation] and declares morphisms whose type mentions [relation].

– The [setoid_rewrite]’s semantics change when rewriting with a lemma: it can rewrite two different instanti-
ations of the lemma at once. Use [setoid_rewrite H at 1] for (almost) the usual semantics. [setoid_rewrite]
will also try to rewrite under binders now, and can succeed on different terms than before. In particular, it
will unify under let-bound variables. When called through [rewrite], the semantics are unchanged though.

– [Add Morphism term : id] has different semantics when used with parametric morphism: it will try to find
a relation on the parameters too. The behavior has also changed with respect to default relations: the most
recently declared Setoid/Relation will be used, the documentation explains how to customize this behavior.

– Parametric Relation and Morphism are declared differently, using the new [Add Parametric] commands,
documented in the manual.

– Setoid_Theory is now an alias to Equivalence, scripts building objects of type Setoid_Theory need to unfold
(or ”red”) the definitions of Reflexive, Symmetric and Transitive in order to get the same goals as before.
Scripts which introduced variables explicitly will not break.

– The order of subgoals when doing [setoid_rewrite] with side-conditions is always the same: first the new goal,
then the conditions.
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• New standard library modules Classes.Morphisms declares standard morphisms on refl / sym / trans
relations. Classes.Morphisms_Prop declares morphisms on propositional connectives and Classes.
Morphisms_Relations on generalized predicate connectives. Classes.Equivalence declares nota-
tions and tactics related to equivalences and Classes.SetoidTactics defines the setoid_replace tactics and
some support for the Add * interface, notably the tactic applied automatically before each Add Morphism
proof.

• User-defined subrelations are supported, as well as higher-order morphisms and rewriting under binders. The tactic
is also extensible entirely in Ltac. The documentation has been updated to cover these features.

• [setoid_rewrite] and [rewrite] now support the [at] modifier to select occurrences to rewrite, and both use the
[setoid_rewrite] code, even when rewriting with leibniz equality if occurrences are specified.

Extraction
• Improved behavior of the Caml extraction of modules: name clashes should not happen anymore.
• The command Extract Inductive has now a syntax for infix notations. This allows in particular to map Coq lists and
pairs onto Caml ones:

– Extract Inductive list => list [ ”[]” ”(::)” ].
– Extract Inductive prod => ”(*)” [ ”(,)” ].

• In pattern matchings, a default pattern ”| _ -> ...” is now used whenever possible if several branches are identical.
For instance, functions corresponding to decidability of equalities are now linear instead of quadratic.

• A new instruction Extraction Blacklist id1 .. idn allows to prevent filename conflits with existing code, for instance
when extracting module List to Ocaml.

CoqIDE
• CoqIDE font defaults to monospace so as indentation to be meaningful.
• CoqIDE supports nested goals and any other kind of declaration in the middle of a proof.
• Undoing non-tactic commands in CoqIDE works faster.
• New CoqIDE menu for activating display of various implicit informations.
• Added the possibility to choose the location of tabs in coqide: (in Edit->Preferences->Misc)
• New Open and Save As dialogs in CoqIDE which filter *.v files.

Tools
• New stand-alone .vo files verifier ”coqchk”.
• Extended -I coqtop/coqc option to specify a logical dir: ”-I dir -as coqdir”.
• New coqtop/coqc option -exclude-dir to exclude subdirs for option -R.
• The binary ”parser” has been renamed to ”coq-parser”.
• Improved coqdoc and dump of globalization information to give more meta-information on identifiers. All cate-
gories of Coq definitions are supported, which makes typesetting trivial in the generated documentation. Support
for hyperlinking and indexing developments in the tex output has been implemented as well.

Miscellaneous
• Coq installation provides enough files so that Ocaml’s extensions need not the Coq sources to be compiled (this
assumes O’Caml 3.10 and Camlp5).

• New commands ”Set Whelp Server” and ”Set Whelp Getter” to customize the Whelp search tool.
• Syntax of ”Test Printing Let ref” and ”Test Printing If ref” changed into ”Test Printing Let for ref” and ”Test
Printing If for ref”.
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• An overhauled build system (new Makefiles); see dev/doc/build-system.txt.
• Add -browser option to configure script.
• Build a shared library for the C part of Coq, and use it by default on non-(Windows or MacOS) systems. Bytecode
executables are now pure. The behaviour is configurable with -coqrunbyteflags, -coqtoolsbyteflags and -custom
configure options.

• Complexity tests can be skipped by setting the environment variable COQTEST_SKIPCOMPLEXITY.

3.11 Version 8.1

3.11.1 Summary of changes

Coq version 8.1 adds various new functionalities.
Benjamin Grégoire implemented an alternative algorithm to check the convertibility of terms in the Coq type checker.
This alternative algorithm works by compilation to an efficient bytecode that is interpreted in an abstract machine similar
to Xavier Leroy’s ZINCmachine. Convertibility is performed by comparing the normal forms. This alternative algorithm
is specifically interesting for proofs by reflection. More generally, it is convenient in case of intensive computations.
Christine Paulin implemented an extension of inductive types allowing recursively non uniform parameters. Hugo Her-
belin implemented sort-polymorphism for inductive types (now called template polymorphism).
Claudio Sacerdoti Coen improved the tactics for rewriting on arbitrary compatible equivalence relations. He also gener-
alized rewriting to arbitrary transition systems.
Claudio Sacerdoti Coen added new features to the module system.
Benjamin Grégoire, Assia Mahboubi and Bruno Barras developed a new, more efficient and more general simplification
algorithm for rings and semirings.
Laurent Théry and Bruno Barras developed a new, significantly more efficient simplification algorithm for fields.
Hugo Herbelin, Pierre Letouzey, Julien Forest, Julien Narboux and Claudio Sacerdoti Coen added new tactic features.
Hugo Herbelin implemented matching on disjunctive patterns.
New mechanisms made easier the communication between Coq and external provers. Nicolas Ayache and Jean-
Christophe Filliâtre implemented connections with the provers cvcl, Simplify and zenon. Hugo Herbelin implemented an
experimental protocol for calling external tools from the tactic language.
Matthieu Sozeau developed Russell, an experimental language to specify the behavior of programs with subtypes.
A mechanism to automatically use some specific tactic to solve unresolved implicit has been implemented by Hugo Her-
belin.
Laurent Théry’s contribution on strings and Pierre Letouzey and Jean-Christophe Filliâtre’s contribution on finite maps
have been integrated to the Coq standard library. Pierre Letouzey developed a library about finite sets “à la Objective
Caml”. With Jean-Marc Notin, he extended the library on lists. Pierre Letouzey’s contribution on rational numbers has
been integrated and extended.
Pierre Corbineau extended his tactic for solving first-order statements. He wrote a reflection-based intuitionistic tautology
solver.
Pierre Courtieu, Julien Forest and Yves Bertot added extra support to reason on the inductive structure of recursively
defined functions.
Jean-Marc Notin significantly contributed to the general maintenance of the system. He also took care of coqdoc.
Pierre Castéran contributed to the documentation of (co-)inductive types and suggested improvements to the libraries.
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Pierre Corbineau implemented a declarative mathematical proof language, usable in combination with the tactic-based
style of proof.
Finally, many users suggested improvements of the system through the Coq-Club mailing list and bug-tracker systems,
especially user groups from INRIA Rocquencourt, Radboud University, University of Pennsylvania and Yale University.

Palaiseau, July 2006
Hugo Herbelin

3.11.2 Details of changes in 8.1beta

Logic
• Added sort-polymorphism on inductive families
• Allowance for recursively non uniform parameters in inductive types

Syntax
• No more support for version 7 syntax and for translation to version 8 syntax.
• In fixpoints, the { struct ... } annotation is not mandatory any more when only one of the arguments has an inductive
type

• Added disjunctive patterns in match-with patterns
• Support for primitive interpretation of string literals
• Extended support for Unicode ranges

Vernacular commands
• Added ”Print Ltac qualid” to print a user defined tactic.
• Added ”Print Rewrite HintDb” to print the content of a DB used by autorewrite.
• Added ”Print Canonical Projections”.
• Added ”Example” as synonym of ”Definition”.
• Added ”Proposition” and ”Corollary” as extra synonyms of ”Lemma”.
• New command ”Whelp” to send requests to the Helm database of proofs formalized in the Calculus of Inductive
Constructions.

• Command ”functional induction” has been re-implemented from the new ”Function” command.
Ltac and tactic syntactic extensions

• New primitive ”external” for communication with tool external to Coq
• New semantics for ”match t with”: if a clause returns a tactic, it is now applied to the current goal. If it fails, the
next clause or next matching subterm is tried (i.e. it behaves as ”match goal with” does). The keyword ”lazymatch”
can be used to delay the evaluation of tactics occurring in matching clauses.

• Hint base names can be parametric in auto and trivial.
• Occurrence values can be parametric in unfold, pattern, etc.
• Added entry constr_may_eval for tactic extensions.
• Low-priority term printer made available in ML-written tactic extensions.
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• ”Tactic Notation” extended to allow notations of tacticals.
Tactics

• New implementation and generalization of setoid_* (setoid_rewrite, setoid_symmetry,
setoid_transitivity, setoid_reflexivity and autorewite). New syntax for declaring
relations and morphisms (old syntax still working with minor modifications, but deprecated).

• New implementation (still experimental) of the ring tactic with a built-in notion of coefficients and a better usage
of setoids.

• New conversion tactic ”vm_compute”: evaluates the goal (or an hypothesis) with a call-by-value strategy, using the
compiled version of terms.

• When rewriting HwhereH is not directly a Coq equality, search first H for a registered setoid equality before starting
to reduce in H. This is unlikely to break any script. Should this happen nonetheless, one can insert manually some
”unfold ... in H” before rewriting.

• Fixed various bugs about (setoid) rewrite ... in ... (in particular bug #5941)
• ”rewrite ... in” now accepts a clause as place where to rewrite instead of just a simple hypothesis name. For in-
stance: rewrite H in H1,H2 |- * means rewrite H in H1; rewrite H in H2; rewrite
H rewrite H in * |- will do try rewrite H in Hi for all hypothesis Hi <> H.

• Added ”dependent rewrite term” and ”dependent rewrite term in hyp”.
• Added ”autorewrite with ... in hyp [using ...]”.
• Tactic ”replace” now accepts a ”by” tactic clause.
• Added ”clear - id” to clear all hypotheses except the ones depending in id.
• The argument of Declare Left Step and Declare Right Step is now a term (it used to be a reference).
• Omega now handles arbitrary precision integers.
• Several bug fixes in Reflexive Omega (romega).
• Idtac can now be left implicit in a [...|...] construct: for instance, [ foo | | bar ] stands for [ foo | idtac | bar ].
• Fixed a ”fold” bug (non critical but possible source of incompatibilities).
• Added classical_left and classical_right which transforms |- A \/ B into ~B |- A and ~A |- B respec-
tively.

• Added command ”Declare Implicit Tactic” to set up a default tactic to be used to solve unresolved subterms of
term arguments of tactics.

• Better support for coercions to Sortclass in tactics expecting type arguments.
• Tactic ”assert” now accepts ”as” intro patterns and ”by” tactic clauses.
• New tactic ”pose proof” that generalizes ”assert (id:=p)” with intro patterns.
• New introduction pattern ”?” for letting Coq choose a name.
• Introduction patterns now support side hypotheses (e.g. intros [|] on ”(nat -> nat) -> nat” works).
• New introduction patterns ”->” and ”<-” for immediate rewriting of introduced hypotheses.
• Introduction patterns coming after non trivial introduction patterns now force full introduction of the first pattern
(e.g. intros [[|] p] on nat->nat->nat now behaves like intros [[|?] p])

• Added ”eassumption”.
• Added option ’using lemmas’ to auto, trivial and eauto.
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• Tactic ”congruence” is now complete for its intended scope (ground equalities and inequalities with constructors).
Furthermore, it tries to equates goal and hypotheses.

• New tactic ”rtauto” solves pure propositional logic and gives a reflective version of the available proof.
• Numbering of ”pattern”, ”unfold”, ”simpl”, ... occurrences in ”match with” made consistent with the printing
of the return clause after the term to match in the ”match-with” construct (use ”Set Printing All” to see hidden
occurrences).

• Generalization of induction ”induction x1...xn using scheme” where scheme is an induction principle with complex
predicates (like the ones generated by function induction).

• Some small Ltac tactics has been added to the standard library (file Tactics.v):
– f_equal : instead of using the different f_equalX lemmas
– case_eq : a ”case” without loss of information. An equality stating the current situation is generated in every
sub-cases.

– swap : for a negated goal ~B and a negated hypothesis H:~A, swap H asks you to prove A from hypothesis B
– revert : revert H is generalize H; clear H.

Extraction
• All type parts should now disappear instead of sometimes producing _ (for instance in Map.empty).
• Haskell extraction: types of functions are now printed, better unsafeCoerce mechanism, both for hugs and ghc.
• Scheme extraction improved, see http://www.pps.jussieu.fr/~letouzey/scheme.
• Many bug fixes.

Modules
• Added ”Locate Module qualid” to get the full path of a module.
• Module/Declare Module syntax made more uniform.
• Added syntactic sugar ”Declare Module Export/Import” and ”Module Export/Import”.
• Added syntactic sugar ”Module M(Export/Import X Y: T)” and ”Module Type M(Export/Import X Y: T)” (only
for interactive definitions)

• Construct ”with” generalized to module paths: T with (Definition|Module) M1.M2....Mn.l := l’.
Notations

• Option ”format” aware of recursive notations.
• Added insertion of spaces by default in recursive notations w/o separators.
• No more automatic printing box in case of user-provided printing ”format”.
• New notation ”exists! x:A, P” for unique existence.
• Notations for specific numerals now compatible with generic notations of numerals (e.g. ”1” can be used to denote
the unit of a group without hiding 1%nat)

Libraries
• New library on String and Ascii characters (contributed by L. Thery).
• New library FSets+FMaps of finite sets and maps.
• New library QArith on rational numbers.
• Small extension of Zmin.V, new Zmax.v, new Zminmax.v.
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• Reworking and extension of the files on classical logic and description principles (possible incompatibilities)
• Few other improvements in ZArith potentially exceptionally breaking the compatibility (useless hypothesys of
Zgt_square_simpl and Zlt_square_simpl removed; fixed names mentioning letter O instead of digit 0; weaken
premises in Z_lt_induction).

• Restructuration of Eqdep_dec.v and Eqdep.v: more lemmas in Type.
• Znumtheory now contains a gcd function that can compute within Coq.
• More lemmas stated on Type in Wf.v, removal of redundant Acc_iter and Acc_iter2.
• Change of the internal names of lemmas in OmegaLemmas.
• Acc in Wf.v and clos_refl_trans in Relation_Operators.v now rely on the allowance for recursively non uniform
parameters (possible source of incompatibilities: explicit pattern-matching on these types may require to remove
the occurrence associated to their recursively non uniform parameter).

• Coq.List.In_dec has been set transparent (this may exceptionally break proof scripts, set it locally opaque for
compatibility).

• More on permutations of lists in List.v and Permutation.v.
• List.v has been much expanded.
• New file SetoidList.v now contains results about lists seen with respect to a setoid equality.
• Library NArith has been expanded, mostly with results coming from Intmap (for instance a bitwise xor), plus also
a bridge between N and Bitvector.

• Intmap has been reorganized. In particular its address type ”addr” is now N. User contributions known to use
Intmap have been adapted accordingly. If you’re using this library please contact us. A wrapper FMapIntMap now
presents Intmap as a particular implementation of FMaps. New developments are strongly encouraged to use either
this wrapper or any other implementations of FMap instead of using directly this obsolete Intmap.

Tools
• New semantics for coqtop options (”-batch” expects option ”-top dir” for loading vernac file that contains defini-
tions).

• Tool coq_makefile now removes custom targets that are file names in ”make clean”
• New environment variable COQREMOTEBROWSER to set the command invoked to start the remote browser
both in Coq and coqide. Standard syntax: ”%s” is the placeholder for the URL.

3.11.3 Details of changes in 8.1gamma

Syntax
• changed parsing precedence of let/in and fun constructions of Ltac: let x := t in e1; e2 is now parsed as let x := t in
(e1;e2).

Language and commands
• Added sort-polymorphism for definitions in Type (but finally abandoned).
• Support for implicit arguments in the types of parameters in (co-)fixpoints and (co-)inductive declarations.
• Improved type inference: use as much of possible general information. before applying irreversible unification
heuristics (allow e.g. to infer the predicate in ”(exist _ 0 (refl_equal 0) : {n:nat | n=0 })”).

• Support for Miller-Pfenning’s patterns unification in type synthesis (e.g. can infer P such that P x y = phi(x,y)).
• Support for ”where” clause in cofixpoint definitions.
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• New option ”Set Printing Universes” for making Type levels explicit.
Tactics

• Improved implementation of the ring and field tactics. For compatibility reasons, the previous tactics are renamed
as legacy ring and legacy field, but should be considered as deprecated.

• New declarative mathematical proof language.
• Support for argument lists of arbitrary length in Tactic Notation.
• rewrite ... in H now fails if H is used either in an hypothesis or in the goal.
• The semantics of rewrite ... in * has been slightly modified (see doc).
• Support for as clause in tactic injection.
• New forward-reasoning tactic ”apply in”.
• Ltac fresh operator now builds names from a concatenation of its arguments.
• New ltac tactic ”remember” to abstract over a subterm and keep an equality
• Support for Miller-Pfenning’s patterns unification in apply/rewrite/... (may lead to few incompatibilities - generally
now useless tactic calls).

Bug fixes
• Fix for notations involving basic ”match” expressions.
• Numerous other bugs solved (a few fixes may lead to incompatibilities).

3.11.4 Details of changes in 8.1

Bug fixes
• Many bugs have been fixed (cf coq-bugs web page)

Tactics
• New tactics ring, ring_simplify and new tactic field now able to manage power to a positive integer constant. Tactic
ring on Z and R, and field on R manage power (may lead to incompatibilities with V8.1gamma).

• Tactic field_simplify now applicable in hypotheses.
• New field_simplify_eq for simplifying field equations into ring equations.
• Tactics ring, ring_simplify, field, field_simplify and field_simplify_eq all able to apply user-given equations to
rewrite monoms on the fly (see documentation).

Libraries
• New file ConstructiveEpsilon.v defining an epsilon operator and proving the axiom of choice constructively for a
countable domain and a decidable predicate.

3.12 Version 8.0

3.12.1 Summary of changes

Coq version 8 is a major revision of the Coq proof assistant. First, the underlying logic is slightly different. The so-called
impredicativity of the sort Set has been dropped. The main reason is that it is inconsistent with the principle of description
which is quite a useful principle for formalizing mathematics within classical logic. Moreover, even in an constructive
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setting, the impredicativity of Set does not add so much in practice and is even subject of criticism from a large part of the
intuitionistic mathematician community. Nevertheless, the impredicativity of Set remains optional for users interested in
investigating mathematical developments which rely on it.
Secondly, the concrete syntax of terms has been completely revised. The main motivations were

• a more uniform, purified style: all constructions are now lowercase, with a functional programming perfume (e.g.
abstraction is now written fun), and more directly accessible to the novice (e.g. dependent product is now written
forall and allows omission of types). Also, parentheses are no longer mandatory for function application.

• extensibility: some standard notations (e.g. “<” and “>”) were incompatible with the previous syntax. Now all
standard arithmetic notations (=, +, *, /, <, <=, ... and more) are directly part of the syntax.

Together with the revision of the concrete syntax, a new mechanism of interpretation scopes permits to reuse the same
symbols (typically +, -, *, /, <, <=) in various mathematical theories without any ambiguities for Coq, leading to a largely
improved readability of Coq scripts. New commands to easily add new symbols are also provided.
Coming with the new syntax of terms, a slight reform of the tactic language and of the language of commands has been
carried out. The purpose here is a better uniformity making the tactics and commands easier to use and to remember.
Thirdly, a restructuring and uniformization of the standard library of Coq has been performed. There is now just one
Leibniz equality usable for all the different kinds of Coq objects. Also, the set of real numbers now lies at the same level
as the sets of natural and integer numbers. Finally, the names of the standard properties of numbers now follow a standard
pattern and the symbolic notations for the standard definitions as well.
The fourth point is the release of CoqIDE, a new graphical gtk2-based interface fully integrated with Coq. Close in
style to the Proof General Emacs interface, it is faster and its integration with Coq makes interactive developments more
friendly. All mathematical Unicode symbols are usable within CoqIDE.
Finally, the module system of Coq completes the picture of Coq version 8.0. Though released with an experimental status
in the previous version 7.4, it should be considered as a salient feature of the new version.
Besides, Coq comes with its load of novelties and improvements: new or improved tactics (including a new tactic for
solving first-order statements), new management commands, extended libraries.
Bruno Barras and Hugo Herbelin have been the main contributors of the reflection and the implementation of the new
syntax. The smart automatic translator from old to new syntax released with Coq is also their work with contributions by
Olivier Desmettre.
Hugo Herbelin is the main designer and implementer of the notion of interpretation scopes and of the commands for
easily adding new notations.
Hugo Herbelin is the main implementer of the restructured standard library.
Pierre Corbineau is the main designer and implementer of the new tactic for solving first-order statements in presence of
inductive types. He is also the maintainer of the non-domain specific automation tactics.
Benjamin Monate is the developer of the CoqIDE graphical interface with contributions by Jean-Christophe Filliâtre,
Pierre Letouzey, Claude Marché and Bruno Barras.
Claude Marché coordinated the edition of the Reference Manual for Coq V8.0.
Pierre Letouzey and Jacek Chrząszcz respectively maintained the extraction tool and module system of Coq.
Jean-Christophe Filliâtre, Pierre Letouzey, Hugo Herbelin and other contributors from Sophia-Antipolis and Nijmegen
participated in extending the library.
Julien Narboux built a NSIS-based automatic Coq installation tool for the Windows platform.
Hugo Herbelin and Christine Paulin coordinated the development which was under the responsibility of Christine Paulin.

Palaiseau & Orsay, Apr. 2004
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Hugo Herbelin & Christine Paulin
(updated Apr. 2006)

3.12.2 Details of changes in 8.0beta old syntax

Logic
• Set now predicative by default
• New option -impredicative-set to set Set impredicative
• The standard library doesn’t need impredicativity of Set and is compatible with the classical axiomswhich contradict
Set impredicativity

Syntax for arithmetic
• Notation ”=” and ”<>” in Z and R are no longer implicitly in Z or R (with possible introduction of a coercion), use
<Z>...=... or <Z>...<>... instead

• Locate applied to a simple string (e.g. ”+”) searches for all notations containing this string
Vernacular commands

• ”Declare ML Module” now allows to import .cma files. This avoids to use a bunch of ”Declare ML Module”
statements when using several ML files.

• ”Set Printing Width n” added, allows to change the size of width printing.
• ”Implicit Variables Type x,y:t” (new syntax: ”Implicit Types x y:t”) assigns default types for binding variables.
• Declarations of Hints and Notation now accept a ”Local” flag not to be exported outside the current file even if not
in section

• ”Print Scopes” prints all notations
• New command ”About name” for light printing of type, implicit arguments, etc.
• New command ”Admitted” to declare incompletely proven statement as axioms
• New keyword ”Conjecture” to declare an axiom intended to be provable
• SearchAbout can now search for lemmas referring to more than one constant and on substrings of the name of the
lemma

• ”Print Implicit” displays the implicit arguments of a constant
• Locate now searches for all names having a given suffix
• New command ”Functional Scheme” for building an induction principle from a function defined by case analysis
and fix.

Commands
• new coqtop/coqc option -dont-load-proofs not to load opaque proofs in memory

Implicit arguments
• Inductive in sections declared with implicits now ”discharged” with implicits (like constants and variables)
• Implicit Arguments flags are now synchronous with reset
• New switch ”Unset/Set Printing Implicits” (new syntax: ”Unset/Set Printing Implicit”) to globally control printing
of implicits
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Grammar extensions
• Many newly supportedUTF-8 encoded unicode blocks - Greek letters (0380-03FF), Hebrew letters (U05D0-05EF),
letter-like symbols (2100-214F, that includes double N,Z,Q,R), prime signs (from 2080-2089) and characters from
many written languages are valid in identifiers - mathematical operators (2200-22FF), supplemental mathematical
operators (2A00-2AFF), miscellaneous technical (2300-23FF that includes sqrt symbol), miscellaneous symbols
(2600-26FF), arrows (2190-21FF and 2900-297F), invisible mathematical operators (from 2080-2089), ... are
valid symbols

Library
• New file about the factorial function in Arith
• An additional elimination Acc_iter for Acc, simpler than Acc_rect. This new elimination principle is used for
definition well_founded_induction.

• New library NArith on binary natural numbers
• R is now of type Set
• Restructuration in ZArith library

– ”true_sub” used in Zplus now a definition, not a local one (source of incompatibilities in proof referring to
true_sub, may need extra Unfold)

– Some lemmas about minus moved from fast_integer to Arith/Minus.v (le_minus, lt_mult_left) (theoretical
source of incompatibilities)

– Several lemmas moved from auxiliary.v and zarith_aux.v to fast_integer.v (theoretical source of incompati-
bilities)

– Variables names of iff_trans changed (source of incompatibilities)
– ZArith lemmas named OMEGA something or fast_ something, and lemma new_var are now out of ZArith
(except OMEGA2)

– Redundant ZArith lemmas have been renamed: for the following pairs, use the second name
(Zle_Zmult_right2, Zle_mult_simpl), (OMEGA2, Zle_0_plus), (Zplus_assoc_l, Zplus_assoc),
(Zmult_one, Zmult_1_n), (Zmult_assoc_l, Zmult_assoc), (Zmult_minus_distr, Zmult_Zminus_distr_l)
(add_un_double_moins_un_xO, is_double_moins_un), (Rlt_monotony_rev,Rlt_monotony_contra) (source
of incompatibilities)

• Few minor changes (no more implicit arguments in Zmult_Zminus_distr_l and Zmult_Zminus_distr_r, lemmas
moved from Zcomplements to other files) (rare source of incompatibilities)

• New lemmas provided by users added
Tactic language

• Fail tactic now accepts a failure message
• Idtac tactic now accepts a message
• New primitive tactic ”FreshId” (new syntax: ”fresh”) to generate new names
• Debugger prints levels of calls

Tactics
• Replace can now replace proofs also
• Fail levels are now decremented at ”Match Context” blocks only and if the right-hand-side of ”Match term With”
are tactics, these tactics are never evaluated immediately and do not induce backtracking (in contrast with ”Match
Context”)
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• Quantified names now avoid global names of the current module (like Intro names did) [source of rare incompati-
bilities: 2 changes in the set of user contribs]

• NewDestruct/NewInduction accepts intro patterns as introduction names
• NewDestruct/NewInduction now work for non-inductive type using option ”using”
• A NewInduction naming bug for inductive types with functional arguments (e.g. the accessibility predicate) has
been fixed (source of incompatibilities)

• Symmetry now applies to hypotheses too
• Inversion now accept option ”as [ ... ]” to name the hypotheses
• Contradiction now looks also for contradictory hypotheses stating ~A and A (source of incompatibility)
• ”Contradiction c” try to find an hypothesis in context which contradicts the type of c
• Ring applies to new library NArith (require file NArithRing)
• Field now works on types in Set
• Auto with reals now try to replace le by ge (Rge_le is no longer an immediate hint), resulting in shorter proofs
• Instantiate now works in hyps (syntax : Instantiate in ...)
• Some new tactics : EConstructor, ELeft, Eright, ESplit, EExists
• New tactic ”functional induction” to perform case analysis and induction following the definition of a function.
• Clear now fails when trying to remove a local definition used by a constant appearing in the current goal

Extraction (See details in plugins/extraction/CHANGES)
• The old commands: (Recursive) Extraction Module M. are now: (Recursive) Extraction Library M. To use these
commands, M should come from a library M.v

• The other syntax Extraction & Recursive Extraction now accept module names as arguments.
Bugs

• see coq-bugs server for the complete list of fixed bugs
Miscellaneous

• Implicit parameters of inductive types definition now taken into account for inferring other implicit arguments
Incompatibilities

• Persistence of true_sub (4 incompatibilities in Coq user contributions)
• Variable names of some constants changed for a better uniformity (2 changes in Coq user contributions)
• Naming of quantified names in goal now avoid global names (2 occurrences)
• NewInduction naming for inductive types with functional arguments (no incompatibility in Coq user contributions)
• Contradiction now solve more goals (source of 2 incompatibilities)
• Merge of eq and eqT may exceptionally result in subgoals now solved automatically
• Redundant pairs of ZArith lemmas may have different names: it may cause ”Apply/Rewrite with” to fail if us-
ing the first name of a pair of redundant lemmas (this is solved by renaming the variables bound by ”with”; 3
incompatibilities in Coq user contribs)

• ML programs referring to constants from fast_integer.v must use ”Coqlib.gen_constant_modules Co-
qlib.zarith_base_modules” instead
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3.12.3 Details of changes in 8.0beta new syntax

New concrete syntax
• A completely new syntax for terms
• A more uniform syntax for tactics and the tactic language
• A few syntactic changes for vernacular commands
• A smart automatic translator translating V8.0 files in old syntax to files valid for V8.0

Syntax extensions
• ”Grammar” for terms disappears
• ”Grammar” for tactics becomes ”Tactic Notation”
• ”Syntax” disappears
• Introduction of a notion of interpretation scope allowing to use the same notations in various contexts without using
specific delimiters (e.g the same expression ”4<=3+x” is interpreted either in ”nat”, ”positive”, ”N” (previously
”entier”), ”Z”, ”R”, depending on which interpretation scope is currently open) [see documentation for details]

• Notation now mandatorily requires a precedence and associativity (default was to set precedence to 1 and associa-
tivity to none)

Revision of the standard library
• Many lemmas and definitions names have been made more uniform mostly in Arith, NArith, ZArith and Reals
(e.g : ”times” -> ”Pmult”, ”times_sym” -> ”Pmult_comm”, ”Zle_Zmult_pos_right” -> ”Zmult_le_compat_r”, ”SU-
PERIEUR” -> ”Gt”, ”ZERO” -> ”Z0”)

• Order and names of arguments of basic lemmas on nat, Z, positive and R have been made uniform.
• Notions of Coq initial state are declared with (strict) implicit arguments
• eq merged with eqT: old eq disappear, new eq (written =) is old eqT and new eqT is syntactic sugar for new eq
(notation == is an alias for = and is written as it, exceptional source of incompatibilities)

• Similarly, ex, ex2, all, identity are merged with exT, exT2, allT, identityT
• Arithmetical notations for nat, positive, N, Z, R, without needing any backquote or double-backquotes delimiters.
• In Lists: new concrete notations; argument of nil is now implicit
• All changes in the library are taken in charge by the translator

Semantical changes during translation
• Recursive keyword set by default (and no longer needed) in Tactic Definition
• Set Implicit Arguments is strict by default in new syntax
• reductions in hypotheses of the form ”... in H” now apply to the type also if H is a local definition
• etc

Gallina
• New syntax of the form ”Inductive bool : Set := true, false : bool.” for enumerated types
• Experimental syntax of the form p.(fst) for record projections (activable with option ”Set Printing Projections”
which is recognized by the translator)

Known problems of the automatic translation
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• iso-latin-1 characters are no longer supported: move your files to 7-bits ASCII or unicode before translation (switch
to unicode is automatically done if a file is loaded and saved again by coqide)

• Renaming in ZArith: incompatibilities in Coq user contribs due to merging names INZ, from Reals, and inject_nat.
• Renaming and new lemmas in ZArith: may clash with names used by users
• Restructuration of ZArith: replace requirement of specific modules in ZArith by ”Require Import ZArith_base” or
”Require Import ZArith”

• Some implicit arguments must be made explicit before translation: typically for ”length nil”, the implicit argument
of length must be made explicit

• Grammar rules, Infix notations and V7.4 Notations must be updated wrt the new scheme for syntactic extensions
(see translator documentation)

• Unsafe for annotation Cases when constructors coercions are used or when annotations are eta-reduced predicates

3.12.4 Details of changes in 8.0

Vernacular commands
• New option ”Set Printing All” to deactivate all high-level forms of printing (implicit arguments, coercions, destruc-
ting let, if-then-else, notations, projections)

• ”Functional Scheme” and ”Functional Induction” extended to polymorphic types and dependent types
• Notation now allows recursive patterns, hence recovering parts of the functionalities of pre-V8 Grammar/Syntax
commands

• Command ”Print.” discontinued.
• Redundant syntax ”Implicit Arguments On/Off” discontinued

New syntax
• Semantics change of the if-then-else construction in new syntax: ”if c then t1 else t2” now stands for ”match c with
c1 _ ... _ => t1 | c2 _ ... _ => t2 end” with no dependency of t1 and t2 in the arguments of the constructors; this
may cause incompatibilities for files translated using coq 8.0beta

Interpretation scopes
• Delimiting key %bool for bool_scope added
• Import no more needed to activate argument scopes from a module

Tactics and the tactic Language
• Semantics of ”assert” is now consistent with the reference manual
• New tactics stepl and stepr for chaining transitivity steps
• Tactic ”replace ... with ... in” added
• Intro patterns now supported in Ltac (parsed with prefix ”ipattern:”)

Executables and tools
• Added option -top to change the name of the toplevel module ”Top”
• Coqdoc updated to new syntax and now part of Coq sources
• XML exportation tool now exports the structure of vernacular files (cf chapter 13 in the reference manual)

User contributions
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• User contributions have been updated to the new syntax
Bug fixes

• Many bugs have been fixed (cf coq-bugs web page)
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CHAPTER

FOUR

THE LANGUAGE

4.1 The Gallina specification language

This chapter describes Gallina, the specification language of Coq. It allows developing mathematical theories and to
prove specifications of programs. The theories are built from axioms, hypotheses, parameters, lemmas, theorems and
definitions of constants, functions, predicates and sets. The syntax of logical objects involved in theories is described in
Section Terms. The language of commands, called The Vernacular is described in Section The Vernacular.
In Coq, logical objects are typed to ensure their logical correctness. The rules implemented by the typing algorithm are
described in Chapter Calculus of Inductive Constructions.

4.1.1 About the grammars in the manual

Grammars are presented in Backus-Naur form (BNF). Terminal symbols are set in black typewriter font. In
addition, there are special notations for regular expressions.
An expression enclosed in square brackets […] means at most one occurrence of this expression (this corresponds to an
optional component).
The notation “entry sep … sep entry” stands for a non empty sequence of expressions parsed by entry and
separated by the literal “sep”1.
Similarly, the notation “entry … entry” stands for a non empty sequence of expressions parsed by the “entry”
entry, without any separator between.
At the end, the notation “[entry sep … sep entry]” stands for a possibly empty sequence of expressions parsed
by the “entry” entry, separated by the literal “sep”.

4.1.2 Lexical conventions

Blanks Space, newline and horizontal tab are considered blanks. Blanks are ignored but they separate tokens.
Comments Comments are enclosed between (* and *). They can be nested. They can contain any character. However,

embedded string literals must be correctly closed. Comments are treated as blanks.
Identifiers and field identifiers Identifiers, written ident, are sequences of letters, digits, _ and ', that do not start

with a digit or '. That is, they are recognized by the following grammar (except that the string _ is reserved; it is
not a valid identifier):

ident ::= first_letter[subsequent_letter…subsequent_letter]

1 This is similar to the expression “entry { sep entry }” in standard BNF, or “entry ( sep entry )*” in the syntax of regular expressions.
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field ::= .ident
first_letter ::= a..z ∣ A..Z ∣ _ ∣ unicode_letter
subsequent_letter ::= first_letter ∣ 0..9 ∣ ' ∣ unicode_id_part

All characters are meaningful. In particular, identifiers are case-sensitive. unicode_letter non-exhaustively
includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian, Hangul, Hiragana and Katakana charac-
ters, CJK ideographs, mathematical letter-like symbols and non-breaking space. unicode_id_part non-
exhaustively includes symbols for prime letters and subscripts.
Field identifiers, written field, are identifiers prefixed by . (dot) with no blank between the dot and the identifier.
They are used in the syntax of qualified identifiers.

Numerals Numerals are sequences of digits with an optional fractional part and exponent, optionally preceded by aminus
sign. int is an integer; a numeral without fractional or exponent parts. num is a non-negative integer. Underscores
embedded in the digits are ignored, for example 1_000_000 is the same as 1000000.

numeral ::= num[. num][exp[sign]num]
int ::= [-]num
num ::= digit…digit
digit ::= 0..9
exp ::= e | E
sign ::= + | -

Strings Strings begin and end with " (double quote). Use "" to represent a double quote character within a string. In
the grammar, strings are identified with string.

Keywords The following character sequences are reserved keywords that cannot be used as identifiers:

_ Axiom CoFixpoint Definition Fixpoint Hypothesis IF Parameter Prop
SProp Set Theorem Type Variable as at by cofix discriminated else
end exists exists2 fix for forall fun if in lazymatch let match
multimatch return then using where with

Note that plugins may define additional keywords when they are loaded.
Other tokens The set of tokens defined at any given time can vary because the Notation command can define new

tokens. A Require command may load more notation definitions, while the end of a Section may remove no-
tations. Some notations are defined in the basic library (see The Coq library) and are normally loaded automatically
at startup time.
Here are the character sequences that Coq directly defines as tokens without using Notation (omitting 25 spe-
cialized tokens that begin with #int63_):

! #[ % & ' ( () (bfs) (dfs) ) * ** + , - ->
. .( .. ... / : ::= := :> :>> ; < <+ <- <:
<<: <= = => > >-> >= ? @ @{ [ [= ] _ _eqn
`( `{ { {| | |- || }

When multiple tokens match the beginning of a sequence of characters, the longest matching token is used. Occa-
sionally you may need to insert spaces to separate tokens. For example, if ~ and ~~ are both defined as tokens, the
inputs ~ ~ and ~~ generate different tokens, whereas if ~~ is not defined, then the two inputs are equivalent.

4.1.3 Terms
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Syntax of terms

The following grammars describe the basic syntax of the terms of the Calculus of Inductive Constructions (also called
Cic). The formal presentation of Cic is given in Chapter Calculus of Inductive Constructions. Extensions of this syntax
are given in Chapter Extensions of Gallina. How to customize the syntax is described in Chapter Syntax extensions and
interpretation scopes.

term ::= forall binders , term
fun binders => term
fix fix_bodies
cofix cofix_bodies
let ident [binders] [: term] := term in term
let fix fix_body in term
let cofix cofix_body in term
let ( [name , … , name] ) [dep_ret_type] := term in term
let ' pattern [in term] := term [return_type] in term
if term [dep_ret_type] then term else term
term : term
term <: term
term :>
term -> term
term arg … arg
@ qualid [term … term]
term % ident
match match_item , … , match_item [return_type] with
[[|] equation | … | equation] end
qualid
sort
num
_
( term )

arg ::= term
( ident := term )

binders ::= binder … binder
binder ::= name

( name … name : term )
( name [: term] := term )
' pattern

name ::= ident | _
qualid ::= ident | qualid field
sort ::= SProp | Prop | Set | Type
fix_bodies ::= fix_body

fix_body with fix_body with … with fix_body for ident
cofix_bodies ::= cofix_body

cofix_body with cofix_body with … with cofix_body for ident
fix_body ::= ident binders [annotation] [: term] := term
cofix_body ::= ident [binders] [: term] := term
annotation ::= { struct ident }
match_item ::= term [as name] [in qualid [pattern … pattern]]
dep_ret_type ::= [as name] return_type
return_type ::= return term
equation ::= mult_pattern | … | mult_pattern => term
mult_pattern ::= pattern , … , pattern
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pattern ::= qualid pattern … pattern
@ qualid pattern … pattern
pattern as ident
pattern % ident
qualid
_
num
( pattern | … | pattern )

Types

Coq terms are typed. Coq types are recognized by the same syntactic class as term. We denote by type the semantic
subclass of types inside the syntactic class term.

Qualified identifiers and simple identifiers

Qualified identifiers (qualid) denote global constants (definitions, lemmas, theorems, remarks or facts), global variables
(parameters or axioms), inductive types or constructors of inductive types. Simple identifiers (or shortly ident) are a
syntactic subset of qualified identifiers. Identifiers may also denote local variables, while qualified identifiers do not.

Numerals

Numerals have no definite semantics in the calculus. They are mere notations that can be bound to objects through the
notation mechanism (see Chapter Syntax extensions and interpretation scopes for details). Initially, numerals are bound to
Peano’s representation of natural numbers (see Datatypes).

Note: Negative integers are not at the same level as num, for this would make precedence unnatural.

Sorts

There are four sorts SProp, Prop, Set and Type.
• SProp is the universe of definitionally irrelevant propositions (also called strict propositions).
• Prop is the universe of logical propositions. The logical propositions themselves are typing the proofs. We denote
propositions by form. This constitutes a semantic subclass of the syntactic class term.

• Set is the universe of program types or specifications. The specifications themselves are typing the programs. We
denote specifications by specif. This constitutes a semantic subclass of the syntactic class term.

• Type is the type of sorts.
More on sorts can be found in Section Sorts.

Binders

Various constructions such as fun, forall, fix and cofix bind variables. A binding is represented by an identifier.
If the binding variable is not used in the expression, the identifier can be replaced by the symbol _. When the type of a
bound variable cannot be synthesized by the system, it can be specified with the notation (ident : type). There is
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also a notation for a sequence of binding variables sharing the same type: ( ident +
 : type). A binder can also be

any pattern prefixed by a quote, e.g. '(x,y).
Some constructions allow the binding of a variable to value. This is called a “let-binder”. The entry binder of
the grammar accepts either an assumption binder as defined above or a let-binder. The notation in the latter case is
(ident := term). In a let-binder, only one variable can be introduced at the same time. It is also possible to give
the type of the variable as follows: (ident : type := term).
Lists of binders are allowed. In the case of fun and forall, it is intended that at least one binder of the list is an
assumption otherwise fun and forall gets identical. Moreover, parentheses can be omitted in the case of a single sequence
of bindings sharing the same type (e.g.: fun (x y z : A) => t can be shortened in fun x y z : A => t).

Abstractions

The expression fun ident : type => term defines the abstraction of the variable ident, of type type, over
the term term. It denotes a function of the variable ident that evaluates to the expression term (e.g. fun x :
A => x denotes the identity function on type A). The keyword fun can be followed by several binders as given in
Section Binders. Functions over several variables are equivalent to an iteration of one-variable functions. For instance
the expression fun identi

+
: type => term denotes the same function as fun identi : type =>

+

term. If a let-binder occurs in the list of binders, it is expanded to a let-in definition (see Section Let-in definitions).

Products

The expression forall ident : type, term denotes the product of the variable ident of type type, over the
term term. As for abstractions, forall is followed by a binder list, and products over several variables are equivalent
to an iteration of one-variable products. Note that term is intended to be a type.
If the variable ident occurs in term, the product is called dependent product. The intention behind a dependent
product forall x : A, B is twofold. It denotes either the universal quantification of the variable x of type A in the
proposition B or the functional dependent product from A to B (a construction usually written Π𝑥∶𝐴.𝐵 in set theory).
Non dependent product types have a special notation: A -> B stands for forall _ : A, B. The non dependent
product is used both to denote the propositional implication and function types.

Applications

The expression termfun term denotes the application of termfun (which is expected to have a function type) to term.

The expression termfun termi
+ denotes the application of the term termfun to the arguments termi. It is equiv-

alent to ( … ( termfun term1 ) … ) termn: associativity is to the left.
The notation (ident := term) for arguments is used for making explicit the value of implicit arguments (see Sec-
tion Explicit applications).

Type cast

The expression term : type is a type cast expression. It enforces the type of term to be type.
term <: type locally sets up the virtual machine for checking that term has type type.
term <<: type uses native compilation for checking that term has type type.
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Inferable subterms

Expressions often contain redundant pieces of information. Subterms that can be automatically inferred by Coq can be
replaced by the symbol _ and Coq will guess the missing piece of information.

Let-in definitions

let ident := term in term’ denotes the local binding of term to the variable ident in term’. There is
a syntactic sugar for let-in definition of functions: let ident binder

+
:= term in term’ stands for let

ident := fun binder
+

=> term in term’.

Definition by case analysis

Objects of inductive types can be destructured by a case-analysis construction called pattern matching expression. A
pattern matching expression is used to analyze the structure of an inductive object and to apply specific treatments ac-
cordingly.
This paragraph describes the basic form of pattern matching. See SectionMultiple and nested pattern matching and Chap-
ter Extended pattern matching for the description of the general form. The basic form of pattern matching is characterized
by a single match_item expression, a mult_pattern restricted to a single pattern and pattern restricted to
the form qualid ident

* .
The expression match ”term0 return_type with pattern1 => term1 | … | pattern𝑛 => term𝑛 end” denotes
a pattern matching over the term term0 (expected to be of an inductive type 𝐼). The terms term1…term𝑛 are the
branches of the pattern matching expression. Each of pattern𝑖 has a form qualid ident where qualid must
denote a constructor. There should be exactly one branch for every constructor of 𝐼 .
The return_type expresses the type returned by the whole match expression. There are several cases. In the non
dependent case, all branches have the same type, and the return_type is the common type of branches. In this case,
return_type can usually be omitted as it can be inferred from the type of the branches2.
In the dependent case, there are three subcases. In the first subcase, the type in each branch may depend on the exact
value being matched in the branch. In this case, the whole pattern matching itself depends on the term being matched.
This dependency of the term being matched in the return type is expressed with an “as ident” clause where ident is
dependent in the return type. For instance, in the following example:

Inductive bool : Type := true : bool | false : bool.
Inductive eq (A:Type) (x:A) : A -> Prop := eq_refl : eq A x x.
Inductive or (A:Prop) (B:Prop) : Prop :=

| or_introl : A -> or A B
| or_intror : B -> or A B.

Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) :=
match b as x return or (eq bool x true) (eq bool x false) with
| true => or_introl (eq bool true true) (eq bool true false) (eq_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false) (eq_refl bool false)
end.

the branches have respective types ”or (eq bool true true) (eq bool true false)” and ”or (eq
bool false true) (eq bool false false)” while the whole pattern matching expression has type ”or
(eq bool b true) (eq bool b false)”, the identifier b being used to represent the dependency.

2 Except if the inductive type is empty in which case there is no equation that can be used to infer the return type.
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Note: When the term being matched is a variable, the as clause can be omitted and the term being matched can serve
itself as binding name in the return type. For instance, the following alternative definition is accepted and has the same
meaning as the previous one.

Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) :=
match b return or (eq bool b true) (eq bool b false) with
| true => or_introl (eq bool true true) (eq bool true false) (eq_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false) (eq_refl bool false)
end.

The second subcase is only relevant for annotated inductive types such as the equality predicate (see Section Equality),
the order predicate on natural numbers or the type of lists of a given length (see Section Matching objects of dependent
types). In this configuration, the type of each branch can depend on the type dependencies specific to the branch and
the whole pattern matching expression has a type determined by the specific dependencies in the type of the term being
matched. This dependency of the return type in the annotations of the inductive type is expressed using a “in 𝐼 _ … _
pattern1 … pattern𝑛” clause, where

• 𝐼 is the inductive type of the term being matched;
• the _ are matching the parameters of the inductive type: the return type is not dependent on them.
• the pattern𝑖 are matching the annotations of the inductive type: the return type is dependent on them
• in the basic case which we describe below, each pattern𝑖 is a name ident𝑖; see Patterns in in for the general
case

For instance, in the following example:

Definition eq_sym (A:Type) (x y:A) (H:eq A x y) : eq A y x :=
match H in eq _ _ z return eq A z x with
| eq_refl _ _ => eq_refl A x
end.

the type of the branch is eq A x x because the third argument of eq is x in the type of the pattern eq_refl. On the
contrary, the type of the whole pattern matching expression has type eq A y x because the third argument of eq is y
in the type of H. This dependency of the case analysis in the third argument of eq is expressed by the identifier z in the
return type.
Finally, the third subcase is a combination of the first and second subcase. In particular, it only applies to pattern matching
on terms in a type with annotations. For this third subcase, both the clauses as and in are available.
There are specific notations for case analysis on types with one or two constructors: if … then … else … and let
(…,…) := … in … (see Sections Pattern-matching on boolean values: the if expression and Irrefutable patterns: the
destructuring let variants).

Recursive functions

The expression “fix ident1 binder1 : type1 := term1 with … with ident𝑛 binder𝑛 : type𝑛 :=
term𝑛 for ident𝑖” denotes the 𝑖-th component of a block of functions defined by mutual structural recursion. It is
the local counterpart of the Fixpoint command. When 𝑛 = 1, the “for ident𝑖” clause is omitted.
The expression “cofix ident1 binder1 : type1 with … with ident𝑛 binder𝑛 : type𝑛 for ident𝑖”
denotes the 𝑖-th component of a block of terms defined by a mutual guarded co-recursion. It is the local counterpart of
the CoFixpoint command. When 𝑛 = 1, the “for ident𝑖” clause is omitted.
The association of a single fixpoint and a local definition have a special syntax: let fix ident binders :=
term in stands for let ident := fix ident binders := term in. The same applies for co-fixpoints.
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4.1.4 The Vernacular

decorated-sentence ::= [ decoration … decoration ] sentence
sentence ::= assumption

definition
inductive
fixpoint
assertion proof

assumption ::= assumption_keyword assums.
assumption_keyword ::= Axiom | Conjecture

Parameter | Parameters
Variable | Variables
Hypothesis | Hypotheses

assums ::= ident … ident : term
( ident … ident : term ) … ( ident … ident : term )

definition ::= [Local] Definition ident [binders] [: term] := term .
Let ident [binders] [: term] := term .

inductive ::= Inductive ind_body with … with ind_body .
CoInductive ind_body with … with ind_body .

ind_body ::= ident [binders] : term :=
[[|] ident [binders] [:term] | … | ident [binders] [:term]]

fixpoint ::= Fixpoint fix_body with … with fix_body .
CoFixpoint cofix_body with … with cofix_body .

assertion ::= assertion_keyword ident [binders] : term .
assertion_keyword ::= Theorem | Lemma

Remark | Fact
Corollary | Property | Proposition
Definition | Example

proof ::= Proof . … Qed .
Proof . … Defined .
Proof . … Admitted .

decoration ::= #[ attributes ]
attributes ::= [attribute, … , attribute]
attribute ::= ident

ident = string
ident ( attributes )

This grammar describes The Vernacular which is the language of commands of Gallina. A sentence of the vernacular
language, like in many natural languages, begins with a capital letter and ends with a dot.
Sentences may be decorated with so-called attributes, which are described in the corresponding section (Attributes).
The different kinds of command are described hereafter. They all suppose that the terms occurring in the sentences are
well-typed.

Assumptions

Assumptions extend the environment with axioms, parameters, hypotheses or variables. An assumption binds an ident
to a type. It is accepted by Coq if and only if this type is a correct type in the environment preexisting the declaration
and if ident was not previously defined in the same module. This type is considered to be the type (or specification,
or statement) assumed by ident and we say that ident has type type.
Command: Parameter ident : type

This command links type to the name ident as its specification in the global context. The fact asserted by type
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is thus assumed as a postulate.
Error: ident already exists.

Variant: Parameter ident
+

: type
Adds several parameters with specification type.

Variant: Parameter ( ident
+

: type )

+

Adds blocks of parameters with different specifications.

Variant: Local Parameter ( ident
+

: type )

+

Such parameters are never made accessible through their unqualified name by Import and its variants. You
have to explicitly give their fully qualified name to refer to them.

Variant: Local
?

Parameters ( ident
+

: type )

+

Variant: Local
?

Axiom ( ident
+

: type )

+

Variant: Local
?

Axioms ( ident
+

: type )

+

Variant: Local
?

Conjecture ( ident
+

: type )

+

Variant: Local
?

Conjectures ( ident
+

: type )

+

These variants are synonyms of Local ?
Parameter ( ident

+
: type )

+

.

Variant: Variable ( ident
+

: type )

+

Variant: Variables ( ident
+

: type )

+

Variant: Hypothesis ( ident
+

: type )

+

Variant: Hypotheses ( ident
+

: type )

+

Outside of any section, these variants are synonyms of Local Parameter

( ident
+

: type )

+

. For their meaning inside a section, see Variable in Section mech-
anism.
Warning: ident is declared as a local axiom [local-declaration,scope]

Warning generated when using Variable instead of Local Parameter.

Note: It is advised to use the commands Axiom, Conjecture and Hypothesis (and their plural forms) for logical
postulates (i.e. when the assertion type is of sort Prop), and to use the commands Parameter and Variable (and
their plural forms) in other cases (corresponding to the declaration of an abstract mathematical entity).

See also:
Section Section mechanism.
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Definitions

Definitions extend the environment with associations of names to terms. A definition can be seen as a way to give a
meaning to a name or as a way to abbreviate a term. In any case, the name can later be replaced at any time by its
definition.
The operation of unfolding a name into its definition is called 𝛿-conversion (see Section δ-reduction). A definition is
accepted by the system if and only if the defined term is well-typed in the current context of the definition and if the
name is not already used. The name defined by the definition is called a constant and the term it refers to is its body. A
definition has a type which is the type of its body.
A formal presentation of constants and environments is given in Section Typing rules.
Command: Definition ident := term

This command binds term to the name ident in the environment, provided that term is well-typed.
Error: ident already exists.

Variant: Definition ident : type := term
This variant checks that the type of term is definitionally equal to type, and registers ident as being of
type type, and bound to value term.
Error: The term term has type type while it is expected to have type type'.

Variant: Definition ident binders : type
?

:= term
This is equivalent to Definition ident : forall binders, type := fun
binders => term.

Variant: Local Definition ident binders
?

: type
?

:= term
Such definitions are never made accessible through their unqualified name by Import and its variants. You
have to explicitly give their fully qualified name to refer to them.

Variant: Local
?

Example ident binders
?

: type
?

:= term
This is equivalent to Definition.

Variant: Let ident := term
Outside of any section, this variant is a synonym of Local Definition ident := term. For its
meaning inside a section, see Let in Section mechanism.
Warning: ident is declared as a local definition [local-declaration,scope]

Warning generated when using Let instead of Local Definition.
See also:
Section Section mechanism, commands Opaque, Transparent, and tactic unfold.

Inductive definitions

Wegradually explain simple inductive types, simple annotated inductive types, simple parametric inductive types, mutually
inductive types. We explain also co-inductive types.

Simple inductive types

Command: Inductive ident : sort
?

:= |
?

ident : type | ident : type
*

This command defines a simple inductive type and its constructors. The first ident is the name of the inductively
defined type and sort is the universe where it lives. The next idents are the names of its constructors and type
their respective types. Depending on the universe where the inductive type ident lives (e.g. its type sort),
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Coq provides a number of destructors. Destructors are named ident_sind,:token:ident_ind, ident_rec
or ident_rect which respectively correspond to elimination principles on SProp, Prop, Set and Type.
The type of the destructors expresses structural induction/recursion principles over objects of type ident. The
constant ident_ind is always provided, whereas ident_rec and ident_rect can be impossible to derive
(for example, when ident is a proposition).
Error: Non strictly positive occurrence of ident in type.

The types of the constructors have to satisfy a positivity condition (see Section Positivity Condition). This
condition ensures the soundness of the inductive definition. The positivity checking can be disabled using the
Positivity Checking flag (see Controlling Typing Flags).

Error: The conclusion of type is not valid; it must be built from ident.
The conclusion of the type of the constructors must be the inductive type ident being defined (or ident
applied to arguments in the case of annotated inductive types — cf. next section).

Example
The set of natural numbers is defined as:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

nat is defined
nat_rect is defined
nat_ind is defined
nat_rec is defined
nat_sind is defined

The type nat is defined as the least Set containing O and closed by the S constructor. The names nat, O and S
are added to the environment.
Now let us have a look at the elimination principles. They are three of them: nat_ind, nat_rec and
nat_rect. The type of nat_ind is:

Check nat_ind.
nat_ind

: forall P : nat -> Prop,
P O -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

This is the well known structural induction principle over natural numbers, i.e. the second-order form of Peano’s
induction principle. It allows proving some universal property of natural numbers (forall n:nat, P n) by
induction on n.
The types of nat_rec and nat_rect are similar, except that they pertain to (P:nat->Set) and
(P:nat->Type) respectively. They correspond to primitive induction principles (allowing dependent types)
respectively over sorts Set and Type.

Variant: Inductive ident : sort
?

:= |
?

ident binders
?

: type
?

*

|
Constructors idents can come with binders in which case, the actual type of the constructor is forall
binders, type.
In the case where inductive types have no annotations (next section gives an example of such annotations), a
constructor can be defined by only giving the type of its arguments.

Example
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Inductive nat : Set := O | S (_:nat).

Simple annotated inductive types

In an annotated inductive types, the universe where the inductive type is defined is no longer a simple sort, but what is
called an arity, which is a type whose conclusion is a sort.

Example
As an example of annotated inductive types, let us define the even predicate:

Inductive even : nat -> Prop :=
| even_0 : even O
| even_SS : forall n:nat, even n -> even (S (S n)).

even is defined
even_ind is defined
even_sind is defined

The type nat->Prop means that even is a unary predicate (inductively defined) over natural numbers. The type of its
two constructors are the defining clauses of the predicate even. The type of even_ind is:

Check even_ind.
even_ind

: forall P : nat -> Prop,
P O ->
(forall n : nat, even n -> P n -> P (S (S n))) ->
forall n : nat, even n -> P n

From a mathematical point of view it asserts that the natural numbers satisfying the predicate even are exactly in the
smallest set of naturals satisfying the clauses even_0 or even_SS. This is why, when we want to prove any predicate
P over elements of even, it is enough to prove it for O and to prove that if any natural number n satisfies P its double
successor (S (S n)) satisfies also P. This is indeed analogous to the structural induction principle we got for nat.

Parameterized inductive types

Variant: Inductive ident binders : type
?

:= |
?

ident : type | ident : type
*

In the previous example, each constructor introduces a different instance of the predicate even. In some cases,
all the constructors introduce the same generic instance of the inductive definition, in which case, instead of an
annotation, we use a context of parameters which are binders shared by all the constructors of the definition.
Parameters differ from inductive type annotations in the fact that the conclusion of each type of constructor invoke
the inductive type with the same values of parameters as its specification.

Example
A typical example is the definition of polymorphic lists:

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.
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In the type of nil and cons, we write (list A) and not just list. The constructors nil and cons will
have respectively types:

Check nil.
nil

: forall A : Set, list A

Check cons.
cons

: forall A : Set, A -> list A -> list A

Types of destructors are also quantified with (A:Set).
Once again, it is possible to specify only the type of the arguments of the constructors, and to omit the type of the
conclusion:

Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A).

Note:
• It is possible in the type of a constructor, to invoke recursively the inductive definition on an argument which is not
the parameter itself.
One can define :

Inductive list2 (A:Set) : Set :=
| nil2 : list2 A
| cons2 : A -> list2 (A*A) -> list2 A.

list2 is defined
list2_rect is defined
list2_ind is defined
list2_rec is defined
list2_sind is defined

that can also be written by specifying only the type of the arguments:

Inductive list2 (A:Set) : Set := nil2 | cons2 (_:A) (_:list2 (A*A)).
list2 is defined
list2_rect is defined
list2_ind is defined
list2_rec is defined
list2_sind is defined

But the following definition will give an error:

Fail Inductive listw (A:Set) : Set :=
| nilw : listw (A*A)
| consw : A -> listw (A*A) -> listw (A*A).

The command has indeed failed with message:
Last occurrence of "listw" must have "A" as 1st argument in
"listw (A * A)%type".

because the conclusion of the type of constructors should be listw A in both cases.
• A parameterized inductive definition can be defined using annotations instead of parameters but it will sometimes
give a different (bigger) sort for the inductive definition and will produce a less convenient rule for case elimination.
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Flag: Uniform Inductive Parameters
When this flag is set (it is off by default), inductive definitions are abstracted over their parameters before type
checking constructors, allowing to write:

Set Uniform Inductive Parameters.
Inductive list3 (A:Set) : Set :=
| nil3 : list3
| cons3 : A -> list3 -> list3.

list3 is defined
list3_rect is defined
list3_ind is defined
list3_rec is defined
list3_sind is defined

This behavior is essentially equivalent to starting a new section and using Context to give the uniform parameters,
like so (cf. Section mechanism):

Section list3.
Context (A:Set).

A is declared

Inductive list3 : Set :=
| nil3 : list3
| cons3 : A -> list3 -> list3.

list3 is defined
list3_rect is defined
list3_ind is defined
list3_rec is defined
list3_sind is defined

End list3.

See also:
Section Inductive Definitions and the induction tactic.

Variants

Command: Variant ident binders : type
?

:= |
?

ident : type | ident : type
*

The Variant command is identical to the Inductive command, except that it disallows recursive definition
of types (for instance, lists cannot be defined using Variant). No induction scheme is generated for this variant,
unless the Nonrecursive Elimination Schemes flag is on.
Error: The num th argument of ident must be ident in type.

Mutually defined inductive types

Variant: Inductive ident : type
?

:= |
?

ident : type
*

|
with |

?
ident : type

?
*

|

*

This variant allows defining a block of mutually inductive types. It has the same semantics as the above
Inductive definition for each ident. All ident are simultaneously added to the environment. Then well-
typing of constructors can be checked. Each one of the ident can be used on its own.
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Variant: Inductive ident binders : type
?

:= |
?

ident : type
*

|
with |

?
ident binders : type

?
*

|

*

In this variant, the inductive definitions are parameterized with binders. However, parameters correspond
to a local context in which the whole set of inductive declarations is done. For this reason, the parameters
must be strictly the same for each inductive types.

Example
The typical example of a mutual inductive data type is the one for trees and forests. We assume given two types A and B
as variables. It can be declared the following way.

Parameters A B : Set.
Inductive tree : Set := node : A -> forest -> tree

with forest : Set :=
| leaf : B -> forest
| cons : tree -> forest -> forest.

This declaration generates automatically six induction principles. They are respectively called tree_rec, tree_ind,
tree_rect, forest_rec, forest_ind, forest_rect. These ones are not the most general ones but are just
the induction principles corresponding to each inductive part seen as a single inductive definition.
To illustrate this point on our example, we give the types of tree_rec and forest_rec.

Check tree_rec.
tree_rec

: forall P : tree -> Set,
(forall (a : A) (f : forest), P (node a f)) -> forall t : tree, P t

Check forest_rec.
forest_rec

: forall P : forest -> Set,
(forall b : B, P (leaf b)) ->
(forall (t : tree) (f0 : forest), P f0 -> P (cons t f0)) ->
forall f1 : forest, P f1

Assume we want to parameterize our mutual inductive definitions with the two type variables A and B, the declaration
should be done the following way:

Inductive tree (A B:Set) : Set := node : A -> forest A B -> tree A B

with forest (A B:Set) : Set :=
| leaf : B -> forest A B
| cons : tree A B -> forest A B -> forest A B.

Assumewe define an inductive definition inside a section (cf. Sectionmechanism). When the section is closed, the variables
declared in the section and occurring free in the declaration are added as parameters to the inductive definition.

See also:
A generic command Scheme is useful to build automatically various mutual induction principles.
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Co-inductive types

The objects of an inductive type are well-founded with respect to the constructors of the type. In other words, such objects
contain only a finite number of constructors. Co-inductive types arise from relaxing this condition, and admitting types
whose objects contain an infinity of constructors. Infinite objects are introduced by a non-ending (but effective) process
of construction, defined in terms of the constructors of the type.

Command: CoInductive ident binders : type
?

:= |
?

ident : type | ident : type
*

This command introduces a co-inductive type. The syntax of the command is the same as the command
Inductive. No principle of induction is derived from the definition of a co-inductive type, since such prin-
ciples only make sense for inductive types. For co-inductive types, the only elimination principle is case analysis.

Example
An example of a co-inductive type is the type of infinite sequences of natural numbers, usually called streams.

CoInductive Stream : Set := Seq : nat -> Stream -> Stream.

The usual destructors on streams hd:Stream->nat and tl:Str->Str can be defined as follows:

Definition hd (x:Stream) := let (a,s) := x in a.
Definition tl (x:Stream) := let (a,s) := x in s.

Definition of co-inductive predicates and blocks of mutually co-inductive definitions are also allowed.

Example
An example of a co-inductive predicate is the extensional equality on streams:

CoInductive EqSt : Stream -> Stream -> Prop :=
eqst : forall s1 s2:Stream,

hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.

In order to prove the extensional equality of two streams s1 and s2 we have to construct an infinite proof of equality,
that is, an infinite object of type (EqSt s1 s2). We will see how to introduce infinite objects in Section Definitions
of recursive objects in co-inductive types.

Caveat

The ability to define co-inductive types by constructors, hereafter called positive co-inductive types, is known to break
subject reduction. The story is a bit long: this is due to dependent pattern-matching which implies propositional η-
equality, which itself would require full η-conversion for subject reduction to hold, but full η-conversion is not acceptable
as it would make type-checking undecidable.
Since the introduction of primitive records in Coq 8.5, an alternative presentation is available, called negative co-inductive
types. This consists in defining a co-inductive type as a primitive record type through its projections. Such a technique is
akin to the co-pattern style that can be found in e.g. Agda, and preserves subject reduction.
The above example can be rewritten in the following way.

Set Primitive Projections.
CoInductive Stream : Set := Seq { hd : nat; tl : Stream }.

Stream is defined

(continues on next page)
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(continued from previous page)
hd is defined
tl is defined

CoInductive EqSt (s1 s2: Stream) : Prop := eqst {
eqst_hd : hd s1 = hd s2;
eqst_tl : EqSt (tl s1) (tl s2);

}.
EqSt is defined
eqst_hd is defined
eqst_tl is defined

Some properties that hold over positive streams are lost when going to the negative presentation, typically when they
imply equality over streams. For instance, propositional η-equality is lost when going to the negative presentation. It is
nonetheless logically consistent to recover it through an axiom.

Axiom Stream_eta : forall s: Stream, s = Seq (hd s) (tl s).
Stream_eta is declared

More generally, as in the case of positive coinductive types, it is consistent to further identify extensional equality of
coinductive types with propositional equality:

Axiom Stream_ext : forall (s1 s2: Stream), EqSt s1 s2 -> s1 = s2.
Stream_ext is declared

As of Coq 8.9, it is now advised to use negative co-inductive types rather than their positive counterparts.
See also:
Primitive Projections for more information about negative records and primitive projections.

Definition of recursive functions

Definition of functions by recursion over inductive objects

This section describes the primitive form of definition by recursion over inductive objects. See the Function command
for more advanced constructions.

Command: Fixpoint ident binders {struct ident}
?

: type
?

:= term
This command allows defining functions by pattern matching over inductive objects using a fixed point construction.
The meaning of this declaration is to define ident a recursive function with arguments specified by the binders
such that ident applied to arguments corresponding to these binders has type type, and is equivalent to the
expression term. The type of ident is consequently forall binders, type and its value is equivalent
to fun binders => term.
To be accepted, a Fixpoint definition has to satisfy some syntactical constraints on a special argument called the
decreasing argument. They are needed to ensure that the Fixpoint definition always terminates. The point of
the {struct ident} annotation is to let the user tell the system which argument decreases along the recursive
calls.
The {struct ident} annotation may be left implicit, in this case the system tries successively arguments from
left to right until it finds one that satisfies the decreasing condition.

Note:
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• Some fixpoints may have several arguments that fit as decreasing arguments, and this choice influences the
reduction of the fixpoint. Hence an explicit annotation must be used if the leftmost decreasing argument is
not the desired one. Writing explicit annotations can also speed up type checking of large mutual fixpoints.

• In order to keep the strong normalization property, the fixed point reduction will only be performed when the
argument in position of the decreasing argument (which type should be in an inductive definition) starts with
a constructor.

Example
One can define the addition function as :

Fixpoint add (n m:nat) {struct n} : nat :=
match n with
| O => m
| S p => S (add p m)
end.

add is defined
add is recursively defined (decreasing on 1st argument)

The match operator matches a value (here n) with the various constructors of its (inductive) type. The remaining
arguments give the respective values to be returned, as functions of the parameters of the corresponding constructor.
Thus here when n equals O we return m, and when n equals (S p) we return (S (add p m)).
The match operator is formally described in Section The match ... with ... end construction. The system recognizes
that in the inductive call (add p m) the first argument actually decreases because it is a pattern variable coming
from match n with.

Example
The following definition is not correct and generates an error message:

Fail Fixpoint wrongplus (n m:nat) {struct n} : nat :=
match m with
| O => n
| S p => S (wrongplus n p)
end.

The command has indeed failed with message:
Recursive definition of wrongplus is ill-formed.
In environment
wrongplus : nat -> nat -> nat
n : nat
m : nat
p : nat
Recursive call to wrongplus has principal argument equal to
"n" instead of a subterm of "n".
Recursive definition is:
"fun n m : nat => match m with

| 0 => n
| S p => S (wrongplus n p)
end".

because the declared decreasing argumentn does not actually decrease in the recursive call. The function computing
the addition over the second argument should rather be written:
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Fixpoint plus (n m:nat) {struct m} : nat :=
match m with
| O => n
| S p => S (plus n p)
end.

plus is defined
plus is recursively defined (decreasing on 2nd argument)

Example
The recursive call may not only be on direct subterms of the recursive variable n but also on a deeper subterm and
we can directly write the function mod2 which gives the remainder modulo 2 of a natural number.

Fixpoint mod2 (n:nat) : nat :=
match n with
| O => O
| S p => match p with

| O => S O
| S q => mod2 q
end

end.
mod2 is defined
mod2 is recursively defined (decreasing on 1st argument)

Variant: Fixpoint ident binders {struct ident}
?

: type
?

:= term with ident binders : type
?

:= term

*

This variant allows defining simultaneously several mutual fixpoints. It is especially useful when defining
functions over mutually defined inductive types.

Example
The size of trees and forests can be defined the following way:

Fixpoint tree_size (t:tree) : nat :=
match t with
| node a f => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| leaf b => 1
| cons t f' => (tree_size t + forest_size f')
end.

tree_size is defined
forest_size is defined
tree_size, forest_size are recursively defined
(decreasing respectively on 1st, 1st arguments)

Definitions of recursive objects in co-inductive types

Command: CoFixpoint ident binders
?

: type
?

:= term
This command introduces a method for constructing an infinite object of a coinductive type. For example, the
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stream containing all natural numbers can be introduced applying the following method to the number O (see
Section Co-inductive types for the definition of Stream, hd and tl):

CoFixpoint from (n:nat) : Stream := Seq n (from (S n)).
from is defined
from is corecursively defined

Oppositely to recursive ones, there is no decreasing argument in a co-recursive definition. To be admissible, a
method of construction must provide at least one extra constructor of the infinite object for each iteration. A
syntactical guard condition is imposed on co-recursive definitions in order to ensure this: each recursive call in the
definition must be protected by at least one constructor, and only by constructors. That is the case in the former
definition, where the single recursive call of from is guarded by an application of Seq. On the contrary, the
following recursive function does not satisfy the guard condition:

Fail CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream :=
if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s).
The command has indeed failed with message:
Recursive definition of filter is ill-formed.
In environment
filter : (nat -> bool) -> Stream -> Stream
p : nat -> bool
s : Stream
Unguarded recursive call in "filter p (tl s)".
Recursive definition is:
"fun (p : nat -> bool) (s : Stream) =>
if p (hd s)
then {| hd := hd s; tl := filter p (tl s) |}
else filter p (tl s)".

The elimination of co-recursive definition is done lazily, i.e. the definition is expanded only when it occurs at the
head of an application which is the argument of a case analysis expression. In any other context, it is considered as
a canonical expression which is completely evaluated. We can test this using the command Eval, which computes
the normal forms of a term:

Eval compute in (from 0).
= (cofix from (n : nat) : Stream := {| hd := n; tl := from (S n) |}) 0

: Stream

Eval compute in (hd (from 0)).
= 0

: nat

Eval compute in (tl (from 0)).
= (cofix from (n : nat) : Stream := {| hd := n; tl := from (S n) |}) 1

: Stream

Variant: CoFixpoint ident binders
?

: type
?

:= term with ident binders
?

: type
?

:= term

*

As in the Fixpoint command, it is possible to introduce a block of mutually dependent methods.

Assertions and proofs

An assertion states a proposition (or a type) of which the proof (or an inhabitant of the type) is interactively built using
tactics. The interactive proof mode is described in Chapter Proof handling and the tactics in Chapter Tactics. The basic
assertion command is:
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Command: Theorem ident binders
?

: type
After the statement is asserted, Coq needs a proof. Once a proof of type under the assumptions represented by
binders is given and validated, the proof is generalized into a proof of forall binders, type and the
theorem is bound to the name ident in the environment.
Error: The term term has type type which should be Set, Prop or Type.

Error: ident already exists.
The name you provided is already defined. You have then to choose another name.

Error: Nested proofs are not allowed unless you turn the Nested Proofs Allowed flag on.
You are asserting a new statement while already being in proof editing mode. This feature, called nested
proofs, is disabled by default. To activate it, turn the Nested Proofs Allowed flag on.

Variant: Lemma ident binders
?

: type

Variant: Remark ident binders
?

: type

Variant: Fact ident binders
?

: type

Variant: Corollary ident binders
?

: type

Variant: Proposition ident binders
?

: type

These commands are all synonyms of Theorem ident binders
?

: type.

Variant: Theorem ident binders
?

: type with ident binders
?

: type

*

This command is useful for theorems that are proved by simultaneous induction over a mutually inductive assump-
tion, or that assert mutually dependent statements in some mutual co-inductive type. It is equivalent to Fixpoint
or CoFixpoint but using tactics to build the proof of the statements (or the body of the specification, depending
on the point of view). The inductive or co-inductive types on which the induction or coinduction has to be done is
assumed to be non ambiguous and is guessed by the system.
Like in a Fixpoint or CoFixpoint definition, the induction hypotheses have to be used on structurally smaller
arguments (for a Fixpoint) or be guarded by a constructor (for a CoFixpoint). The verification that recursive
proof arguments are correct is done only at the time of registering the lemma in the environment. To know if the
use of induction hypotheses is correct at some time of the interactive development of a proof, use the command
Guarded.
The command can be used also with Lemma, Remark, etc. instead of Theorem.

Variant: Definition ident binders
?

: type
This allows defining a term of type type using the proof editing mode. It behaves as Theorem but is intended to
be used in conjunction with Defined in order to define a constant of which the computational behavior is relevant.
The command can be used also with Example instead of Definition.
See also:
Opaque, Transparent, unfold.

Variant: Let ident binders
?

: type

Like Definition ident binders
?

: type except that the definition is turned into a let-in definition
generalized over the declarations depending on it after closing the current section.

Variant: Fixpoint ident binders : type with ident binders : type
*

This generalizes the syntax of Fixpoint so that one or more bodies can be defined interactively using the proof
editing mode (when a body is omitted, its type is mandatory in the syntax). When the block of proofs is completed,
it is intended to be ended by Defined.
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Variant: CoFixpoint ident binders
?

: type with ident binders
?

: type

*

This generalizes the syntax of CoFixpoint so that one or more bodies can be defined interactively using the
proof editing mode.

A proof starts by the keyword Proof. Then Coq enters the proof editing mode until the proof is completed. The proof
editing mode essentially contains tactics that are described in chapter Tactics. Besides tactics, there are commands to
manage the proof editing mode. They are described in Chapter Proof handling.
When the proof is completed it should be validated and put in the environment using the keyword Qed.

Note:
1. Several statements can be simultaneously asserted provided the Nested Proofs Allowed flag was turned

on.
2. Not only other assertions but any vernacular command can be given while in the process of proving a given assertion.

In this case, the command is understood as if it would have been given before the statements still to be proved.
Nonetheless, this practice is discouraged and may stop working in future versions.

3. Proofs ended by Qed are declared opaque. Their content cannot be unfolded (see Performing computations), thus
realizing some form of proof-irrelevance. To be able to unfold a proof, the proof should be ended by Defined.

4. Proof is recommended but can currently be omitted. On the opposite side, Qed (or Defined) is mandatory to
validate a proof.

5. One can also use Admitted in place of Qed to turn the current asserted statement into an axiom and exit the
proof editing mode.

Attributes

Any vernacular command can be decorated with a list of attributes, enclosed between #[ (hash and opening square
bracket) and ] (closing square bracket) and separated by commas ,. Multiple space-separated blocks may be provided.
Each attribute has a name (an identifier) and may have a value. A value is either a string (in which case it is specified
with an equal = sign), or a list of attributes, enclosed within brackets.
Some attributes are specific to a command, and so are described with that command. Currently, the following attributes
are recognized by a variety of commands:
universes(monomorphic), universes(polymorphic) Equivalent to the Monomorphic and

Polymorphic flags (see Polymorphic Universes).
program Takes no value, equivalent to the Program flag (see Program).
global, local Take no value, equivalent to the Global and Local flags (see Controlling the locality of commands).
deprecated Takes as value the optional attributes since and note; both have a string value.

This attribute is supported by the following commands: Ltac, Tactic Notation, Notation, Infix.
It can trigger the following warnings:
Warning: Tactic qualid is deprecated since string. string.

Warning: Tactic Notation qualid is deprecated since string. string.

Warning: Notation string1 is deprecated since string2. string3.
string1 is the actual notation, string2 is the version number, string3 is the note.
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Example

From Coq Require Program.
[Loading ML file extraction_plugin.cmxs ... done]

#[program] Definition one : nat := S _.
one has type-checked, generating 1 obligation
Solving obligations automatically...
1 obligation remaining
Obligation 1 of one: nat.

Next Obligation.
1 subgoal

============================
nat

exact O.
No more subgoals.

Defined.
#[deprecated(since="8.9.0", note="Use idtac instead.")]
Ltac foo := idtac.

foo is defined

Goal True.
1 subgoal

============================
True

Proof.
now foo.

Toplevel input, characters 4-7:
> now foo.
> ^^^
Warning: Tactic foo is deprecated since 8.9.0. Use idtac instead.
[deprecated-tactic,deprecated]
No more subgoals.

Abort.

Warning: Unsupported attribute
This warning is an error by default. It is caused by using a command with some attribute it does not understand.

4.2 Extensions of Gallina

Gallina is the kernel language of Coq. We describe here extensions of Gallina’s syntax.

4.2.1 Record types

The Record construction is a macro allowing the definition of records as is done in many programming languages. Its
syntax is described in the grammar below. In fact, the Record macro is more general than the usual record types, since
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it allows also for “manifest” expressions. In this sense, the Record construction allows defining “signatures”.

record ::= record_keyword record_body with … with record_body
record_keyword ::= Record | Inductive | CoInductive
record_body ::= ident [ binders ] [: sort ] := [ ident ] { [ field ; … ; field ] }.
field ::= ident [ binders ] : type [ where notation ]

ident [ binders ] [: type ] := term

Command: Record ident binders : sort
?

:= ident
?

{ ident binders : type
*

;
}

The first identifier ident is the name of the defined record and sort is its type. The optional identifier following
:= is the name of its constructor. If it is omitted, the default name Build_ident, where ident is the record
name, is used. If sort is omitted, the default sort is Type. The identifiers inside the brackets are the names of
fields. For a given field ident, its type is forall binders, type. Remark that the type of a particular
identifier may depend on a previously-given identifier. Thus the order of the fields is important. Finally, binders
are parameters of the record.

More generally, a record may have explicitly defined (a.k.a. manifest) fields. For instance, we might have: Record
ident binders : sort := { ident1 : type1 ; ident2 := term2 ; ident3 : type3 }. in
which case the correctness of type3 may rely on the instance term2 of ident2 and term2 may in turn depend on
ident1.

Example
The set of rational numbers may be defined as:

Record Rat : Set := mkRat
{ sign : bool
; top : nat
; bottom : nat
; Rat_bottom_cond : 0 <> bottom
; Rat_irred_cond :

forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1
}.

Rat is defined
sign is defined
top is defined
bottom is defined
Rat_bottom_cond is defined
Rat_irred_cond is defined

Note here that the fields Rat_bottom_cond depends on the field bottom and Rat_irred_cond depends on both
top and bottom.

Let us now see the work done by the Record macro. First the macro generates a variant type definition with just one
constructor: Variant ident binders

?
: sort := ident0 binders

? .
To build an object of type ident, one should provide the constructor ident0 with the appropriate number of terms
filling the fields of the record.

Example
Let us define the rational 1/2:
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Theorem one_two_irred : forall x y z:nat, x * y = 1 /\ x * z = 2 -> x = 1.
Admitted.
Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
Check half.

record_term ::= {| [field_def ; … ; field_def] |}
field_def ::= ident [binders] := term

Alternatively, the following syntax allows creating objects by using named fields, as shown in this grammar. The fields do
not have to be in any particular order, nor do they have to be all present if the missing ones can be inferred or prompted
for (see Program).

Definition half' :=
{| sign := true;

Rat_bottom_cond := O_S 1;
Rat_irred_cond := one_two_irred |}.

half' is defined

The following settings let you control the display format for types:
Flag: Printing Records

If set, use the record syntax (shown above) as the default display format.
You can override the display format for specified types by adding entries to these tables:
Table: Printing Record qualid

Specifies a set of qualids which are displayed as records. Use the Add @table and Remove @table com-
mands to update the set of qualids.

Table: Printing Constructor qualid
Specifies a set of qualids which are displayed as constructors. Use the Add @table and Remove @table
commands to update the set of qualids.

This syntax can also be used for pattern matching.

Eval compute in (
match half with
| {| sign := true; top := n |} => n
| _ => 0
end).
= 1

: nat

The macro generates also, when it is possible, the projection functions for destructuring an object of type ident. These
projection functions are given the names of the corresponding fields. If a field is named _ then no projection is built for
it. In our example:

Eval compute in top half.
= 1

: nat

Eval compute in bottom half.
= 2

: nat

(continues on next page)
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(continued from previous page)
Eval compute in Rat_bottom_cond half.

= O_S 1
: 0 <> bottom half

An alternative syntax for projections based on a dot notation is available:

Eval compute in half.(top).
= 1

: nat

Flag: Printing Projections
This flag activates the dot notation for printing.

Example

Set Printing Projections.
Check top half.

half.(top)
: nat

projection ::= term `.` ( qualid )
term `.` ( qualid arg … arg )
term `.` ( @qualid term … term )

Syntax of Record projections
The corresponding grammar rules are given in the preceding grammar. When qualid denotes a projection, the syntax
term.(qualid) is equivalent to qualid term, the syntax term.(qualid arg

+
) to qualid arg

+

term. and the syntax term.(@qualid term
+
) to @qualid term

+
term. In each case, term is the

object projected and the other arguments are the parameters of the inductive type.

Note: Records defined with the Record keyword are not allowed to be recursive (references to the record’s name in
the type of its field raises an error). To define recursive records, one can use the Inductive and CoInductive
keywords, resulting in an inductive or co-inductive record. Definition of mutually inductive or co-inductive records are
also allowed, as long as all of the types in the block are records.

Note: Induction schemes are automatically generated for inductive records. Automatic generation of induction
schemes for non-recursive records defined with the Record keyword can be activated with the Nonrecursive
Elimination Schemes flag (see Generation of induction principles with Scheme).

Note: Structure is a synonym of the keyword Record.

Warning: ident cannot be defined.
It can happen that the definition of a projection is impossible. This message is followed by an explanation of this
impossibility. There may be three reasons:
1. The name ident already exists in the environment (see Axiom).
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2. The body of ident uses an incorrect elimination for ident (see Fixpoint and Destructors).
3. The type of the projections ident depends on previous projections which themselves could not be defined.

Error: Records declared with the keyword Record or Structure cannot be recursive.
The record name ident appears in the type of its fields, but uses the keyword Record. Use the keyword
Inductive or CoInductive instead.

Error: Cannot handle mutually (co)inductive records.
Records cannot be defined as part of mutually inductive (or co-inductive) definitions, whether with records only or
mixed with standard definitions.

During the definition of the one-constructor inductive definition, all the errors of inductive definitions, as described in
Section Inductive definitions, may also occur.
See also:
Coercions and records in section Classes as Records of the chapter devoted to coercions.

Primitive Projections

Flag: Primitive Projections
Turns on the use of primitive projections when defining subsequent records (even through the Inductive and
CoInductive commands). Primitive projections extended the Calculus of Inductive Constructions with a new
binary term constructor r.(p) representing a primitive projection p applied to a record object r (i.e., primitive
projections are always applied). Even if the record type has parameters, these do not appear in the internal represen-
tation of applications of the projection, considerably reducing the sizes of terms when manipulating parameterized
records and type checking time. On the user level, primitive projections can be used as a replacement for the usual
defined ones, although there are a few notable differences.

Flag: Printing Primitive Projection Parameters
This compatibility flag reconstructs internally omitted parameters at printing time (even though they are absent in
the actual AST manipulated by the kernel).

Primitive Record Types

When the Primitive Projections flag is on, definitions of record types change meaning. When a type is declared
with primitive projections, its match construct is disabled (see Primitive Projections though). To eliminate the (co-
)inductive type, one must use its defined primitive projections.
For compatibility, the parameters still appear to the user when printing terms even though they are absent in the ac-
tual AST manipulated by the kernel. This can be changed by unsetting the Printing Primitive Projection
Parameters flag.
There are currently two ways to introduce primitive records types:

1. Through the Record command, in which case the type has to be non-recursive. The defined type enjoys eta-
conversion definitionally, that is the generalized form of surjective pairing for records: r = Build_R (r.(p1)
… r.(p𝑛)). Eta-conversion allows to define dependent elimination for these types as well.

2. Through the Inductive and CoInductive commands, when the body of the definition is a record declaration
of the form Build_R { p1 : t1; … ; p𝑛 : t𝑛 }. In this case the types can be recursive and eta-conversion is
disallowed. These kind of record types differ from their traditional versions in the sense that dependent elimination
is not available for them and only non-dependent case analysis can be defined.
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Reduction

The basic reduction rule of a primitive projection is p𝑖 (Build_R t1 … t𝑛) →𝜄 t𝑖. However, to take the 𝛿 flag
into account, projections can be in two states: folded or unfolded. An unfolded primitive projection application obeys
the rule above, while the folded version delta-reduces to the unfolded version. This allows to precisely mimic the usual
unfolding rules of constants. Projections obey the usual simpl flags of the Arguments command in particular. There
is currently no way to input unfolded primitive projections at the user-level, and there is no way to display unfolded
projections differently from folded ones.

Compatibility Projections and match

To ease compatibility with ordinary record types, each primitive projection is also defined as a ordinary constant taking
parameters and an object of the record type as arguments, and whose body is an application of the unfolded primitive
projection of the same name. These constants are used when elaborating partial applications of the projection. One
can distinguish them from applications of the primitive projection if the Printing Primitive Projection
Parameters flag is off: For a primitive projection application, parameters are printed as underscores while for the
compatibility projections they are printed as usual.
Additionally, user-written match constructs on primitive records are desugared into substitution of the projections, they
cannot be printed back as match constructs.

4.2.2 Variants and extensions of match

Multiple and nested pattern matching

The basic version of match allows pattern matching on simple patterns. As an extension, multiple nested patterns or
disjunction of patterns are allowed, as in ML-like languages.
The extension just acts as a macro that is expanded during parsing into a sequence of match on simple patterns. Espe-
cially, a construction defined using the extended match is generally printed under its expanded form (see Printing
Matching).
See also:
Extended pattern matching.

Pattern-matching on boolean values: the if expression

For inductive types with exactly two constructors and for patternmatching expressions that do not depend on the arguments
of the constructors, it is possible to use a if … then … else notation. For instance, the definition

Definition not (b:bool) :=
match b with
| true => false
| false => true
end.

not is defined

can be alternatively written

Definition not (b:bool) := if b then false else true.
not is defined

More generally, for an inductive type with constructors C1 and C2, we have the following equivalence
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if term [dep_ret_type] then term1 else term2 ≡
match term [dep_ret_type] with
| C1 _ … _ => term1
| C2 _ … _ => term2
end

Example

Check (fun x (H:{x=0}+{x<>0}) =>
match H with
| left _ => true
| right _ => false
end).

fun (x : nat) (H : {x = 0} + {x <> 0}) => if H then true else false
: forall x : nat, {x = 0} + {x <> 0} -> bool

Notice that the printing uses the if syntax because sumbool is declared as such (see Controlling pretty-printing of match
expressions).

Irrefutable patterns: the destructuring let variants

Pattern-matching on terms inhabiting inductive type having only one constructor can be alternatively written using let
… in … constructions. There are two variants of them.

First destructuring let syntax

The expression let (ident1, … , ident𝑛) := term0in term1 performs case analysis on term0 which must
be in an inductive type with one constructor having itself 𝑛 arguments. Variables ident1 … ident𝑛 are bound to the
𝑛 arguments of the constructor in expression term1. For instance, the definition

Definition fst (A B:Set) (H:A * B) := match H with
| pair x y => x
end.

fst is defined

can be alternatively written

Definition fst (A B:Set) (p:A * B) := let (x, _) := p in x.
fst is defined

Notice that reduction is different from regular let … in … construction since it happens only if term0 is in constructor
form. Otherwise, the reduction is blocked.
The pretty-printing of a definition by matching on a irrefutable pattern can either be done using match or the let
construction (see Section Controlling pretty-printing of match expressions).
If term inhabits an inductive type with one constructor C, we have an equivalence between

let (ident1, …, ident�) [dep_ret_type] := term in term'

and
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match term [dep_ret_type] with
C ident1 … ident� => term'
end

Second destructuring let syntax

Another destructuring let syntax is available for inductive types with one constructor by giving an arbitrary pattern instead
of just a tuple for all the arguments. For example, the preceding example can be written:

Definition fst (A B:Set) (p:A*B) := let 'pair x _ := p in x.
fst is defined

This is useful to match deeper inside tuples and also to use notations for the pattern, as the syntax let ’p := t in
b allows arbitrary patterns to do the deconstruction. For example:

Definition deep_tuple (A:Set) (x:(A*A)*(A*A)) : A*A*A*A :=
let '((a,b), (c, d)) := x in (a,b,c,d).

deep_tuple is defined

Notation " x 'With' p " := (exist _ x p) (at level 20).
Identifier 'With' now a keyword

Definition proj1_sig' (A:Set) (P:A->Prop) (t:{ x:A | P x }) : A :=
let 'x With p := t in x.

proj1_sig' is defined

When printing definitions which are written using this construct it takes precedence over let printing directives for the
datatype under consideration (see Section Controlling pretty-printing of match expressions).

Controlling pretty-printing of match expressions

The following commands give some control over the pretty-printing of match expressions.

Printing nested patterns

Flag: Printing Matching
The Calculus of Inductive Constructions knows patternmatching only over simple patterns. It is however convenient
to re-factorize nested pattern matching into a single pattern matching over a nested pattern.
When this flag is on (default), Coq’s printer tries to do such limited re-factorization. Turning it off tells Coq to print
only simple pattern matching problems in the same way as the Coq kernel handles them.

Factorization of clauses with same right-hand side

Flag: Printing Factorizable Match Patterns
When several patterns share the same right-hand side, it is additionally possible to share the clauses using disjunctive
patterns. Assuming that the printing matching mode is on, this flag (on by default) tells Coq’s printer to try to do
this kind of factorization.
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Use of a default clause

Flag: Printing Allow Match Default Clause
When several patterns share the same right-hand side which do not depend on the arguments of the patterns, yet an
extra factorization is possible: the disjunction of patterns can be replaced with a _ default clause. Assuming that
the printing matching mode and the factorization mode are on, this flag (on by default) tells Coq’s printer to use a
default clause when relevant.

Printing of wildcard patterns

Flag: Printing Wildcard
Some variables in a pattern may not occur in the right-hand side of the pattern matching clause. When this flag
is on (default), the variables having no occurrences in the right-hand side of the pattern matching clause are just
printed using the wildcard symbol “_”.

Printing of the elimination predicate

Flag: Printing Synth
In most of the cases, the type of the result of a matched term is mechanically synthesizable. Especially, if the result
type does not depend of the matched term. When this flag is on (default), the result type is not printed when Coq
knows that it can re- synthesize it.

Printing matching on irrefutable patterns

If an inductive type has just one constructor, pattern matching can be written using the first destructuring let syntax.
Table: Printing Let qualid

Specifies a set of qualids for which pattern matching is displayed using a let expression. Note that this only applies
to pattern matching instances entered with match. It doesn’t affect pattern matching explicitly entered with a
destructuring let. Use the Add @table and Remove @table commands to update this set.

Printing matching on booleans

If an inductive type is isomorphic to the boolean type, pattern matching can be written using if… then… else….
This table controls which types are written this way:
Table: Printing If qualid

Specifies a set of qualids for which pattern matching is displayed using if… then… else…. Use the Add
@table and Remove @table commands to update this set.

This example emphasizes what the printing settings offer.

Example

Definition snd (A B:Set) (H:A * B) := match H with
| pair x y => y
end.

snd is defined

Test Printing Let for prod.

(continues on next page)
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(continued from previous page)
Cases on elements of prod are printed using a `let' form

Print snd.
snd =
fun (A B : Set) (H : A * B) => let (_, y) := H in y

: forall A B : Set, A * B -> B

Arguments snd (_ _)%type_scope

Remove Printing Let prod.
Unset Printing Synth.
Unset Printing Wildcard.
Print snd.

snd =
fun (A B : Set) (H : A * B) => match H return B with

| (x, y) => y
end

: forall A B : Set, A * B -> B

Arguments snd (_ _)%type_scope

4.2.3 Advanced recursive functions

The following experimental command is available when the FunInd library has been loaded via Require Import
FunInd:

Command: Function ident binder
*

{ decrease_annot } : type := term
This command can be seen as a generalization of Fixpoint. It is actually a wrapper for several ways of defin-
ing a function and other useful related objects, namely: an induction principle that reflects the recursive structure
of the function (see function induction) and its fixpoint equality. The meaning of this declaration is to
define a function ident, similarly to Fixpoint. Like in Fixpoint, the decreasing argument must be given
(unless the function is not recursive), but it might not necessarily be structurally decreasing. The point of the {
decrease_annot } annotation is to name the decreasing argument and to describe which kind of decreasing
criteria must be used to ensure termination of recursive calls.

decrease_annot ::= struct ident
measure term ident
wf term ident

The Function construction also enjoys the with extension to define mutually recursive definitions. However, this
feature does not work for non structurally recursive functions.
See the documentation of functional induction (function induction) and Functional Scheme (Generation
of induction principles with Functional Scheme) for how to use the induction principle to easily reason about the function.

Note: To obtain the right principle, it is better to put rigid parameters of the function as first arguments. For example it
is better to define plus like this:

Function plus (m n : nat) {struct n} : nat :=
match n with
| 0 => m

(continues on next page)
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(continued from previous page)
| S p => S (plus m p)
end.

plus is defined
plus is recursively defined (decreasing on 2nd argument)
plus_equation is defined
plus_rect is defined
plus_ind is defined
plus_rec is defined
R_plus_correct is defined
R_plus_complete is defined

than like this:

Function plus (n m : nat) {struct n} : nat :=
match n with
| 0 => m
| S p => S (plus p m)
end.

plus is defined
plus is recursively defined (decreasing on 1st argument)
plus_equation is defined
plus_rect is defined
plus_ind is defined
plus_rec is defined
R_plus_correct is defined
R_plus_complete is defined

Limitations

term must be built as a pure pattern matching tree (match … with) with applications only at the end of each branch.
Function does not support partial application of the function being defined. Thus, the following example cannot be
accepted due to the presence of partial application of wrong in the body of wrong:

Function wrong (C:nat) : nat :=
List.hd 0 (List.map wrong (C::nil)).
Toplevel input, characters 0-70:
> Function wrong (C:nat) : nat := List.hd 0 (List.map wrong (C::nil)).
> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Error:
Recursive definition of wrong is ill-formed.
In environment
wrong : nat -> nat
C : nat
Recursive call to wrong has principal argument equal to
"C" instead of a subterm of "C".
Recursive definition is: "fun C : nat => List.hd 0 (List.map wrong [C])".

For now, dependent cases are not treated for non structurally terminating functions.
Error: The recursive argument must be specified.

Error: No argument name ident.

Error: Cannot use mutual definition with well-founded recursion or measure.

Warning: Cannot define graph for ident.
The generation of the graph relation (R_ident) used to compute the induction scheme of ident raised a typing
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error. Only ident is defined; the induction scheme will not be generated. This error happens generally when:
• the definition uses pattern matching on dependent types, which Function cannot deal with yet.
• the definition is not a pattern matching tree as explained above.

Warning: Cannot define principle(s) for ident.
The generation of the graph relation (R_ident) succeeded but the induction principle could not be built. Only
ident is defined. Please report.

Warning: Cannot build functional inversion principle.
functional inversion will not be available for the function.

See also:
Generation of induction principles with Functional Scheme and function induction

Depending on the {…} annotation, different definition mechanisms are used by Function. A more precise description
is given below.

Variant: Function ident binder
*

: type := term
Defines the not recursive function ident as if declared with Definition. Moreover the following are defined:

• ident_rect, ident_rec and ident_ind, which reflect the pattern matching structure of term (see
Inductive);

• The inductive R_ident corresponding to the graph of ident (silently);
• ident_complete and ident_correct which are inversion information linking the function and its
graph.

Variant: Function ident binder
*

{ struct ident } : type := term
Defines the structural recursive function ident as if declared with Fixpoint. Moreover the following are
defined:

• The same objects as above;
• The fixpoint equation of ident: ident_equation.

Variant: Function ident binder
*

{ measure term ident } : type := term

Variant: Function ident binder
*

{ wf term ident } : type := term
Defines a recursive function by well-founded recursion. The module Recdef of the standard library must be
loaded for this feature. The {} annotation is mandatory and must be one of the following:

• {measure term ident }with ident being the decreasing argument and term being a function from
type of ident to nat for which value on the decreasing argument decreases (for the lt order on nat) at
each recursive call of term. Parameters of the function are bound in term;

• {wf term ident } with ident being the decreasing argument and term an ordering relation on the
type of ident (i.e. of type Tident → Tident → Prop) for which the decreasing argument decreases at each
recursive call of term. The order must be well-founded. Parameters of the function are bound in term.

If the annotation is measure or fw, the user is left with some proof obligations that will be used to define the
function. These proofs are: proofs that each recursive call is actually decreasing with respect to the given criteria,
and (if the criteria is wf) a proof that the ordering relation is well-founded. Once proof obligations are discharged,
the following objects are defined:

• The same objects as with the struct;
• The lemma identtcc which collects all proof obligations in one property;
• The lemmas identterminate and identF which is needed to be inlined during extraction of ident.
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The way this recursive function is defined is the subject of several papers by Yves Bertot and Antonia Balaa on the
one hand, and Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu on the other hand. Remark: Proof
obligations are presented as several subgoals belonging to a Lemma identtcc.

4.2.4 Section mechanism

Sections create local contexts which can be shared across multiple definitions.

Example
Sections are opened by the Section command, and closed by End.

Section s1.

Inside a section, local parameters can be introduced using Variable, Hypothesis, or Context (there are also
plural variants for the first two).

Variables x y : nat.
x is declared
y is declared

The command Let introduces section-wide Let-in definitions. These definitions won’t persist when the section is closed,
and all persistent definitions which depend on y' will be prefixed with let y' := y in.

Let y' := y.
Definition x' := S x.
Definition x'' := x' + y'.

Print x'.
x' = S x

: nat

Print x''.
x'' = x' + y'

: nat

End s1.
Print x'.

x' = fun x : nat => S x
: nat -> nat

Arguments x' _%nat_scope

Print x''.
x'' = fun x y : nat => let y' := y in x' x + y'

: nat -> nat -> nat

Arguments x'' (_ _)%nat_scope

Notice the difference between the value of x' and x'' inside section s1 and outside.

Command: Section ident
This command is used to open a section named ident. Section names do not need to be unique.

Command: End ident
This command closes the section named ident. After closing of the section, the local declarations (variables and
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local definitions, see Variable) get discharged, meaning that they stop being visible and that all global objects
defined in the section are generalized with respect to the variables and local definitions they each depended on in
the section.
Error: This is not the last opened section.

Note: Most commands, like Hint, Notation, option management, … which appear inside a section are canceled
when the section is closed.

Command: Variable ident : type
This command links type to the name ident in the context of the current section. When the current section
is closed, name ident will be unknown and every object using this variable will be explicitly parameterized (the
variable is discharged).
Error: ident already exists.

Variant: Variable ident
+

: type
Links type to each ident.

Variant: Variable ( ident
+

: type )

+

Declare one or more variables with various types.

Variant: Variables ( ident
+

: type)

+

Variant: Hypothesis ( ident
+

: type)

+

Variant: Hypotheses ( ident
+

: type)

+

These variants are synonyms of Variable ( ident
+

: type)

+

.

Command: Let ident := term
This command binds the value term to the name ident in the environment of the current section. The name
ident is accessible only within the current section. When the section is closed, all persistent definitions and
theorems within it and depending on ident will be prefixed by the let-in definition let ident := term
in.
Error: ident already exists.

Variant: Let ident binders
?

: type
?

:= term

Variant: Let Fixpoint ident fix_body with fix_body
*

Variant: Let CoFixpoint ident cofix_body with cofix_body
*

Command: Context binders
Declare variables in the context of the current section, like Variable, but also allowing implicit variables, Implicit
generalization, and let-binders.

Context {A : Type} (a b : A).
Context `{EqDec A}.
Context (b' := b).

See also:
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Section Binders. Section Sections and contexts in chapter Typeclasses.

4.2.5 Module system

The module system provides a way of packaging related elements together, as well as a means of massive abstraction.

module_type ::= qualid
module_type with Definition qualid := term
module_type with Module qualid := qualid
qualid qualid … qualid
!qualid qualid … qualid

module_binding ::= ( [Import|Export] ident … ident : module_type )
module_bindings ::= module_binding … module_binding
module_expression ::= qualid … qualid

!qualid … qualid

Syntax of modules
In the syntax of module application, the ! prefix indicates that any Inline directive in the type of the functor arguments
will be ignored (see the Module Type command below).
Command: Module ident

This command is used to start an interactive module named ident.

Variant: Module ident module_binding
*

Starts an interactive functor with parameters given by module_bindings.
Variant: Module ident : module_type

Starts an interactive module specifying its module type.

Variant: Module ident module_binding
*

: module_type
Starts an interactive functor with parameters given by the list of module_bindings, and output module type
module_type.

Variant: Module ident <: module_type
+

<:

Starts an interactive module satisfying each module_type.

Variant: Module ident module_binding
*

<: module_type
+

<:
.

Starts an interactive functor with parameters given by the list of module_binding. The output module
type is verified against each module_type.

Variant: Module Import Export
Behaves like Module, but automatically imports or exports the module.

Reserved commands inside an interactive module

Command: Include module
Includes the content of module in the current interactive module. Here module can be a module expression or
a module type expression. If module is a high-order module or module type expression then the system tries to
instantiate module by the current interactive module.
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Command: Include module
+

<+
is a shortcut for the commands Include module for each module.

Command: End ident
This command closes the interactive module ident. If the module type was given the content of the module
is matched against it and an error is signaled if the matching fails. If the module is basic (is not a functor) its
components (constants, inductive types, submodules etc.) are now available through the dot notation.

Error: No such label ident.

Error: Signature components for label ident do not match.

Error: This is not the last opened module.

Command: Module ident := module_expression
This command defines the module identifier ident to be equal to module_expression.

Variant: Module ident module_binding
*

:= module_expression
Defines a functor with parameters given by the list of module_binding and body
module_expression.

Variant: Module ident module_binding
*

: module_type := module_expression
Defines a functor with parameters given by the list of module_binding (possibly none), and output mod-
ule type module_type, with body module_expression.

Variant: Module ident module_binding
*

<: module_type
+

<:
:= module_expression

Defines a functor with parameters given by module_bindings (possibly none) with body
module_expression. The body is checked against each module_typei.

Variant: Module ident module_binding
*

:= module_expression
+

<+
is equivalent to an interactive module where each module_expression is included.

Command: Module Type ident
This command is used to start an interactive module type ident.

Variant: Module Type ident module_binding
*

Starts an interactive functor type with parameters given by module_bindings.

Reserved commands inside an interactive module type:

Command: Include module
Same as Include inside a module.

Command: Include module
+

<+
This is a shortcut for the command Include module for each module.

Command: assumption_keyword Inline assums
The instance of this assumption will be automatically expanded at functor application, except when this functor
application is prefixed by a ! annotation.

Command: End ident
This command closes the interactive module type ident.
Error: This is not the last opened module type.

Command: Module Type ident := module_type
Defines a module type ident equal to module_type.
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Variant: Module Type ident module_binding
*

:= module_type
Defines a functor type ident specifying functors taking arguments module_bindings and
returning module_type.

Variant: Module Type ident module_binding
*

:= module_type
+

<+
is equivalent to an interactive module type were each module_type is included.

Command: Declare Module ident : module_type
Declares a module ident of type module_type.

Variant: Declare Module ident module_binding
*

: module_type
Declares a functor with parameters given by the list of module_binding and output module
type module_type.

Example
Let us define a simple module.

Module M.
Interactive Module M started

Definition T := nat.
T is defined

Definition x := 0.
x is defined

Definition y : bool.
1 subgoal

============================
bool

exact true.
No more subgoals.

Defined.
End M.

Module M is defined

Inside a module one can define constants, prove theorems and do any other things that can be done in the toplevel. Com-
ponents of a closed module can be accessed using the dot notation:

Print M.x.
M.x = 0

: nat

A simple module type:

Module Type SIG.
Interactive Module Type SIG started

Parameter T : Set.
T is declared

(continues on next page)
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(continued from previous page)
Parameter x : T.

x is declared

End SIG.
Module Type SIG is defined

Now we can create a new module from M, giving it a less precise specification: the y component is dropped as well as the
body of x.

Module N : SIG with Definition T := nat := M.
Module N is defined

Print N.T.
N.T = nat

: Set

Print N.x.
*** [ N.x : N.T ]

Fail Print N.y.
The command has indeed failed with message:
N.y not a defined object.

The definition of N using the module type expression SIGwith Definition T := nat is equivalent to the following
one:

Module Type SIG'.
Interactive Module Type SIG' started

Definition T : Set := nat.
T is defined

Parameter x : T.
x is declared

End SIG'.
Module Type SIG' is defined

Module N : SIG' := M.
Module N is defined

If we just want to be sure that our implementation satisfies a given module type without restricting the interface, we can
use a transparent constraint

Module P <: SIG := M.
Module P is defined

Print P.y.
P.y = true

: bool

Now let us create a functor, i.e. a parametric module

Module Two (X Y: SIG).
Interactive Module Two started

Definition T := (X.T * Y.T)%type.
(continues on next page)
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(continued from previous page)
T is defined

Definition x := (X.x, Y.x).
x is defined

End Two.
Module Two is defined

and apply it to our modules and do some computations:

Module Q := Two M N.
Module Q is defined

Eval compute in (fst Q.x + snd Q.x).
= N.x

: nat

In the end, let us define a module type with two sub-modules, sharing some of the fields and give one of its possible
implementations:

Module Type SIG2.
Interactive Module Type SIG2 started

Declare Module M1 : SIG.
Module M1 is declared

Module M2 <: SIG.
Interactive Module M2 started

Definition T := M1.T.
T is defined

Parameter x : T.
x is declared

End M2.
Module M2 is defined

End SIG2.
Module Type SIG2 is defined

Module Mod <: SIG2.
Interactive Module Mod started

Module M1.
Interactive Module M1 started

Definition T := nat.
T is defined

Definition x := 1.
x is defined

End M1.
Module M1 is defined

Module M2 := M.
(continues on next page)
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(continued from previous page)
Module M2 is defined

End Mod.
Module Mod is defined

Notice that M is a correct body for the component M2 since its T component is equal nat and hence M1.T as specified.

Note:
1. Modules and module types can be nested components of each other.
2. One can have sections inside a module or a module type, but not a module or a module type inside a section.
3. Commands like Hint or Notation can also appear inside modules and module types. Note that in case of a

module definition like:

Module N : SIG := M.

or:

Module N : SIG. … End N.

hints and the like valid for N are not those defined in M (or the module body) but the ones defined in SIG.

Command: Import qualid
If qualid denotes a valid basic module (i.e. its module type is a signature), makes its components available by
their short names.

Example

Module Mod.
Interactive Module Mod started

Definition T:=nat.
T is defined

Check T.
T

: Set

End Mod.
Module Mod is defined

Check Mod.T.
Mod.T

: Set

Fail Check T.
The command has indeed failed with message:
The reference T was not found in the current environment.

Import Mod.
Check T.

T
: Set
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Some features defined in modules are activated only when a module is imported. This is for instance the case of
notations (see Notations).
Declarations made with the Local flag are never imported by the Import command. Such declarations are only
accessible through their fully qualified name.

Example

Module A.
Interactive Module A started

Module B.
Interactive Module B started

Local Definition T := nat.
T is defined

End B.
Module B is defined

End A.
Module A is defined

Import A.
Fail Check B.T.

The command has indeed failed with message:
The reference B.T was not found in the current environment.

Variant: Export qualid
When the module containing the command Export qualid is imported, qualid is imported as well.
Error: qualid is not a module.

Warning: Trying to mask the absolute name qualid!

Command: Print Module ident
Prints the module type and (optionally) the body of the module ident.

Command: Print Module Type ident
Prints the module type corresponding to ident.

Flag: Short Module Printing
This flag (off by default) disables the printing of the types of fields, leaving only their names, for the commands
Print Module and Print Module Type.

4.2.6 Libraries and qualified names

Names of libraries

The theories developed in Coq are stored in library files which are hierarchically classified into libraries and sublibraries.
To express this hierarchy, library names are represented by qualified identifiers qualid, i.e. as list of identifiers separated
by dots (see Qualified identifiers and simple identifiers). For instance, the library file Mult of the standard Coq library
Arith is named Coq.Arith.Mult. The identifier that starts the name of a library is called a library root. All library
files of the standard library of Coq have the reserved root Coq but library filenames based on other roots can be obtained
by using Coq commands (coqc, coqtop, coqdep, …) options -Q or -R (see By command line options). Also, when an
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interactive Coq session starts, a library of root Top is started, unless option -top or -notop is set (see By command
line options).

Qualified names

Library files are modules which possibly contain submodules which eventually contain constructions (axioms, parameters,
definitions, lemmas, theorems, remarks or facts). The absolute name, or full name, of a construction in some library file
is a qualified identifier starting with the logical name of the library file, followed by the sequence of submodules names
encapsulating the construction and ended by the proper name of the construction. Typically, the absolute name Coq.
Init.Logic.eq denotes Leibniz’ equality defined in the module Logic in the sublibrary Init of the standard library
of Coq.
The proper name that ends the name of a construction is the short name (or sometimes base name) of the construction
(for instance, the short name of Coq.Init.Logic.eq is eq). Any partial suffix of the absolute name is a partially
qualified name (e.g. Logic.eq is a partially qualified name for Coq.Init.Logic.eq). Especially, the short name
of a construction is its shortest partially qualified name.
Coq does not accept two constructions (definition, theorem, …) with the same absolute name but different constructions
can have the same short name (or even same partially qualified names as soon as the full names are different).
Notice that the notion of absolute, partially qualified and short names also applies to library filenames.
Visibility
Coq maintains a table called the name table which maps partially qualified names of constructions to absolute names.
This table is updated by the commands Require, Import and Export and also each time a new declaration is added
to the context. An absolute name is called visible from a given short or partially qualified name when this latter name is
enough to denote it. This means that the short or partially qualified name is mapped to the absolute name in Coq name
table. Definitions flagged as Local are only accessible with their fully qualified name (see Definitions).
It may happen that a visible name is hidden by the short name or a qualified name of another construction. In this case,
the name that has been hidden must be referred to using one more level of qualification. To ensure that a construction
always remains accessible, absolute names can never be hidden.

Example

Check 0.
0

: nat

Definition nat := bool.
nat is defined

Check 0.
0

: Datatypes.nat

Check Datatypes.nat.
Datatypes.nat

: Set

Locate nat.
Constant Top.nat
Inductive Coq.Init.Datatypes.nat

(shorter name to refer to it in current context is Datatypes.nat)

See also:
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Commands Locate and Locate Library.

Libraries and filesystem

Note: The questions described here have been subject to redesign in Coq 8.5. Former versions of Coq use the same
terminology to describe slightly different things.

Compiled files (.vo and .vio) store sub-libraries. In order to refer to them inside Coq, a translation from file-system
names to Coq names is needed. In this translation, names in the file system are called physical paths while Coq names
are contrastingly called logical names.
A logical prefix Lib can be associated with a physical path using the command line option -Q path Lib. All subfolders
of path are recursively associated to the logical path Lib extended with the corresponding suffix coming from the physical
path. For instance, the folder path/fOO/Bar maps to Lib.fOO.Bar. Subdirectories corresponding to invalid Coq
identifiers are skipped, and, by convention, subdirectories named CVS or _darcs are skipped too.
Thanks to this mechanism, .vo files are made available through the logical name of the folder they are in, extended with
their own basename. For example, the name associated to the file path/fOO/Bar/File.vo is Lib.fOO.Bar.
File. The same caveat applies for invalid identifiers. When compiling a source file, the .vo file stores its logical name,
so that an error is issued if it is loaded with the wrong loadpath afterwards.
Some folders have a special status and are automatically put in the path. Coq commands associate auto-
matically a logical path to files in the repository trees rooted at the directory from where the command is
launched, coqlib/user-contrib/, the directories listed in the $COQPATH, ${XDG_DATA_HOME}/coq/ and
${XDG_DATA_DIRS}/coq/ environment variables (see XDG base directory specification294) with the same physical-
to-logical translation and with an empty logical prefix.
The command line option -R is a variant of -Q which has the strictly same behavior regarding loadpaths, but which also
makes the corresponding .vo files available through their short names in a way not unlike the Import command (see
here). For instance, -R path Lib associates to the file /path/fOO/Bar/File.vo the logical name Lib.fOO.
Bar.File, but allows this file to be accessed through the short names fOO.Bar.File,Bar.File and File. If
several files with identical base name are present in different subdirectories of a recursive loadpath, which of these files is
found first may be system- dependent and explicit qualification is recommended. The From argument of the Require
command can be used to bypass the implicit shortening by providing an absolute root to the required file (see Compiled
files).
There also exists another independent loadpath mechanism attached to OCaml object files (.cmo or .cmxs) rather than
Coq object files as described above. The OCaml loadpath is managed using the option -I path (in the OCaml world,
there is neither a notion of logical name prefix nor a way to access files in subdirectories of path). See the command
Declare ML Module in Compiled files to understand the need of the OCaml loadpath.
See By command line options for a more general view over the Coq command line options.

4.2.7 Implicit arguments

An implicit argument of a function is an argument which can be inferred from contextual knowledge. There are different
kinds of implicit arguments that can be considered implicit in different ways. There are also various commands to control
the setting or the inference of implicit arguments.

The different kinds of implicit arguments

294 http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
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Implicit arguments inferable from the knowledge of other arguments of a function

The first kind of implicit arguments covers the arguments that are inferable from the knowledge of the type of other
arguments of the function, or of the type of the surrounding context of the application. Especially, such implicit arguments
correspond to parameters dependent in the type of the function. Typical implicit arguments are the type arguments in
polymorphic functions. There are several kinds of such implicit arguments.
Strict Implicit Arguments
An implicit argument can be either strict or non strict. An implicit argument is said to be strict if, whatever the other
arguments of the function are, it is still inferable from the type of some other argument. Technically, an implicit argument
is strict if it corresponds to a parameter which is not applied to a variable which itself is another parameter of the function
(since this parameter may erase its arguments), not in the body of a match, and not itself applied or matched against
patterns (since the original form of the argument can be lost by reduction).
For instance, the first argument of

cons: forall A:Set, A -> list A -> list A

in module List.v is strict because list is an inductive type and A will always be inferable from the type list A
of the third argument of cons. Also, the first argument of cons is strict with respect to the second one, since the first
argument is exactly the type of the second argument. On the contrary, the second argument of a term of type

forall P:nat->Prop, forall n:nat, P n -> ex nat P

is implicit but not strict, since it can only be inferred from the type P n of the third argument and if P is, e.g., fun _
=> True, it reduces to an expression where n does not occur any longer. The first argument P is implicit but not strict
either because it can only be inferred from P n and P is not canonically inferable from an arbitrary n and the normal
form of P n. Consider, e.g., that n is 0 and the third argument has type True, then any P of the form
fun n => match n with 0 => True | _ => anything end

would be a solution of the inference problem.
Contextual Implicit Arguments
An implicit argument can be contextual or not. An implicit argument is said contextual if it can be inferred only from the
knowledge of the type of the context of the current expression. For instance, the only argument of:

nil : forall A:Set, list A`

is contextual. Similarly, both arguments of a term of type:

forall P:nat->Prop, forall n:nat, P n \/ n = 0

are contextual (moreover, n is strict and P is not).
Reversible-Pattern Implicit Arguments
There is another class of implicit arguments that can be reinferred unambiguously if all the types of the remaining ar-
guments are known. This is the class of implicit arguments occurring in the type of another argument in position of
reversible pattern, which means it is at the head of an application but applied only to uninstantiated distinct variables.
Such an implicit argument is called reversible- pattern implicit argument. A typical example is the argument P of nat_rec
in

nat_rec : forall P : nat -> Set, P 0 ->
(forall n : nat, P n -> P (S n)) -> forall x : nat, P x
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(P is reinferable by abstracting over n in the type P n).
See Controlling reversible-pattern implicit arguments for the automatic declaration of reversible-pattern implicit arguments.

Implicit arguments inferable by resolution

This corresponds to a class of non-dependent implicit arguments that are solved based on the structure of their type only.

Maximal or non maximal insertion of implicit arguments

In case a function is partially applied, and the next argument to be applied is an implicit argument, two disciplines are
applicable. In the first case, the function is considered to have no arguments furtherly: one says that the implicit argument
is not maximally inserted. In the second case, the function is considered to be implicitly applied to the implicit arguments
it is waiting for: one says that the implicit argument is maximally inserted.
Each implicit argument can be declared to have to be inserted maximally or non maximally. This can be governed
argument per argument by the command Arguments (implicits) or globally by the Maximal Implicit
Insertion flag.
See also:
Displaying what the implicit arguments are.

Casual use of implicit arguments

In a given expression, if it is clear that some argument of a function can be inferred from the type of the other arguments,
the user can force the given argument to be guessed by replacing it by “_”. If possible, the correct argument will be
automatically generated.
Error: Cannot infer a term for this placeholder.

Coq was not able to deduce an instantiation of a “_”.

Declaration of implicit arguments

In case one wants that some arguments of a given object (constant, inductive types, constructors, assumptions, local or
not) are always inferred by Coq, one may declare once and for all which are the expected implicit arguments of this object.
There are two ways to do this, a priori and a posteriori.

Implicit Argument Binders

In the first setting, one wants to explicitly give the implicit arguments of a declared object as part of its definition. To do
this, one has to surround the bindings of implicit arguments by curly braces:

Definition id {A : Type} (x : A) : A := x.
id is defined

This automatically declares the argument A of id as a maximally inserted implicit argument. One can then do as-if the
argument was absent in every situation but still be able to specify it if needed:

164 Chapter 4. The language



The Coq Reference Manual, Release 8.11.2

Definition compose {A B C} (g : B -> C) (f : A -> B) := fun x => g (f x).
compose is defined

Goal forall A, compose id id = id (A:=A).
1 subgoal

============================
forall A : Type, compose id id = id

The syntax is supported in all top-level definitions: Definition, Fixpoint, Lemma and so on. For (co-)inductive
datatype declarations, the semantics are the following: an inductive parameter declared as an implicit argument need not
be repeated in the inductive definition and will become implicit for the inductive type and the constructors. For example:

Inductive list {A : Type} : Type :=
| nil : list
| cons : A -> list -> list.

list is defined
list_rect is defined
list_ind is defined
list_rec is defined
list_sind is defined

Print list.
Inductive list (A : Type) : Type := nil : list | cons : A -> list -> list

Arguments list {A}%type_scope
Arguments nil {A}%type_scope
Arguments cons {A}%type_scope

One can always specify the parameter if it is not uniform using the usual implicit arguments disambiguation syntax.

Declaring Implicit Arguments

Command: Arguments qualid [ ident ] { ident } ident
*

This command is used to set implicit arguments a posteriori, where the list of possibly bracketed ident is a prefix
of the list of arguments of qualid where the ones to be declared implicit are surrounded by square brackets and
the ones to be declared as maximally inserted implicits are surrounded by curly braces.
After the above declaration is issued, implicit arguments can just (and have to) be skipped in any expression involv-
ing an application of qualid.

Command: Arguments qualid : clear implicits
This command clears implicit arguments.

Variant: Global Arguments qualid [ ident ] { ident } ident
*

This command is used to recompute the implicit arguments of qualid after ending of the current section if any,
enforcing the implicit arguments known from inside the section to be the ones declared by the command.

Variant: Local Arguments qualid [ ident ] { ident } ident
*

When in a module, tell not to activate the implicit arguments of qualid declared by this command to contexts
that require the module.

Variant: Global Local
?

Arguments qualid [ ident ] { ident } ident
+

*

,

For names of constants, inductive types, constructors, lemmas which can only be applied to a fixed number of argu-
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ments (this excludes for instance constants whose type is polymorphic), multiple implicit arguments declarations
can be given. Depending on the number of arguments qualid is applied to in practice, the longest applicable list of
implicit arguments is used to select which implicit arguments are inserted. For printing, the omitted arguments are
the ones of the longest list of implicit arguments of the sequence.

Example

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.

list is defined
list_rect is defined
list_ind is defined
list_rec is defined
list_sind is defined

Check (cons nat 3 (nil nat)).
cons nat 3 (nil nat)

: list nat

Arguments cons [A] _ _.
Arguments nil {A}.
Check (cons 3 nil).

cons 3 nil
: list nat

Fixpoint map (A B : Type) (f : A -> B) (l : list A) : list B :=
match l with nil => nil | cons a t => cons (f a) (map A B f t) end.
map is defined
map is recursively defined (decreasing on 4th argument)

Fixpoint length (A : Type) (l : list A) : nat :=
match l with nil => 0 | cons _ m => S (length A m) end.
length is defined
length is recursively defined (decreasing on 2nd argument)

Arguments map [A B] f l.
Arguments length {A} l.
(* A has to be maximally inserted *)

Check (fun l:list (list nat) => map length l).
fun l : list (list nat) => map length l

: list (list nat) -> list nat

Arguments map [A B] f l, [A] B f l, A B f l.
Check (fun l => map length l = map (list nat) nat length l).

fun l : list (list nat) => map length l = map length l
: list (list nat) -> Prop

Note: To know which are the implicit arguments of an object, use the command Print Implicit (see Displaying
what the implicit arguments are).

Warning: Argument number num is a trailing implicit so must be maximal.
For instance in
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Arguments prod _ [_].
Toplevel input, characters 0-21:
> Arguments prod _ [_].
> ^^^^^^^^^^^^^^^^^^^^^
Warning: Argument number 1 is a trailing implicit so must be maximal

Automatic declaration of implicit arguments

Command: Arguments qualid : default implicits
This command tells Coq to automatically detect what are the implicit arguments of a defined object.
The auto-detection is governed by flags telling if strict, contextual, or reversible-pattern implicit arguments must
be considered or not (see Controlling strict implicit arguments, Controlling strict implicit arguments, Controlling
reversible-pattern implicit arguments, and also Controlling the insertion of implicit arguments not followed by explicit
arguments).
Variant: Global Arguments qualid : default implicits

Tell to recompute the implicit arguments of qualid after ending of the current section if any.
Variant: Local Arguments qualid : default implicits

When in a module, tell not to activate the implicit arguments of qualid computed by this declaration to
contexts that requires the module.

Example

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.

list is defined
list_rect is defined
list_ind is defined
list_rec is defined
list_sind is defined

Arguments cons : default implicits.
Print Implicit cons.

cons : forall A : Set, A -> list A -> list A

Argument A is implicit

Arguments nil : default implicits.
Print Implicit nil.

nil : forall A : Set, list A

Set Contextual Implicit.
Arguments nil : default implicits.
Print Implicit nil.

nil : forall A : Set, list A

Argument A is implicit and maximally inserted

The computation of implicit arguments takes account of the unfolding of constants. For instance, the variable p below has
type (Transitivity R) which is reducible to forall x,y:U, R x y -> forall z:U, R y z -> R
x z. As the variables x, y and z appear strictly in the body of the type, they are implicit.
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Parameter X : Type.
X is declared

Definition Relation := X -> X -> Prop.
Relation is defined

Definition Transitivity (R:Relation) := forall x y:X, R x y -> forall z:X, R y z -> R␣
↪x z.

Transitivity is defined

Parameters (R : Relation) (p : Transitivity R).
R is declared
p is declared

Arguments p : default implicits.
Print p.

*** [ p : Transitivity R ]

Expanded type for implicit arguments
p : forall x y : X, R x y -> forall z : X, R y z -> R x z

Arguments p [x y] _ [z]

Print Implicit p.
p : forall x y : X, R x y -> forall z : X, R y z -> R x z

Arguments x, y, z are implicit

Parameters (a b c : X) (r1 : R a b) (r2 : R b c).
a is declared
b is declared
c is declared
r1 is declared
r2 is declared

Check (p r1 r2).
p r1 r2

: R a c

Mode for automatic declaration of implicit arguments

Flag: Implicit Arguments
This flag (off by default) allows to systematically declare implicit the arguments detectable as such. Auto-detection
of implicit arguments is governed by flags controlling whether strict and contextual implicit arguments have to be
considered or not.

Controlling strict implicit arguments

Flag: Strict Implicit
When the mode for automatic declaration of implicit arguments is on, the default is to automatically set implicit
only the strict implicit arguments plus, for historical reasons, a small subset of the non-strict implicit arguments.
To relax this constraint and to set implicit all non strict implicit arguments by default, you can turn this flag off.

Flag: Strongly Strict Implicit
Use this flag (off by default) to capture exactly the strict implicit arguments and no more than the strict implicit
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arguments.

Controlling contextual implicit arguments

Flag: Contextual Implicit
By default, Coq does not automatically set implicit the contextual implicit arguments. You can turn this flag on to
tell Coq to also infer contextual implicit argument.

Controlling reversible-pattern implicit arguments

Flag: Reversible Pattern Implicit
By default, Coq does not automatically set implicit the reversible-pattern implicit arguments. You can turn this flag
on to tell Coq to also infer reversible-pattern implicit argument.

Controlling the insertion of implicit arguments not followed by explicit arguments

Flag: Maximal Implicit Insertion
Assuming the implicit argument mode is on, this flag (off by default) declares implicit arguments to be automatically
inserted when a function is partially applied and the next argument of the function is an implicit one.

Explicit applications

In presence of non-strict or contextual argument, or in presence of partial applications, the synthesis of implicit arguments
may fail, so one may have to give explicitly certain implicit arguments of an application. The syntax for this is (ident
:= term)where ident is the name of the implicit argument and term is its corresponding explicit term. Alternatively,
one can locally deactivate the hiding of implicit arguments of a function by using the notation qualid term

+ . This
syntax extension is given in the following grammar:

term ::= @ qualid term … term
@ qualid
qualid argument … argument

argument ::= term
(ident := term)

Syntax for explicitly giving implicit arguments

Example: (continued)

Check (p r1 (z:=c)).
p r1 (z:=c)

: R b c -> R a c

Check (p (x:=a) (y:=b) r1 (z:=c) r2).
p r1 r2

: R a c
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Renaming implicit arguments

Command: Arguments qualid name
*

: rename
This command is used to redefine the names of implicit arguments.

Command: Arguments qualid name
*

: assert
This command is used to assert that a given object has the expected number of arguments and that these arguments
are named as expected.

Example: (continued)

Arguments p [s t] _ [u] _: rename.
Check (p r1 (u:=c)).

p r1 (u:=c)
: R b c -> R a c

Check (p (s:=a) (t:=b) r1 (u:=c) r2).
p r1 r2

: R a c

Fail Arguments p [s t] _ [w] _ : assert.
The command has indeed failed with message:
Flag "rename" expected to rename u into w.

Displaying what the implicit arguments are

Command: Print Implicit qualid
Use this command to display the implicit arguments associated to an object, and to know if each of them is to be
used maximally or not.

Explicit displaying of implicit arguments for pretty-printing

Flag: Printing Implicit
By default, the basic pretty-printing rules hide the inferable implicit arguments of an application. Turn this flag on
to force printing all implicit arguments.

Flag: Printing Implicit Defensive
By default, the basic pretty-printing rules display the implicit arguments that are not detected as strict implicit
arguments. This “defensive” mode can quickly make the display cumbersome so this can be deactivated by turning
this flag off.

See also:
Printing All.

Interaction with subtyping

When an implicit argument can be inferred from the type of more than one of the other arguments, then only the type of
the first of these arguments is taken into account, and not an upper type of all of them. As a consequence, the inference
of the implicit argument of “=” fails in
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Fail Check nat = Prop.
The command has indeed failed with message:
The term "Prop" has type "Type" while it is expected to have type
"Set" (universe inconsistency).

but succeeds in

Check Prop = nat.
Prop = nat

: Prop

Deactivation of implicit arguments for parsing

Flag: Parsing Explicit
Turning this flag on (it is off by default) deactivates the use of implicit arguments.
In this case, all arguments of constants, inductive types, constructors, etc, including the arguments declared as
implicit, have to be given as if no arguments were implicit. By symmetry, this also affects printing.

Canonical structures

A canonical structure is an instance of a record/structure type that can be used to solve unification problems involving a
projection applied to an unknown structure instance (an implicit argument) and a value. The complete documentation of
canonical structures can be found in Canonical Structures; here only a simple example is given.

Command: Canonical Structure
?

qualid
This command declares qualid as a canonical instance of a structure (a record).
Assume that qualid denotes an object (Build_struct c1 … c𝑛 ) in the structure struct of which the
fields are x1, …, x𝑛. Then, each time an equation of the form (x𝑖 _) =𝛽𝛿𝜄𝜁 c𝑖 has to be solved during the type
checking process, qualid is used as a solution. Otherwise said, qualid is canonically used to extend the field
c𝑖 into a complete structure built on c𝑖.
Canonical structures are particularly useful when mixed with coercions and strict implicit arguments.

Example
Here is an example.

Require Import Relations.
Require Import EqNat.
Set Implicit Arguments.
Unset Strict Implicit.
Structure Setoid : Type := {Carrier :> Set; Equal : relation Carrier;

Prf_equiv : equivalence Carrier Equal}.
Setoid is defined
Carrier is defined
Equal is defined
Prf_equiv is defined

Definition is_law (A B:Setoid) (f:A -> B) := forall x y:A, Equal x y -> Equal (f␣
↪x) (f y).

is_law is defined

Axiom eq_nat_equiv : equivalence nat eq_nat.
(continues on next page)
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(continued from previous page)
eq_nat_equiv is declared

Definition nat_setoid : Setoid := Build_Setoid eq_nat_equiv.
nat_setoid is defined

Canonical nat_setoid.

Thanks to nat_setoid declared as canonical, the implicit arguments A and B can be synthesized in the next
statement.

Lemma is_law_S : is_law S.
1 subgoal

============================
is_law (A:=nat_setoid) (B:=nat_setoid) S

Note: If a same field occurs in several canonical structures, then only the structure declared first as canonical is
considered.

Note: To prevent a field from being involved in the inference of canonical instances, its declaration can be anno-
tated with the #[canonical(false)] attribute.

Example
For instance, when declaring the Setoid structure above, the Prf_equiv field declaration could be written as
follows.

#[canonical(false)] Prf_equiv : equivalence Carrier Equal

See Canonical Structures for a more realistic example.

Variant: Canonical Structure
?

ident : type
?

:= term
This is equivalent to a regular definition of ident followed by the declaration Canonical ident.

Command: Print Canonical Projections
This displays the list of global names that are components of some canonical structure. For each of them, the
canonical structure of which it is a projection is indicated.

Example
For instance, the above example gives the following output:

Print Canonical Projections.
nat <- Carrier ( nat_setoid )
eq_nat <- Equal ( nat_setoid )
eq_nat_equiv <- Prf_equiv ( nat_setoid )

Note: The last line would not show up if the corresponding projection (namely Prf_equiv) were annotated as
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not canonical, as described above.

Implicit types of variables

It is possible to bind variable names to a given type (e.g. in a development using arithmetic, it may be convenient to bind
the names n or m to the type nat of natural numbers).

Command: Implicit Types ident
+

: type
The effect of the command is to automatically set the type of bound variables starting with ident (either ident
itself or ident followed by one or more single quotes, underscore or digits) to be type (unless the bound variable
is already declared with an explicit type in which case, this latter type is considered).

Example

Require Import List.
Implicit Types m n : nat.
Lemma cons_inj_nat : forall m n l, n :: l = m :: l -> n = m.

1 subgoal

============================
forall (m n : nat) (l : Datatypes.list nat), n :: l = m :: l -> n = m

Proof.
intros m n.

1 subgoal

m, n : nat
============================
forall l : Datatypes.list nat, n :: l = m :: l -> n = m

Abort.
Lemma cons_inj_bool : forall (m n:bool) l, n :: l = m :: l -> n = m.

1 subgoal

============================
forall (m n : bool) (l : Datatypes.list bool), n :: l = m :: l -> n = m

Abort.

Variant: Implicit Type ident : type
This is useful for declaring the implicit type of a single variable.

Variant: Implicit Types ( ident
+

: type )

+

Adds blocks of implicit types with different specifications.

Implicit generalization

Implicit generalization is an automatic elaboration of a statement with free variables into a closed statement where these
variables are quantified explicitly.
It is activated for a binder by prefixing a ‘, and for terms by surrounding it with ‘{ } or ‘( ).
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Terms surrounded by ‘{ } introduce their free variables as maximally inserted implicit arguments, and terms surrounded
by ‘( ) introduce them as explicit arguments.
Generalizing binders always introduce their free variables as maximally inserted implicit arguments. The binder itself
introduces its argument as usual.
In the following statement, A and y are automatically generalized, A is implicit and x, y and the anonymous equality
argument are explicit.

Generalizable All Variables.
Definition sym `(x:A) : `(x = y -> y = x) := fun _ p => eq_sym p.

sym is defined

Print sym.
sym =
fun (A : Type) (x y : A) (p : x = y) => eq_sym p

: forall (A : Type) (x y : A), x = y -> y = x

Arguments sym {A}%type_scope

Dually to normal binders, the name is optional but the type is required:

Check (forall `{x = y :> A}, y = x).
forall (A : Type) (x y : A), x = y -> y = x

: Prop

When generalizing a binder whose type is a typeclass, its own class arguments are omitted from the syntax and are
generalized using automatic names, without instance search. Other arguments are also generalized unless provided. This
produces a fully general statement. this behaviour may be disabled by prefixing the type with a ! or by forcing the
typeclass name to be an explicit application using @ (however the later ignores implicit argument information).

Class Op (A:Type) := op : A -> A -> A.
Class Commutative (A:Type) `(Op A) := commutative : forall x y, op x y = op y x.
Instance nat_op : Op nat := plus.

nat_op is defined

Set Printing Implicit.
Check (forall `{Commutative }, True).

forall (A : Type) (H : Op A), Commutative A H -> True
: Prop

Check (forall `{Commutative nat}, True).
forall H : Op nat, Commutative nat H -> True

: Prop

Fail Check (forall `{Commutative nat _}, True).
The command has indeed failed with message:
Typeclass does not expect more arguments

Fail Check (forall `{!Commutative nat}, True).
The command has indeed failed with message:
The term "Commutative nat" has type "Op nat -> Prop"
which should be Set, Prop or Type.

Arguments Commutative _ {_}.
Check (forall `{!Commutative nat}, True).

@Commutative nat nat_op -> True
: Prop

(continues on next page)
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(continued from previous page)

Check (forall `{@Commutative nat plus}, True).
@Commutative nat Nat.add -> True

: Prop

Multiple binders can be merged using , as a separator:

Check (forall `{Commutative A, Hnat : !Commutative nat}, True).
forall (A : Type) (H : Op A),
@Commutative A H -> @Commutative nat nat_op -> True

: Prop

One can control the set of generalizable identifiers with the Generalizable vernacular command to avoid unex-
pected generalizations when mistyping identifiers. There are several commands that specify which variables should be
generalizable.
Command: Generalizable All Variables

All variables are candidate for generalization if they appear free in the context under a generalization delimiter. This
may result in confusing errors in case of typos. In such cases, the context will probably contain some unexpected
generalized variable.

Command: Generalizable No Variables
Disable implicit generalization entirely. This is the default behavior.

Command: Generalizable Variable Variables ident
+

Allow generalization of the given identifiers only. Calling this command multiple times adds to the allowed identi-
fiers.

Command: Global Generalizable
Allows exporting the choice of generalizable variables.

4.2.8 Coercions

Coercions can be used to implicitly inject terms from one class in which they reside into another one. A class is either a
sort (denoted by the keyword Sortclass), a product type (denoted by the keyword Funclass), or a type constructor
(denoted by its name), e.g. an inductive type or any constant with a type of the form forall ( x1 : A1 ) … (x𝑛 : A𝑛),
s where s is a sort.
Then the user is able to apply an object that is not a function, but can be coerced to a function, and more generally to
consider that a term of type A is of type B provided that there is a declared coercion between A and B.
More details and examples, and a description of the commands related to coercions are provided in Implicit Coercions.

4.2.9 Printing constructions in full

Flag: Printing All
Coercions, implicit arguments, the type of pattern matching, but also notations (see Syntax extensions and interpre-
tation scopes) can obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms
are sensitive to the implicit arguments). Turning this flag on deactivates all high-level printing features such as
coercions, implicit arguments, returned type of pattern matching, notations and various syntactic sugar for pattern
matching or record projections. Otherwise said, Printing All includes the effects of the flags Printing
Implicit, Printing Coercions, Printing Synth, Printing Projections, and Printing
Notations. To reactivate the high-level printing features, use the command Unset Printing All.
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4.2.10 Printing universes

Flag: Printing Universes
Turn this flag on to activate the display of the actual level of each occurrence of Type. See Sorts for details. This
wizard flag, in combination with Printing All can help to diagnose failures to unify terms apparently identical
but internally different in the Calculus of Inductive Constructions.

Command: Print Sorted
?

Universes
This command can be used to print the constraints on the internal level of the occurrences of Type (see Sorts).
If the Sorted keyword is present, each universe will be made equivalent to a numbered label reflecting its level
(with a linear ordering) in the universe hierarchy.

Variant: Print Sorted
?

Universes string
This variant accepts an optional output filename.
If string ends in .dot or .gv, the constraints are printed in the DOT language, and can be processed by
Graphviz tools. The format is unspecified if string doesn’t end in .dot or .gv.

Variant: Print Universes Subgraph( qualid
+
)

Prints the graph restricted to the requested names (adjusting constraints to preserve the implied transitive constraints
between kept universes).

4.2.11 Existential variables

Coq terms can include existential variables which represents unknown subterms to eventually be replaced by actual sub-
terms.
Existential variables are generated in place of unsolvable implicit arguments or “_” placeholders when using commands
such as Check (see Section Requests to the environment) or when using tactics such as refine, as well as in place of
unsolvable instances when using tactics such that eapply. An existential variable is defined in a context, which is the
context of variables of the placeholder which generated the existential variable, and a type, which is the expected type of
the placeholder.
As a consequence of typing constraints, existential variables can be duplicated in such a way that they possibly appear in
different contexts than their defining context. Thus, any occurrence of a given existential variable comes with an instance
of its original context. In the simple case, when an existential variable denotes the placeholder which generated it, or is
used in the same context as the one in which it was generated, the context is not displayed and the existential variable is
represented by “?” followed by an identifier.

Parameter identity : forall (X:Set), X -> X.
identity is declared

Check identity _ _.
identity ?X ?y

: ?X
where
?X : [ |- Set]
?y : [ |- ?X]

Check identity _ (fun x => _).
identity (forall x : ?S, ?S0) (fun x : ?S => ?y)

: forall x : ?S, ?S0
where
?S : [ |- Set]

(continues on next page)
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(continued from previous page)
?S0 : [x : ?S |- Set]
?y : [x : ?S |- ?S0]

In the general case, when an existential variable ?ident appears outside of its context of definition, its instance, written
under the form { ident := term

*
; } is appending to its name, indicating how the variables of its defining context

are instantiated. The variables of the context of the existential variables which are instantiated by themselves are not
written, unless the Printing Existential Instances flag is on (see Section Explicit displaying of existential
instances for pretty-printing), and this is why an existential variable used in the same context as its context of definition is
written with no instance.

Check (fun x y => _) 0 1.
(fun x y : nat => ?y) 0 1

: ?T@{x:=0; y:=1}
where
?T : [x : nat y : nat |- Type]
?y : [x : nat y : nat |- ?T]

Set Printing Existential Instances.
Check (fun x y => _) 0 1.

(fun x y : nat => ?y@{x:=x; y:=y}) 0 1
: ?T@{x:=0; y:=1}

where
?T : [x : nat y : nat |- Type]
?y : [x : nat y : nat |- ?T@{x:=x; y:=y}]

Existential variables can be named by the user upon creation using the syntax ?[ident]. This is useful when the
existential variable needs to be explicitly handled later in the script (e.g. with a named-goal selector, see Goal selectors).

Explicit displaying of existential instances for pretty-printing

Flag: Printing Existential Instances
This flag (off by default) activates the full display of how the context of an existential variable is instantiated at each
of the occurrences of the existential variable.

Solving existential variables using tactics

Instead of letting the unification engine try to solve an existential variable by itself, one can also provide an explicit
hole together with a tactic to solve it. Using the syntax ltac:(tacexpr), the user can put a tactic anywhere a term
is expected. The order of resolution is not specified and is implementation-dependent. The inner tactic may use any
variable defined in its scope, including repeated alternations between variables introduced by term binding as well as
those introduced by tactic binding. The expression tacexpr can be any tactic expression as described in Ltac.

Definition foo (x : nat) : nat := ltac:(exact x).
foo is defined

This construction is useful when one wants to define complicated terms using highly automated tactics without resorting
to writing the proof-term by means of the interactive proof engine.

4.2.12 Primitive Integers

The language of terms features 63-bit machine integers as values. The type of such a value is axiomatized; it is declared
through the following sentence (excerpt from the Int63 module):
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Primitive int := #int63_type.

This type is equipped with a few operators, that must be similarly declared. For instance, equality of two primitive integers
can be decided using the Int63.eqb function, declared and specified as follows:

Primitive eqb := #int63_eq.
Notation "m '==' n" := (eqb m n) (at level 70, no associativity) : int63_scope.

Axiom eqb_correct : forall i j, (i == j)%int63 = true -> i = j.

The complete set of such operators can be obtained looking at the Int63 module.
These primitive declarations are regular axioms. As such, they must be trusted and are listed by the Print
Assumptions command, as in the following example.

From Coq Require Import Int63.
Lemma one_minus_one_is_zero : (1 - 1 = 0)%int63.
Proof.
apply eqb_correct; vm_compute; reflexivity.
Qed.

Print Assumptions one_minus_one_is_zero.
Axioms:
sub : int -> int -> int
eqb_correct : forall i j : int, (i == j)%int63 = true -> i = j
eqb : int -> int -> bool

The reduction machines (vm_compute, native_compute) implement dedicated, efficient, rules to reduce the ap-
plications of these primitive operations.
The extraction of these primitives can be customized similarly to the extraction of regular axioms (see Extraction of
programs in OCaml and Haskell). Nonetheless, the ExtrOCamlInt63module can be used when extracting to OCaml:
it maps the Coq primitives to types and functions of a Uint63module. Said OCamlmodule is not produced by extraction.
Instead, it has to be provided by the user (if they want to compile or execute the extracted code). For instance, an
implementation of this module can be taken from the kernel of Coq.
Literal values (at type Int63.int) are extracted to literal OCaml values wrapped into the Uint63.of_int
(resp. Uint63.of_int64) constructor on 64-bit (resp. 32-bit) platforms. Currently, this cannot be customized (see
the function Uint63.compile from the kernel).

4.2.13 Primitive Floats

The language of terms features Binary64 floating-point numbers as values. The type of such a value is axiomatized; it is
declared through the following sentence (excerpt from the PrimFloat module):

Primitive float := #float64_type.

This type is equipped with a few operators, that must be similarly declared. For instance, the product of two primitive
floats can be computed using the PrimFloat.mul function, declared and specified as follows:

Primitive mul := #float64_mul.
Notation "x * y" := (mul x y) : float_scope.

Axiom mul_spec : forall x y, Prim2SF (x * y)%float = SF64mul (Prim2SF x) (Prim2SF y).

where Prim2SF is defined in the FloatOps module.
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The set of such operators is described in section Floats library.
These primitive declarations are regular axioms. As such, they must be trusted, and are listed by the Print
Assumptions command.
The reduction machines (vm_compute, native_compute) implement dedicated, efficient rules to reduce the appli-
cations of these primitive operations, using the floating-point processor operators that are assumed to comply with the
IEEE 754 standard for floating-point arithmetic.
The extraction of these primitives can be customized similarly to the extraction of regular axioms (see Extraction of
programs in OCaml and Haskell). Nonetheless, the ExtrOCamlFloatsmodule can be used when extracting to OCaml:
it maps the Coq primitives to types and functions of a Float64 module. Said OCaml module is not produced by
extraction. Instead, it has to be provided by the user (if they want to compile or execute the extracted code). For instance,
an implementation of this module can be taken from the kernel of Coq.
Literal values (of type Float64.t) are extracted to literal OCaml values (of type float) written in hexadecimal
notation and wrapped into the Float64.of_float constructor, e.g.: Float64.of_float (0x1p+0).

4.2.14 Bidirectionality hints

When type-checking an application, Coq normally does not use information from the context to infer the types of the
arguments. It only checks after the fact that the type inferred for the application is coherent with the expected type.
Bidirectionality hints make it possible to specify that after type-checking the first arguments of an application, typing
information should be propagated from the context to help inferring the types of the remaining arguments.

Command: Arguments qualid ident1
*

& ident2
*

This commands tells the typechecking algorithm, when type-checking applications of qualid, to first type-check
the arguments in ident1 and then propagate information from the typing context to type-check the remaining
arguments (in ident2).

Example
In a context where a coercion was declared from bool to nat:

Definition b2n (b : bool) := if b then 1 else 0.
Coercion b2n : bool >-> nat.

Coq cannot automatically coerce existential statements over bool to statements over nat, because the need for inserting
a coercion is known only from the expected type of a subterm:

Fail Check (ex_intro _ true _ : exists n : nat, n > 0).
The command has indeed failed with message:
The term "ex_intro ?P true ?y" has type "exists y, ?P y"
while it is expected to have type "exists n : nat, n > 0"
(cannot unify "bool" and "nat").

However, a suitable bidirectionality hint makes the example work:

Arguments ex_intro _ _ & _ _.
Check (ex_intro _ true _ : exists n : nat, n > 0).

ex_intro (fun n : nat => n > 0) true ?g : exists n : nat, n > 0
: exists n : nat, n > 0

where
?g : [ |- (fun n : nat => n > 0) true]
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Coq will attempt to produce a term which uses the arguments you provided, but in some cases involving Program mode
the arguments after the bidirectionality starts may be replaced by convertible but syntactically different terms.

4.3 The Coq library

The Coq library has two parts:
• The basic library: definitions and theorems for the most commonly used elementary logical notions and data types.
Coq normally loads these files automatically when it starts.

• The standard library: general-purpose libraries with definitions and theorems for sets, lists, sorting, arithmetic,
etc. To use these files, users must load them explicitly with the Require command (see Compiled files)

There are also many libraries provided by Coq users’ community. These libraries and developments are available for
download at http://coq.inria.fr (see Users’ contributions).
This chapter briefly reviews the Coq libraries whose contents can also be browsed at http://coq.inria.fr/stdlib/.

4.3.1 The basic library

This section lists the basic notions and results which are directly available in the standard Coq system. Most of these
constructions are defined in the Preludemodule in directory theories/Init at the Coq root directory; this includes
the modules Notations, Logic, Datatypes, Specif, Peano, Wf and Tactics. Module Logic_Type also
makes it in the initial state.

Notations

This module defines the parsing and pretty-printing of many symbols (infixes, prefixes, etc.). However, it does not assign
a meaning to these notations. The purpose of this is to define and fix once for all the precedence and associativity of very
common notations. The main notations fixed in the initial state are :
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Notation Precedence Associativity
_ -> _ 99 right
_ <-> _ 95 no
_ \/ _ 85 right
_ /\ _ 80 right
~ _ 75 right
_ = _ 70 no
_ = _ = _ 70 no
_ = _ :> _ 70 no
_ <> _ 70 no
_ <> _ :> _ 70 no
_ < _ 70 no
_ > _ 70 no
_ <= _ 70 no
_ >= _ 70 no
_ < _ < _ 70 no
_ < _ <= _ 70 no
_ <= _ < _ 70 no
_ <= _ <= _ 70 no
_ + _ 50 left
_ || _ 50 left
_ - _ 50 left
_ * _ 40 left
_ _ 40 left
_ / _ 40 left
- _ 35 right
/ _ 35 right
_ ^ _ 30 right

Logic

The basic library of Coq comes with the definitions of standard (intuitionistic) logical connectives (they are defined as
inductive constructions). They are equipped with an appealing syntax enriching the subclass form of the syntactic class
term. The syntax of form is shown below:

form ::= True (True)
False (False)
~ form (not)
form /\ form (and)
form \/ form (or)
form -> form (primitive implication)
form <-> form (iff)
forall ident : type, form (primitive for all)
exists ident [: specif], form (ex)
exists2 ident [: specif], form & form (ex2)
term = term (eq)
term = term :> specif (eq)

Note: Implication is not defined but primitive (it is a non-dependent product of a proposition over another proposition).
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There is also a primitive universal quantification (it is a dependent product over a proposition). The primitive universal
quantification allows both first-order and higher-order quantification.

Propositional Connectives

First, we find propositional calculus connectives:

Inductive True : Prop := I.
Inductive False : Prop := .
Definition not (A: Prop) := A -> False.
Inductive and (A B:Prop) : Prop := conj (_:A) (_:B).
Section Projections.
Variables A B : Prop.
Theorem proj1 : A /\ B -> A.
Theorem proj2 : A /\ B -> B.

End Projections.
Inductive or (A B:Prop) : Prop :=
| or_introl (_:A)
| or_intror (_:B).
Definition iff (P Q:Prop) := (P -> Q) /\ (Q -> P).
Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R.

Quantifiers

Then we find first-order quantifiers:

Definition all (A:Set) (P:A -> Prop) := forall x:A, P x.
Inductive ex (A: Set) (P:A -> Prop) : Prop :=
ex_intro (x:A) (_:P x).

Inductive ex2 (A:Set) (P Q:A -> Prop) : Prop :=
ex_intro2 (x:A) (_:P x) (_:Q x).

The following abbreviations are allowed:

exists x:A, P ex A (fun x:A => P)
exists x, P ex _ (fun x => P)
exists2 x:A, P & Q ex2 A (fun x:A => P) (fun x:A => Q)
exists2 x, P & Q ex2 _ (fun x => P) (fun x => Q)

The type annotation :A can be omitted when A can be synthesized by the system.

Equality

Then, we find equality, defined as an inductive relation. That is, given a type A and an x of type A, the predicate (eq A
x) is the smallest one which contains x. This definition, due to Christine Paulin-Mohring, is equivalent to define eq as
the smallest reflexive relation, and it is also equivalent to Leibniz’ equality.

Inductive eq (A:Type) (x:A) : A -> Prop :=
eq_refl : eq A x x.
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Lemmas

Finally, a few easy lemmas are provided.

Theorem absurd : forall A C:Prop, A -> ~ A -> C.
Section equality.
Variables A B : Type.
Variable f : A -> B.
Variables x y z : A.
Theorem eq_sym : x = y -> y = x.
Theorem eq_trans : x = y -> y = z -> x = z.
Theorem f_equal : x = y -> f x = f y.
Theorem not_eq_sym : x <> y -> y <> x.
End equality.
Definition eq_ind_r :
forall (A:Type) (x:A) (P:A->Prop), P x -> forall y:A, y = x -> P y.

Definition eq_rec_r :
forall (A:Type) (x:A) (P:A->Set), P x -> forall y:A, y = x -> P y.

Definition eq_rect_r :
forall (A:Type) (x:A) (P:A->Type), P x -> forall y:A, y = x -> P y.

Hint Immediate eq_sym not_eq_sym : core.

The theorem f_equal is extended to functions with two to five arguments. The theorem are names f_equal2,
f_equal3, f_equal4 and f_equal5. For instance f_equal3 is defined the following way.

Theorem f_equal3 :
forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B)
(x1 y1:A1) (x2 y2:A2) (x3 y3:A3),
x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3.

Datatypes

In the basic library, we find in Datatypes.v the definition of the basic data-types of programming, defined as inductive
constructions over the sort Set. Some of them come with a special syntax shown below (this syntax table is common
with the next section Specification):

specif ::= specif * specif (prod)
specif + specif (sum)
specif + { specif } (sumor)
{ specif } + { specif } (sumbool)
{ ident : specif | form } (sig)
{ ident : specif | form & form } (sig2)
{ ident : specif & specif } (sigT)
{ ident : specif & specif & specif } (sigT2)

term ::= (term, term) (pair)

Programming

Inductive unit : Set := tt.
Inductive bool : Set := true | false.
Inductive nat : Set := O | S (n:nat).

(continues on next page)
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Inductive option (A:Set) : Set := Some (_:A) | None.
Inductive identity (A:Type) (a:A) : A -> Type :=

refl_identity : identity A a a.

Note that zero is the letter O, and not the numeral 0.
The predicate identity is logically equivalent to equality but it lives in sort Type. It is mainly maintained for com-
patibility.
We then define the disjoint sum of A+B of two sets A and B, and their product A*B.

Inductive sum (A B:Set) : Set := inl (_:A) | inr (_:B).
Inductive prod (A B:Set) : Set := pair (_:A) (_:B).
Section projections.
Variables A B : Set.
Definition fst (H: prod A B) := match H with

| pair _ _ x y => x
end.

Definition snd (H: prod A B) := match H with
| pair _ _ x y => y
end.

End projections.

Some operations on bool are also provided: andb (with infix notation &&), orb (with infix notation ||), xorb, implb
and negb.

Specification

The following notions defined in module Specif.v allow to build new data-types and specifications. They are available
with the syntax shown in the previous section Datatypes.
For instance, given A:Type and P:A->Prop, the construct {x:A | P x} (in abstract syntax (sig A P)) is a
Type. We may build elements of this set as (exist x p) whenever we have a witness x:A with its justification p:P
x.
From such a (exist x p) we may in turn extract its witness x:A (using an elimination construct such as match)
but not its justification, which stays hidden, like in an abstract data-type. In technical terms, one says that sig is a weak
(dependent) sum. A variant sig2 with two predicates is also provided.

Inductive sig (A:Set) (P:A -> Prop) : Set := exist (x:A) (_:P x).
Inductive sig2 (A:Set) (P Q:A -> Prop) : Set :=

exist2 (x:A) (_:P x) (_:Q x).

A strong (dependent) sum {x:A & P x} may be also defined, when the predicate P is now defined as a constructor of
types in Type.

Inductive sigT (A:Type) (P:A -> Type) : Type := existT (x:A) (_:P x).
Section Projections2.
Variable A : Type.
Variable P : A -> Type.
Definition projT1 (H:sigT A P) := let (x, h) := H in x.
Definition projT2 (H:sigT A P) :=
match H return P (projT1 H) with
existT _ _ x h => h

end.
End Projections2.

(continues on next page)
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(continued from previous page)
Inductive sigT2 (A: Type) (P Q:A -> Type) : Type :=

existT2 (x:A) (_:P x) (_:Q x).

A related non-dependent construct is the constructive sum {A}+{B} of two propositions A and B.

Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).

This sumbool construct may be used as a kind of indexed boolean data-type. An intermediate between sumbool and
sum is the mixed sumor which combines A:Set and B:Prop in the construction A+{B} in Set.

Inductive sumor (A:Set) (B:Prop) : Set :=
| inleft (_:A)
| inright (_:B).

We may define variants of the axiom of choice, like in Martin-Löf’s Intuitionistic Type Theory.

Lemma Choice :
forall (S S':Set) (R:S -> S' -> Prop),
(forall x:S, {y : S' | R x y}) ->
{f : S -> S' | forall z:S, R z (f z)}.

Lemma Choice2 :
forall (S S':Set) (R:S -> S' -> Set),
(forall x:S, {y : S' & R x y}) ->
{f : S -> S' & forall z:S, R z (f z)}.

Lemma bool_choice :
forall (S:Set) (R1 R2:S -> Prop),
(forall x:S, {R1 x} + {R2 x}) ->
{f : S -> bool |
forall x:S, f x = true /\ R1 x \/ f x = false /\ R2 x}.

The next construct builds a sum between a data-type A:Type and an exceptional value encoding errors:

Definition Exc := option.
Definition value := Some.
Definition error := None.

This module ends with theorems, relating the sorts Set or Type and Prop in a way which is consistent with the realiz-
ability interpretation.

Definition except := False_rec.
Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.
Theorem and_rect2 :
forall (A B:Prop) (P:Type), (A -> B -> P) -> A /\ B -> P.

Basic Arithmetic

The basic library includes a few elementary properties of natural numbers, together with the definitions of predecessor,
addition and multiplication, in module Peano.v. It also provides a scope nat_scope gathering standard notations for
common operations (+, *) and a decimal notation for numbers, allowing for instance to write 3 for S (S (S O))).
This also works on the left hand side of a match expression (see for example section refine). This scope is opened
by default.

Example
The following example is not part of the standard library, but it shows the usage of the notations:
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Fixpoint even (n:nat) : bool :=
match n with
| 0 => true
| 1 => false
| S (S n) => even n
end.

Now comes the content of module Peano:

Theorem eq_S : forall x y:nat, x = y -> S x = S y.
Definition pred (n:nat) : nat :=
match n with
| 0 => 0
| S u => u
end.

Theorem pred_Sn : forall m:nat, m = pred (S m).
Theorem eq_add_S : forall n m:nat, S n = S m -> n = m.
Hint Immediate eq_add_S : core.
Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.
Definition IsSucc (n:nat) : Prop :=
match n with
| 0 => False
| S p => True
end.

Theorem O_S : forall n:nat, 0 <> S n.
Theorem n_Sn : forall n:nat, n <> S n.
Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| 0 => m
| S p => S (p + m)
end

where "n + m" := (plus n m) : nat_scope.
Lemma plus_n_O : forall n:nat, n = n + 0.
Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Fixpoint mult (n m:nat) {struct n} : nat :=
match n with
| 0 => 0
| S p => m + p * m
end

where "n * m" := (mult n m) : nat_scope.
Lemma mult_n_O : forall n:nat, 0 = n * 0.
Lemma mult_n_Sm : forall n m:nat, n * m + n = n * (S m).

Finally, it gives the definition of the usual orderings le, lt, ge and gt.

Inductive le (n:nat) : nat -> Prop :=
| le_n : le n n
| le_S : forall m:nat, n <= m -> n <= (S m)
where "n <= m" := (le n m) : nat_scope.
Definition lt (n m:nat) := S n <= m.
Definition ge (n m:nat) := m <= n.
Definition gt (n m:nat) := m < n.

Properties of these relations are not initially known, but may be required by the user from modules Le and Lt. Finally,
Peano gives some lemmas allowing pattern matching, and a double induction principle.
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Theorem nat_case :
forall (n:nat) (P:nat -> Prop),
P 0 -> (forall m:nat, P (S m)) -> P n.

Theorem nat_double_ind :
forall R:nat -> nat -> Prop,
(forall n:nat, R 0 n) ->
(forall n:nat, R (S n) 0) ->
(forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m.

Well-founded recursion

The basic library contains the basics of well-founded recursion and well-founded induction, in module Wf.v.

Section Well_founded.
Variable A : Type.
Variable R : A -> A -> Prop.
Inductive Acc (x:A) : Prop :=

Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x.
Lemma Acc_inv x : Acc x -> forall y:A, R y x -> Acc y.
Definition well_founded := forall a:A, Acc a.
Hypothesis Rwf : well_founded.
Theorem well_founded_induction :
forall P:A -> Set,
(forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.

Theorem well_founded_ind :
forall P:A -> Prop,
(forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.

The automatically generated scheme Acc_rect can be used to define functions by fixpoints using well-founded relations
to justify termination. Assuming extensionality of the functional used for the recursive call, the fixpoint equation can be
proved.

Section FixPoint.
Variable P : A -> Type.
Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=

F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)).
Definition Fix (x:A) := Fix_F x (Rwf x).
Hypothesis F_ext :

forall (x:A) (f g:forall y:A, R y x -> P y),
(forall (y:A) (p:R y x), f y p = g y p) -> F x f = F x g.

Lemma Fix_F_eq :
forall (x:A) (r:Acc x),
F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)) = Fix_F x r.

Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.
Lemma fix_eq : forall x:A, Fix x = F x (fun (y:A) (p:R y x) => Fix y).
End FixPoint.
End Well_founded.

Accessing the Type level

The standard library includes Type level definitions of counterparts of some logic concepts and basic lemmas about them.
The module Datatypes defines identity, which is the Type level counterpart of equality:
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Inductive identity (A:Type) (a:A) : A -> Type :=
identity_refl : identity A a a.

Some properties of identity are proved in the module Logic_Type, which also provides the definition of Type
level negation:

Definition notT (A:Type) := A -> False.

Tactics

A few tactics defined at the user level are provided in the initial state, in module Tactics.v. They are listed at http:
//coq.inria.fr/stdlib, in paragraph Init, link Tactics.

4.3.2 The standard library

Survey

The rest of the standard library is structured into the following subdirectories:
• Logic : Classical logic and dependent equality
• Arith : Basic Peano arithmetic
• PArith : Basic positive integer arithmetic
• NArith : Basic binary natural number arithmetic
• ZArith : Basic relative integer arithmetic
• Numbers : Various approaches to natural, integer and cyclic numbers (currently axiomatically and on top of 2^31
binary words)

• Bool : Booleans (basic functions and results)
• Lists : Monomorphic and polymorphic lists (basic functions and results), Streams (infinite sequences defined with
co-inductive types)

• Sets : Sets (classical, constructive, finite, infinite, power set, etc.)
• FSets : Specification and implementations of finite sets and finite maps (by lists and by AVL trees)
• Reals : Axiomatization of real numbers (classical, basic functions, integer part, fractional part, limit, derivative,
Cauchy series, power series and results,...)

• Floats : Machine implementation of floating-point arithmetic (for the binary64 format)
• Relations : Relations (definitions and basic results)
• Sorting : Sorted list (basic definitions and heapsort correctness)
• Strings : 8-bits characters and strings
• Wellfounded : Well-founded relations (basic results)

These directories belong to the initial load path of the system, and the modules they provide are compiled at installation
time. So they are directly accessible with the command Require (see Section Compiled files).
The different modules of the Coq standard library are documented online at https://coq.inria.fr/stdlib.
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Peano’s arithmetic (nat)

While in the initial state, many operations and predicates of Peano’s arithmetic are defined, further operations and results
belong to other modules. For instance, the decidability of the basic predicates are defined here. This is provided by
requiring the module Arith.
The following table describes the notations available in scope nat_scope :

Notation Interpretation
_ < _ lt
_ <= _ le
_ > _ gt
_ >= _ ge
x < y < z x < y /\ y < z
x < y <= z x < y /\ y <= z
x <= y < z x <= y /\ y < z
x <= y <= z x <= y /\ y <= z
_ + _ plus
_ - _ minus
_ * _ mult

Notations for integer arithmetic

The following table describes the syntax of expressions for integer arithmetic. It is provided by requiring and opening the
module ZArith and opening scope Z_scope. It specifies how notations are interpreted and, when not already reserved,
the precedence and associativity.

Notation Interpretation Precedence Associativity
_ < _ Z.lt
_ <= _ Z.le
_ > _ Z.gt
_ >= _ Z.ge
x < y < z x < y /\ y < z
x < y <= z x < y /\ y <= z
x <= y < z x <= y /\ y < z
x <= y <= z x <= y /\ y <= z
_ ?= _ Z.compare 70 no
_ + _ Z.add
_ - _ Z.sub
_ * _ Z.mul
_ / _ Z.div
_ mod _ Z.modulo 40 no
- _ Z.opp
_ ^ _ Z.pow

Example

Require Import ZArith.
[Loading ML file newring_plugin.cmxs ... done]
[Loading ML file zify_plugin.cmxs ... done]

(continues on next page)
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(continued from previous page)
[Loading ML file omega_plugin.cmxs ... done]

Check (2 + 3)%Z.
(2 + 3)%Z

: Z

Open Scope Z_scope.
Check 2 + 3.

2 + 3
: Z

Real numbers library

Notations for real numbers

This is provided by requiring and opening the module Reals and opening scope R_scope. This set of notations is very
similar to the notation for integer arithmetic. The inverse function was added.

Notation Interpretation
_ < _ Rlt
_ <= _ Rle
_ > _ Rgt
_ >= _ Rge
x < y < z x < y /\ y < z
x < y <= z x < y /\ y <= z
x <= y < z x <= y /\ y < z
x <= y <= z x <= y /\ y <= z
_ + _ Rplus
_ - _ Rminus
_ * _ Rmult
_ / _ Rdiv
- _ Ropp
/ _ Rinv
_ ^ _ pow

Example

Require Import Reals.
[Loading ML file r_syntax_plugin.cmxs ... done]
[Loading ML file micromega_plugin.cmxs ... done]

Check (2 + 3)%R.
(2 + 3)%R

: R

Open Scope R_scope.
Check 2 + 3.

2 + 3
: R
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Some tactics for real numbers

In addition to the powerful ring, field and lra tactics (see Chapter Tactics), there are also:
discrR

Proves that two real integer constants are different.

Example

Require Import DiscrR.
Open Scope R_scope.
Goal 5 <> 0.

1 subgoal

============================
5 <> 0

discrR.

split_Rabs
Allows unfolding the Rabs constant and splits corresponding conjunctions.

Example

Require Import Reals.
Open Scope R_scope.
Goal forall x:R, x <= Rabs x.

1 subgoal

============================
forall x : R, x <= Rabs x

intro; split_Rabs.
2 subgoals

x : R
Hlt : x < 0
============================
x <= - x

subgoal 2 is:
x <= x

split_Rmult
Splits a condition that a product is non null into subgoals corresponding to the condition on each operand of the
product.

Example

Require Import Reals.
Open Scope R_scope.
Goal forall x y z:R, x * y * z <> 0.

1 subgoal

(continues on next page)
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(continued from previous page)

============================
forall x y z : R, x * y * z <> 0

intros; split_Rmult.
3 subgoals

x, y, z : R
============================
x <> 0

subgoal 2 is:
y <> 0

subgoal 3 is:
z <> 0

These tactics has been written with the tactic language Ltac described in Chapter Ltac.

List library

Some elementary operations on polymorphic lists are defined here. They can be accessed by requiring module List.
It defines the following notions:

• length

• head : first element (with default)
• tail : all but first element
• app : concatenation
• rev : reverse
• nth : accessing n-th element (with default)
• map : applying a function
• flat_map : applying a function returning lists
• fold_left : iterator (from head to tail)
• fold_right : iterator (from tail to head)

The following table shows notations available when opening scope list_scope.

Notation Interpretation Precedence Associativity
_ ++ _ app 60 right
_ :: _ cons 60 right

Floats library

The library of primitive floating-point arithmetic can be loaded by requiring module Floats:

Require Import Floats.
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It exports the module PrimFloat that provides a primitive type named float, defined in the kernel (see section
Primitive Floats), as well as two variant types float_comparison and float_class:

Print float.
*** [ float : Set ]

Print float_comparison.
Variant float_comparison : Set :=

FEq : float_comparison
| FLt : float_comparison
| FGt : float_comparison
| FNotComparable : float_comparison

Print float_class.
Variant float_class : Set :=

PNormal : float_class
| NNormal : float_class
| PSubn : float_class
| NSubn : float_class
| PZero : float_class
| NZero : float_class
| PInf : float_class
| NInf : float_class
| NaN : float_class

It then defines the primitive operators below, using the processor floating-point operators for binary64 in rounding-to-
nearest even:

• abs

• opp

• sub

• add

• mul

• div

• sqrt

• compare : compare two floats and return a float_comparison
• classify : analyze a float and return a float_class
• of_int63 : round a primitive integer and convert it into a float
• normfr_mantissa : take a float in [0.5; 1.0) and return its mantissa
• frshiftexp : convert a float to fractional part in [0.5; 1.0) and integer part
• ldshiftexp : multiply a float by an integral power of 2
• next_up : return the next float towards positive infinity
• next_down : return the next float towards negative infinity

For special floating-point values, the following constants are also defined:
• zero

• neg_zero

• one
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• two

• infinity

• neg_infinity

• nan : Not a Number (assumed to be unique: the ”payload” of NaNs is ignored)
The following table shows the notations available when opening scope float_scope.

Notation Interpretation
- _ opp
_ - _ sub
_ + _ add
_ * _ mul
_ / _ div
_ == _ eqb
_ < _ ltb
_ <= _ leb
_ ?= _ compare

Floating-point constants are parsed and pretty-printed as (17-digit) decimal constants. This ensures that the composition
parse ∘ print amounts to the identity.
Warning: The constant numeral is not a binary64 floating-point value. A closest value will be used and unambiguously printed numeral. [inexact-float,parsing]

Not all decimal constants are floating-point values. This warning is generated when parsing such a constant (for
instance 0.1).

Example

Open Scope float_scope.
Eval compute in 1 + 0.5.

= 1.5
: float

Eval compute in 1 / 0.
= infinity

: float

Eval compute in 1 / -0.
= neg_infinity

: float

Eval compute in 0 / 0.
= nan

: float

Eval compute in 0 ?= -0.
= FEq

: float_comparison

Eval compute in nan ?= nan.
= FNotComparable

: float_comparison

Eval compute in next_down (-1).

(continues on next page)
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(continued from previous page)
= -1.0000000000000002

: float

The primitive operators are specified with respect to their Gallina counterpart, using the variant type spec_float, and
the injection Prim2SF:

Print spec_float.
Variant spec_float : Set :=

S754_zero : bool -> spec_float
| S754_infinity : bool -> spec_float
| S754_nan : spec_float
| S754_finite : bool -> positive -> Z -> spec_float

Arguments S754_zero _%bool_scope
Arguments S754_infinity _%bool_scope
Arguments S754_finite _%bool_scope _%positive_scope _%Z_scope

Check Prim2SF.
Prim2SF

: float -> spec_float

Check mul_spec.
mul_spec

: forall x y : float, Prim2SF (x * y) = SF64mul (Prim2SF x) (Prim2SF y)

For more details on the available definitions and lemmas, see the online documentation of the Floats library.

4.3.3 Users’ contributions

Numerous users’ contributions have been collected and are available at URL http://coq.inria.fr/opam/www/. On this web
page, you have a list of all contributions with informations (author, institution, quick description, etc.) and the possibility
to download them one by one. You will also find informations on how to submit a new contribution.

4.4 Calculus of Inductive Constructions

The underlying formal language of Coq is a Calculus of Inductive Constructions (Cic) whose inference rules are presented
in this chapter. The history of this formalism as well as pointers to related work are provided in a separate chapter; see
Credits.

4.4.1 The terms

The expressions of the Cic are terms and all terms have a type. There are types for functions (or programs), there are
atomic types (especially datatypes)... but also types for proofs and types for the types themselves. Especially, any object
handled in the formalism must belong to a type. For instance, universal quantification is relative to a type and takes the
form “for all x of type 𝑇 , 𝑃 ”. The expression “𝑥 of type 𝑇 ” is written “𝑥 ∶ 𝑇 ”. Informally, “𝑥 ∶ 𝑇 ” can be thought as “𝑥
belongs to 𝑇 ”.
The types of types are sorts. Types and sorts are themselves terms so that terms, types and sorts are all components of a
common syntactic language of terms which is described in Section Terms but, first, we describe sorts.
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Sorts

All sorts have a type and there is an infinite well-founded typing hierarchy of sorts whose base sorts are SProp, Prop and
Set.
The sort Prop intends to be the type of logical propositions. If 𝑀 is a logical proposition then it denotes the class of
terms representing proofs of 𝑀 . An object 𝑚 belonging to 𝑀 witnesses the fact that 𝑀 is provable. An object of type
Prop is called a proposition.
The sort SProp is like Prop but the propositions in SProp are known to have irrelevant proofs (all proofs are equal).
Objects of type SProp are called strict propositions. See SProp (proof irrelevant propositions) for information about using
SProp, and [GCST19] for meta theoretical considerations.
The sort Set intends to be the type of small sets. This includes data types such as booleans and naturals, but also products,
subsets, and function types over these data types.
SProp, Prop and Set themselves can be manipulated as ordinary terms. Consequently they also have a type. Because
assuming simply that Set has type Set leads to an inconsistent theory [Coq86], the language of Cic has infinitely many
sorts. There are, in addition to the base sorts, a hierarchy of universes Type(𝑖) for any integer 𝑖 ≥ 1.
Like Set, all of the sorts Type(𝑖) contain small sets such as booleans, natural numbers, as well as products, subsets and
function types over small sets. But, unlike Set, they also contain large sets, namely the sorts Set and Type(𝑗) for 𝑗 < 𝑖,
and all products, subsets and function types over these sorts.
Formally, we call 𝒮 the set of sorts which is defined by:

𝒮 ≡ {SProp,Prop,Set,Type(𝑖) | 𝑖 ∈ ℕ}

Their properties, such as: Prop ∶ Type(1), Set ∶ Type(1), and Type(𝑖) ∶ Type(𝑖 + 1), are defined in Section Subtyping
rules.
The user does not have to mention explicitly the index 𝑖 when referring to the universe Type(𝑖). One only writes Type.
The system itself generates for each instance of Type a new index for the universe and checks that the constraints between
these indexes can be solved. From the user point of view we consequently have Type ∶ Type. We shall make precise in
the typing rules the constraints between the indices.
Implementation issues In practice, the Type hierarchy is implemented using algebraic universes. An algebraic universe
𝑢 is either a variable (a qualified identifier with a number) or a successor of an algebraic universe (an expression 𝑢 + 1),
or an upper bound of algebraic universes (an expression max(𝑢1, ..., 𝑢𝑛)), or the base universe (the expression 0) which
corresponds, in the arity of template polymorphic inductive types (see Section Well-formed inductive definitions), to the
predicative sortSet. A graph of constraints between the universe variables is maintained globally. To ensure the existence
of a mapping of the universes to the positive integers, the graph of constraints must remain acyclic. Typing expressions
that violate the acyclicity of the graph of constraints results in a Universe inconsistency error.
See also:
Section Printing universes.

Terms

Terms are built from sorts, variables, constants, abstractions, applications, local definitions, and products. From a syntactic
point of view, types cannot be distinguished from terms, except that they cannot start by an abstraction or a constructor.
More precisely the language of the Calculus of Inductive Constructions is built from the following rules.

1. the sorts SProp, Prop, Set, Type(𝑖) are terms.
2. variables, hereafter ranged over by letters 𝑥, 𝑦, etc., are terms
3. constants, hereafter ranged over by letters 𝑐, 𝑑, etc., are terms.
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4. if 𝑥 is a variable and 𝑇 , 𝑈 are terms then ∀𝑥 ∶ 𝑇 , 𝑈 (forall x:T, U in Coq concrete syntax) is a term. If
𝑥 occurs in 𝑈 , ∀𝑥 ∶ 𝑇 , 𝑈 reads as “for all 𝑥 of type 𝑇 , 𝑈”. As 𝑈 depends on 𝑥, one says that ∀𝑥 ∶ 𝑇 , 𝑈 is a
dependent product. If 𝑥 does not occur in 𝑈 then ∀𝑥 ∶ 𝑇 , 𝑈 reads as “if 𝑇 then 𝑈”. A non dependent product can
be written: 𝑇 → 𝑈 .

5. if 𝑥 is a variable and 𝑇 , 𝑢 are terms then 𝜆𝑥 ∶ 𝑇 . 𝑢 (fun x:T => u in Coq concrete syntax) is a term. This is
a notation for the λ-abstraction of λ-calculus [Bar81]. The term 𝜆𝑥 ∶ 𝑇 . 𝑢 is a function which maps elements of 𝑇
to the expression 𝑢.

6. if 𝑡 and 𝑢 are terms then (𝑡 𝑢) is a term (t u in Coq concrete syntax). The term (𝑡 𝑢) reads as “𝑡 applied to 𝑢”.
7. if 𝑥 is a variable, and 𝑡, 𝑇 and 𝑢 are terms then let 𝑥 ∶= 𝑡 ∶ 𝑇 in 𝑢 is a term which denotes the term 𝑢 where the

variable 𝑥 is locally bound to 𝑡 of type 𝑇 . This stands for the common “let-in” construction of functional programs
such as ML or Scheme.

Free variables. The notion of free variables is defined as usual. In the expressions 𝜆𝑥 ∶ 𝑇 . 𝑈 and ∀𝑥 ∶ 𝑇 , 𝑈 the
occurrences of 𝑥 in 𝑈 are bound.
Substitution. The notion of substituting a term 𝑡 to free occurrences of a variable 𝑥 in a term 𝑢 is defined as usual. The
resulting term is written 𝑢{𝑥/𝑡}.
The logical vs programming readings. The constructions of the Cic can be used to express both logical and program-
ming notions, accordingly to the Curry-Howard correspondence between proofs and programs, and between propositions
and types [CFC58][How80][dB72].
For instance, let us assume that nat is the type of natural numbers with zero element written 0 and that True is the always
true proposition. Then → is used both to denote nat → nat which is the type of functions from nat to nat, to denote
True→True which is an implicative proposition, to denote nat → Prop which is the type of unary predicates over the
natural numbers, etc.
Let us assume that mult is a function of type nat → nat → nat and eqnat a predicate of type nat → nat → Prop.
The λ-abstraction can serve to build “ordinary” functions as in 𝜆𝑥 ∶ nat. (mult 𝑥 𝑥) (i.e. fun x:nat => mult x
x in Coq notation) but may build also predicates over the natural numbers. For instance 𝜆𝑥 ∶ nat. (eqnat 𝑥 0) (i.e. fun
x:nat => eqnat x 0 in Coq notation) will represent the predicate of one variable 𝑥 which asserts the equality of
𝑥 with 0. This predicate has type nat → Prop and it can be applied to any expression of type nat, say 𝑡, to give an object
𝑃 𝑡 of type Prop, namely a proposition.
Furthermore forall x:nat, P x will represent the type of functions which associate to each natural number 𝑛 an
object of type (𝑃 𝑛) and consequently represent the type of proofs of the formula “∀𝑥. 𝑃(𝑥)”.

4.4.2 Typing rules

As objects of type theory, terms are subjected to type discipline. The well typing of a term depends on a global environment
and a local context.
Local context. A local context is an ordered list of local declarations of names which we call variables. The declaration
of some variable 𝑥 is either a local assumption, written 𝑥 ∶ 𝑇 (𝑇 is a type) or a local definition, written 𝑥 ∶= 𝑡 ∶ 𝑇 . We
use brackets to write local contexts. A typical example is [𝑥 ∶ 𝑇 ; 𝑦 ∶= 𝑢 ∶ 𝑈; 𝑧 ∶ 𝑉 ]. Notice that the variables declared
in a local context must be distinct. If Γ is a local context that declares some 𝑥, we write 𝑥 ∈ Γ. By writing (𝑥 ∶ 𝑇 ) ∈ Γ
we mean that either 𝑥 ∶ 𝑇 is an assumption in Γ or that there exists some 𝑡 such that 𝑥 ∶= 𝑡 ∶ 𝑇 is a definition in Γ. If
Γ defines some 𝑥 ∶= 𝑡 ∶ 𝑇 , we also write (𝑥 ∶= 𝑡 ∶ 𝑇 ) ∈ Γ. For the rest of the chapter, Γ ∶∶ (𝑦 ∶ 𝑇 ) denotes the local
context Γ enriched with the local assumption 𝑦 ∶ 𝑇 . Similarly, Γ ∶∶ (𝑦 ∶= 𝑡 ∶ 𝑇 ) denotes the local context Γ enriched
with the local definition (𝑦 ∶= 𝑡 ∶ 𝑇 ). The notation [] denotes the empty local context. By Γ1; Γ2 we mean concatenation
of the local context Γ1 and the local context Γ2.
Global environment. A global environment is an ordered list of global declarations. Global declarations are either global
assumptions or global definitions, but also declarations of inductive objects. Inductive objects themselves declare both
inductive or coinductive types and constructors (see Section Inductive Definitions).
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A global assumption will be represented in the global environment as (𝑐 ∶ 𝑇 ) which assumes the name 𝑐 to be of some
type 𝑇 . A global definition will be represented in the global environment as 𝑐 ∶= 𝑡 ∶ 𝑇 which defines the name 𝑐 to have
value 𝑡 and type 𝑇 . We shall call such names constants. For the rest of the chapter, the 𝐸; 𝑐 ∶ 𝑇 denotes the global
environment 𝐸 enriched with the global assumption 𝑐 ∶ 𝑇 . Similarly, 𝐸; 𝑐 ∶= 𝑡 ∶ 𝑇 denotes the global environment 𝐸
enriched with the global definition (𝑐 ∶= 𝑡 ∶ 𝑇 ).
The rules for inductive definitions (see Section Inductive Definitions) have to be considered as assumption rules to which
the following definitions apply: if the name 𝑐 is declared in 𝐸, we write 𝑐 ∈ 𝐸 and if 𝑐 ∶ 𝑇 or 𝑐 ∶= 𝑡 ∶ 𝑇 is declared in
𝐸, we write (𝑐 ∶ 𝑇 ) ∈ 𝐸.
Typing rules. In the following, we define simultaneously two judgments. The first one 𝐸[Γ] ⊢ 𝑡 ∶ 𝑇 means the term 𝑡
is well-typed and has type 𝑇 in the global environment 𝐸 and local context Γ. The second judgment 𝒲ℱ(𝐸)[Γ] means
that the global environment 𝐸 is well-formed and the local context Γ is a valid local context in this global environment.
A term 𝑡 is well typed in a global environment 𝐸 iff there exists a local context Γ and a term 𝑇 such that the judgment
𝐸[Γ] ⊢ 𝑡 ∶ 𝑇 can be derived from the following rules.
W-Empty

𝒲ℱ([])[]

W-Local-Assum

𝐸[Γ] ⊢ 𝑇 ∶ 𝑠 𝑠 ∈ 𝒮 𝑥 ∉ Γ
𝒲ℱ(𝐸)[Γ ∶∶ (𝑥 ∶ 𝑇 )]

W-Local-Def

𝐸[Γ] ⊢ 𝑡 ∶ 𝑇 𝑥 ∉ Γ
𝒲ℱ(𝐸)[Γ ∶∶ (𝑥 ∶= 𝑡 ∶ 𝑇 )]

W-Global-Assum

𝐸[] ⊢ 𝑇 ∶ 𝑠 𝑠 ∈ 𝒮 𝑐 ∉ 𝐸
𝒲ℱ(𝐸; 𝑐 ∶ 𝑇 )[]

W-Global-Def

𝐸[] ⊢ 𝑡 ∶ 𝑇 𝑐 ∉ 𝐸
𝒲ℱ(𝐸; 𝑐 ∶= 𝑡 ∶ 𝑇 )[]

Ax-SProp

𝒲ℱ(𝐸)[Γ]
𝐸[Γ] ⊢ SProp ∶ Type(1)

Ax-Prop

𝒲ℱ(𝐸)[Γ]
𝐸[Γ] ⊢ Prop ∶ Type(1)

Ax-Set

𝒲ℱ(𝐸)[Γ]
𝐸[Γ] ⊢ Set ∶ Type(1)
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Ax-Type
𝒲ℱ(𝐸)[Γ]

𝐸[Γ] ⊢ Type(𝑖) ∶ Type(𝑖 + 1)

Var
𝒲ℱ(𝐸)[Γ] (𝑥 ∶ 𝑇 ) ∈ Γ or (𝑥 ∶= 𝑡 ∶ 𝑇 ) ∈ Γ for some 𝑡

𝐸[Γ] ⊢ 𝑥 ∶ 𝑇

Const
𝒲ℱ(𝐸)[Γ] (𝑐 ∶ 𝑇 ) ∈ 𝐸 or (𝑐 ∶= 𝑡 ∶ 𝑇 ) ∈ 𝐸 for some 𝑡

𝐸[Γ] ⊢ 𝑐 ∶ 𝑇

Prod-SProp
𝐸[Γ] ⊢ 𝑇 ∶ 𝑠 𝑠 ∈ 𝒮 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑈 ∶ SProp

𝐸[Γ] ⊢ ∀ 𝑥 ∶ 𝑇 , 𝑈 ∶ SProp

Prod-Prop
𝐸[Γ] ⊢ 𝑇 ∶ 𝑠 𝑠 ∈ 𝒮 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑈 ∶ Prop

𝐸[Γ] ⊢ ∀𝑥 ∶ 𝑇 , 𝑈 ∶ Prop

Prod-Set
𝐸[Γ] ⊢ 𝑇 ∶ 𝑠 𝑠 ∈ {SProp,Prop,Set} 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑈 ∶ Set

𝐸[Γ] ⊢ ∀𝑥 ∶ 𝑇 , 𝑈 ∶ Set

Prod-Type
𝐸[Γ] ⊢ 𝑇 ∶ 𝑠 𝑠 ∈ {SProp,Type𝑖} 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑈 ∶ Type(𝑖)

𝐸[Γ] ⊢ ∀𝑥 ∶ 𝑇 , 𝑈 ∶ Type(𝑖)

Lam
𝐸[Γ] ⊢ ∀𝑥 ∶ 𝑇 , 𝑈 ∶ 𝑠 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑡 ∶ 𝑈

𝐸[Γ] ⊢ 𝜆𝑥 ∶ 𝑇 . 𝑡 ∶ ∀𝑥 ∶ 𝑇 , 𝑈

App
𝐸[Γ] ⊢ 𝑡 ∶ ∀𝑥 ∶ 𝑈, 𝑇 𝐸[Γ] ⊢ 𝑢 ∶ 𝑈

𝐸[Γ] ⊢ (𝑡 𝑢) ∶ 𝑇 {𝑥/𝑢}

Let
𝐸[Γ] ⊢ 𝑡 ∶ 𝑇 𝐸[Γ ∶∶ (𝑥 ∶= 𝑡 ∶ 𝑇 )] ⊢ 𝑢 ∶ 𝑈

𝐸[Γ] ⊢ let 𝑥 ∶= 𝑡 ∶ 𝑇 in 𝑢 ∶ 𝑈{𝑥/𝑡}

Note: Prod-Prop and Prod-Set typing-rules make sense if we consider the semantic difference between Prop and Set:
• All values of a type that has a sort Set are extractable.
• No values of a type that has a sort Prop are extractable.

Note: We may have let 𝑥 ∶= 𝑡 ∶ 𝑇 in 𝑢 well-typed without having ((𝜆𝑥 ∶ 𝑇 . 𝑢) 𝑡) well-typed (where 𝑇 is a type of 𝑡).
This is because the value 𝑡 associated to 𝑥 may be used in a conversion rule (see Section Conversion rules).
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4.4.3 Conversion rules

In Cic, there is an internal reduction mechanism. In particular, it can decide if two programs are intentionally equal (one
says convertible). Convertibility is described in this section.

β-reduction

We want to be able to identify some terms as we can identify the application of a function to a given argument with its
result. For instance the identity function over a given type 𝑇 can be written 𝜆𝑥 ∶ 𝑇 . 𝑥. In any global environment 𝐸 and
local context Γ, we want to identify any object 𝑎 (of type 𝑇 ) with the application ((𝜆𝑥 ∶ 𝑇 . 𝑥) 𝑎). We define for this a
reduction (or a conversion) rule we call 𝛽:

𝐸[Γ] ⊢ ((𝜆𝑥 ∶ 𝑇 . 𝑡) 𝑢) ▷𝛽 𝑡{𝑥/𝑢}

We say that 𝑡{𝑥/𝑢} is the β-contraction of ((𝜆𝑥 ∶ 𝑇 . 𝑡) 𝑢) and, conversely, that ((𝜆𝑥 ∶ 𝑇 . 𝑡) 𝑢) is the β-expansion of
𝑡{𝑥/𝑢}.
According to β-reduction, terms of the Calculus of Inductive Constructions enjoy some fundamental properties such as
confluence, strong normalization, subject reduction. These results are theoretically of great importance but we will not
detail them here and refer the interested reader to [Coq85].

ι-reduction

A specific conversion rule is associated to the inductive objects in the global environment. We shall give later on (see
SectionWell-formed inductive definitions) the precise rules but it just says that a destructor applied to an object built from
a constructor behaves as expected. This reduction is called ι-reduction and is more precisely studied in [PM93a][Wer94].

δ-reduction

We may have variables defined in local contexts or constants defined in the global environment. It is legal to identify such
a reference with its value, that is to expand (or unfold) it into its value. This reduction is called δ-reduction and shows as
follows.
Delta-Local

𝒲ℱ(𝐸)[Γ] (𝑥 ∶= 𝑡 ∶ 𝑇 ) ∈ Γ
𝐸[Γ] ⊢ 𝑥 ▷∆ 𝑡

Delta-Global

𝒲ℱ(𝐸)[Γ] (𝑐 ∶= 𝑡 ∶ 𝑇 ) ∈ 𝐸
𝐸[Γ] ⊢ 𝑐 ▷𝛿 𝑡

ζ-reduction

Coq allows also to remove local definitions occurring in terms by replacing the defined variable by its value. The declaration
being destroyed, this reduction differs from δ-reduction. It is called ζ-reduction and shows as follows.
Zeta

𝒲ℱ(𝐸)[Γ] 𝐸[Γ] ⊢ 𝑢 ∶ 𝑈 𝐸[Γ ∶∶ (𝑥 ∶= 𝑢 ∶ 𝑈)] ⊢ 𝑡 ∶ 𝑇
𝐸[Γ] ⊢ let 𝑥 ∶= 𝑢 ∶ 𝑈 in 𝑡 ▷𝜁 𝑡{𝑥/𝑢}
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η-expansion

Another important concept is η-expansion. It is legal to identify any term 𝑡 of functional type ∀𝑥 ∶ 𝑇 , 𝑈 with its so-called
η-expansion

𝜆𝑥 ∶ 𝑇 . (𝑡 𝑥)

for 𝑥 an arbitrary variable name fresh in 𝑡.

Note: We deliberately do not define η-reduction:

𝜆𝑥 ∶ 𝑇 . (𝑡 𝑥) ⋫𝜂 𝑡

This is because, in general, the type of 𝑡 need not to be convertible to the type of 𝜆𝑥 ∶ 𝑇 . (𝑡 𝑥). E.g., if we take 𝑓 such
that:

𝑓 ∶ ∀𝑥 ∶ Type(2), Type(1)

then

𝜆𝑥 ∶ Type(1). (𝑓 𝑥) ∶ ∀𝑥 ∶ Type(1), Type(1)

We could not allow

𝜆𝑥 ∶ Type(1). (𝑓 𝑥) ▷𝜂 𝑓

because the type of the reduced term ∀𝑥 ∶ Type(2), Type(1) would not be convertible to the type of the original term
∀𝑥 ∶ Type(1), Type(1).

Proof Irrelevance

It is legal to identify any two terms whose common type is a strict proposition 𝐴 ∶ SProp. Terms in a strict propositions
are therefore called irrelevant.

Convertibility

Let us write 𝐸[Γ] ⊢ 𝑡 ▷ 𝑢 for the contextual closure of the relation 𝑡 reduces to 𝑢 in the global environment 𝐸 and local
context Γ with one of the previous reductions β, δ, ι or ζ.
We say that two terms 𝑡1 and 𝑡2 are βδιζη-convertible, or simply convertible, or equivalent, in the global environment 𝐸
and local context Γ iff there exist terms 𝑢1 and 𝑢2 such that 𝐸[Γ] ⊢ 𝑡1 ▷ … ▷ 𝑢1 and 𝐸[Γ] ⊢ 𝑡2 ▷ … ▷ 𝑢2 and either 𝑢1
and 𝑢2 are identical up to irrelevant subterms, or they are convertible up to η-expansion, i.e. 𝑢1 is 𝜆𝑥 ∶ 𝑇 . 𝑢′

1 and 𝑢2𝑥 is
recursively convertible to 𝑢′

1, or, symmetrically, 𝑢2 is 𝜆𝑥 ∶ 𝑇 . 𝑢′
2 and 𝑢1𝑥 is recursively convertible to 𝑢′

2. We then write
𝐸[Γ] ⊢ 𝑡1 =𝛽𝛿𝜄𝜁𝜂 𝑡2.
Apart from this we consider two instances of polymorphic and cumulative (see Chapter Polymorphic Universes) inductive
types (see below) convertible

𝐸[Γ] ⊢ 𝑡 𝑤1…𝑤𝑚 =𝛽𝛿𝜄𝜁𝜂 𝑡 𝑤′
1…𝑤′

𝑚

if we have subtypings (see below) in both directions, i.e.,

𝐸[Γ] ⊢ 𝑡 𝑤1…𝑤𝑚 ≤𝛽𝛿𝜄𝜁𝜂 𝑡 𝑤′
1…𝑤′

𝑚
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and

𝐸[Γ] ⊢ 𝑡 𝑤′
1…𝑤′

𝑚 ≤𝛽𝛿𝜄𝜁𝜂 𝑡 𝑤1…𝑤𝑚.

Furthermore, we consider

𝐸[Γ] ⊢ 𝑐 𝑣1…𝑣𝑚 =𝛽𝛿𝜄𝜁𝜂 𝑐′ 𝑣′
1…𝑣′

𝑚

convertible if

𝐸[Γ] ⊢ 𝑣𝑖 =𝛽𝛿𝜄𝜁𝜂 𝑣′
𝑖

and we have that 𝑐 and 𝑐′ are the same constructors of different instances of the same inductive types (differing only in
universe levels) such that

𝐸[Γ] ⊢ 𝑐 𝑣1…𝑣𝑚 ∶ 𝑡 𝑤1…𝑤𝑚

and

𝐸[Γ] ⊢ 𝑐′ 𝑣′
1…𝑣′

𝑚 ∶ 𝑡′ 𝑤′
1…𝑤′

𝑚

and we have

𝐸[Γ] ⊢ 𝑡 𝑤1…𝑤𝑚 =𝛽𝛿𝜄𝜁𝜂 𝑡 𝑤′
1…𝑤′

𝑚.

The convertibility relation allows introducing a new typing rule which says that two convertible well-formed types have
the same inhabitants.

4.4.4 Subtyping rules

At the moment, we did not take into account one rule between universes which says that any term in a universe of index
𝑖 is also a term in the universe of index 𝑖 + 1 (this is the cumulativity rule of Cic). This property extends the equivalence
relation of convertibility into a subtyping relation inductively defined by:

1. if 𝐸[Γ] ⊢ 𝑡 =𝛽𝛿𝜄𝜁𝜂 𝑢 then 𝐸[Γ] ⊢ 𝑡 ≤𝛽𝛿𝜄𝜁𝜂 𝑢,
2. if 𝑖 ≤ 𝑗 then 𝐸[Γ] ⊢ Type(𝑖) ≤𝛽𝛿𝜄𝜁𝜂 Type(𝑗),
3. for any 𝑖, 𝐸[Γ] ⊢ Set ≤𝛽𝛿𝜄𝜁𝜂 Type(𝑖),
4. 𝐸[Γ] ⊢ Prop ≤𝛽𝛿𝜄𝜁𝜂 Set, hence, by transitivity, 𝐸[Γ] ⊢ Prop ≤𝛽𝛿𝜄𝜁𝜂 Type(𝑖), for any 𝑖 (note: SProp is not

related by cumulativity to any other term)
5. if 𝐸[Γ] ⊢ 𝑇 =𝛽𝛿𝜄𝜁𝜂 𝑈 and 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑇 ′ ≤𝛽𝛿𝜄𝜁𝜂 𝑈 ′ then 𝐸[Γ] ⊢ ∀𝑥 ∶ 𝑇 , 𝑇 ′ ≤𝛽𝛿𝜄𝜁𝜂 ∀𝑥 ∶ 𝑈, 𝑈 ′.
6. if Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) is a universe polymorphic and cumulative (see Chapter Polymorphic Universes) inductive

type (see below) and (𝑡 ∶ ∀Γ𝑃 , ∀ΓArr(𝑡), 𝑆) ∈ Γ𝐼 and (𝑡′ ∶ ∀Γ′
𝑃 , ∀Γ′

Arr(𝑡), 𝑆′) ∈ Γ𝐼 are two different instances of
the same inductive type (differing only in universe levels) with constructors

[𝑐1 ∶ ∀Γ𝑃 , ∀𝑇1,1…𝑇1,𝑛1
, 𝑡 𝑣1,1…𝑣1,𝑚; …; 𝑐𝑘 ∶ ∀Γ𝑃 , ∀𝑇𝑘,1…𝑇𝑘,𝑛𝑘

, 𝑡 𝑣𝑘,1…𝑣𝑘,𝑚]

and

[𝑐1 ∶ ∀Γ′
𝑃 , ∀𝑇 ′

1,1…𝑇 ′
1,𝑛1

, 𝑡′ 𝑣′
1,1…𝑣′

1,𝑚; …; 𝑐𝑘 ∶ ∀Γ′
𝑃 , ∀𝑇 ′

𝑘,1…𝑇 ′
𝑘,𝑛𝑘

, 𝑡′ 𝑣′
𝑘,1…𝑣′

𝑘,𝑚]

respectively then

𝐸[Γ] ⊢ 𝑡 𝑤1…𝑤𝑚 ≤𝛽𝛿𝜄𝜁𝜂 𝑡′ 𝑤′
1…𝑤′

𝑚
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(notice that 𝑡 and 𝑡′ are both fully applied, i.e., they have a sort as a type) if

𝐸[Γ] ⊢ 𝑤𝑖 =𝛽𝛿𝜄𝜁𝜂 𝑤′
𝑖

for 1 ≤ 𝑖 ≤ 𝑚 and we have

𝐸[Γ] ⊢ 𝑇𝑖,𝑗 ≤𝛽𝛿𝜄𝜁𝜂 𝑇 ′
𝑖,𝑗

and

𝐸[Γ] ⊢ 𝐴𝑖 ≤𝛽𝛿𝜄𝜁𝜂 𝐴′
𝑖

where ΓArr(𝑡) = [𝑎1 ∶ 𝐴1; …; 𝑎𝑙 ∶ 𝐴𝑙] and Γ′
Arr(𝑡) = [𝑎1 ∶ 𝐴′

1; …; 𝑎𝑙 ∶ 𝐴′
𝑙].

The conversion rule up to subtyping is now exactly:
Conv

𝐸[Γ] ⊢ 𝑈 ∶ 𝑠 𝐸[Γ] ⊢ 𝑡 ∶ 𝑇 𝐸[Γ] ⊢ 𝑇 ≤𝛽𝛿𝜄𝜁𝜂 𝑈
𝐸[Γ] ⊢ 𝑡 ∶ 𝑈

Normal form. A term which cannot be any more reduced is said to be in normal form. There are several ways (or
strategies) to apply the reduction rules. Among them, we have to mention the head reduction which will play an important
role (see Chapter Tactics). Any term 𝑡 can be written as 𝜆𝑥1 ∶ 𝑇1. …𝜆𝑥𝑘 ∶ 𝑇𝑘. (𝑡0 𝑡1…𝑡𝑛) where 𝑡0 is not an application.
We say then that 𝑡0 is the head of 𝑡. If we assume that 𝑡0 is 𝜆𝑥 ∶ 𝑇 . 𝑢0 then one step of β-head reduction of 𝑡 is:

𝜆𝑥1 ∶ 𝑇1. …𝜆𝑥𝑘 ∶ 𝑇𝑘. (𝜆𝑥 ∶ 𝑇 . 𝑢0 𝑡1…𝑡𝑛) ▷ 𝜆(𝑥1 ∶ 𝑇1)…(𝑥𝑘 ∶ 𝑇𝑘). (𝑢0{𝑥/𝑡1} 𝑡2…𝑡𝑛)

Iterating the process of head reduction until the head of the reduced term is no more an abstraction leads to the β-head
normal form of 𝑡:

𝑡 ▷ … ▷ 𝜆𝑥1 ∶ 𝑇1. …𝜆𝑥𝑘 ∶ 𝑇𝑘. (𝑣 𝑢1…𝑢𝑚)

where 𝑣 is not an abstraction (nor an application). Note that the head normal form must not be confused with the normal
form since some 𝑢𝑖 can be reducible. Similar notions of head-normal forms involving δ, ι and ζ reductions or any
combination of those can also be defined.

4.4.5 Inductive Definitions

Formally, we can represent any inductive definition as Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) where:
• Γ𝐼 determines the names and types of inductive types;
• Γ𝐶 determines the names and types of constructors of these inductive types;
• 𝑝 determines the number of parameters of these inductive types.

These inductive definitions, together with global assumptions and global definitions, then form the global environment.
Additionally, for any 𝑝 there always exists Γ𝑃 = [𝑎1 ∶ 𝐴1; …; 𝑎𝑝 ∶ 𝐴𝑝] such that each 𝑇 in (𝑡 ∶ 𝑇 ) ∈ Γ𝐼 ∪ Γ𝐶 can be
written as: ∀Γ𝑃 , 𝑇 ′ where Γ𝑃 is called the context of parameters. Furthermore, we must have that each 𝑇 in (𝑡 ∶ 𝑇 ) ∈ Γ𝐼
can be written as: ∀Γ𝑃 , ∀ΓArr(𝑡), 𝑆 where ΓArr(𝑡) is called the Arity of the inductive type 𝑡 and 𝑆 is called the sort of the
inductive type 𝑡 (not to be confused with 𝒮 which is the set of sorts).

Example
The declaration for parameterized lists is:

Ind [1] ([list ∶ Set → Set] ∶= [ nil ∶ ∀𝐴 ∶ Set, list 𝐴
cons ∶ ∀𝐴 ∶ Set, 𝐴 → list 𝐴 → list 𝐴 ])

which corresponds to the result of the Coq declaration:
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Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.

Example
The declaration for a mutual inductive definition of tree and forest is:

Ind [0] ⎛⎜
⎝

[ tree ∶ Set
forest ∶ Set ] ∶= ⎡⎢

⎣

node ∶ forest → tree
emptyf ∶ forest
consf ∶ tree → forest → forest

⎤⎥
⎦

⎞⎟
⎠

which corresponds to the result of the Coq declaration:

Inductive tree : Set :=
| node : forest -> tree
with forest : Set :=
| emptyf : forest
| consf : tree -> forest -> forest.

Example
The declaration for a mutual inductive definition of even and odd is:

Ind [0] ⎛⎜
⎝

[ even ∶ nat → Prop
odd ∶ nat → Prop ] ∶= ⎡⎢

⎣

evenO ∶ even 0
evenS ∶ ∀𝑛, odd 𝑛 → even (S 𝑛)
oddS ∶ ∀𝑛, even 𝑛 → odd (S 𝑛)

⎤⎥
⎦

⎞⎟
⎠

which corresponds to the result of the Coq declaration:

Inductive even : nat -> Prop :=
| even_O : even 0
| even_S : forall n, odd n -> even (S n)
with odd : nat -> Prop :=
| odd_S : forall n, even n -> odd (S n).

Types of inductive objects

We have to give the type of constants in a global environment 𝐸 which contains an inductive definition.
Ind

𝒲ℱ(𝐸)[Γ] Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) ∈ 𝐸 (𝑎 ∶ 𝐴) ∈ Γ𝐼
𝐸[Γ] ⊢ 𝑎 ∶ 𝐴

Constr

𝒲ℱ(𝐸)[Γ] Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) ∈ 𝐸 (𝑐 ∶ 𝐶) ∈ Γ𝐶
𝐸[Γ] ⊢ 𝑐 ∶ 𝐶

Example
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Provided that our environment 𝐸 contains inductive definitions we showed before, these two inference rules above enable
us to conclude that:

𝐸[Γ] ⊢ even ∶ nat → Prop
𝐸[Γ] ⊢ odd ∶ nat → Prop
𝐸[Γ] ⊢ evenO ∶ even O
𝐸[Γ] ⊢ evenS ∶ ∀𝑛 ∶ nat, odd 𝑛 → even (S 𝑛)
𝐸[Γ] ⊢ oddS ∶ ∀𝑛 ∶ nat, even 𝑛 → odd (S 𝑛)

Well-formed inductive definitions

We cannot accept any inductive definition because some of them lead to inconsistent systems. We restrict ourselves to
definitions which satisfy a syntactic criterion of positivity. Before giving the formal rules, we need a few definitions:

Arity of a given sort

A type 𝑇 is an arity of sort 𝑠 if it converts to the sort 𝑠 or to a product ∀𝑥 ∶ 𝑇 , 𝑈 with 𝑈 an arity of sort 𝑠.

Example
𝐴 → Set is an arity of sort Set. ∀𝐴 ∶ Prop, 𝐴 → Prop is an arity of sort Prop.

Arity

A type 𝑇 is an arity if there is a 𝑠 ∈ 𝒮 such that 𝑇 is an arity of sort 𝑠.

Example
𝐴 → Set and ∀𝐴 ∶ Prop, 𝐴 → Prop are arities.

Type of constructor

We say that 𝑇 is a type of constructor of 𝐼 in one of the following two cases:
• 𝑇 is (𝐼 𝑡1…𝑡𝑛)
• 𝑇 is ∀𝑥 ∶ 𝑈, 𝑇 ′ where 𝑇 ′ is also a type of constructor of 𝐼

Example
nat and nat → nat are types of constructor of nat. ∀𝐴 ∶ Type, list 𝐴 and ∀𝐴 ∶ Type, 𝐴 → list 𝐴 → list 𝐴 are types
of constructor of list.
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Positivity Condition

The type of constructor 𝑇 will be said to satisfy the positivity condition for a constant 𝑋 in the following cases:
• 𝑇 = (𝑋 𝑡1…𝑡𝑛) and 𝑋 does not occur free in any 𝑡𝑖

• 𝑇 = ∀𝑥 ∶ 𝑈, 𝑉 and 𝑋 occurs only strictly positively in 𝑈 and the type 𝑉 satisfies the positivity condition for 𝑋.

Strict positivity

The constant 𝑋 occurs strictly positively in 𝑇 in the following cases:
• 𝑋 does not occur in 𝑇
• 𝑇 converts to (𝑋 𝑡1…𝑡𝑛) and 𝑋 does not occur in any of 𝑡𝑖

• 𝑇 converts to ∀𝑥 ∶ 𝑈, 𝑉 and 𝑋 does not occur in type 𝑈 but occurs strictly positively in type 𝑉
• 𝑇 converts to (𝐼 𝑎1…𝑎𝑚 𝑡1…𝑡𝑝) where 𝐼 is the name of an inductive definition of the form

Ind [𝑚] (𝐼 ∶ 𝐴 ∶= 𝑐1 ∶ ∀𝑝1 ∶ 𝑃1, …∀𝑝𝑚 ∶ 𝑃𝑚, 𝐶1; …; 𝑐𝑛 ∶ ∀𝑝1 ∶ 𝑃1, …∀𝑝𝑚 ∶ 𝑃𝑚, 𝐶𝑛)

(in particular, it is not mutually defined and it has 𝑚 parameters) and 𝑋 does not occur in any of the 𝑡𝑖, and the
(instantiated) types of constructor 𝐶𝑖{𝑝𝑗/𝑎𝑗}𝑗=1…𝑚 of 𝐼 satisfy the nested positivity condition for 𝑋

Nested Positivity

The type of constructor 𝑇 of 𝐼 satisfies the nested positivity condition for a constant 𝑋 in the following cases:
• 𝑇 = (𝐼 𝑏1…𝑏𝑚 𝑢1…𝑢𝑝), 𝐼 is an inductive type with 𝑚 parameters and 𝑋 does not occur in any 𝑢𝑖

• 𝑇 = ∀𝑥 ∶ 𝑈, 𝑉 and 𝑋 occurs only strictly positively in 𝑈 and the type 𝑉 satisfies the nested positivity condition
for 𝑋

Example
For instance, if one considers the following variant of a tree type branching over the natural numbers:

Inductive nattree (A:Type) : Type :=
| leaf : nattree A
| natnode : A -> (nat -> nattree A) -> nattree A.

Then every instantiated constructor of nattree A satisfies the nested positivity condition for nattree:
• Type nattree A of constructor leaf satisfies the positivity condition for nattree because nattree does
not appear in any (real) arguments of the type of that constructor (primarily because nattree does not have any
(real) arguments) ... (bullet 1)

• Type A → (nat → nattree A) → nattree A of constructor natnode satisfies the positivity condi-
tion for nattree because:
– nattree occurs only strictly positively in A ... (bullet 1)
– nattree occurs only strictly positively in nat → nattree A ... (bullet 3 + 2)
– nattree satisfies the positivity condition for nattree A ... (bullet 1)
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Correctness rules

We shall now describe the rules allowing the introduction of a new inductive definition.
Let 𝐸 be a global environment and Γ𝑃 , Γ𝐼 , Γ𝐶 be contexts such that Γ𝐼 is [𝐼1 ∶ ∀Γ𝑃 , 𝐴1; …; 𝐼𝑘 ∶ ∀Γ𝑃 , 𝐴𝑘], and Γ𝐶 is
[𝑐1 ∶ ∀Γ𝑃 , 𝐶1; …; 𝑐𝑛 ∶ ∀Γ𝑃 , 𝐶𝑛]. Then
W-Ind

𝒲ℱ(𝐸)[Γ𝑃 ] (𝐸[Γ𝐼 ; Γ𝑃 ] ⊢ 𝐶𝑖 ∶ 𝑠𝑞𝑖
)𝑖=1…𝑛

𝒲ℱ(𝐸; Ind [𝑝] (Γ𝐼 ∶= Γ𝐶))[]

provided that the following side conditions hold:
• 𝑘 > 0 and all of 𝐼𝑗 and 𝑐𝑖 are distinct names for 𝑗 = 1…𝑘 and 𝑖 = 1…𝑛,
• 𝑝 is the number of parameters of Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) and Γ𝑃 is the context of parameters,
• for 𝑗 = 1…𝑘 we have that 𝐴𝑗 is an arity of sort 𝑠𝑗 and 𝐼𝑗 ∉ 𝐸,
• for 𝑖 = 1…𝑛 we have that 𝐶𝑖 is a type of constructor of 𝐼𝑞𝑖

which satisfies the positivity condition for 𝐼1…𝐼𝑘 and
𝑐𝑖 ∉ 𝐸.

One can remark that there is a constraint between the sort of the arity of the inductive type and the sort of the type of its
constructors which will always be satisfied for the impredicative sorts SProp and Prop but may fail to define inductive
type on sort Set and generate constraints between universes for inductive types in the Type hierarchy.

Example
It is well known that the existential quantifier can be encoded as an inductive definition. The following declaration intro-
duces the second-order existential quantifier ∃𝑋.𝑃(𝑋).
Inductive exProp (P:Prop->Prop) : Prop :=
| exP_intro : forall X:Prop, P X -> exProp P.

The same definition on Set is not allowed and fails:
Fail Inductive exSet (P:Set->Prop) : Set :=
exS_intro : forall X:Set, P X -> exSet P.

The command has indeed failed with message:
Large non-propositional inductive types must be in Type.

It is possible to declare the same inductive definition in the universe Type. The exType inductive definition has type
(Type(𝑖) → Prop) → Type(𝑗) with the constraint that the parameter 𝑋 of exTintro has type Type(𝑘) with 𝑘 < 𝑗 and
𝑘 ≤ 𝑖.
Inductive exType (P:Type->Prop) : Type :=
exT_intro : forall X:Type, P X -> exType P.

exType is defined
exType_rect is defined
exType_ind is defined
exType_rec is defined
exType_sind is defined

Example: Negative occurrence (first example)
The following inductive definition is rejected because it does not satisfy the positivity condition:
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Fail Inductive I : Prop := not_I_I (not_I : I -> False) : I.
The command has indeed failed with message:
Non strictly positive occurrence of "I" in "(I -> False) -> I".

If we were to accept such definition, we could derive a contradiction from it (we can test this by disabling the
Positivity Checking flag):

Definition I_not_I : I -> ~ I := fun i =>
match i with not_I_I not_I => not_I end.
I_not_I is defined

Lemma contradiction : False.
Proof.
enough (I /\ ~ I) as [] by contradiction.
split.
- apply not_I_I.
intro.
now apply I_not_I.
- intro.
now apply I_not_I.
Qed.

Example: Negative occurrence (second example)
Here is another example of an inductive definition which is rejected because it does not satify the positivity condition:

Fail Inductive Lam := lam (_ : Lam -> Lam).
The command has indeed failed with message:
Non strictly positive occurrence of "Lam" in "(Lam -> Lam) -> Lam".

Again, if we were to accept it, we could derive a contradiction (this time through a non-terminating recursive function):

Fixpoint infinite_loop l : False :=
match l with lam x => infinite_loop (x l) end.
infinite_loop is defined
infinite_loop is recursively defined (decreasing on 1st argument)

Check infinite_loop (lam (@id Lam)) : False.
infinite_loop (lam (id (A:=Lam))) : False

: False

Example: Non strictly positive occurrence
It is less obvious why inductive type definitions with occurences that are positive but not strictly positive are harmful. We
will see that in presence of an impredicative type they are unsound:

Fail Inductive A: Type := introA: ((A -> Prop) -> Prop) -> A.
The command has indeed failed with message:
Non strictly positive occurrence of "A" in "((A -> Prop) -> Prop) -> A".

If we were to accept this definition we could derive a contradiction by creating an injective function from 𝐴 → Prop to
𝐴.
This function is defined by composing the injective constructor of the type 𝐴 with the function 𝜆𝑥.𝜆𝑧.𝑧 = 𝑥 injecting
any type 𝑇 into 𝑇 → Prop.
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Definition f (x: A -> Prop): A := introA (fun z => z = x).
f is defined

Lemma f_inj: forall x y, f x = f y -> x = y.
Proof.
unfold f; intros ? ? H; injection H.
set (F := fun z => z = y); intro HF.
symmetry; replace (y = x) with (F y).
+ unfold F; reflexivity.
+ rewrite <- HF; reflexivity.
Qed.

The type 𝐴 → Prop can be understood as the powerset of the type 𝐴. To derive a contradiction from the injective
function 𝑓 we use Cantor’s classic diagonal argument.

Definition d: A -> Prop := fun x => exists s, x = f s /\ ~s x.
d is defined

Definition fd: A := f d.
fd is defined

Lemma cantor: (d fd) <-> ~(d fd).
Proof.
split.
+ intros [s [H1 H2]]; unfold fd in H1.
replace d with s.
* assumption.
* apply f_inj; congruence.
+ intro; exists d; tauto.
Qed.
Lemma bad: False.
Proof.
pose cantor; tauto.
Qed.

This derivation was first presented by Thierry Coquand and Christine Paulin in [CP90].

Template polymorphism

Inductive types can be made polymorphic over the universes introduced by their parameters in Type, if the minimal
inferred sort of the inductive declarations either mention some of those parameter universes or is computed to be Prop
or Set.
If 𝐴 is an arity of some sort and 𝑠 is a sort, we write 𝐴/𝑠 for the arity obtained from 𝐴 by replacing its sort with 𝑠.
Especially, if 𝐴 is well-typed in some global environment and local context, then 𝐴/𝑠 is typable by typability of all
products in the Calculus of Inductive Constructions. The following typing rule is added to the theory.
Let Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) be an inductive definition. Let Γ𝑃 = [𝑝1 ∶ 𝑃1; …; 𝑝𝑝 ∶ 𝑃𝑝] be its context of parameters,
Γ𝐼 = [𝐼1 ∶ ∀Γ𝑃 , 𝐴1; …; 𝐼𝑘 ∶ ∀Γ𝑃 , 𝐴𝑘] its context of definitions and Γ𝐶 = [𝑐1 ∶ ∀Γ𝑃 , 𝐶1; …; 𝑐𝑛 ∶ ∀Γ𝑃 , 𝐶𝑛]
its context of constructors, with 𝑐𝑖 a constructor of 𝐼𝑞𝑖

. Let 𝑚 ≤ 𝑝 be the length of the longest prefix of parameters
such that the 𝑚 first arguments of all occurrences of all 𝐼𝑗 in all 𝐶𝑘 (even the occurrences in the hypotheses of 𝐶𝑘) are
exactly applied to 𝑝1…𝑝𝑚 (𝑚 is the number of recursively uniform parameters and the 𝑝 − 𝑚 remaining parameters are
the recursively non-uniform parameters). Let 𝑞1, …, 𝑞𝑟, with 0 ≤ 𝑟 ≤ 𝑚, be a (possibly) partial instantiation of the
recursively uniform parameters of Γ𝑃 . We have:
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Ind-Family

⎧{
⎨{⎩

Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) ∈ 𝐸
(𝐸[] ⊢ 𝑞𝑙 ∶ 𝑃 ′

𝑙 )𝑙=1…𝑟
(𝐸[] ⊢ 𝑃 ′

𝑙 ≤𝛽𝛿𝜄𝜁𝜂 𝑃𝑙{𝑝𝑢/𝑞𝑢}𝑢=1…𝑙−1)𝑙=1…𝑟
1 ≤ 𝑗 ≤ 𝑘

𝐸[] ⊢ 𝐼𝑗 𝑞1…𝑞𝑟 ∶ ∀[𝑝𝑟+1 ∶ 𝑃𝑟+1; …; 𝑝𝑝 ∶ 𝑃𝑝], (𝐴𝑗)/𝑠𝑗

provided that the following side conditions hold:
• Γ𝑃 ′ is the context obtained from Γ𝑃 by replacing each 𝑃𝑙 that is an arity with 𝑃 ′

𝑙 for 1 ≤ 𝑙 ≤ 𝑟 (notice that 𝑃𝑙
arity implies 𝑃 ′

𝑙 arity since 𝐸[] ⊢ 𝑃 ′
𝑙 ≤𝛽𝛿𝜄𝜁𝜂 𝑃𝑙{𝑝𝑢/𝑞𝑢}𝑢=1…𝑙−1);

• there are sorts 𝑠𝑖, for 1 ≤ 𝑖 ≤ 𝑘 such that, for Γ𝐼′ = [𝐼1 ∶ ∀Γ𝑃 ′ , (𝐴1)/𝑠1
; …; 𝐼𝑘 ∶ ∀Γ𝑃 ′ , (𝐴𝑘)/𝑠𝑘

] we have
(𝐸[Γ𝐼′ ; Γ𝑃 ′ ] ⊢ 𝐶𝑖 ∶ 𝑠𝑞𝑖

)𝑖=1…𝑛 ;
• the sorts 𝑠𝑖 are all introduced by the inductive declaration and have no universe constraints beside being greater than
or equal to Prop, and such that all eliminations, to Prop, Set and Type(𝑗), are allowed (see Section Destructors).

Notice that if 𝐼𝑗 𝑞1…𝑞𝑟 is typable using the rules Ind-Const and App, then it is typable using the rule Ind-Family.
Conversely, the extended theory is not stronger than the theory without Ind-Family. We get an equiconsistency result
by mapping each Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) occurring into a given derivation into as many different inductive types and con-
structors as the number of different (partial) replacements of sorts, needed for this derivation, in the parameters that are
arities (this is possible because Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) well-formed implies that Ind [𝑝] (Γ𝐼′ ∶= Γ𝐶′) is well-formed and
has the same allowed eliminations, where Γ𝐼′ is defined as above and Γ𝐶′ = [𝑐1 ∶ ∀Γ𝑃 ′ , 𝐶1; …; 𝑐𝑛 ∶ ∀Γ𝑃 ′ , 𝐶𝑛]). That
is, the changes in the types of each partial instance 𝑞1…𝑞𝑟 can be characterized by the ordered sets of arity sorts among
the types of parameters, and to each signature is associated a new inductive definition with fresh names. Conversion
is preserved as any (partial) instance 𝐼𝑗 𝑞1…𝑞𝑟 or 𝐶𝑖 𝑞1…𝑞𝑟 is mapped to the names chosen in the specific instance of
Ind [𝑝] (Γ𝐼 ∶= Γ𝐶).

Warning: The restriction that sorts are introduced by the inductive declaration prevents inductive types declared
in sections to be template-polymorphic on universes introduced previously in the section: they cannot parameterize
over the universes introduced with section variables that become parameters at section closing time, as these may be
shared with other definitions from the same section which can impose constraints on them.

Flag: Auto Template Polymorphism
This flag, enabled by default, makes every inductive type declared at level Type (without annotations or hiding it
behind a definition) template polymorphic if possible.
This can be prevented using the universes(notemplate) attribute.

Warning: Automatically declaring ident as template polymorphic.
Warning auto-template can be used to find which types are implicitly declared template polymorphic by
Auto Template Polymorphism.
An inductive type can be forced to be template polymorphic using the universes(template) attribute: it
should then fulfill the criterion to be template polymorphic or an error is raised.

Error: Inductive ident cannot be made template polymorphic.
This error is raised when the #[universes(template)] attribute is on but the inductive cannot be made
polymorphic on any universe or be inferred to live in Prop or Set.
Template polymorphism and universe polymorphism (see Chapter Polymorphic Universes) are incompatible, so
if the later is enabled it will prevail over automatic template polymorphism and cause an error when using the
universes(template) attribute.
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Flag: Template Check
This flag is on by default. Turning it off disables the check of locality of the sorts when abstracting the inductive
over its parameters. This is a deprecated and unsafe flag that can introduce inconsistencies, it is only meant to help
users incrementally update code from Coq versions < 8.10 which did not implement this check. The Coq89.v
compatibility file sets this flag globally. A global -no-template-check command line option is also available.
Use at your own risk. Use of this flag is recorded in the typing flags associated to a definition but is not supported by
the Coq checker (coqchk). It will appear in Print Assumptions and About @ident output involving
inductive declarations that were (potentially unsoundly) assumed to be template polymorphic.

In practice, the rule Ind-Family is used by Coq only when all the inductive types of the inductive definition are declared
with an arity whose sort is in the Type hierarchy. Then, the polymorphism is over the parameters whose type is an arity
of sort in the Type hierarchy. The sorts 𝑠𝑗 are chosen canonically so that each 𝑠𝑗 is minimal with respect to the hierarchy
Prop ⊂ Set𝑝 ⊂ Type where Set𝑝 is predicative Set. More precisely, an empty or small singleton inductive definition
(i.e. an inductive definition of which all inductive types are singleton – see Section Destructors) is set in Prop, a small
non-singleton inductive type is set in Set (even in case Set is impredicative – see Section The-Calculus-of-Inductive-
Construction-with-impredicative-Set), and otherwise in the Type hierarchy.
Note that the side-condition about allowed elimination sorts in the rule Ind-Family avoids to recompute the allowed
elimination sorts at each instance of a pattern matching (see Section Destructors). As an example, let us consider the
following definition:

Example

Inductive option (A:Type) : Type :=
| None : option A
| Some : A -> option A.

As the definition is set in the Type hierarchy, it is used polymorphically over its parameters whose types are arities of a
sort in the Type hierarchy. Here, the parameter 𝐴 has this property, hence, if option is applied to a type in Set, the
result is in Set. Note that if option is applied to a type in Prop, then, the result is not set in Prop but in Set still. This
is because option is not a singleton type (see Section Destructors) and it would lose the elimination to Set and Type if
set in Prop.

Example

Check (fun A:Set => option A).
fun A : Set => option A

: Set -> Set

Check (fun A:Prop => option A).
fun A : Prop => option A

: Prop -> Set

Here is another example.

Example

Inductive prod (A B:Type) : Type := pair : A -> B -> prod A B.

As prod is a singleton type, it will be in Prop if applied twice to propositions, in Set if applied twice to at least one type
in Set and none in Type, and in Type otherwise. In all cases, the three kind of eliminations schemes are allowed.
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Example

Check (fun A:Set => prod A).
fun A : Set => prod A

: Set -> Type -> Type

Check (fun A:Prop => prod A A).
fun A : Prop => prod A A

: Prop -> Prop

Check (fun (A:Prop) (B:Set) => prod A B).
fun (A : Prop) (B : Set) => prod A B

: Prop -> Set -> Set

Check (fun (A:Type) (B:Prop) => prod A B).
fun (A : Type) (B : Prop) => prod A B

: Type -> Prop -> Type

Note: Template polymorphism used to be called “sort-polymorphism of inductive types” before universe polymorphism
(see Chapter Polymorphic Universes) was introduced.

Destructors

The specification of inductive definitions with arities and constructors is quite natural. But we still have to say how to use
an object in an inductive type.
This problem is rather delicate. There are actually several different ways to do that. Some of them are logically equivalent
but not always equivalent from the computational point of view or from the user point of view.
From the computational point of view, we want to be able to define a function whose domain is an inductively defined
type by using a combination of case analysis over the possible constructors of the object and recursion.
Because we need to keep a consistent theory and also we prefer to keep a strongly normalizing reduction, we cannot
accept any sort of recursion (even terminating). So the basic idea is to restrict ourselves to primitive recursive functions
and functionals.
For instance, assuming a parameter𝐴 ∶ Set exists in the local context, we want to build a function length of type list𝐴 →
nat which computes the length of the list, such that (length (nil 𝐴)) = O and (length (cons 𝐴 𝑎 𝑙)) = (S (length 𝑙)).
We want these equalities to be recognized implicitly and taken into account in the conversion rule.
From the logical point of view, we have built a type family by giving a set of constructors. We want to capture the fact
that we do not have any other way to build an object in this type. So when trying to prove a property about an object 𝑚
in an inductive type it is enough to enumerate all the cases where 𝑚 starts with a different constructor.
In case the inductive definition is effectively a recursive one, we want to capture the extra property that we have built
the smallest fixed point of this recursive equation. This says that we are only manipulating finite objects. This analysis
provides induction principles. For instance, in order to prove ∀𝑙 ∶ list 𝐴, (has_length 𝐴 𝑙 (length 𝑙)) it is enough to
prove:

• (has_length 𝐴 (nil 𝐴) (length (nil 𝐴)))
• ∀𝑎 ∶ 𝐴, ∀𝑙 ∶ list 𝐴, (has_length 𝐴 𝑙 (length 𝑙)) → (has_length 𝐴 (cons 𝐴 𝑎 𝑙) (length (cons 𝐴 𝑎 𝑙)))

which given the conversion equalities satisfied by length is the same as proving:
• (has_length 𝐴 (nil 𝐴) O)
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• ∀𝑎 ∶ 𝐴, ∀𝑙 ∶ list 𝐴, (has_length 𝐴 𝑙 (length 𝑙)) → (has_length 𝐴 (cons 𝐴 𝑎 𝑙) (S (length 𝑙)))
One conceptually simple way to do that, following the basic scheme proposed by Martin-Löf in his Intuitionistic Type
Theory, is to introduce for each inductive definition an elimination operator. At the logical level it is a proof of the usual
induction principle and at the computational level it implements a generic operator for doing primitive recursion over the
structure.
But this operator is rather tedious to implement and use. We choose in this version of Coq to factorize the operator for
primitive recursion into two more primitive operations as was first suggested by Th. Coquand in [Coq92]. One is the
definition by pattern matching. The second one is a definition by guarded fixpoints.

The match ... with ... end construction

The basic idea of this operator is that we have an object 𝑚 in an inductive type 𝐼 and we want to prove a property which
possibly depends on 𝑚. For this, it is enough to prove the property for 𝑚 = (𝑐𝑖 𝑢1…𝑢𝑝𝑖

) for each constructor of 𝐼 . The
Coq term for this proof will be written:

match𝑚 with (𝑐1 𝑥11...𝑥1𝑝1
) ⇒ 𝑓1|…|(𝑐𝑛 𝑥𝑛1...𝑥𝑛𝑝𝑛

) ⇒ 𝑓𝑛 end

In this expression, if 𝑚 eventually happens to evaluate to (𝑐𝑖 𝑢1…𝑢𝑝𝑖
) then the expression will behave as specified in its

𝑖-th branch and it will reduce to 𝑓𝑖 where the 𝑥𝑖1…𝑥𝑖𝑝𝑖
are replaced by the 𝑢1…𝑢𝑝𝑖

according to the ι-reduction.
Actually, for type checking a match…with…end expression we also need to know the predicate 𝑃 to be proved by
case analysis. In the general case where 𝐼 is an inductively defined 𝑛-ary relation, 𝑃 is a predicate over 𝑛 + 1 argu-
ments: the 𝑛 first ones correspond to the arguments of 𝐼 (parameters excluded), and the last one corresponds to object
𝑚. Coq can sometimes infer this predicate but sometimes not. The concrete syntax for describing this predicate uses
the as…in…return construction. For instance, let us assume that 𝐼 is an unary predicate with one parameter and one
argument. The predicate is made explicit using the syntax:

match𝑚 as 𝑥 in 𝐼 _ 𝑎 return 𝑃 with (𝑐1 𝑥11...𝑥1𝑝1
) ⇒ 𝑓1|…|(𝑐𝑛 𝑥𝑛1...𝑥𝑛𝑝𝑛

) ⇒ 𝑓𝑛 end

The as part can be omitted if either the result type does not depend on 𝑚 (non-dependent elimination) or 𝑚 is a variable
(in this case, 𝑚 can occur in 𝑃 where it is considered a bound variable). The in part can be omitted if the result type
does not depend on the arguments of 𝐼 . Note that the arguments of 𝐼 corresponding to parameters must be _, because
the result type is not generalized to all possible values of the parameters. The other arguments of 𝐼 (sometimes called
indices in the literature) have to be variables (𝑎 above) and these variables can occur in 𝑃 . The expression after in must
be seen as an inductive type pattern. Notice that expansion of implicit arguments and notations apply to this pattern. For
the purpose of presenting the inference rules, we use a more compact notation:

case(𝑚, (𝜆𝑎𝑥.𝑃 ), 𝜆𝑥11...𝑥1𝑝1
.𝑓1 |…| 𝜆𝑥𝑛1...𝑥𝑛𝑝𝑛

.𝑓𝑛)

Allowed elimination sorts. An important question for building the typing rule for match is what can be the type of
𝜆𝑎𝑥.𝑃 with respect to the type of 𝑚. If 𝑚 ∶ 𝐼 and 𝐼 ∶ 𝐴 and 𝜆𝑎𝑥.𝑃 ∶ 𝐵 then by [𝐼 ∶ 𝐴|𝐵] we mean that one can use
𝜆𝑎𝑥.𝑃 with 𝑚 in the above match-construct.
Notations. The [𝐼 ∶ 𝐴|𝐵] is defined as the smallest relation satisfying the following rules: We write [𝐼|𝐵] for [𝐼 ∶ 𝐴|𝐵]
where 𝐴 is the type of 𝐼 .
The case of inductive types in sorts Set or Type is simple. There is no restriction on the sort of the predicate to be
eliminated.
Prod

[(𝐼 𝑥) ∶ 𝐴′|𝐵′]
[𝐼 ∶ ∀𝑥 ∶ 𝐴, 𝐴′|∀𝑥 ∶ 𝐴, 𝐵′]
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Set & Type

𝑠1 ∈ {Set,Type(𝑗)} 𝑠2 ∈ 𝒮
[𝐼 ∶ 𝑠1|𝐼 → 𝑠2]

The case of Inductive definitions of sort Prop is a bit more complicated, because of our interpretation of this sort. The
only harmless allowed eliminations, are the ones when predicate 𝑃 is also of sort Prop or is of the morally smaller sort
SProp.
Prop

𝑠 ∈ {SProp,Prop}
[𝐼 ∶ Prop|𝐼 → 𝑠]

Prop is the type of logical propositions, the proofs of properties 𝑃 in Prop could not be used for computation and are
consequently ignored by the extraction mechanism. Assume 𝐴 and 𝐵 are two propositions, and the logical disjunction
𝐴 ∨ 𝐵 is defined inductively by:

Example

Inductive or (A B:Prop) : Prop :=
or_introl : A -> or A B | or_intror : B -> or A B.

The following definition which computes a boolean value by case over the proof of or A B is not accepted:

Example

Fail Definition choice (A B: Prop) (x:or A B) :=
match x with or_introl _ _ a => true | or_intror _ _ b => false end.

The command has indeed failed with message:
Incorrect elimination of "x" in the inductive type "or":
the return type has sort "Set" while it should be "SProp" or "Prop".
Elimination of an inductive object of sort Prop
is not allowed on a predicate in sort Set
because proofs can be eliminated only to build proofs.

From the computational point of view, the structure of the proof of (or A B) in this term is needed for computing the
boolean value.
In general, if 𝐼 has type Prop then 𝑃 cannot have type 𝐼 → Set, because it will mean to build an informative proof of
type (𝑃 𝑚) doing a case analysis over a non-computational object that will disappear in the extracted program. But the
other way is safe with respect to our interpretation we can have 𝐼 a computational object and 𝑃 a non-computational one,
it just corresponds to proving a logical property of a computational object.
In the same spirit, elimination on 𝑃 of type 𝐼 → Type cannot be allowed because it trivially implies the elimination on
𝑃 of type 𝐼 → Set by cumulativity. It also implies that there are two proofs of the same property which are provably
different, contradicting the proof-irrelevance property which is sometimes a useful axiom:

Example

Axiom proof_irrelevance : forall (P : Prop) (x y : P), x=y.
proof_irrelevance is declared
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The elimination of an inductive type of sort Prop on a predicate 𝑃 of type 𝐼 → Type leads to a paradox when applied
to impredicative inductive definition like the second-order existential quantifier exProp defined above, because it gives
access to the two projections on this type.
Empty and singleton elimination. There are special inductive definitions in Prop for which more eliminations are
allowed.
Prop-extended

𝐼 is an empty or singleton definition 𝑠 ∈ 𝒮
[𝐼 ∶ Prop|𝐼 → 𝑠]

A singleton definition has only one constructor and all the arguments of this constructor have type Prop. In that case, there
is a canonical way to interpret the informative extraction on an object in that type, such that the elimination on any sort 𝑠
is legal. Typical examples are the conjunction of non-informative propositions and the equality. If there is a hypothesis
ℎ ∶ 𝑎 = 𝑏 in the local context, it can be used for rewriting not only in logical propositions but also in any type.

Example

Print eq_rec.
eq_rec =
fun (A : Type) (x : A) (P : A -> Set) => eq_rect x P

: forall (A : Type) (x : A) (P : A -> Set),
P x -> forall y : A, x = y -> P y

Arguments eq_rec [A]%type_scope _ _%function_scope

Require Extraction.
[Loading ML file extraction_plugin.cmxs ... done]

Extraction eq_rec.
(** val eq_rec : 'a1 -> 'a2 -> 'a1 -> 'a2 **)

let eq_rec _ f _ =
f

An empty definition has no constructors, in that case also, elimination on any sort is allowed.
Inductive types in SProp must have no constructors (i.e. be empty) to be eliminated to produce relevant values.
Note that thanks to proof irrelevance elimination functions can be produced for other types, for instance the elimination
for a unit type is the identity.
Type of branches. Let 𝑐 be a term of type 𝐶, we assume 𝐶 is a type of constructor for an inductive type 𝐼 . Let 𝑃
be a term that represents the property to be proved. We assume 𝑟 is the number of parameters and 𝑠 is the number of
arguments.
We define a new type {𝑐 ∶ 𝐶}𝑃 which represents the type of the branch corresponding to the 𝑐 ∶ 𝐶 constructor.

{𝑐 ∶ (𝐼 𝑞1 … 𝑞𝑟 𝑡1 … 𝑡𝑠)}𝑃 ≡ (𝑃 𝑡1 … 𝑡𝑠 𝑐)
{𝑐 ∶ ∀𝑥 ∶ 𝑇 , 𝐶}𝑃 ≡ ∀𝑥 ∶ 𝑇 , {(𝑐 𝑥) ∶ 𝐶}𝑃

We write {𝑐}𝑃 for {𝑐 ∶ 𝐶}𝑃 with 𝐶 the type of 𝑐.

Example
The following term in concrete syntax:
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match t as l return P' with
| nil _ => t1
| cons _ hd tl => t2
end

can be represented in abstract syntax as

case(𝑡, 𝑃 , 𝑓1|𝑓2)

where

𝑃 = 𝜆𝑙. 𝑃 ′

𝑓1 = 𝑡1
𝑓2 = 𝜆(ℎ𝑑 ∶ nat). 𝜆(𝑡𝑙 ∶ list nat). 𝑡2

According to the definition:

{(nil nat)}𝑃 ≡ {(nil nat) ∶ (list nat)}𝑃 ≡ (𝑃 (nil nat))

{(cons nat)}𝑃 ≡ {(cons nat) ∶ (nat → list nat → list nat)}𝑃

≡ ∀𝑛 ∶ nat, {(cons nat 𝑛) ∶ (list nat → list nat)}𝑃

≡ ∀𝑛 ∶ nat, ∀𝑙 ∶ list nat, {(cons nat 𝑛 𝑙) ∶ (list nat)}𝑃

≡ ∀𝑛 ∶ nat, ∀𝑙 ∶ list nat, (𝑃 (cons nat 𝑛 𝑙)).
Given some 𝑃 then {(nil nat)}𝑃 represents the expected type of 𝑓1, and {(cons nat)}𝑃 represents the expected type of
𝑓2.

Typing rule. Our very general destructor for inductive definition enjoys the following typing rule
match

𝐸[Γ] ⊢ 𝑐 ∶ (𝐼 𝑞1…𝑞𝑟 𝑡1…𝑡𝑠)
𝐸[Γ] ⊢ 𝑃 ∶ 𝐵
[(𝐼 𝑞1…𝑞𝑟)|𝐵]
(𝐸[Γ] ⊢ 𝑓𝑖 ∶ {(𝑐𝑝𝑖

𝑞1…𝑞𝑟)}𝑃 )𝑖=1…𝑙
𝐸[Γ] ⊢ case(𝑐, 𝑃 , 𝑓1|…|𝑓𝑙) ∶ (𝑃 𝑡1…𝑡𝑠 𝑐)

provided 𝐼 is an inductive type in a definition Ind [𝑟] (Γ𝐼 ∶= Γ𝐶) with Γ𝐶 = [𝑐1 ∶ 𝐶1; …; 𝑐𝑛 ∶ 𝐶𝑛] and 𝑐𝑝1
…𝑐𝑝𝑙

are
the only constructors of 𝐼 .

Example
Below is a typing rule for the term shown in the previous example:
list example

𝐸[Γ] ⊢ 𝑡 ∶ (list nat)
𝐸[Γ] ⊢ 𝑃 ∶ 𝐵
[(list nat)|𝐵]
𝐸[Γ] ⊢ 𝑓1 ∶ {(nil nat)}𝑃

𝐸[Γ] ⊢ 𝑓2 ∶ {(cons nat)}𝑃

𝐸[Γ] ⊢ case(𝑡, 𝑃 , 𝑓1|𝑓2) ∶ (𝑃 𝑡)

Definition of ι-reduction. We still have to define the ι-reduction in the general case.
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An ι-redex is a term of the following form:

case((𝑐𝑝𝑖
𝑞1…𝑞𝑟 𝑎1…𝑎𝑚), 𝑃 , 𝑓1|…|𝑓𝑙)

with 𝑐𝑝𝑖
the 𝑖-th constructor of the inductive type 𝐼 with 𝑟 parameters.

The ι-contraction of this term is (𝑓𝑖 𝑎1…𝑎𝑚) leading to the general reduction rule:

case((𝑐𝑝𝑖
𝑞1…𝑞𝑟 𝑎1…𝑎𝑚), 𝑃 , 𝑓1|…|𝑓𝑙) ▷𝜄 (𝑓𝑖 𝑎1…𝑎𝑚)

Fixpoint definitions

The second operator for elimination is fixpoint definition. This fixpoint may involve several mutually recursive definitions.
The basic concrete syntax for a recursive set of mutually recursive declarations is (with Γ𝑖 contexts):

fix 𝑓1(Γ1) ∶ 𝐴1 ∶= 𝑡1 with…with 𝑓𝑛(Γ𝑛) ∶ 𝐴𝑛 ∶= 𝑡𝑛

The terms are obtained by projections from this set of declarations and are written

fix 𝑓1(Γ1) ∶ 𝐴1 ∶= 𝑡1 with…with 𝑓𝑛(Γ𝑛) ∶ 𝐴𝑛 ∶= 𝑡𝑛 for 𝑓𝑖

In the inference rules, we represent such a term by

Fix 𝑓𝑖{𝑓1 ∶ 𝐴′
1 ∶= 𝑡′

1…𝑓𝑛 ∶ 𝐴′
𝑛 ∶= 𝑡′

𝑛}

with 𝑡′
𝑖 (resp. 𝐴′

𝑖) representing the term 𝑡𝑖 abstracted (resp. generalized) with respect to the bindings in the context Γ𝑖,
namely 𝑡′

𝑖 = 𝜆Γ𝑖.𝑡𝑖 and 𝐴′
𝑖 = ∀Γ𝑖, 𝐴𝑖.

Typing rule

The typing rule is the expected one for a fixpoint.
Fix

(𝐸[Γ] ⊢ 𝐴𝑖 ∶ 𝑠𝑖)𝑖=1…𝑛 (𝐸[Γ; 𝑓1 ∶ 𝐴1; …; 𝑓𝑛 ∶ 𝐴𝑛] ⊢ 𝑡𝑖 ∶ 𝐴𝑖)𝑖=1…𝑛
𝐸[Γ] ⊢ Fix 𝑓𝑖{𝑓1 ∶ 𝐴1 ∶= 𝑡1…𝑓𝑛 ∶ 𝐴𝑛 ∶= 𝑡𝑛} ∶ 𝐴𝑖

Any fixpoint definition cannot be accepted because non-normalizing terms allow proofs of absurdity. The basic scheme
of recursion that should be allowed is the one needed for defining primitive recursive functionals. In that case the fixpoint
enjoys a special syntactic restriction, namely one of the arguments belongs to an inductive type, the function starts with a
case analysis and recursive calls are done on variables coming from patterns and representing subterms. For instance in
the case of natural numbers, a proof of the induction principle of type

∀𝑃 ∶ nat → Prop, (𝑃 O) → (∀𝑛 ∶ nat, (𝑃 𝑛) → (𝑃 (S 𝑛))) → ∀𝑛 ∶ nat, (𝑃 𝑛)

can be represented by the term:

𝜆𝑃 ∶ nat → Prop. 𝜆𝑓 ∶ (𝑃 O). 𝜆𝑔 ∶ (∀𝑛 ∶ nat, (𝑃 𝑛) → (𝑃 (S 𝑛))).
Fix ℎ{ℎ ∶ ∀𝑛 ∶ nat, (𝑃 𝑛) ∶= 𝜆𝑛 ∶ nat. case(𝑛, 𝑃 , 𝑓|𝜆𝑝 ∶ nat. (𝑔 𝑝 (ℎ 𝑝)))}

Before accepting a fixpoint definition as being correctly typed, we check that the definition is “guarded”. A precise analysis
of this notion can be found in [Gimenez94]. The first stage is to precise on which argument the fixpoint will be decreasing.
The type of this argument should be an inductive type. For doing this, the syntax of fixpoints is extended and becomes

Fix 𝑓𝑖{𝑓1/𝑘1 ∶ 𝐴1 ∶= 𝑡1…𝑓𝑛/𝑘𝑛 ∶ 𝐴𝑛 ∶= 𝑡𝑛}
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where 𝑘𝑖 are positive integers. Each 𝑘𝑖 represents the index of parameter of 𝑓𝑖, on which 𝑓𝑖 is decreasing. Each𝐴𝑖 should
be a type (reducible to a term) starting with at least 𝑘𝑖 products ∀𝑦1 ∶ 𝐵1, …∀𝑦𝑘𝑖

∶ 𝐵𝑘𝑖
, 𝐴′

𝑖 and 𝐵𝑘𝑖
an inductive type.

Now in the definition 𝑡𝑖, if 𝑓𝑗 occurs then it should be applied to at least 𝑘𝑗 arguments and the 𝑘𝑗-th argument should be
syntactically recognized as structurally smaller than 𝑦𝑘𝑖

.
The definition of being structurally smaller is a bit technical. One needs first to define the notion of recursive arguments
of a constructor. For an inductive definition Ind [𝑟] (Γ𝐼 ∶= Γ𝐶), if the type of a constructor 𝑐 has the form ∀𝑝1 ∶
𝑃1, …∀𝑝𝑟 ∶ 𝑃𝑟, ∀𝑥1 ∶ 𝑇1, …∀𝑥𝑚 ∶ 𝑇𝑚, (𝐼𝑗 𝑝1…𝑝𝑟 𝑡1…𝑡𝑠), then the recursive arguments will correspond to 𝑇𝑖 in
which one of the 𝐼𝑙 occurs.
The main rules for being structurally smaller are the following. Given a variable 𝑦 of an inductively defined type in a
declaration Ind [𝑟] (Γ𝐼 ∶= Γ𝐶) where Γ𝐼 is [𝐼1 ∶ 𝐴1; …; 𝐼𝑘 ∶ 𝐴𝑘], and Γ𝐶 is [𝑐1 ∶ 𝐶1; …; 𝑐𝑛 ∶ 𝐶𝑛], the terms
structurally smaller than 𝑦 are:

• (𝑡 𝑢) and 𝜆𝑥 ∶ 𝑈. 𝑡 when 𝑡 is structurally smaller than 𝑦.
• case(𝑐, 𝑃 , 𝑓1…𝑓𝑛) when each 𝑓𝑖 is structurally smaller than 𝑦. If 𝑐 is 𝑦 or is structurally smaller than 𝑦, its type is
an inductive type 𝐼𝑝 part of the inductive definition corresponding to 𝑦. Each 𝑓𝑖 corresponds to a type of constructor
𝐶𝑞 ≡ ∀𝑝1 ∶ 𝑃1, …, ∀𝑝𝑟 ∶ 𝑃𝑟, ∀𝑦1 ∶ 𝐵1, …∀𝑦𝑚 ∶ 𝐵𝑚, (𝐼𝑝 𝑝1…𝑝𝑟 𝑡1…𝑡𝑠) and can consequently be written
𝜆𝑦1 ∶ 𝐵′

1. …𝜆𝑦𝑚 ∶ 𝐵′
𝑚. 𝑔𝑖. (𝐵′

𝑖 is obtained from 𝐵𝑖 by substituting parameters for variables) the variables 𝑦𝑗
occurring in 𝑔𝑖 corresponding to recursive arguments 𝐵𝑖 (the ones in which one of the 𝐼𝑙 occurs) are structurally
smaller than 𝑦.

The following definitions are correct, we enter them using the Fixpoint command and show the internal representation.

Example

Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| O => m
| S p => S (plus p m)
end.

plus is defined
plus is recursively defined (decreasing on 1st argument)

Print plus.
plus =
fix plus (n m : nat) {struct n} : nat :=

match n with
| 0 => m
| S p => S (plus p m)
end

: nat -> nat -> nat

Arguments plus (_ _)%nat_scope

Fixpoint lgth (A:Set) (l:list A) {struct l} : nat :=
match l with
| nil _ => O
| cons _ a l' => S (lgth A l')
end.

lgth is defined
lgth is recursively defined (decreasing on 2nd argument)

Print lgth.
lgth =
fix lgth (A : Set) (l : list A) {struct l} : nat :=

(continues on next page)
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(continued from previous page)
match l with
| nil _ => 0
| cons _ _ l' => S (lgth A l')
end

: forall A : Set, list A -> nat

Arguments lgth _%type_scope

Fixpoint sizet (t:tree) : nat := let (f) := t in S (sizef f)
with sizef (f:forest) : nat :=
match f with
| emptyf => O
| consf t f => plus (sizet t) (sizef f)
end.

sizet is defined
sizef is defined
sizet, sizef are recursively defined (decreasing respectively on 1st,
1st arguments)

Print sizet.
sizet =
fix sizet (t : tree) : nat := let (f) := t in S (sizef f)
with sizef (f : forest) : nat :=

match f with
| emptyf => 0
| consf t f0 => plus (sizet t) (sizef f0)
end

for sizet
: tree -> nat

Reduction rule

Let 𝐹 be the set of declarations: 𝑓1/𝑘1 ∶ 𝐴1 ∶= 𝑡1…𝑓𝑛/𝑘𝑛 ∶ 𝐴𝑛 ∶= 𝑡𝑛. The reduction for fixpoints is:
(Fix 𝑓𝑖{𝐹} 𝑎1…𝑎𝑘𝑖

) ▷𝜄 𝑡𝑖{𝑓𝑘/Fix 𝑓𝑘{𝐹}}𝑘=1…𝑛 𝑎1…𝑎𝑘𝑖

when 𝑎𝑘𝑖
starts with a constructor. This last restriction is needed in order to keep strong normalization and corresponds

to the reduction for primitive recursive operators. The following reductions are now possible:
plus (S (S O)) (S O) ▷𝜄 S (plus (S O) (S O))

▷𝜄 S (S (plus O (S O)))
▷𝜄 S (S (S O))

Mutual induction
The principles of mutual induction can be automatically generated using the Scheme command described in Section
Generation of induction principles with Scheme.

4.4.6 Admissible rules for global environments

From the original rules of the type system, one can show the admissibility of rules which change the local context of defi-
nition of objects in the global environment. We show here the admissible rules that are used in the discharge mechanism
at the end of a section.
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Abstraction. One can modify a global declaration by generalizing it over a previously assumed constant 𝑐. For doing
that, we need to modify the reference to the global declaration in the subsequent global environment and local context by
explicitly applying this constant to the constant 𝑐.
Below, if Γ is a context of the form [𝑦1 ∶ 𝐴1; …; 𝑦𝑛 ∶ 𝐴𝑛], we write ∀𝑥 ∶ 𝑈, Γ{𝑐/𝑥} to mean
[𝑦1 ∶ ∀𝑥 ∶ 𝑈, 𝐴1{𝑐/𝑥}; …; 𝑦𝑛 ∶ ∀𝑥 ∶ 𝑈, 𝐴𝑛{𝑐/𝑥}] and 𝐸{|Γ|/|Γ|𝑐} to mean the parallel substitution
𝐸{𝑦1/(𝑦1 𝑐)}…{𝑦𝑛/(𝑦𝑛 𝑐)}.
First abstracting property:

𝒲ℱ(𝐸; 𝑐 ∶ 𝑈; 𝐸′; 𝑐′ ∶= 𝑡 ∶ 𝑇 ; 𝐸″)[Γ]
𝒲ℱ(𝐸; 𝑐 ∶ 𝑈; 𝐸′; 𝑐′ ∶= 𝜆𝑥 ∶ 𝑈. 𝑡{𝑐/𝑥} ∶ ∀𝑥 ∶ 𝑈, 𝑇 {𝑐/𝑥}; 𝐸″{𝑐′/(𝑐′ 𝑐)})[Γ{𝑐′/(𝑐′ 𝑐)}]

𝒲ℱ(𝐸; 𝑐 ∶ 𝑈; 𝐸′; 𝑐′ ∶ 𝑇 ; 𝐸″)[Γ]
𝒲ℱ(𝐸; 𝑐 ∶ 𝑈; 𝐸′; 𝑐′ ∶ ∀𝑥 ∶ 𝑈, 𝑇 {𝑐/𝑥}; 𝐸″{𝑐′/(𝑐′ 𝑐)})[Γ{𝑐′/(𝑐′ 𝑐)}]

𝒲ℱ(𝐸; 𝑐 ∶ 𝑈; 𝐸′; Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) ; 𝐸″)[Γ]

𝒲ℱ (𝐸; 𝑐 ∶ 𝑈; 𝐸′; Ind [𝑝 + 1] (∀𝑥 ∶ 𝑈, Γ𝐼{𝑐/𝑥} ∶= ∀𝑥 ∶ 𝑈, Γ𝐶{𝑐/𝑥}) ; 𝐸″{|Γ𝐼 ; Γ𝐶 |/|Γ𝐼 ; Γ𝐶 |𝑐})
[Γ{|Γ𝐼 ; Γ𝐶 |/|Γ𝐼 ; Γ𝐶 |𝑐}]

One can similarly modify a global declaration by generalizing it over a previously defined constant 𝑐. Below, if Γ is a
context of the form [𝑦1 ∶ 𝐴1; …; 𝑦𝑛 ∶ 𝐴𝑛], we write Γ{𝑐/𝑢} to mean [𝑦1 ∶ 𝐴1{𝑐/𝑢}; …; 𝑦𝑛 ∶ 𝐴𝑛{𝑐/𝑢}].
Second abstracting property:

𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′; 𝑐′ ∶= 𝑡 ∶ 𝑇 ; 𝐸″)[Γ]
𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′; 𝑐′ ∶= (let 𝑥 ∶= 𝑢 ∶ 𝑈 in 𝑡{𝑐/𝑥}) ∶ 𝑇 {𝑐/𝑢}; 𝐸″)[Γ]

𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′; 𝑐′ ∶ 𝑇 ; 𝐸″)[Γ]
𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′; 𝑐′ ∶ 𝑇 {𝑐/𝑢}; 𝐸″)[Γ]

𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′; Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) ; 𝐸″)[Γ]
𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′; Ind [𝑝] (Γ𝐼{𝑐/𝑢} ∶= Γ𝐶{𝑐/𝑢}) ; 𝐸″)[Γ]

Pruning the local context. If one abstracts or substitutes constants with the above rules then it may happen that some
declared or defined constant does not occur any more in the subsequent global environment and in the local context. One
can consequently derive the following property.
First pruning property:

𝒲ℱ(𝐸; 𝑐 ∶ 𝑈; 𝐸′)[Γ] 𝑐 does not occur in 𝐸′ and Γ
𝒲ℱ(𝐸; 𝐸′)[Γ]

Second pruning property:

𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′)[Γ] 𝑐 does not occur in 𝐸′ and Γ
𝒲ℱ(𝐸; 𝐸′)[Γ]

4.4.7 Co-inductive types

The implementation contains also co-inductive definitions, which are types inhabited by infinite objects. More information
on co-inductive definitions can be found in [Gimenez95][Gimenez98][GimenezCasteran05].
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4.4.8 The Calculus of Inductive Constructions with impredicative Set

Coq can be used as a type checker for the Calculus of Inductive Constructions with an impredicative sort Set by using
the compiler option -impredicative-set. For example, using the ordinary coqtop command, the following is
rejected,

Example

Fail Definition id: Set := forall X:Set,X->X.
The command has indeed failed with message:
The term "forall X : Set, X -> X" has type "Type"
while it is expected to have type "Set" (universe inconsistency).

while it will type check, if one uses instead the coqtop -impredicative-set option..
The major change in the theory concerns the rule for product formation in the sort Set, which is extended to a domain in
any sort:
ProdImp

𝐸[Γ] ⊢ 𝑇 ∶ 𝑠 𝑠 ∈ 𝒮 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑈 ∶ Set
𝐸[Γ] ⊢ ∀𝑥 ∶ 𝑇 , 𝑈 ∶ Set

This extension has consequences on the inductive definitions which are allowed. In the impredicative system, one can
build so-called large inductive definitions like the example of second-order existential quantifier (exSet).
There should be restrictions on the eliminations which can be performed on such definitions. The elimination rules in the
impredicative system for sort Set become:
Set1

𝑠 ∈ {Prop,Set}
[𝐼 ∶ Set|𝐼 → 𝑠]

Set2
𝐼 is a small inductive definition 𝑠 ∈ {Type(𝑖)}

[𝐼 ∶ Set|𝐼 → 𝑠]

4.5 The Module System

The module system extends the Calculus of Inductive Constructions providing a convenient way to structure large devel-
opments as well as a means of massive abstraction.

4.5.1 Modules and module types

Access path. An access path is denoted by 𝑝 and can be either a module variable 𝑋 or, if 𝑝′ is an access path and 𝑖𝑑 an
identifier, then 𝑝′.𝑖𝑑 is an access path.
Structure element. A structure element is denoted by 𝑒 and is either a definition of a constant, an assumption, a definition
of an inductive, a definition of a module, an alias of a module or a module type abbreviation.
Structure expression. A structure expression is denoted by 𝑆 and can be:

• an access path 𝑝
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• a plain structure Struct 𝑒; …; 𝑒 End
• a functor Functor(𝑋 ∶ 𝑆) 𝑆′, where 𝑋 is a module variable, 𝑆 and 𝑆′ are structure expressions
• an application 𝑆 𝑝, where 𝑆 is a structure expression and 𝑝 an access path
• a refined structure 𝑆 with 𝑝 ∶= 𝑝′ or 𝑆 with 𝑝 ∶= 𝑡 ∶ 𝑇 where 𝑆 is a structure expression, 𝑝 and 𝑝′ are access paths,

𝑡 is a term and 𝑇 is the type of 𝑡.
Module definition. A module definition is written Mod(𝑋 ∶ 𝑆 [∶= 𝑆′]) and consists of a module variable 𝑋, a module
type 𝑆 which can be any structure expression and optionally a module implementation 𝑆′ which can be any structure
expression except a refined structure.
Module alias. A module alias is writtenModA(𝑋 == 𝑝) and consists of a module variable 𝑋 and a module path 𝑝.
Module type abbreviation. A module type abbreviation is written ModType(𝑌 ∶= 𝑆), where 𝑌 is an identifier and 𝑆
is any structure expression .

4.5.2 Typing Modules

In order to introduce the typing system we first slightly extend the syntactic class of terms and environments given in
section The terms. The environments, apart from definitions of constants and inductive types now also hold any other
structure elements. Terms, apart from variables, constants and complex terms, include also access paths.
We also need additional typing judgments:

• 𝐸[] ⊢ 𝒲ℱ(𝑆), denoting that a structure 𝑆 is well-formed,
• 𝐸[] ⊢ 𝑝 ∶ 𝑆, denoting that the module pointed by 𝑝 has type 𝑆 in environment 𝐸.
• 𝐸[] ⊢ 𝑆 ⟶ 𝑆, denoting that a structure 𝑆 is evaluated to a structure 𝑆 in weak head normal form.
• 𝐸[] ⊢ 𝑆1 <∶ 𝑆2 , denoting that a structure 𝑆1 is a subtype of a structure 𝑆2.
• 𝐸[] ⊢ 𝑒1 <∶ 𝑒2 , denoting that a structure element e_1 is more precise than a structure element e_2.

The rules for forming structures are the following:
WF-STR

𝒲ℱ(𝐸; 𝐸′)[]
𝐸[] ⊢ 𝒲ℱ(Struct 𝐸′ End)

WF-FUN

𝐸;Mod(𝑋 ∶ 𝑆)[] ⊢ 𝒲ℱ(𝑆′)
𝐸[] ⊢ 𝒲ℱ(Functor(𝑋 ∶ 𝑆) 𝑆′)

Evaluation of structures to weak head normal form:
WEVAL-APP

𝐸[] ⊢ 𝑆 ⟶ Functor(𝑋 ∶ 𝑆1) 𝑆2 𝐸[] ⊢ 𝑆1 ⟶ 𝑆1
𝐸[] ⊢ 𝑝 ∶ 𝑆3 𝐸[] ⊢ 𝑆3 <∶ 𝑆1

𝐸[] ⊢ 𝑆 𝑝 ⟶ 𝑆2{𝑝/𝑋, 𝑡1/𝑝1.𝑐1, …, 𝑡𝑛/𝑝𝑛.𝑐𝑛}

In the last rule, {𝑡1/𝑝1.𝑐1, …, 𝑡𝑛/𝑝𝑛.𝑐𝑛} is the resulting substitution from the inlining mechanism. We substitute in 𝑆
the inlined fields 𝑝𝑖.𝑐𝑖 fromMod(𝑋 ∶ 𝑆1) by the corresponding delta- reduced term 𝑡𝑖 in 𝑝.
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WEVAL-WITH-MOD
𝐸[] ⊢ 𝑆 ⟶ Struct 𝑒1; …; 𝑒𝑖;Mod(𝑋 ∶ 𝑆1); 𝑒𝑖+2; …; 𝑒𝑛 End

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑆1 ⟶ 𝑆1 𝐸[] ⊢ 𝑝 ∶ 𝑆2
𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑆2 <∶ 𝑆1
𝐸[] ⊢ 𝑆 with 𝑥 ∶= 𝑝 ⟶

Struct 𝑒1; …; 𝑒𝑖;ModA(𝑋 == 𝑝); 𝑒𝑖+2{𝑝/𝑋}; …; 𝑒𝑛{𝑝/𝑋} End

WEVAL-WITH-MOD-REC
𝐸[] ⊢ 𝑆 ⟶ Struct 𝑒1; …; 𝑒𝑖;Mod(𝑋1 ∶ 𝑆1); 𝑒𝑖+2; …; 𝑒𝑛 End

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑆1 with 𝑝 ∶= 𝑝1 ⟶ 𝑆2
𝐸[] ⊢ 𝑆 with 𝑋1.𝑝 ∶= 𝑝1 ⟶

Struct 𝑒1; …; 𝑒𝑖;Mod(𝑋 ∶ 𝑆2); 𝑒𝑖+2{𝑝1/𝑋1.𝑝}; …; 𝑒𝑛{𝑝1/𝑋1.𝑝} End

WEVAL-WITH-DEF
𝐸[] ⊢ 𝑆 ⟶ Struct 𝑒1; …; 𝑒𝑖;Assum()(𝑐 ∶ 𝑇1); 𝑒𝑖+2; …; 𝑒𝑛 End

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝐷𝑒𝑓()(𝑐 ∶= 𝑡 ∶ 𝑇 ) <∶ Assum()(𝑐 ∶ 𝑇1)
𝐸[] ⊢ 𝑆 with 𝑐 ∶= 𝑡 ∶ 𝑇 ⟶

Struct 𝑒1; …; 𝑒𝑖; 𝐷𝑒𝑓()(𝑐 ∶= 𝑡 ∶ 𝑇 ); 𝑒𝑖+2; …; 𝑒𝑛 End

WEVAL-WITH-DEF-REC
𝐸[] ⊢ 𝑆 ⟶ Struct 𝑒1; …; 𝑒𝑖;Mod(𝑋1 ∶ 𝑆1); 𝑒𝑖+2; …; 𝑒𝑛 End

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑆1 with 𝑝 ∶= 𝑝1 ⟶ 𝑆2
𝐸[] ⊢ 𝑆 with 𝑋1.𝑝 ∶= 𝑡 ∶ 𝑇 ⟶

Struct 𝑒1; …; 𝑒𝑖;Mod(𝑋 ∶ 𝑆2); 𝑒𝑖+2; …; 𝑒𝑛 End

WEVAL-PATH-MOD1
𝐸[] ⊢ 𝑝 ⟶ Struct 𝑒1; …; 𝑒𝑖;Mod(𝑋 ∶ 𝑆 [∶= 𝑆1]); 𝑒𝑖+2; …; 𝑒𝑛𝐸𝑛𝑑

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑆 ⟶ 𝑆
𝐸[] ⊢ 𝑝.𝑋 ⟶ 𝑆

WEVAL-PATH-MOD2
𝒲ℱ(𝐸)[] Mod(𝑋 ∶ 𝑆 [∶= 𝑆1]) ∈ 𝐸 𝐸[] ⊢ 𝑆 ⟶ 𝑆

𝐸[] ⊢ 𝑋 ⟶ 𝑆

WEVAL-PATH-ALIAS1
𝐸[] ⊢ 𝑝 ⟶ Struct 𝑒1; …; 𝑒𝑖;ModA(𝑋 == 𝑝1); 𝑒𝑖+2; …; 𝑒𝑛𝐸𝑛𝑑

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑝1 ⟶ 𝑆
𝐸[] ⊢ 𝑝.𝑋 ⟶ 𝑆

WEVAL-PATH-ALIAS2
𝒲ℱ(𝐸)[] ModA(𝑋 == 𝑝1) ∈ 𝐸 𝐸[] ⊢ 𝑝1 ⟶ 𝑆

𝐸[] ⊢ 𝑋 ⟶ 𝑆

WEVAL-PATH-TYPE1
𝐸[] ⊢ 𝑝 ⟶ Struct 𝑒1; …; 𝑒𝑖;ModType(𝑌 ∶= 𝑆); 𝑒𝑖+2; …; 𝑒𝑛𝐸𝑛𝑑

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑆 ⟶ 𝑆
𝐸[] ⊢ 𝑝.𝑌 ⟶ 𝑆
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WEVAL-PATH-TYPE2

𝒲ℱ(𝐸)[] ModType(𝑌 ∶= 𝑆) ∈ 𝐸 𝐸[] ⊢ 𝑆 ⟶ 𝑆
𝐸[] ⊢ 𝑌 ⟶ 𝑆

Rules for typing module:
MT-EVAL

𝐸[] ⊢ 𝑝 ⟶ 𝑆
𝐸[] ⊢ 𝑝 ∶ 𝑆

MT-STR

𝐸[] ⊢ 𝑝 ∶ 𝑆
𝐸[] ⊢ 𝑝 ∶ 𝑆/𝑝

The last rule, called strengthening is used to make all module fields manifestly equal to themselves. The notation 𝑆/𝑝 has
the following meaning:

• if 𝑆 ⟶ Struct 𝑒1; …; 𝑒𝑛 End then 𝑆/𝑝 = Struct 𝑒1/𝑝; …; 𝑒𝑛/𝑝 End where 𝑒/𝑝 is defined as follows (note that
opaque definitions are processed as assumptions):
– Def()(𝑐 ∶= 𝑡 ∶ 𝑇 )/𝑝 = Def()(𝑐 ∶= 𝑡 ∶ 𝑇 )
– Assum()(𝑐 ∶ 𝑈)/𝑝 = Def()(𝑐 ∶= 𝑝.𝑐 ∶ 𝑈)
– Mod(𝑋 ∶ 𝑆)/𝑝 = ModA(𝑋 == 𝑝.𝑋)
– ModA(𝑋 == 𝑝′)/𝑝 = ModA(𝑋 == 𝑝′)
– Ind[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼)/𝑝 = Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼)
– Ind𝑝′()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼)/𝑝 = Ind𝑝′()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼)

• if 𝑆 ⟶ Functor(𝑋 ∶ 𝑆′) 𝑆″ then 𝑆/𝑝 = 𝑆
The notation Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼) denotes an inductive definition that is definitionally equal to the inductive defi-
nition in the module denoted by the path 𝑝. All rules which have Ind[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼) as premises are also valid for
Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼). We give the formation rule for Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼) below as well as the equality rules on
inductive types and constructors.
The module subtyping rules:
MSUB-STR

𝐸; 𝑒1; …; 𝑒𝑛[] ⊢ 𝑒𝜎(𝑖) <∶ 𝑒′
𝑖 for 𝑖 = 1..𝑚

𝜎 ∶ {1…𝑚} → {1…𝑛} injective
𝐸[] ⊢ Struct 𝑒1; …; 𝑒𝑛 End <∶ Struct 𝑒′

1; …; 𝑒′𝑚 End

MSUB-FUN

𝐸[] ⊢ 𝑆′
1 <∶ 𝑆1 𝐸;Mod(𝑋 ∶ 𝑆′

1)[] ⊢ 𝑆2 <∶ 𝑆′
2

𝐸[] ⊢ Functor(𝑋 ∶ 𝑆1)𝑆2 <∶ Functor(𝑋 ∶ 𝑆′
1)𝑆′

2

Structure element subtyping rules:
ASSUM-ASSUM

𝐸[] ⊢ 𝑇1 ≤𝛽𝛿𝜄𝜁𝜂 𝑇2
𝐸[] ⊢ Assum()(𝑐 ∶ 𝑇1) <∶ Assum()(𝑐 ∶ 𝑇2)
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DEF-ASSUM

𝐸[] ⊢ 𝑇1 ≤𝛽𝛿𝜄𝜁𝜂 𝑇2
𝐸[] ⊢ Def()(𝑐 ∶= 𝑡 ∶ 𝑇1) <∶ Assum()(𝑐 ∶ 𝑇2)

ASSUM-DEF

𝐸[] ⊢ 𝑇1 ≤𝛽𝛿𝜄𝜁𝜂 𝑇2 𝐸[] ⊢ 𝑐 =𝛽𝛿𝜄𝜁𝜂 𝑡2
𝐸[] ⊢ Assum()(𝑐 ∶ 𝑇1) <∶ Def()(𝑐 ∶= 𝑡2 ∶ 𝑇2)

DEF-DEF

𝐸[] ⊢ 𝑇1 ≤𝛽𝛿𝜄𝜁𝜂 𝑇2 𝐸[] ⊢ 𝑡1 =𝛽𝛿𝜄𝜁𝜂 𝑡2
𝐸[] ⊢ Def()(𝑐 ∶= 𝑡1 ∶ 𝑇1) <∶ Def()(𝑐 ∶= 𝑡2 ∶ 𝑇2)

IND-IND

𝐸[] ⊢ Γ𝑃 =𝛽𝛿𝜄𝜁𝜂 Γ′
𝑃 𝐸[Γ𝑃 ] ⊢ Γ𝐶 =𝛽𝛿𝜄𝜁𝜂 Γ′

𝐶 𝐸[Γ𝑃 ; Γ𝐶 ] ⊢ Γ𝐼 =𝛽𝛿𝜄𝜁𝜂 Γ′
𝐼

𝐸[] ⊢ Ind [Γ𝑃 ] (Γ𝐶 ∶= Γ𝐼) <∶ Ind [Γ′
𝑃 ] (Γ′

𝐶 ∶= Γ′
𝐼)

INDP-IND

𝐸[] ⊢ Γ𝑃 =𝛽𝛿𝜄𝜁𝜂 Γ′
𝑃 𝐸[Γ𝑃 ] ⊢ Γ𝐶 =𝛽𝛿𝜄𝜁𝜂 Γ′

𝐶 𝐸[Γ𝑃 ; Γ𝐶 ] ⊢ Γ𝐼 =𝛽𝛿𝜄𝜁𝜂 Γ′
𝐼

𝐸[] ⊢ Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼) <∶ Ind [Γ′
𝑃 ] (Γ′

𝐶 ∶= Γ′
𝐼)

INDP-INDP

𝐸[] ⊢ Γ𝑃 =𝛽𝛿𝜄𝜁𝜂 Γ′
𝑃 𝐸[Γ𝑃 ] ⊢ Γ𝐶 =𝛽𝛿𝜄𝜁𝜂 Γ′

𝐶
𝐸[Γ𝑃 ; Γ𝐶 ] ⊢ Γ𝐼 =𝛽𝛿𝜄𝜁𝜂 Γ′

𝐼 𝐸[] ⊢ 𝑝 =𝛽𝛿𝜄𝜁𝜂 𝑝′

𝐸[] ⊢ Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼) <∶ Ind𝑝′()[Γ′
𝑃 ](Γ′

𝐶 ∶= Γ′
𝐼)

MOD-MOD

𝐸[] ⊢ 𝑆1 <∶ 𝑆2
𝐸[] ⊢ Mod(𝑋 ∶ 𝑆1) <∶ Mod(𝑋 ∶ 𝑆2)

ALIAS-MOD

𝐸[] ⊢ 𝑝 ∶ 𝑆1 𝐸[] ⊢ 𝑆1 <∶ 𝑆2
𝐸[] ⊢ ModA(𝑋 == 𝑝) <∶ Mod(𝑋 ∶ 𝑆2)

MOD-ALIAS

𝐸[] ⊢ 𝑝 ∶ 𝑆2 𝐸[] ⊢ 𝑆1 <∶ 𝑆2 𝐸[] ⊢ 𝑋 =𝛽𝛿𝜄𝜁𝜂 𝑝
𝐸[] ⊢ Mod(𝑋 ∶ 𝑆1) <∶ ModA(𝑋 == 𝑝)

ALIAS-ALIAS

𝐸[] ⊢ 𝑝1 =𝛽𝛿𝜄𝜁𝜂 𝑝2
𝐸[] ⊢ ModA(𝑋 == 𝑝1) <∶ ModA(𝑋 == 𝑝2)

MODTYPE-MODTYPE

𝐸[] ⊢ 𝑆1 <∶ 𝑆2 𝐸[] ⊢ 𝑆2 <∶ 𝑆1
𝐸[] ⊢ ModType(𝑌 ∶= 𝑆1) <∶ ModType(𝑌 ∶= 𝑆2)
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New environment formation rules
WF-MOD1

𝒲ℱ(𝐸)[] 𝐸[] ⊢ 𝒲ℱ(𝑆)
𝑊𝐹(𝐸;Mod(𝑋 ∶ 𝑆))[]

WF-MOD2
𝐸[] ⊢ 𝑆2 <∶ 𝑆1 𝒲ℱ(𝐸)[] 𝐸[] ⊢ 𝒲ℱ(𝑆1) 𝐸[] ⊢ 𝒲ℱ(𝑆2)

𝒲ℱ(𝐸;Mod(𝑋 ∶ 𝑆1 [∶= 𝑆2]))[]

WF-ALIAS
𝒲ℱ(𝐸)[] 𝐸[] ⊢ 𝑝 ∶ 𝑆
𝒲ℱ(𝐸,ModA(𝑋 == 𝑝))[]

WF-MODTYPE
𝒲ℱ(𝐸)[] 𝐸[] ⊢ 𝒲ℱ(𝑆)
𝒲ℱ(𝐸,ModType(𝑌 ∶= 𝑆))[]

WF-IND

𝒲ℱ(𝐸; Ind [Γ𝑃 ] (Γ𝐶 ∶= Γ𝐼))[]
𝐸[] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑛; Ind [Γ′

𝑃 ] (Γ′
𝐶 ∶= Γ′

𝐼) ; … End ∶
𝐸[] ⊢ Ind [Γ′

𝑃 ] (Γ′
𝐶 ∶= Γ′

𝐼) <∶ Ind [Γ𝑃 ] (Γ𝐶 ∶= Γ𝐼)
𝒲ℱ(𝐸; Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼))[]

Component access rules
ACC-TYPE1

𝐸[Γ] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖;Assum()(𝑐 ∶ 𝑇 ); … End
𝐸[Γ] ⊢ 𝑝.𝑐 ∶ 𝑇

ACC-TYPE2
𝐸[Γ] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖;Def()(𝑐 ∶= 𝑡 ∶ 𝑇 ); … End

𝐸[Γ] ⊢ 𝑝.𝑐 ∶ 𝑇

Notice that the following rule extends the delta rule defined in section Conversion rules
ACC-DELTA

𝐸[Γ] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖;Def()(𝑐 ∶= 𝑡 ∶ 𝑈); … End
𝐸[Γ] ⊢ 𝑝.𝑐 ▷𝛿 𝑡

In the rules below we assume Γ𝑃 is [𝑝1 ∶ 𝑃1; …; 𝑝𝑟 ∶ 𝑃𝑟], Γ𝐼 is [𝐼1 ∶ 𝐴1; …; 𝐼𝑘 ∶ 𝐴𝑘], and Γ𝐶 is [𝑐1 ∶ 𝐶1; …; 𝑐𝑛 ∶ 𝐶𝑛].
ACC-IND1

𝐸[Γ] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖; Ind [Γ𝑃 ] (Γ𝐶 ∶= Γ𝐼) ; … End
𝐸[Γ] ⊢ 𝑝.𝐼𝑗 ∶ (𝑝1 ∶ 𝑃1)…(𝑝𝑟 ∶ 𝑃𝑟)𝐴𝑗

ACC-IND2
𝐸[Γ] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖; Ind [Γ𝑃 ] (Γ𝐶 ∶= Γ𝐼) ; … End
𝐸[Γ] ⊢ 𝑝.𝑐𝑚 ∶ (𝑝1 ∶ 𝑃1)…(𝑝𝑟 ∶ 𝑃𝑟)𝐶𝑚𝐼𝑗(𝐼𝑗 𝑝1…𝑝𝑟)𝑗=1…𝑘
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ACC-INDP1

𝐸[] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖; Ind𝑝′()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼); … End
𝐸[] ⊢ 𝑝.𝐼𝑖 ▷𝛿 𝑝′.𝐼𝑖

ACC-INDP2

𝐸[] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖; Ind𝑝′()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼); … End
𝐸[] ⊢ 𝑝.𝑐𝑖 ▷𝛿 𝑝′.𝑐𝑖
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CHAPTER

FIVE

THE PROOF ENGINE

5.1 Vernacular commands

5.1.1 Displaying

Command: Print qualid
This command displays on the screen information about the declared or defined object referred by qualid.
Error messages:
Error: qualid not a defined object.

Error: Universe instance should have length num.

Error: This object does not support universe names.

Variant: Print Term qualid
This is a synonym of Print qualid when qualid denotes a global constant.

Variant: Print Term
?

qualid@name
This locally renames the polymorphic universes of qualid. An underscore means the usual name is printed.

Command: About qualid
This displays various information about the object denoted by qualid: its kind (module, constant, assumption,
inductive, constructor, abbreviation, …), long name, type, implicit arguments and argument scopes. It does not
print the body of definitions or proofs.
Variant: About qualid@name

This locally renames the polymorphic universes of qualid. An underscore means the usual name is printed.
Command: Print All

This command displays information about the current state of the environment, including sections and modules.
Variant: Inspect num

This command displays the num last objects of the current environment, including sections and modules.
Variant: Print Section ident

The name ident should correspond to a currently open section, this command displays the objects defined
since the beginning of this section.

5.1.2 Flags, Options and Tables

Coq has many settings to control its behavior. Setting types include flags, options and tables:
• A flag has a boolean value, such as Asymmetric Patterns.
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• An option generally has a numeric or string value, such as Firstorder Depth.
• A table contains a set of strings or qualids.
• In addition, some commands provide settings, such as Extraction Language.

Flags, options and tables are identified by a series of identifiers, each with an initial capital letter.

Command: Local Global Export
?

Set flag
Sets flag on. Scoping qualifiers are described here.

Command: Local Global Export
?

Unset flag
Sets flag off. Scoping qualifiers are described here.

Command: Test flag
Prints the current value of flag.

Command: Local Global Export
?

Set option num string
Sets option to the specified value. Scoping qualifiers are described here.

Command: Local Global Export
?

Unset option
Sets option to its default value. Scoping qualifiers are described here.

Command: Test option
Prints the current value of option.

Command: Print Options
Prints the current value of all flags and options, and the names of all tables.

Command: Add table string qualid
Adds the specified value to table.

Command: Remove table string qualid
Removes the specified value from table.

Command: Test table for string qualid
Reports whether table contains the specified value.

Command: Print Table table
Prints the values in table.

Command: Test table
A synonym for Print Table @table.

Command: Print Tables
A synonym for Print Options.

Scope qualifiers for Set and Unset

Local Global Export
?

Flag and option settings can be global in scope or local to nested scopes created by Module and Section commands.
There are four alternatives:

• no qualifier: the original setting is not restored at the end of the current module or section.
• Local: the setting is applied within the current scope. The original value of the option or flag is restored at the end
of the current module or section.

• Global: similar to no qualifier, the original setting is not restored at the end of the current module or section. In
addition, if the value is set in a file, then Require-ing the file sets the option.
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• Export: similar to Local, the original value of the option or flag is restored at the end of the current module or
section. In addition, if the value is set in a file, then Import-ing the file sets the option.

Newly opened scopes inherit the current settings.

5.1.3 Requests to the environment

Command: Check term
This command displays the type of term. When called in proof mode, the term is checked in the local context of
the current subgoal.
Variant: selector: Check term

This variant specifies on which subgoal to perform typing (see Section Invocation of tactics).
Command: Eval redexpr in term

This command performs the specified reduction on term, and displays the resulting term with its type. The term
to be reduced may depend on hypothesis introduced in the first subgoal (if a proof is in progress).
See also:
Section Performing computations.

Command: Compute term
This command performs a call-by-value evaluation of term by using the bytecode-based virtual machine. It is a
shortcut for Eval vm_compute in term.
See also:
Section Performing computations.

Command: Print Assumptions qualid
This commands display all the assumptions (axioms, parameters and variables) a theorem or definition depends on.
Especially, it informs on the assumptions with respect to which the validity of a theorem relies.
Variant: Print Opaque Dependencies qualid

Displays the set of opaque constants qualid relies on in addition to the assumptions.
Variant: Print Transparent Dependencies qualid

Displays the set of transparent constants qualid relies on in addition to the assumptions.
Variant: Print All Dependencies qualid

Displays all assumptions and constants qualid relies on.
Command: Search qualid

This command displays the name and type of all objects (hypothesis of the current goal, theorems, axioms, etc) of
the current context whose statement contains qualid. This command is useful to remind the user of the name of
library lemmas.
Error: The reference qualid was not found in the current environment.

There is no constant in the environment named qualid.
Variant: Search string

If string is a valid identifier, this command displays the name and type of all objects (theorems, axioms,
etc) of the current context whose name contains string. If string is a notation’s string denoting some reference
qualid (referred to by its main symbol as in "+" or by its notation’s string as in "_ + _" or "_ 'U'
_", see Section Notations), the command works like Search qualid.

Variant: Search string%ident
The string string must be a notation or the main symbol of a notation which is then interpreted in the scope
bound to the delimiting key ident (see Section Local interpretation rules for notations).
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Variant: Search term_pattern
This searches for all statements or types of definition that contains a subterm that matches the pattern
term_pattern (holes of the pattern are either denoted by _ or by ?ident when non linear patterns
are expected).

Variant: Search - ? term_pattern_string
+

where term_pattern_string is a term_pattern, a string, or a string followed by a scope delimiting key
%key. This generalization of Search searches for all objects whose statement or type contains a subterm
matching term_pattern (or qualid if string is the notation for a reference qualid) and whose name
contains all string of the request that correspond to valid identifiers. If a term_pattern or a string is prefixed
by -, the search excludes the objects that mention that term_pattern or that string.

Variant: Search - ? term_pattern_string
+

inside qualid
+

This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: Search - ? term_pattern_string
+

outside qualid
+

This restricts the search to constructions not defined in the modules named by the given qualid sequence.

Variant: selector: Search - ? term_pattern_string
+

This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Example

Require Import ZArith.

Search Z.mul Z.add "distr".
Z.mul_add_distr_l: forall n m p : Z, (n * (m + p))%Z = (n * m + n * p)%Z
Z.mul_add_distr_r: forall n m p : Z, ((n + m) * p)%Z = (n * p + m * p)%Z
fast_Zmult_plus_distr_l:
forall (n m p : Z) (P : Z -> Prop),
P (n * p + m * p)%Z -> P ((n + m) * p)%Z

Search "+"%Z "*"%Z "distr" -positive -Prop.
Z.mul_add_distr_l: forall n m p : Z, (n * (m + p))%Z = (n * m + n * p)%Z
Z.mul_add_distr_r: forall n m p : Z, ((n + m) * p)%Z = (n * p + m * p)%Z

Search (?x * _ + ?x * _)%Z outside OmegaLemmas.
Z.mul_add_distr_l: forall n m p : Z, (n * (m + p))%Z = (n * m + n * p)%Z

Variant: SearchAbout
Deprecated since version 8.5.
Up to Coq version 8.4, Search had the behavior of current SearchHead and the behavior of cur-
rent Search was obtained with command SearchAbout. For compatibility, the deprecated name
SearchAbout can still be used as a synonym of Search. For compatibility, the list of objects to search
when using SearchAbout may also be enclosed by optional [ ] delimiters.

Command: SearchHead term
This command displays the name and type of all hypothesis of the current goal (if any) and theorems of the current
context whose statement’s conclusion has the form (term t1 .. tn). This command is useful to remind the
user of the name of library lemmas.
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Example

SearchHead le.
le_n: forall n : nat, n <= n
le_0_n: forall n : nat, 0 <= n
le_S: forall n m : nat, n <= m -> n <= S m
le_pred: forall n m : nat, n <= m -> Nat.pred n <= Nat.pred m
le_n_S: forall n m : nat, n <= m -> S n <= S m
le_S_n: forall n m : nat, S n <= S m -> n <= m

SearchHead (@eq bool).
andb_true_intro:

forall b1 b2 : bool, b1 = true /\ b2 = true -> (b1 && b2)%bool = true

Variant: SearchHead term inside qualid
+

This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: SearchHead term outside qualid
+

This restricts the search to constructions not defined in the modules named by the given qualid sequence.
Error: Module/section qualid not found.

No module qualid has been required (see Section Compiled files).
Variant: selector: SearchHead term

This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Note: Up to Coq version 8.4, SearchHead was named Search.

Command: SearchPattern term
This command displays the name and type of all hypothesis of the current goal (if any) and theorems of the current
context whose statement’s conclusion or last hypothesis and conclusion matches the expressionterm where holes
in the latter are denoted by _. It is a variant of Search term_pattern that does not look for subterms but
searches for statements whose conclusion has exactly the expected form, or whose statement finishes by the given
series of hypothesis/conclusion.

Example

Require Import Arith.

SearchPattern (_ + _ = _ + _).
Nat.add_comm: forall n m : nat, n + m = m + n
plus_Snm_nSm: forall n m : nat, S n + m = n + S m
Nat.add_succ_comm: forall n m : nat, S n + m = n + S m
Nat.add_shuffle3: forall n m p : nat, n + (m + p) = m + (n + p)
plus_assoc_reverse: forall n m p : nat, n + m + p = n + (m + p)
Nat.add_assoc: forall n m p : nat, n + (m + p) = n + m + p
Nat.add_shuffle0: forall n m p : nat, n + m + p = n + p + m
f_equal2_plus:

forall x1 y1 x2 y2 : nat, x1 = y1 -> x2 = y2 -> x1 + x2 = y1 + y2
Nat.add_shuffle2: forall n m p q : nat, n + m + (p + q) = n + q + (m + p)
Nat.add_shuffle1: forall n m p q : nat, n + m + (p + q) = n + p + (m + q)

(continues on next page)
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(continued from previous page)
SearchPattern (nat -> bool).

Nat.odd: nat -> bool
Init.Nat.odd: nat -> bool
Nat.even: nat -> bool
Init.Nat.even: nat -> bool
Init.Nat.testbit: nat -> nat -> bool
Nat.leb: nat -> nat -> bool
Nat.eqb: nat -> nat -> bool
Init.Nat.eqb: nat -> nat -> bool
Nat.ltb: nat -> nat -> bool
Nat.testbit: nat -> nat -> bool
Init.Nat.leb: nat -> nat -> bool
Init.Nat.ltb: nat -> nat -> bool
BinNat.N.testbit_nat: BinNums.N -> nat -> bool
BinPosDef.Pos.testbit_nat: BinNums.positive -> nat -> bool
BinPos.Pos.testbit_nat: BinNums.positive -> nat -> bool
BinNatDef.N.testbit_nat: BinNums.N -> nat -> bool

SearchPattern (forall l : list _, _ l l).
List.incl_refl: forall (A : Type) (l : list A), List.incl l l
List.lel_refl: forall (A : Type) (l : list A), List.lel l l

Patterns need not be linear: you can express that the same expression must occur in two places by using pattern
variables ?ident.

Example

SearchPattern (?X1 + _ = _ + ?X1).
Nat.add_comm: forall n m : nat, n + m = m + n

Variant: SearchPattern term inside qualid
+

This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: SearchPattern term outside qualid
+

This restricts the search to constructions not defined in the modules named by the given qualid sequence.
Variant: selector: SearchPattern term

This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Command: SearchRewrite term
This command displays the name and type of all hypothesis of the current goal (if any) and theorems of the current
context whose statement’s conclusion is an equality of which one side matches the expression term. Holes in term
are denoted by “_”.

Example

Require Import Arith.

SearchRewrite (_ + _ + _).
Nat.add_shuffle0: forall n m p : nat, n + m + p = n + p + m
plus_assoc_reverse: forall n m p : nat, n + m + p = n + (m + p)

(continues on next page)
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(continued from previous page)
Nat.add_assoc: forall n m p : nat, n + (m + p) = n + m + p
Nat.add_shuffle1: forall n m p q : nat, n + m + (p + q) = n + p + (m + q)
Nat.add_shuffle2: forall n m p q : nat, n + m + (p + q) = n + q + (m + p)
Nat.add_carry_div2:

forall (a b : nat) (c0 : bool),
(a + b + Nat.b2n c0) / 2 =
a / 2 + b / 2 +
Nat.b2n
(Nat.testbit a 0 && Nat.testbit b 0
|| c0 && (Nat.testbit a 0 || Nat.testbit b 0))

Variant: SearchRewrite term inside qualid
+

This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: SearchRewrite term outside qualid
+

This restricts the search to constructions not defined in the modules named by the given qualid sequence.
Variant: selector: SearchRewrite term

This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Note:
Table: Search Blacklist string

Specifies a set of strings used to exclude lemmas from the results of Search, SearchHead, SearchPattern
and SearchRewrite queries. A lemma whose fully-qualified name contains any of the strings will be excluded
from the search results. The default blacklisted substrings are _subterm, _subproof and Private_.
Use the Add @table and Remove @table commands to update the set of blacklisted strings.

Command: Locate qualid
This command displays the full name of objects whose name is a prefix of the qualified identifier qualid, and con-
sequently the Coq module in which they are defined. It searches for objects from the different qualified namespaces
of Coq: terms, modules, Ltac, etc.

Example

Locate nat.
Inductive Coq.Init.Datatypes.nat

Locate Datatypes.O.
Constructor Coq.Init.Datatypes.O

(shorter name to refer to it in current context is O)

Locate Init.Datatypes.O.
Constructor Coq.Init.Datatypes.O

(shorter name to refer to it in current context is O)

Locate Coq.Init.Datatypes.O.
Constructor Coq.Init.Datatypes.O

(shorter name to refer to it in current context is O)

Locate I.Dont.Exist.
No object of suffix I.Dont.Exist
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Variant: Locate Term qualid
As Locate but restricted to terms.

Variant: Locate Module qualid
As Locate but restricted to modules.

Variant: Locate Ltac qualid
As Locate but restricted to tactics.

See also:
Section Locating notations

5.1.4 Printing flags

Flag: Fast Name Printing
When turned on, Coq uses an asymptotically faster algorithm for the generation of unambiguous names of bound
variables while printing terms. While faster, it is also less clever and results in a typically less elegant display, e.g.
it will generate more names rather than reusing certain names across subterms. This flag is not enabled by default,
because as Ltac observes bound names, turning it on can break existing proof scripts.

5.1.5 Loading files

Coq offers the possibility of loading different parts of a whole development stored in separate files. Their contents will be
loaded as if they were entered from the keyboard. This means that the loaded files are ASCII files containing sequences
of commands for Coq’s toplevel. This kind of file is called a script for Coq. The standard (and default) extension of Coq’s
script files is .v.
Command: Load ident

This command loads the file named ident.v, searching successively in each of the directories specified in the
loadpath. (see Section Libraries and filesystem)
Files loaded this way cannot leave proofs open, and the Load command cannot be used inside a proof either.
Variant: Load string

Loads the file denoted by the string string, where string is any complete filename. Then the ~ and ..
abbreviations are allowed as well as shell variables. If no extension is specified, Coq will use the default
extension .v.

Variant: Load Verbose ident
Variant: Load Verbose string

Display, while loading, the answers of Coq to each command (including tactics) contained in the loaded file.
See also:
Section Controlling display.

Error: Can’t find file ident on loadpath.

Error: Load is not supported inside proofs.

Error: Files processed by Load cannot leave open proofs.
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5.1.6 Compiled files

This section describes the commands used to load compiled files (see Chapter The Coq commands for documentation on
how to compile a file). A compiled file is a particular case of module called library file.
Command: Require qualid

This command looks in the loadpath for a file containing module qualid and adds the corresponding module
to the environment of Coq. As library files have dependencies in other library files, the command Require
qualid recursively requires all library files the module qualid depends on and adds the corresponding modules to
the environment of Coq too. Coq assumes that the compiled files have been produced by a valid Coq compiler and
their contents are then not replayed nor rechecked.
To locate the file in the file system, qualid is decomposed under the formdirpath.ident and the fileident.
vo is searched in the physical directory of the file system that is mapped in Coq loadpath to the logical path dirpath
(see Section Libraries and filesystem). The mapping between physical directories and logical names at the time of
requiring the file must be consistent with the mapping used to compile the file. If several files match, one of them
is picked in an unspecified fashion.
Variant: Require Import qualid

This loads and declares the module qualid and its dependencies then imports the contents of qualid as
described here. It does not import the modules on which qualid depends unless these modules were themselves
required in module qualid using Require Export, as described below, or recursively required through
a sequence of Require Export. If the module required has already been loaded, Require Import
qualid simply imports it, as Import qualid would.

Variant: Require Export qualid
This command acts as Require Import qualid, but if a further module, say A, contains a command
Require Export B, then the command Require Import A also imports the module B.

Variant: Require Import Export qualid
+

This loads the modules named by the qualid sequence and their recursive dependencies. If Import or
Export is given, it also imports these modules and all the recursive dependencies that were marked or
transitively marked as Export.

Variant: From dirpath Require qualid
This command acts as Require, but picks any library whose absolute name is of the form dirpath.
dirpath’.qualid for some dirpath’. This is useful to ensure that the qualid library comes from
a given package by making explicit its absolute root.

Error: Cannot load qualid: no physical path bound to dirpath.

Error: Cannot find library foo in loadpath.
The command did not find the file foo.vo. Either foo.v exists but is not compiled or foo.vo is in a directory
which is not in your LoadPath (see Section Libraries and filesystem).

Error: Compiled library ident.vo makes inconsistent assumptions over library qualid.
The command tried to load library file ident.vo that depends on some specific version of library qualid
which is not the one already loaded in the current Coq session. Probably ident.v was not properly recom-
piled with the last version of the file containing module qualid.

Error: Bad magic number.
The file ident.vo was found but either it is not a Coq compiled module, or it was compiled with an
incompatible version of Coq.

Error: The file :n:`ident.vo` contains library dirpath and not library dirpath’.
The library file dirpath’ is indirectly required by the Require command but it is bound in the current
loadpath to the file ident.vo which was bound to a different library name dirpath at the time it was
compiled.
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Error: Require is not allowed inside a module or a module type.
This command is not allowed inside a module or a module type being defined. It is meant to describe a
dependency between compilation units. Note however that the commands Import and Export alone can
be used inside modules (see Section Import).
See also:
Chapter The Coq commands

Command: Print Libraries
This command displays the list of library files loaded in the current Coq session.

Command: Declare ML Module string
+

This commands loads the OCaml compiled files with names given by the string sequence (dynamic link). It is
mainly used to load tactics dynamically. The files are searched into the current OCaml loadpath (see the command
Add ML Path). Loading of OCaml files is only possible under the bytecode version of coqtop (i.e. coqtop
called with option -byte, see chapter The Coq commands), or when Coq has been compiled with a version of
OCaml that supports native Dynlink (≥ 3.11).

Variant: Local Declare ML Module string
+

This variant is not exported to the modules that import the module where they occur, even if outside a section.
Error: File not found on loadpath: string.

Error: Loading of ML object file forbidden in a native Coq.

Command: Print ML Modules
This prints the name of all OCaml modules loaded with Declare ML Module. To know from where these
module were loaded, the user should use the command Locate File.

5.1.7 Loadpath

Loadpaths are preferably managed using Coq command line options (see Section libraries-and-filesystem)
but there remain vernacular commands to manage them for practical purposes. Such commands are only meant to be
issued in the toplevel, and using them in source files is discouraged.
Command: Pwd

This command displays the current working directory.
Command: Cd string

This command changes the current directory according to string which can be any valid path.
Variant: Cd

Is equivalent to Pwd.
Command: Add LoadPath string as dirpath

This command is equivalent to the command line option -Q string dirpath. It adds the physical directory
string to the current Coq loadpath and maps it to the logical directory dirpath.
Variant: Add LoadPath string

Performs as Add LoadPath string dirpath but for the empty directory path.
Command: Add Rec LoadPath string as dirpath

This command is equivalent to the command line option -R string dirpath. It adds the physical directory
string and all its subdirectories to the current Coq loadpath.
Variant: Add Rec LoadPath string

Works as Add Rec LoadPath string as dirpath but for the empty logical directory path.
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Command: Remove LoadPath string
This command removes the path string from the current Coq loadpath.

Command: Print LoadPath
This command displays the current Coq loadpath.
Variant: Print LoadPath dirpath

Works as Print LoadPath but displays only the paths that extend the dirpath prefix.
Command: Add ML Path string

This command adds the path string to the current OCaml loadpath (see the command Declare ML
Module` in Section Compiled files).

Command: Add Rec ML Path string
This command adds the directory string and all its subdirectories to the current OCaml loadpath (see the com-
mand Declare ML Module).

Command: Print ML Path string
This command displays the current OCaml loadpath. This command makes sense only under the bytecode version
of coqtop, i.e. using option -byte (see the command Declare ML Module in Section Compiled files).

Command: Locate File string
This command displays the location of file string in the current loadpath. Typically, string is a .cmo or .vo or .v
file.

Command: Locate Library dirpath
This command gives the status of the Coq module dirpath. It tells if the module is loaded and if not searches in the
load path for a module of logical name dirpath.

5.1.8 Backtracking

The backtracking commands described in this section can only be used interactively, they cannot be part of a vernacular
file loaded via Load or compiled by coqc.
Command: Reset ident

This command removes all the objects in the environment since identwas introduced, including ident. ident
may be the name of a defined or declared object as well as the name of a section. One cannot reset over the name
of a module or of an object inside a module.
Error: ident: no such entry.

Variant: Reset Initial
Goes back to the initial state, just after the start of the interactive session.

Command: Back
This command undoes all the effects of the last vernacular command. Commands read from a vernacular file via a
Load are considered as a single command. Proof management commands are also handled by this command (see
Chapter Proof handling). For that, Back may have to undo more than one command in order to reach a state where
the proof management information is available. For instance, when the last command is a Qed, the management
information about the closed proof has been discarded. In this case, Back will then undo all the proof steps up to
the statement of this proof.
Variant: Back num

Undo num vernacular commands. As for Back, some extra commands may be undone in order to reach an
adequate state. For instance Back num will not re-enter a closed proof, but rather go just before that proof.

Error: Invalid backtrack.
The user wants to undo more commands than available in the history.
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Command: BackTo num
This command brings back the system to the state labeled num, forgetting the effect of all commands executed after
this state. The state label is an integer which grows after each successful command. It is displayed in the prompt
when in -emacs mode. Just as Back (see above), the BackTo command now handles proof states. For that, it
may have to undo some extra commands and end on a state num′ ≤ num if necessary.

5.1.9 Quitting and debugging

Command: Quit
This command permits to quit Coq.

Command: Drop
This is used mostly as a debug facility by Coq’s implementers and does not concern the casual user. This command
permits to leave Coq temporarily and enter the OCaml toplevel. The OCaml command:

#use "include";;

adds the right loadpaths and loads some toplevel printers for all abstract types of Coq- section_path, identifiers,
terms, judgments, …. You can also use the file base_include instead, that loads only the pretty-printers for sec-
tion_paths and identifiers. You can return back to Coq with the command:

go();;

Warning:
1. It only works with the bytecode version of Coq (i.e. coqtop.byte, see Section

interactive-use).
2. You must have compiled Coq from the source package and set the environment variable COQTOP to the

root of your copy of the sources (see Section customization-by-environment-variables).

Command: Time command
This command executes the vernacular command command and displays the time needed to execute it.

Command: Redirect string command
This command executes the vernacular command command, redirecting its output to ”string.out”.

Command: Timeout num command
This command executes the vernacular command command. If the command has not terminated after the time
specified by the num (time expressed in seconds), then it is interrupted and an error message is displayed.
Option: Default Timeout num

This option controls a default timeout for subsequent commands, as if they were passed to a Timeout
command. Commands already starting by a Timeout are unaffected.

Command: Fail command
For debugging scripts, sometimes it is desirable to knowwhether a command or a tactic fails. If the given command
fails, then Fail command succeeds (excepts in the case of critical errors, like a ”stack overflow”), without
changing the proof state, and in interactive mode, the system prints a message confirming the failure.
Error: The command has not failed!

If the given command succeeds, then Fail command fails with this error message.
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5.1.10 Controlling display

Flag: Silent
This flag controls the normal displaying.

Option: Warnings " - +
?

ident

+

,
"

This option configures the display of warnings. It is experimental, and expects, between quotes, a comma-separated
list of warning names or categories. Adding - in front of a warning or category disables it, adding +makes it an error.
It is possible to use the special categories all and default, the latter containing the warnings enabled by default. The
flags are interpreted from left to right, so in case of an overlap, the flags on the right have higher priority, meaning
that A,-A is equivalent to -A.

Flag: Search Output Name Only
This flag restricts the output of search commands to identifier names; turning it on causes invocations of Search,
SearchHead, SearchPattern, SearchRewrite etc. to omit types from their output, printing only iden-
tifiers.

Option: Printing Width num
This command sets which left-aligned part of the width of the screen is used for display. At the time of writing
this documentation, the default value is 78.

Option: Printing Depth num
This option controls the nesting depth of the formatter used for pretty- printing. Beyond this depth, display of
subterms is replaced by dots. At the time of writing this documentation, the default value is 50.

Flag: Printing Compact Contexts
This flag controls the compact display mode for goals contexts. When on, the printer tries to reduce the vertical
size of goals contexts by putting several variables (even if of different types) on the same line provided it does not
exceed the printing width (see Printing Width). At the time of writing this documentation, it is off by default.

Flag: Printing Unfocused
This flag controls whether unfocused goals are displayed. Such goals are created by focusing other goals with bullets
(see Bullets or curly braces). It is off by default.

Flag: Printing Dependent Evars Line
This flag controls the printing of the “(dependent evars: …)” information after each tactic. The information is used
by the Prooftree tool in Proof General. (https://askra.de/software/prooftree)

5.1.11 Controlling the reduction strategies and the conversion algorithm

Coq provides reduction strategies that the tactics can invoke and two different algorithms to check the convertibility of
types. The first conversion algorithm lazily compares applicative terms while the other is a brute-force but efficient algo-
rithm that first normalizes the terms before comparing them. The second algorithm is based on a bytecode representation
of terms similar to the bytecode representation used in the ZINC virtual machine [Ler90]. It is especially useful for
intensive computation of algebraic values, such as numbers, and for reflection-based tactics. The commands to fine- tune
the reduction strategies and the lazy conversion algorithm are described first.

Command: Opaque qualid
+

This command has an effect on unfoldable constants, i.e. on constants defined by Definition or Let (with an
explicit body), or by a command assimilated to a definition such as Fixpoint, Program Definition, etc,
or by a proof ended by Defined. The command tells not to unfold the constants in the qualid sequence in
tactics using δ-conversion (unfolding a constant is replacing it by its definition).
Opaque has also an effect on the conversion algorithm of Coq, telling it to delay the unfolding of a constant as
much as possible when Coq has to check the conversion (see Section Conversion rules) of two distinct applied
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constants.

Variant: Global Opaque qualid
+

The scope of Opaque is limited to the current section, or current file, unless the variant Global Opaque
is used.

See also:
Sections Performing computations, Automating, Switching on/off the proof editing mode

Error: The reference qualid was not found in the current environment.
There is no constant referred by qualid in the environment. Nevertheless, if you asked Opaque foo bar
and if bar does not exist, foo is set opaque.

Command: Transparent qualid
+

This command is the converse of Opaque and it applies on unfoldable constants to restore their unfoldability after
an Opaque command.
Note in particular that constants defined by a proof ended by Qed are not unfoldable and Transparent has no effect
on them. This is to keep with the usual mathematical practice of proof irrelevance: what matters in a mathematical
development is the sequence of lemma statements, not their actual proofs. This distinguishes lemmas from the
usual defined constants, whose actual values are of course relevant in general.

Variant: Global Transparent qualid
+

The scope of Transparent is limited to the current section, or current file, unless the variant Global
Transparent is used.

Error: The reference qualid was not found in the current environment.
There is no constant referred by qualid in the environment.
See also:
Sections Performing computations, Automating, Switching on/off the proof editing mode

Command: Strategy level [ qualid
+

]
This command generalizes the behavior of Opaque and Transparent commands. It is used to fine-tune the strategy
for unfolding constants, both at the tactic level and at the kernel level. This command associates a level to the
qualified names in thequalid sequence. Whenever two expressions with two distinct head constants are compared
(for instance, this comparison can be triggered by a type cast), the one with lower level is expanded first. In case
of a tie, the second one (appearing in the cast type) is expanded.
level ::= opaque num expand

Levels can be one of the following (higher to lower):
• opaque : level of opaque constants. They cannot be expanded by tactics (behaves like +∞, see
next item).

• num : levels indexed by an integer. Level 0 corresponds to the default behavior, which corre-
sponds to transparent constants. This level can also be referred to as transparent. Negative levels
correspond to constants to be expanded before normal transparent constants, while positive levels
correspond to constants to be expanded after normal transparent constants.

• expand : level of constants that should be expanded first (behaves like −∞)

Variant: Local Strategy level [ qualid
+

]
These directives survive section and module closure, unless the command is prefixed by Local. In
the latter case, the behavior regarding sections and modules is the same as for the Transparent
and Opaque commands.
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Command: Print Strategy qualid
This command prints the strategy currently associated toqualid. It fails ifqualid is not an unfoldable reference,
that is, neither a variable nor a constant.
Error: The reference is not unfoldable.

Variant: Print Strategies
Print all the currently non-transparent strategies.

Command: Declare Reduction ident := redexpr
This command allows giving a short name to a reduction expression, for instance lazy beta delta [foo
bar]. This short name can then be used in Eval ident in or eval directives. This command accepts the
Local modifier, for discarding this reduction name at the end of the file or module. For the moment, the name
is not qualified. In particular declaring the same name in several modules or in several functor applications will be
rejected if these declarations are not local. The name ident cannot be used directly as an Ltac tactic, but nothing
prevents the user from also performing a Ltac ident := redexpr.
See also:
Performing computations

5.1.12 Controlling the locality of commands

Command: Local command
Command: Global command

Some commands support a Local or Global prefix modifier to control the scope of their effect. There are four kinds
of commands:

• Commands whose default is to extend their effect both outside the section and the module or library file they
occur in. For these commands, the Local modifier limits the effect of the command to the current section or
module it occurs in. As an example, the Coercion and Strategy commands belong to this category.

• Commands whose default behavior is to stop their effect at the end of the section they occur in but to extend
their effect outside the module or library file they occur in. For these commands, the Local modifier limits
the effect of the command to the current module if the command does not occur in a section and the Global
modifier extends the effect outside the current sections and current module if the command occurs in a section.
As an example, the Arguments, Ltac or Notation commands belong to this category. Notice that a
subclass of these commands do not support extension of their scope outside sections at all and the Global
modifier is not applicable to them.

• Commands whose default behavior is to stop their effect at the end of the section or module they occur in.
For these commands, the Global modifier extends their effect outside the sections and modules they occur
in. The Transparent and Opaque (see Section Controlling the reduction strategies and the conversion
algorithm) commands belong to this category.

• Commands whose default behavior is to extend their effect outside sections but not outside modules when they
occur in a section and to extend their effect outside the module or library file they occur in when no section
contains them. For these commands, the Local modifier limits the effect to the current section or module
while the Global modifier extends the effect outside the module even when the command occurs in a section.
The Set and Unset commands belong to this category.

5.1.13 Controlling Typing Flags

Flag: Guard Checking
This flag can be used to enable/disable the guard checking of fixpoints. Warning: this can break the consistency of
the system, use at your own risk. Decreasing argument can still be specified: the decrease is not checked anymore
but it still affects the reduction of the term. Unchecked fixpoints are printed by Print Assumptions.
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Flag: Positivity Checking
This flag can be used to enable/disable the positivity checking of inductive types and the productivity checking
of coinductive types. Warning: this can break the consistency of the system, use at your own risk. Unchecked
(co)inductive types are printed by Print Assumptions.

Flag: Universe Checking
This flag can be used to enable/disable the checking of universes, providing a form of ”type in type”. Warning:
this breaks the consistency of the system, use at your own risk. Constants relying on ”type in type” are printed by
Print Assumptions. It has the same effect as -type-in-type command line argument (see By command
line options).

Command: Print Typing Flags
Print the status of the three typing flags: guard checking, positivity checking and universe checking.

Example

Unset Guard Checking.
Print Typing Flags.

check_guarded: false
check_positive: true
check_universes: true

Fixpoint f (n : nat) : False
:= f n.
f is defined
f is recursively defined (decreasing on 1st argument)

Fixpoint ackermann (m n : nat) {struct m} : nat :=
match m with
| 0 => S n
| S m =>
match n with
| 0 => ackermann m 1
| S n => ackermann m (ackermann (S m) n)
end

end.
ackermann is defined
ackermann is recursively defined (decreasing on 1st argument)

Print Assumptions ackermann.
Axioms:
ackermann is assumed to be guarded.

Note that the proper way to define the Ackermann function is to use an inner fixpoint:

Fixpoint ack m :=
fix ackm n :=
match m with
| 0 => S n
| S m' =>
match n with
| 0 => ack m' 1
| S n' => ack m' (ackm n')
end

end.
ack is defined
ack is recursively defined (decreasing on 1st argument)

5.1. Vernacular commands 243



The Coq Reference Manual, Release 8.11.2

5.1.14 Internal registration commands

Due to their internal nature, the commands that are presented in this section are not for general use. They are meant to
appear only in standard libraries and in support libraries of plug-ins.

Exposing constants to OCaml libraries

Command: Register qualid1 as qualid2
This command exposes the constant qualid1 to OCaml libraries under the name qualid2. This constant can
then be dynamically located calling Coqlib.lib_ref "qualid2"; i.e., there is no need to known where is
the constant defined (file, module, library, etc.).
As a special case, when the first segment of qualid2 is kernel, the constant is exposed to the kernel. For
instance, the Int63 module features the following declaration:

Register bool as kernel.ind_bool.

This makes the kernel aware of what is the type of boolean values. This information is used for instance to define
the return type of the #int63_eq primitive.
See also:
Primitive Integers

Inlining hints for the fast reduction machines

Command: Register Inline qualid
This command gives as a hint to the reduction machines (VM and native) that the body of the constant qualid
should be inlined in the generated code.

Registering primitive operations

Command: Primitive ident1 := #ident2.
Declares ident1 as the primitive operator #ident2. When running this command, the type of the primitive
should be already known by the kernel (this is achieved through this command for primitive types and through the
Register command with the kernel name-space for other types).

5.2 Proof handling

In Coq’s proof editing mode all top-level commands documented in Chapter Vernacular commands remain available and
the user has access to specialized commands dealing with proof development pragmas documented in this section. They
can also use some other specialized commands called tactics. They are the very tools allowing the user to deal with logical
reasoning. They are documented in Chapter Tactics.
Coq user interfaces usually have a way of marking whether the user has switched to proof editing mode. For instance,
in coqtop the prompt Coq <   is changed into ident <   where ident is the declared name of the theorem currently
edited.
At each stage of a proof development, one has a list of goals to prove. Initially, the list consists only in the theorem itself.
After having applied some tactics, the list of goals contains the subgoals generated by the tactics.
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To each subgoal is associated a number of hypotheses called the local context of the goal. Initially, the local context
contains the local variables and hypotheses of the current section (see Section Assumptions) and the local variables and
hypotheses of the theorem statement. It is enriched by the use of certain tactics (see e.g. intro).
When a proof is completed, the message Proof completed is displayed. One can then register this proof as a defined
constant in the environment. Because there exists a correspondence between proofs and terms of λ-calculus, known as
the Curry-Howard isomorphism [How80][Bar81][GLT89][Hue89], Coq stores proofs as terms of Cic. Those terms are
called proof terms.
Error: No focused proof.

Coq raises this error message when one attempts to use a proof editing command out of the proof editing mode.

5.2.1 Switching on/off the proof editing mode

The proof editing mode is entered by asserting a statement, which typically is the assertion of a theorem using an assertion
command like Theorem. The list of assertion commands is given in Assertions and proofs. The command Goal can
also be used.
Command: Goal form

This is intended for quick assertion of statements, without knowing in advance which name to give to the assertion,
typically for quick testing of the provability of a statement. If the proof of the statement is eventually completed
and validated, the statement is then bound to the name Unnamed_thm (or a variant of this name not already used
for another statement).

Command: Qed
This command is available in interactive editing proof mode when the proof is completed. Then Qed extracts
a proof term from the proof script, switches back to Coq top-level and attaches the extracted proof term to the
declared name of the original goal. This name is added to the environment as an opaque constant.
Error: Attempt to save an incomplete proof.

Note: Sometimes an error occurs when building the proof term, because tactics do not enforce completely the
term construction constraints.
The user should also be aware of the fact that since the proof term is completely rechecked at this point, one may
have to wait a while when the proof is large. In some exceptional cases one may even incur a memory overflow.

Variant: Defined
Same as Qed but the proof is then declared transparent, which means that its content can be explicitly used
for type checking and that it can be unfolded in conversion tactics (see Performing computations, Opaque,
Transparent).

Variant: Save ident
Forces the name of the original goal to be ident. This command (and the following ones) can only be used
if the original goal has been opened using the Goal command.

Command: Admitted
This command is available in interactive editing mode to give up the current proof and declare the initial goal as
an axiom.

Command: Abort
This command cancels the current proof development, switching back to the previous proof development, or to the
Coq toplevel if no other proof was edited.
Error: No focused proof (No proof-editing in progress).
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Variant: Abort ident
Aborts the editing of the proof named ident (in case you have nested proofs).
See also:
Nested Proofs Allowed

Variant: Abort All
Aborts all current goals.

Command: Proof term
This command applies in proof editing mode. It is equivalent to exact term. Qed. That is, you have to give
the full proof in one gulp, as a proof term (see Section Applying theorems).

Command: Proof
Is a no-op which is useful to delimit the sequence of tactic commands which start a proof, after a Theorem
command. It is a good practice to use Proof as an opening parenthesis, closed in the script with a closing Qed.
See also:
Proof with

Command: Proof using ident
+

This command applies in proof editing mode. It declares the set of section variables (see Assumptions) used by the
proof. At Qed time, the system will assert that the set of section variables actually used in the proof is a subset of
the declared one.
The set of declared variables is closed under type dependency. For example, if T is a variable and a is a variable
of type T, then the commands Proof using a and Proof using T a are equivalent.

Variant: Proof using ident
+

with tactic
Combines in a single line Proof with and Proof using.
See also:
Setting implicit automation tactics

Variant: Proof using All
Use all section variables.

Variant: Proof using Type
?

Use only section variables occurring in the statement.
Variant: Proof using Type*

The * operator computes the forward transitive closure. E.g. if the variable H has type p < 5 then H is in p*
since p occurs in the type of H. Type* is the forward transitive closure of the entire set of section variables
occurring in the statement.

Variant: Proof using -( ident
+
)

Use all section variables except the list of ident.
Variant: Proof using collection1 + collection2

Use section variables from the union of both collections. See Name a set of section hypotheses for Proof using
to know how to form a named collection.

Variant: Proof using collection1 - collection2
Use section variables which are in the first collection but not in the second one.

Variant: Proof using collection - ( ident
+
)

Use section variables which are in the first collection but not in the list of ident.
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Variant: Proof using collection *
Use section variables in the forward transitive closure of the collection. The * operator binds stronger than +
and -.

Proof using options

The following options modify the behavior of Proof using.
Option: Default Proof Using "collection"

Use collection as the default Proof using value. E.g. Set Default Proof Using "a b" will
complete all Proof commands not followed by a using part with using a b.

Flag: Suggest Proof Using
When Qed is performed, suggest a using annotation if the user did not provide one.

Name a set of section hypotheses for Proof using

Command: Collection ident := collection
This can be used to name a set of section hypotheses, with the purpose of making Proof using annotations
more compact.

Example
Define the collection named Some containing x, y and z:

Collection Some := x y z.

Define the collection named Fewer containing only x and y:

Collection Fewer := Some - z

Define the collection named Many containing the set union or set difference of Fewer and Some:

Collection Many := Fewer + Some
Collection Many := Fewer - Some

Define the collection named Many containing the set difference of Fewer and the unnamed collection x y:

Collection Many := Fewer - (x y)

Command: Existential num := term
This command instantiates an existential variable. num is an index in the list of uninstantiated existential variables
displayed by Show Existentials.
This command is intended to be used to instantiate existential variables when the proof is completed but some
uninstantiated existential variables remain. To instantiate existential variables during proof edition, you should use
the tactic instantiate.

Command: Grab Existential Variables
This command can be run when a proof has no more goal to be solved but has remaining uninstantiated existential
variables. It takes every uninstantiated existential variable and turns it into a goal.
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Proof modes

When entering proof mode through commands such as Goal and Proof, Coq picks by default the Ltac mode. Nonethe-
less, there exist other proof modes shipped in the standard Coq installation, and furthermore some plugins define their
own proof modes. The default proof mode used when opening a proof can be changed using the following option.
Option: Default Proof Mode string

Select the proof mode to use when starting a proof. Depending on the proof mode, various syntactic constructs are
allowed when writing an interactive proof. The possible option values are listed below.

• ”Classic”: this is the default. It activates the Ltac language to interact with the proof, and also allows vernacular
commands.

• ”Noedit”: this proof mode only allows vernacular commands. No tactic language is activated at all. This is
the default when the prelude is not loaded, e.g. through the -noinit option for coqc.

• ”Ltac2”: this proof mode is made available when requiring the Ltac2 library, and is set to be the default when
it is imported. It allows to use the Ltac2 language, as well as vernacular commands.

• Some external plugins also define their own proof mode, which can be activated via this command.

5.2.2 Navigation in the proof tree

Command: Undo
This command cancels the effect of the last command. Thus, it backtracks one step.

Variant: Undo num
Repeats Undo num times.

Variant: Restart
This command restores the proof editing process to the original goal.
Error: No focused proof to restart.

Command: Focus
This focuses the attention on the first subgoal to prove and the printing of the other subgoals is suspended until the
focused subgoal is solved or unfocused. This is useful when there are many current subgoals which clutter your
screen.
Deprecated since version 8.8: Prefer the use of bullets or focusing brackets (see below).

Variant: Focus num
This focuses the attention on the num th subgoal to prove.
Deprecated since version 8.8: Prefer the use of focusing brackets with a goal selector (see below).

Command: Unfocus
This command restores to focus the goal that were suspended by the last Focus command.
Deprecated since version 8.8.

Command: Unfocused
Succeeds if the proof is fully unfocused, fails if there are some goals out of focus.

Command: { }

The command { (without a terminating period) focuses on the first goal, much like Focus does, how-
ever, the subproof can only be unfocused when it has been fully solved ( i.e. when there is no focused
goal left). Unfocusing is then handled by } (again, without a terminating period). See also an example
in the next section.
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Note that when a focused goal is proved a message is displayed together with a suggestion about the
right bullet or } to unfocus it or focus the next one.
Variant: num: {

This focuses on the num-th subgoal to prove.
Variant: [ident]: {

This focuses on the named goal ident.

Note: Goals are just existential variables and existential variables do not get a name by default.
You can give a name to a goal by using refine ?[ident]. You may also wrap this in an
Ltac-definition like:

Ltac name_goal name := refine ?[name].

See also:
Existential variables

Example
This first example uses the Ltac definition above, and the named goals only serve for documentation.

Goal forall n, n + 0 = n.
1 subgoal

============================
forall n : nat, n + 0 = n

Proof.
induction n; [ name_goal base | name_goal step ].

2 subgoals

============================
0 + 0 = 0

subgoal 2 is:
S n + 0 = S n

[base]: {
1 subgoal

============================
0 + 0 = 0

reflexivity.
This subproof is complete, but there are some unfocused goals.
Try unfocusing with "}".

1 subgoal

subgoal 1 is:
S n + 0 = S n

}
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[step]: {
1 subgoal

n : nat
IHn : n + 0 = n
============================
S n + 0 = S n

simpl.
1 subgoal

n : nat
IHn : n + 0 = n
============================
S (n + 0) = S n

f_equal.
1 subgoal

n : nat
IHn : n + 0 = n
============================
n + 0 = n

assumption.
No more subgoals.

}
Qed.

No more subgoals.

This can also be a way of focusing on a shelved goal, for instance:

Goal exists n : nat, n = n.
1 subgoal

============================
exists n : nat, n = n

eexists ?[x].
1 focused subgoal
(shelved: 1)

============================
?x = ?x

reflexivity.
All the remaining goals are on the shelf.

1 subgoal

subgoal 1 is:
nat

[x]: exact 0.
No more subgoals.

Qed.
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Error: This proof is focused, but cannot be unfocused this way.
You are trying to use } but the current subproof has not been fully solved.

Error: No such goal (num).

Error: No such goal (ident).

Error: Brackets do not support multi-goal selectors.
Brackets are used to focus on a single goal given either by its position or by its name if it has one.

See also:
The error messages about bullets below.

Bullets

Alternatively to { and }, proofs can be structured with bullets. The use of a bullet b for the first time focuses on the first
goal g, the same bullet cannot be used again until the proof of g is completed, then it is mandatory to focus the next goal
with b. The consequence is that g and all goals present when g was focused are focused with the same bullet b. See the
example below.
Different bullets can be used to nest levels. The scope of bullet does not go beyond enclosing { and }, so bullets can be
reused as further nesting levels provided they are delimited by these. Bullets are made of repeated -, + or * symbols:

bullet ::= - + +
+

*
+

Note again that when a focused goal is proved a message is displayed together with a suggestion about the right bullet or
} to unfocus it or focus the next one.

Note: In Proof General (Emacs interface to Coq), you must use bullets with the priority ordering shown above to have
a correct indentation. For example - must be the outer bullet and ** the inner one in the example below.

The following example script illustrates all these features:

Example

Goal (((True /\ True) /\ True) /\ True) /\ True.
1 subgoal

============================
(((True /\ True) /\ True) /\ True) /\ True

Proof.
split.

2 subgoals

============================
((True /\ True) /\ True) /\ True

subgoal 2 is:
True

- split.
1 subgoal

(continues on next page)
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(continued from previous page)

============================
((True /\ True) /\ True) /\ True

2 subgoals

============================
(True /\ True) /\ True

subgoal 2 is:
True

+ split.
1 subgoal

============================
(True /\ True) /\ True

2 subgoals

============================
True /\ True

subgoal 2 is:
True

** { split.
1 subgoal

============================
True /\ True

1 subgoal

============================
True /\ True

2 subgoals

============================
True

subgoal 2 is:
True

- trivial.
1 subgoal

============================
True

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet -.

4 subgoals

subgoal 1 is:
(continues on next page)
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(continued from previous page)
True

subgoal 2 is:
True

subgoal 3 is:
True

subgoal 4 is:
True

- trivial.
1 subgoal

============================
True

This subproof is complete, but there are some unfocused goals.
Try unfocusing with "}".

3 subgoals

subgoal 1 is:
True

subgoal 2 is:
True

subgoal 3 is:
True

}
** trivial.

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet **.

3 subgoals

subgoal 1 is:
True

subgoal 2 is:
True

subgoal 3 is:
True

1 subgoal

============================
True

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet +.

2 subgoals

subgoal 1 is:
True

subgoal 2 is:
True

+ trivial.
1 subgoal

(continues on next page)

5.2. Proof handling 253



The Coq Reference Manual, Release 8.11.2

(continued from previous page)

============================
True

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet -.

1 subgoal

subgoal 1 is:
True

- assert True.
1 subgoal

============================
True

2 subgoals

============================
True

subgoal 2 is:
True

{ trivial.
1 subgoal

============================
True

This subproof is complete, but there are some unfocused goals.
Try unfocusing with "}".

1 subgoal

subgoal 1 is:
True

}
assumption.

1 subgoal

H : True
============================
True

No more subgoals.

Qed.

Error: Wrong bullet bullet1: Current bullet bullet2 is not finished.
Before using bullet bullet1 again, you should first finish proving the current focused goal. Note that bullet1
and bullet2 may be the same.
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Error: Wrong bullet bullet1: Bullet bullet2 is mandatory here.
You must put bullet2 to focus on the next goal. No other bullet is allowed here.

Error: No such goal. Focus next goal with bullet bullet.
You tried to apply a tactic but no goals were under focus. Using bullet is mandatory here.

Error: No such goal. Try unfocusing with }.
You just finished a goal focused by {, you must unfocus it with }.

Mandatory Bullets

Using Default Goal Selector with the ! selector forces tactic scripts to keep focus to exactly one goal (e.g. using
bullets) or use explicit goal selectors.

Set Bullet Behavior

Option: Bullet Behavior "None" "Strict Subproofs"
This option controls the bullet behavior and can take two possible values:

• ”None”: this makes bullets inactive.
• ”Strict Subproofs”: this makes bullets active (this is the default behavior).

5.2.3 Requesting information

Command: Show
This command displays the current goals.
Error: No focused proof.

Variant: Show num
Displays only the num-th subgoal.
Error: No such goal.

Variant: Show ident
Displays the named goal ident. This is useful in particular to display a shelved goal but only works if the
corresponding existential variable has been named by the user (see Existential variables) as in the following
example.

Example

Goal exists n, n = 0.
1 subgoal

============================
exists n : nat, n = 0

eexists ?[n].
1 focused subgoal
(shelved: 1)

============================
?n = 0

(continues on next page)
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(continued from previous page)
Show n.

subgoal n is:

============================
nat

Variant: Show Proof Diffs removed
?

?

Displays the proof term generated by the tactics that have been applied so far. If the proof is incomplete,
the term will contain holes, which correspond to subterms which are still to be constructed. Each hole is an
existential variable, which appears as a question mark followed by an identifier.
Experimental: Specifying “Diffs” highlights the difference between the current and previous proof step. By
default, the command shows the output once with additions highlighted. Including “removed” shows the
output twice: once showing removals and once showing additions. It does not examine the Diffs option.
See Showing differences between proof steps.

Variant: Show Conjectures
It prints the list of the names of all the theorems that are currently being proved. As it is possible to start
proving a previous lemma during the proof of a theorem, this list may contain several names.

Variant: Show Intro
If the current goal begins by at least one product, this command prints the name of the first product, as it would
be generated by an anonymous intro. The aim of this command is to ease the writing of more robust scripts.
For example, with an appropriate Proof General macro, it is possible to transform any anonymous intro
into a qualified one such as intro y13. In the case of a non-product goal, it prints nothing.

Variant: Show Intros
This command is similar to the previous one, it simulates the naming process of an intros.

Variant: Show Existentials
Displays all open goals / existential variables in the current proof along with the type and the context of each
variable.

Variant: Show Match ident
This variant displays a template of the Gallina match construct with a branch for each constructor of the
type ident

Example

Show Match nat.
match # with
| O =>
| S x =>
end

Error: Unknown inductive type.

Variant: Show Universes
It displays the set of all universe constraints and its normalized form at the current stage of the proof, useful
for debugging universe inconsistencies.

Variant: Show Goal num at num
This command is only available in coqtop. Displays a goal at a proof state using the goal ID number and the
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proof state ID number. It is primarily for use by tools such as Prooftree that need to fetch goal history in this
way. Prooftree is a tool for visualizing a proof as a tree that runs in Proof General.

Command: Guarded
Some tactics (e.g. refine) allow to build proofs using fixpoint or co-fixpoint constructions. Due to the incremental
nature of interactive proof construction, the check of the termination (or guardedness) of the recursive calls in the
fixpoint or cofixpoint constructions is postponed to the time of the completion of the proof.
The command Guarded allows checking if the guard condition for fixpoint and cofixpoint is violated at some
time of the construction of the proof without having to wait the completion of the proof.

5.2.4 Showing differences between proof steps

Coq can automatically highlight the differences between successive proof steps and between values in some error messages.
Also, as an experimental feature, Coq can also highlight differences between proof steps shown in the Show Proof
command, but only, for now, when using coqtop and Proof General.
For example, the following screenshots of CoqIDE and coqtop show the application of the same intros tactic. The
tactic creates two new hypotheses, highlighted in green. The conclusion is entirely in pale green because although it’s
changed, no tokens were added to it. The second screenshot uses the ”removed” option, so it shows the conclusion a
second time with the old text, with deletions marked in red. Also, since the hypotheses are new, no line of old text is
shown for them.

This image shows an error message with diff highlighting in CoqIDE:

How to enable diffs

Option: Diffs "on" "off" "removed"
The “on” setting highlights added tokens in green, while the “removed” setting additionally reprints items with
removed tokens in red. Unchanged tokens in modified items are shown with pale green or red. Diffs in error
messages use red and green for the compared values; they appear regardless of the setting. (Colors are user-
configurable.)

For coqtop, showing diffs can be enabled when starting coqtop with the -diffs on|off|removed command-line
option or by setting the Diffs option within Coq. You will need to provide the -color on|auto command-line
option when you start coqtop in either case.
Colors for coqtop can be configured by setting the COQ_COLORS environment variable. See section By environment
variables. Diffs use the tags diff.added, diff.added.bg, diff.removed and diff.removed.bg.
In CoqIDE, diffs should be enabled from the View menu. Don’t use the Set Diffs command in CoqIDE. You
can change the background colors shown for diffs from the Edit | Preferences | Tags panel by changing the
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settings for the diff.added, diff.added.bg, diff.removed and diff.removed.bg tags. This panel also
lets you control other attributes of the highlights, such as the foreground color, bold, italic, underline and strikeout.
As of June 2019, Proof General can also display Coq-generated proof diffs automatically. Please see the PG documenta-
tion section ”Showing Proof Diffs”295) for details.

How diffs are calculated

Diffs are calculated as follows:
1. Select the old proof state to compare to, which is the proof state before the last tactic that changed the proof.

Changes that only affect the view of the proof, such as all: swap 1 2, are ignored.
2. For each goal in the new proof state, determine what old goal to compare it to—the one it is derived from or is the

same as. Match the hypotheses by name (order is ignored), handling compacted items specially.
3. For each hypothesis and conclusion (the “items”) in each goal, pass them as strings to the lexer to break them into

tokens. Then apply the Myers diff algorithm [Mye86] on the tokens and add appropriate highlighting.
Notes:

• Aside from the highlights, output for the ”on” option should be identical to the undiffed output.
• Goals completed in the last proof step will not be shown even with the ”removed” setting.

This screen shot shows the result of applying a split tactic that replaces one goal with 2 goals. Notice that the goal P
1 is not highlighted at all after the split because it has not changed.

This is how diffs may appear after applying a intro tactic that results in compacted hypotheses:

5.2.5 Controlling the effect of proof editing commands

Option: Hyps Limit num
This option controls the maximum number of hypotheses displayed in goals after the application of a tactic. All
the hypotheses remain usable in the proof development. When unset, it goes back to the default mode which is to
print all available hypotheses.

Flag: Nested Proofs Allowed
When turned on (it is off by default), this flag enables support for nested proofs: a new assertion command can be
inserted before the current proof is finished, in which case Coq will temporarily switch to the proof of this nested
lemma. When the proof of the nested lemma is finished (with Qed or Defined), its statement will be made
available (as if it had been proved before starting the previous proof) and Coq will switch back to the proof of the
previous assertion.

5.2.6 Controlling memory usage

When experiencing high memory usage the following commands can be used to force Coq to optimize some of its internal
data structures.
295 https://proofgeneral.github.io/doc/master/userman/Coq-Proof-General#Showing-Proof-Diffs
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Command: Optimize Proof
This command forces Coq to shrink the data structure used to represent the ongoing proof.

Command: Optimize Heap
This command forces the OCaml runtime to perform a heap compaction. This is in general an expensive operation.
See: OCaml Gc296 There is also an analogous tactic optimize_heap.

5.3 Tactics

A deduction rule is a link between some (unique) formula, that we call the conclusion and (several) formulas that we call
the premises. A deduction rule can be read in two ways. The first one says: “if I know this and this then I can deduce
this”. For instance, if I have a proof of A and a proof of B then I have a proof of A ∧ B. This is forward reasoning from
premises to conclusion. The other way says: “to prove this I have to prove this and this”. For instance, to prove A ∧
B, I have to prove A and I have to prove B. This is backward reasoning from conclusion to premises. We say that the
conclusion is the goal to prove and premises are the subgoals. The tactics implement backward reasoning. When applied
to a goal, a tactic replaces this goal with the subgoals it generates. We say that a tactic reduces a goal to its subgoal(s).
Each (sub)goal is denoted with a number. The current goal is numbered 1. By default, a tactic is applied to the current
goal, but one can address a particular goal in the list by writing n:tactic which means “apply tactic tactic to goal number
n”. We can show the list of subgoals by typing Show (see Section Requesting information).
Since not every rule applies to a given statement, not every tactic can be used to reduce a given goal. In other words,
before applying a tactic to a given goal, the system checks that some preconditions are satisfied. If it is not the case, the
tactic raises an error message.
Tactics are built from atomic tactics and tactic expressions (which extends the folklore notion of tactical) to combine those
atomic tactics. This chapter is devoted to atomic tactics. The tactic language will be described in Chapter Ltac.

5.3.1 Common elements of tactics

Invocation of tactics

A tactic is applied as an ordinary command. It may be preceded by a goal selector (see Section Semantics). If no selector
is specified, the default selector is used.

tactic_invocation ::= toplevel_selector : tactic.
tactic.

Option: Default Goal Selector "toplevel_selector"
This option controls the default selector, used when no selector is specified when applying a tactic. The initial value
is 1, hence the tactics are, by default, applied to the first goal.
Using value all will make it so that tactics are, by default, applied to every goal simultaneously. Then, to apply a
tactic tac to the first goal only, you can write 1:tac.
Using value ! enforces that all tactics are used either on a single focused goal or with a local selector (’’strict focusing
mode’’).
Although more selectors are available, only all, ! or a single natural number are valid default goal selectors.

296 http://caml.inria.fr/pub/docs/manual-ocaml/libref/Gc.html#VALcompact
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Bindings list

Tactics that take a term as an argument may also support a bindings list to instantiate some parameters of the term
by name or position. The general form of a term with a bindings list is term with bindings_list where
bindings_list can take two different forms:

ref ::= ident
num

bindings_list ::= (ref := term) ... (ref := term)
term ... term

• In a bindings list of the form (ref:= term)
+ , ref is either an ident or a num. The references are deter-

mined according to the type of term. If ref is an identifier, this identifier has to be bound in the type of term
and the binding provides the tactic with an instance for the parameter of this name. If ref is a number n, it refers
to the n-th non dependent premise of the term, as determined by the type of term.
Error: No such binder.

• A bindings list can also be a simple list of terms term
* . In that case the references to which these terms

correspond are determined by the tactic. In case of induction, destruct, elim and case, the terms
have to provide instances for all the dependent products in the type of term while in the case of apply, or of
constructor and its variants, only instances for the dependent products that are not bound in the conclusion of
the type are required.
Error: Not the right number of missing arguments.

Intro patterns

Intro patterns let you specify the name to assign to variables and hypotheses introduced by tactics. They also let you
split an introduced hypothesis into multiple hypotheses or subgoals. Common tactics that accept intro patterns include
assert, intros and destruct.

intropattern_list ::= intropattern ... intropattern
empty

empty ::=
intropattern ::= *

**
simple_intropattern

simple_intropattern ::= simple_intropattern_closed [ % term ... % term ]
simple_intropattern_closed ::= naming_intropattern

_
or_and_intropattern
rewriting_intropattern
injection_intropattern

naming_intropattern ::= ident
?
?ident

or_and_intropattern ::= [ intropattern_list | ... | intropattern_list ]
( simple_intropattern , ... , simple_intropattern )
( simple_intropattern & ... & simple_intropattern )

rewriting_intropattern ::= ->
<-
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injection_intropattern ::= [= intropattern_list ]
or_and_intropattern_loc ::= or_and_intropattern

ident

Note that the intro pattern syntax varies between tactics. Most tactics use simple_intropattern in the grammar.
destruct, edestruct, induction, einduction, case, ecase and the various inversion tactics use
or_and_intropattern_loc, while intros and eintros use intropattern_list. The eqn: construct
in various tactics uses naming_intropattern.
Naming patterns
Use these elementary patterns to specify a name:

• ident— use the specified name
• ?— let Coq choose a name
• ?ident— generate a name that begins with ident
• _— discard the matched part (unless it is required for another hypothesis)
• if a disjunction pattern omits a name, such as [|H2], Coq will choose a name

Splitting patterns
The most common splitting patterns are:

• split a hypothesis in the form A /\ B into two hypotheses H1: A and H2: B using the pattern (H1 & H2) or
(H1, H2) or [H1 H2]. Example. This also works on A <-> B, which is just a notation representing (A ->
B) /\ (B -> A).

• split a hypothesis in the form A \/ B into two subgoals using the pattern [H1|H2]. The first subgoal will have
the hypothesis H1: A and the second subgoal will have the hypothesis H2: B. Example

• split a hypothesis in either of the forms A /\ B or A \/ B using the pattern [].
Patterns can be nested: [[Ha|Hb] H] can be used to split (A \/ B) /\ C.
Note that there is no equivalent to intro patterns for goals. For a goal A /\ B, use the split tactic to replace the current
goal with subgoals A and B. For a goal A \/ B, use left to replace the current goal with A, or right to replace the
current goal with B.

• ( simple_intropattern
+

, ) — matches a product over an inductive type with a single constructor. If the
number of patterns equals the number of constructor arguments, then it applies the patterns only to the arguments,
and ( simple_intropattern

+

, ) is equivalent to [ simple_intropattern +
]. If the number of

patterns equals the number of constructor arguments plus the number of let-ins, the patterns are applied to the
arguments and let-in variables.

• ( simple_intropattern
+

&
) — matches a right-hand nested term that consists of one or more nested

binary inductive types such as a1 OP1 a2 OP2 ... (where the OPn are right-associative). (If the OPn are
left-associative, additional parentheses will be needed to make the term right-hand nested, such as a1 OP1 (a2
OP2 ...).) The splitting pattern can have more than 2 names, for example (H1 & H2 & H3)matches A /\
B /\ C. The inductive types must have a single constructor with two parameters. Example

• [ intropattern_list
+

|
]— splits an inductive type that has multiple constructors such as A \/ B into

multiple subgoals. The number of intropattern_list must be the same as the number of constructors for
the matched part.
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• [ intropattern
+

]— splits an inductive type that has a single constructor with multiple parameters such
as A /\ B into multiple hypotheses. Use [H1 [H2 H3]] to match A /\ B /\ C.

• []— splits an inductive type: If the inductive type has multiple constructors, such as A \/ B, create one subgoal
for each constructor. If the inductive type has a single constructor with multiple parameters, such as A /\ B, split
it into multiple hypotheses.

Equality patterns
These patterns can be used when the hypothesis is an equality:

• ->— replaces the right-hand side of the hypothesis with the left-hand side of the hypothesis in the conclusion of
the goal; the hypothesis is cleared; if the left-hand side of the hypothesis is a variable, it is substituted everywhere
in the context and the variable is removed. Example

• <-— similar to ->, but replaces the left-hand side of the hypothesis with the right-hand side of the hypothesis.

• [= intropattern
*

, ] — If the product is over an equality type, applies either injection or
discriminate. If injection is applicable, the intropattern is used on the hypotheses generated by
injection. If the number of patterns is smaller than the number of hypotheses generated, the pattern ? is
used to complete the list. Example

Other patterns
• *— introduces one or more quantified variables from the result until there are no more quantified variables. Ex-
ample

• **— introduces one or more quantified variables or hypotheses from the result until there are no more quantified
variables or implications (->). intros ** is equivalent to intros. Example

• simple_intropattern_closed % term
* —first applies each of the terms with the apply ... in

tactic on the hypothesis to be introduced, then it uses simple_intropattern_closed. Example
Flag: Bracketing Last Introduction Pattern

For intros intropattern_list, controls how to handle a conjunctive pattern that doesn’t give enough
simple patterns to match all the arguments in the constructor. If set (the default), Coq generates additional names
to match the number of arguments. Unsetting the flag will put the additional hypotheses in the goal instead, behavior
that is more similar to SSReflect’s intro patterns.
Deprecated since version 8.10.

Note: A \/ B and A /\ B use infix notation to refer to the inductive types or and and. or has multiple constructors
(or_introl and or_intror), while and has a single constructor (conj) with multiple parameters (A and B). These
are defined in theories/Init/Logic.v. The ”where” clauses define the infix notation for ”or” and ”and”.

Inductive or (A B:Prop) : Prop :=
| or_introl : A -> A \/ B
| or_intror : B -> A \/ B

where "A \/ B" := (or A B) : type_scope.

Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B

where "A /\ B" := (and A B) : type_scope.

Note: intros p
+ is not always equivalent to intros p; ... ; intros p if some of the p are _. In the

first form, all erasures are done at once, while they’re done sequentially for each tactic in the second form. If the second
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matched term depends on the first matched term and the pattern for both is _ (i.e., both will be erased), the first intros
in the second form will fail because the second matched term still has the dependency on the first.

Examples:

Example: intro pattern for /\

1 subgoal

A, B : Prop
H : A /\ B
============================
True

destruct H as (HA & HB).
1 subgoal

A, B : Prop
HA : A
HB : B
============================
True

Example: intro pattern for \/

1 subgoal

A, B : Prop
H : A \/ B
============================
True

destruct H as [HA|HB].
2 subgoals

A, B : Prop
HA : A
============================
True

subgoal 2 is:
True

all: swap 1 2.
2 subgoals

A, B : Prop
HB : B
============================
True

subgoal 2 is:
True
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Example: -> intro pattern

1 subgoal

x, y, z : nat
H : x = y
============================
y = z -> x = z

intros ->.
1 subgoal

x, z : nat
H : x = z
============================
x = z

Example: [=] intro pattern
The first intros [=] uses injection to strip (S ...) from both sides of the matched equality. The
second uses discriminate on the contradiction 1 = 2 (internally represented as (S O) = (S (S
O))) to complete the goal.

1 subgoal

n, m : nat
============================
S n = S m -> 1 = 2 -> False

intros [= H].
1 subgoal

n, m : nat
H : n = m
============================
1 = 2 -> False

intros [=].
No more subgoals.

Example: (A & B & ...) intro pattern

1 subgoal

============================
A /\ (exists x : nat, B x /\ C) -> True

intros (a & x & b & c).
1 subgoal

a : A
x : nat

(continues on next page)
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(continued from previous page)
b : B x
c : C
============================
True

Example: * intro pattern

1 subgoal

============================
forall A B : Prop, A -> B

intros *.
1 subgoal

A, B : Prop
============================
A -> B

Example: ** pattern (”intros **” is equivalent to ”intros”)

1 subgoal

============================
forall A B : Prop, A -> B

intros **.
1 subgoal

A, B : Prop
H : A
============================
B

Example: compound intro pattern

1 subgoal

============================
forall A B C : Prop, A \/ B /\ C -> (A -> C) -> C

intros * [a | (_,c)] f.
2 subgoals

A, B, C : Prop
a : A
f : A -> C
============================
C

(continues on next page)
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(continued from previous page)

subgoal 2 is:
C

all: swap 1 2.
2 subgoals

A, B, C : Prop
c : C
f : A -> C
============================
C

subgoal 2 is:
C

Example: combined intro pattern using [=] -> and %

1 subgoal

A : Type
xs, ys : list A
============================
S (length ys) = 1 -> xs ++ ys = xs

intros [=->%length_zero_iff_nil].
1 subgoal

A : Type
xs : list A
============================
xs ++ nil = xs

• intros would add H : S (length ys) = 1

• intros [=] would additionally apply injection to H to yield H0 : length ys = 0

• intros [=->%length_zero_iff_nil] applies the theorem, making H the equality l=nil,
which is then applied as for ->.

Theorem length_zero_iff_nil (l : list A):
length l = 0 <-> l=nil.

The example is based on Tej Chajed’s coq-tricks297

Occurrence sets and occurrence clauses

An occurrence clause is a modifier to some tactics that obeys the following syntax:

occurrence_clause ::= in goal_occurrences

297 https://github.com/tchajed/coq-tricks/blob/8e6efe4971ed828ac8bdb5512c1f615d7d62691e/src/IntroPatterns.v
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goal_occurrences ::= [ident [at_occurrences], ... , ident [at_occurrences] [|- [* [at_occurrences]]]]
* |- [* [at_occurrences]]
*

at_occurrences ::= at occurrences
occurrences ::= [-] num ... num

The role of an occurrence clause is to select a set of occurrences of a term in a goal. In the first case, the ident

at num
*

?

parts indicate that occurrences have to be selected in the hypotheses named ident. If no numbers are
given for hypothesis ident, then all the occurrences of term in the hypothesis are selected. If numbers are given, they
refer to occurrences of term when the term is printed using the Printing All flag, counting from left to right. In
particular, occurrences of term in implicit arguments (see Implicit arguments) or coercions (see Coercions) are counted.
If a minus sign is given between at and the list of occurrences, it negates the condition so that the clause denotes all the
occurrences except the ones explicitly mentioned after the minus sign.
As an exception to the left-to-right order, the occurrences in the return subexpression of a match are considered before
the occurrences in the matched term.
In the second case, the * on the left of |- means that all occurrences of term are selected in every hypothesis.
In the first and second case, if * is mentioned on the right of |-, the occurrences of the conclusion of the goal have to
be selected. If some numbers are given, then only the occurrences denoted by these numbers are selected. If no numbers
are given, all occurrences of term in the goal are selected.
Finally, the last notation is an abbreviation for * |- *. Note also that |- is optional in the first case when no * is given.
Here are some tactics that understand occurrence clauses: set, remember, induction, destruct.
See also:
Managing the local context, Case analysis and induction, Printing constructions in full.

5.3.2 Applying theorems

exact term
This tactic applies to any goal. It gives directly the exact proof term of the goal. Let T be our goal, let p be a term
of type U then exact p succeeds iff T and U are convertible (see Conversion rules).
Error: Not an exact proof.

Variant: eexact term.
This tactic behaves like exact but is able to handle terms and goals with existential variables.

assumption
This tactic looks in the local context for a hypothesis whose type is convertible to the goal. If it is the case, the
subgoal is proved. Otherwise, it fails.
Error: No such assumption.

Variant: eassumption
This tactic behaves like assumption but is able to handle goals with existential variables.

refine term
This tactic applies to any goal. It behaves like exact with a big difference: the user can leave some holes (denoted
by _ or (_ : type)) in the term. refine will generate as many subgoals as there are remaining holes in
the elaborated term. The type of holes must be either synthesized by the system or declared by an explicit cast
like (_ : nat -> Prop). Any subgoal that occurs in other subgoals is automatically shelved, as if calling
shelve_unifiable. The produced subgoals (shelved or not) are not candidates for typeclass resolution, even
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if they have a type-class type as conclusion, letting the user control when and how typeclass resolution is launched
on them. This low-level tactic can be useful to advanced users.

Example

Inductive Option : Set :=
| Fail : Option
| Ok : bool -> Option.

Option is defined
Option_rect is defined
Option_ind is defined
Option_rec is defined
Option_sind is defined

Definition get : forall x:Option, x <> Fail -> bool.
1 subgoal

============================
forall x : Option, x <> Fail -> bool

refine
(fun x:Option =>

match x return x <> Fail -> bool with
| Fail => _
| Ok b => fun _ => b
end).

1 subgoal

x : Option
============================
Fail <> Fail -> bool

intros; absurd (Fail = Fail); trivial.
No more subgoals.

Defined.

Error: Invalid argument.
The tactic refine does not know what to do with the term you gave.

Error: Refine passed ill-formed term.
The term you gave is not a valid proof (not easy to debug in general). This message may also occur in higher-
level tactics that call refine internally.

Error: Cannot infer a term for this placeholder.
There is a hole in the term you gave whose type cannot be inferred. Put a cast around it.

Variant: simple refine term
This tactic behaves like refine, but it does not shelve any subgoal. It does not perform any beta-reduction
either.

Variant: notypeclasses refine term
This tactic behaves like refine except it performs type checking without resolution of typeclasses.

Variant: simple notypeclasses refine term
This tactic behaves like the combination of simple refine and notypeclasses refine: it per-
forms type checking without resolution of typeclasses, does not perform beta reductions or shelve the subgoals.
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Flag: Debug Unification
Enables printing traces of unification steps used during elaboration/typechecking and the refine tactic.

apply term
This tactic applies to any goal. The argument term is a term well-formed in the local context. The tactic apply
tries to match the current goal against the conclusion of the type of term. If it succeeds, then the tactic returns as
many subgoals as the number of non-dependent premises of the type of term. If the conclusion of the type of term
does not match the goal and the conclusion is an inductive type isomorphic to a tuple type, then each component
of the tuple is recursively matched to the goal in the left-to-right order.
The tactic apply relies on first-order unification with dependent types unless the conclusion of the type of term
is of the form P (t1 ... tn) with P to be instantiated. In the latter case, the behavior depends on the form
of the goal. If the goal is of the form (fun x => Q) u1 ... un and the ti and ui unify, then P is taken to
be (fun x => Q). Otherwise, apply tries to define P by abstracting over t_1 ... t__n in the goal. See
pattern to transform the goal so that it gets the form (fun x => Q) u1 ... un.
Error: Unable to unify term with term.

The apply tactic failed to match the conclusion of term and the current goal. You can help the apply
tactic by transforming your goal with the change or pattern tactics.

Error: Unable to find an instance for the variables ident
+
.

This occurs when some instantiations of the premises of term are not deducible from the unification. This
is the case, for instance, when you want to apply a transitivity property. In this case, you have to use one of
the variants below:

Variant: apply term with term
+

Provides apply with explicit instantiations for all dependent premises of the type of term that do not occur in
the conclusion and consequently cannot be found by unification. Notice that the collection term

+ must be
given according to the order of these dependent premises of the type of term.
Error: Not the right number of missing arguments.

Variant: apply term with bindings_list
This also provides apply with values for instantiating premises. Here, variables are referred by names and
non-dependent products by increasing numbers (see bindings list).

Variant: apply term
+
,

This is a shortcut for apply term1; [.. | ... ; [ .. | apply termn] ... ], i.e. for
the successive applications of termi+1 on the last subgoal generated by apply termi , starting from the
application of term1.

Variant: eapply term
The tactic eapply behaves like apply but it does not fail when no instantiations are deducible for some
variables in the premises. Rather, it turns these variables into existential variables which are variables still to
instantiate (see Existential variables). The instantiation is intended to be found later in the proof.

Variant: simple apply term.
This behaves like apply but it reasons modulo conversion only on subterms that contain no variables to
instantiate. For instance, the following example does not succeed because it would require the conversion of
id ?foo and O.

Example

Definition id (x : nat) := x.
id is defined

(continues on next page)
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(continued from previous page)
Parameter H : forall y, id y = y.

H is declared

Goal O = O.
1 subgoal

============================
0 = 0

Fail simple apply H.
The command has indeed failed with message:
Unable to unify "id ?M160 = ?M160" with "0 = 0".

Because it reasons modulo a limited amount of conversion, simple apply fails quicker than apply and
it is then well-suited for uses in user-defined tactics that backtrack often. Moreover, it does not traverse tuples
as apply does.

Variant: simple
?

apply term with bindings_list
?

+

,

Variant: simple
?

eapply term with bindings_list
?

+

,

This summarizes the different syntaxes for apply and eapply.
Variant: lapply term

This tactic applies to any goal, say G. The argument term has to be well-formed in the current context, its type
being reducible to a non-dependent product A -> B with B possibly containing products. Then it generates
two subgoals B->G and A. Applying lapply H (where H has type A->B and B does not start with a product)
does the same as giving the sequence cut B. 2:apply H. where cut is described below.
Warning: When term contains more than one non dependent product the tactic lapply only takes into account the first product.

Example
Assume we have a transitive relation R on nat:

Parameter R : nat -> nat -> Prop.
Axiom Rtrans : forall x y z:nat, R x y -> R y z -> R x z.
Parameters n m p : nat.
Axiom Rnm : R n m.
Axiom Rmp : R m p.

Consider the goal (R n p) provable using the transitivity of R:

Goal R n p.

The direct application of Rtrans with apply fails because no value for y in Rtrans is found by apply:

apply Rtrans.
Toplevel input, characters 0-12:
> apply Rtrans.
> ^^^^^^^^^^^^
Error: Unable to find an instance for the variable y.

A solution is to apply (Rtrans n m p) or (Rtrans n m).
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apply (Rtrans n m p).
2 subgoals

============================
R n m

subgoal 2 is:
R m p

Note that n can be inferred from the goal, so the following would work too.

apply (Rtrans _ m).

More elegantly, apply Rtrans with (y:=m) allows only mentioning the unknown m:

apply Rtrans with (y := m).

Another solution is to mention the proof of (R x y) in Rtrans

apply Rtrans with (1 := Rnm).
1 subgoal

============================
R m p

... or the proof of (R y z).

apply Rtrans with (2 := Rmp).
1 subgoal

============================
R n m

On the opposite, one can use eapply which postpones the problem of finding m. Then one can apply the hypotheses
Rnm and Rmp. This instantiates the existential variable and completes the proof.

eapply Rtrans.
2 focused subgoals
(shelved: 1)

============================
R n ?y

subgoal 2 is:
R ?y p

apply Rnm.
1 subgoal

============================
R m p

apply Rmp.
No more subgoals.

Note: When the conclusion of the type of the term to apply is an inductive type isomorphic to a tuple type and
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apply looks recursively whether a component of the tuple matches the goal, it excludes components whose statement
would result in applying an universal lemma of the form forall A, ... -> A. Excluding this kind of lemma can
be avoided by setting the following flag:

Flag: Universal Lemma Under Conjunction
This flag, which preserves compatibility with versions of Coq prior to 8.4 is also available for apply term in
ident (see apply ... in).

apply term in ident
This tactic applies to any goal. The argument term is a term well-formed in the local context and the argument
ident is an hypothesis of the context. The tactic apply term in ident tries to match the conclusion of
the type of ident against a non-dependent premise of the type of term, trying them from right to left. If it
succeeds, the statement of hypothesis ident is replaced by the conclusion of the type of term. The tactic also
returns as many subgoals as the number of other non-dependent premises in the type of term and of the non-
dependent premises of the type of ident. If the conclusion of the type of term does not match the goal and the
conclusion is an inductive type isomorphic to a tuple type, then the tuple is (recursively) decomposed and the first
component of the tuple of which a non-dependent premise matches the conclusion of the type of ident. Tuples
are decomposed in a width-first left-to-right order (for instance if the type of H1 is A <-> B and the type of H2
is A then apply H1 in H2 transforms the type of H2 into B). The tactic apply relies on first-order pattern
matching with dependent types.
Error: Statement without assumptions.

This happens if the type of term has no non-dependent premise.
Error: Unable to apply.

This happens if the conclusion of ident does not match any of the non-dependent premises of the type of
term.

Variant: apply term
+
, in ident

This applies each term in sequence in ident.

Variant: apply term with bindings_list
+

,
in ident

This does the same but uses the bindings in each (ident := term) to instantiate the parameters of the
corresponding type of term (see bindings list).

Variant: eapply term with bindings_list
?

+

,
in ident

This works as apply ... in but turns unresolved bindings into existential variables, if any, instead of
failing.

Variant: apply term with bindings_list
?

+

,
in ident as simple_intropattern

This works as apply ... in then applies the simple_intropattern to the hypothesis ident.
Variant: simple apply term in ident

This behaves like apply ... in but it reasons modulo conversion only on subterms that contain no vari-
ables to instantiate. For instance, if id := fun x:nat => x and H: forall y, id y = y ->
True and H0 : O = O then simple apply H in H0 does not succeed because it would require
the conversion of id ?x and O where ?x is an existential variable to instantiate. Tactic simple apply
term in ident does not either traverse tuples as apply term in ident does.

Variant: simple
?

apply term with bindings_list
?

+

,
in ident as simple_intropattern

?
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Variant: simple
?

eapply term with bindings_list
?

+

,
in ident as simple_intropattern

?

This summarizes the different syntactic variants of apply term in ident and eapply term in
ident.

constructor num
This tactic applies to a goal such that its conclusion is an inductive type (say I). The argument num must be less
or equal to the numbers of constructor(s) of I. Let ci be the i-th constructor of I, then constructor i is
equivalent to intros; apply ci.
Error: Not an inductive product.

Error: Not enough constructors.

Variant: constructor
This tries constructor 1 then constructor 2, ..., then constructor n where n is the number
of constructors of the head of the goal.

Variant: constructor num with bindings_list
Let c be the i-th constructor of I, then constructor i with bindings_list is equivalent to
intros; apply c with bindings_list.

Warning: The terms in the bindings_list are checked in the context where constructor is executed
and not in the context where apply is executed (the introductions are not taken into account).

Variant: split with bindings_list
?

This applies only if I has a single constructor. It is then equivalent to constructor 1

with bindings_list
? . It is typically used in the case of a conjunction 𝐴 ∧ 𝐵.

Variant: exists bindings_list
This applies only if I has a single constructor. It is then equivalent to intros; constructor 1
with bindings_list. It is typically used in the case of an existential quantification ∃𝑥, 𝑃 (𝑥).

Variant: exists bindings_list
+

,

This iteratively applies exists bindings_list.
Error: Not an inductive goal with 1 constructor.

Variant: left with bindings_list
?

Variant: right with bindings_list
?

These tactics apply only if I has two constructors, for instance in the case of a disjunction 𝐴 ∨ 𝐵. Then, they
are respectively equivalent to constructor 1 with bindings_list

? and constructor 2

with bindings_list
? .

Error: Not an inductive goal with 2 constructors.

Variant: econstructor
Variant: eexists
Variant: esplit
Variant: eleft
Variant: eright

These tactics and their variants behave like constructor, exists, split, left, right and their
variants but they introduce existential variables instead of failing when the instantiation of a variable cannot
be found (cf. eapply and apply).
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Flag: Debug Tactic Unification
Enables printing traces of unification steps in tactic unification. Tactic unification is used in tactics such as apply
and rewrite.

5.3.3 Managing the local context

intro
This tactic applies to a goal that is either a product or starts with a let-binder. If the goal is a product, the tactic
implements the ”Lam” rule given in Typing rules1. If the goal starts with a let-binder, then the tactic implements a
mix of the ”Let” and ”Conv”.
If the current goal is a dependent product forall x:T, U (resp let x:=t in U) then intro puts x:T
(resp x:=t) in the local context. The new subgoal is U.
If the goal is a non-dependent product 𝑇 → 𝑈 , then it puts in the local context either Hn:T (if T is of type Set
or Prop) or Xn:T (if the type of T is Type). The optional index n is such that Hn or Xn is a fresh identifier. In
both cases, the new subgoal is U.
If the goal is an existential variable, intro forces the resolution of the existential variable into a dependent product
∀ x:?X, ?Y, puts x:?X in the local context and leaves ?Y as a new subgoal allowed to depend on x.
The tactic intro applies the tactic hnf until intro can be applied or the goal is not head-reducible.
Error: No product even after head-reduction.

Variant: intro ident
This applies intro but forces ident to be the name of the introduced hypothesis.
Error: ident is already used.

Note: If a name used by intro hides the base name of a global constant then the latter can still be referred to by a
qualified name (see Qualified names).

Variant: intros
This repeats intro until it meets the head-constant. It never reduces head-constants and it never fails.

Variant: intros ident
+
.

This is equivalent to the composed tactic intro ident; ... ; intro ident.
Variant: intros until ident

This repeats intro until it meets a premise of the goal having the form (ident : type) and discharges
the variable named ident of the current goal.
Error: No such hypothesis in current goal.

Variant: intros until num
This repeats intro until the num-th non-dependent product.

Example
On the subgoalforall x y : nat, x = y -> y = x the tacticintros until 1 is equivalent
to intros x y H, as x = y -> y = x is the first non-dependent product.

1 Actually, only the second subgoal will be generated since the other one can be automatically checked.
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On the subgoal forall x y z : nat, x = y -> y = x the tactic intros until 1 is equiv-
alent to intros x y z as the product on z can be rewritten as a non-dependent product: forall x y
: nat, nat -> x = y -> y = x.

Error: No such hypothesis in current goal.
This happens when num is 0 or is greater than the number of non-dependent products of the goal.

Variant: intro ident1
?

after ident2

Variant: intro ident1
?

before ident2

Variant: intro ident1
?

at top

Variant: intro ident1
?

at bottom

These tactics apply intro ident1
? and move the freshly introduced hypothesis respectively after the

hypothesis ident2, before the hypothesis ident2, at the top of the local context, or at the bottom of
the local context. All hypotheses on which the new hypothesis depends are moved too so as to respect the
order of dependencies between hypotheses. It is equivalent to intro ident1

? followed by the appropri-
ate call to move ... after ..., move ... before ..., move ... at top, or move ...
at bottom.

Note: intro at bottom is a synonym for intro with no argument.

Error: No such hypothesis: ident.

intros intropattern_list
Introduces one or more variables or hypotheses from the goal by matching the intro patterns. See the description
in Intro patterns.

eintros intropattern_list
Works just like intros ... except that it creates existential variables for any unresolved variables rather than
failing.

clear ident
This tactic erases the hypothesis named ident in the local context of the current goal. As a consequence, ident
is no more displayed and no more usable in the proof development.
Error: No such hypothesis.

Error: ident is used in the conclusion.

Error: ident is used in the hypothesis ident.

Variant: clear ident
+

This is equivalent to clear ident. ... clear ident.

Variant: clear - ident
+

This variant clears all the hypotheses except the ones depending in the hypotheses named ident
+ and in

the goal.
Variant: clear

This variants clears all the hypotheses except the ones the goal depends on.
Variant: clear dependent ident

This clears the hypothesis ident and all the hypotheses that depend on it.
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Variant: clearbody ident
+

This tactic expects ident
+ to be local definitions and clears their respective bodies. In other words, it

turns the given definitions into assumptions.
Error: ident is not a local definition.

revert ident
+

This applies to any goal with variables ident
+ . It moves the hypotheses (possibly defined) to the goal, if this

respects dependencies. This tactic is the inverse of intro.
Error: No such hypothesis.

Error: ident1 is used in the hypothesis ident2.

Variant: revert dependent ident
This moves to the goal the hypothesis ident and all the hypotheses that depend on it.

move ident1 after ident2
This moves the hypothesis named ident1 in the local context after the hypothesis named ident2, where “after”
is in reference to the direction of the move. The proof term is not changed.
If ident1 comes before ident2 in the order of dependencies, then all the hypotheses between ident1 and
ident2 that (possibly indirectly) depend on ident1 are moved too, and all of them are thus moved after ident2
in the order of dependencies.
If ident1 comes after ident2 in the order of dependencies, then all the hypotheses between ident1 and
ident2 that (possibly indirectly) occur in the type of ident1 are moved too, and all of them are thus moved
before ident2 in the order of dependencies.
Variant: move ident1 before ident2

This moves ident1 towards and just before the hypothesis named ident2. As for move ... after
..., dependencies over ident1 (when ident1 comes before ident2 in the order of dependencies) or in
the type of ident1 (when ident1 comes after ident2 in the order of dependencies) are moved too.

Variant: move ident at top
This moves ident at the top of the local context (at the beginning of the context).

Variant: move ident at bottom
This moves ident at the bottom of the local context (at the end of the context).

Error: No such hypothesis.

Error: Cannot move ident1 after ident2: it occurs in the type of ident2.

Error: Cannot move ident1 after ident2: it depends on ident2.

Example

Goal forall x :nat, x = 0 -> forall z y:nat, y=y-> 0=x.
1 subgoal

============================
forall x : nat, x = 0 -> nat -> forall y : nat, y = y -> 0 = x

intros x H z y H0.
1 subgoal

x : nat
H : x = 0

(continues on next page)

276 Chapter 5. The proof engine



The Coq Reference Manual, Release 8.11.2

(continued from previous page)
z, y : nat
H0 : y = y
============================
0 = x

move x after H0.
1 subgoal

z, y : nat
H0 : y = y
x : nat
H : x = 0
============================
0 = x

Undo.
1 subgoal

x : nat
H : x = 0
z, y : nat
H0 : y = y
============================
0 = x

move x before H0.
1 subgoal

z, y, x : nat
H : x = 0
H0 : y = y
============================
0 = x

Undo.
1 subgoal

x : nat
H : x = 0
z, y : nat
H0 : y = y
============================
0 = x

move H0 after H.
1 subgoal

x, y : nat
H0 : y = y
H : x = 0
z : nat
============================
0 = x

Undo.
1 subgoal

(continues on next page)
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(continued from previous page)
x : nat
H : x = 0
z, y : nat
H0 : y = y
============================
0 = x

move H0 before H.
1 subgoal

x : nat
H : x = 0
y : nat
H0 : y = y
z : nat
============================
0 = x

rename ident1 into ident2
This renames hypothesis ident1 into ident2 in the current context. The name of the hypothesis in the proof-
term, however, is left unchanged.

Variant: rename identi into identj
+

,

This renames the variables identi into identj in parallel. In particular, the target identifiers may contain
identifiers that exist in the source context, as long as the latter are also renamed by the same tactic.

Error: No such hypothesis.

Error: ident is already used.

set (ident := term)
This replaces term by ident in the conclusion of the current goal and adds the new definition ident := term
to the local context.
If term has holes (i.e. subexpressions of the form “_”), the tactic first checks that all subterms matching the pattern
are compatible before doing the replacement using the leftmost subterm matching the pattern.
Error: The variable ident is already defined.

Variant: set (ident := term) in goal_occurrences
This notation allows specifying which occurrences of term have to be substituted in the context. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior are described in goal
occurrences.

Variant: set (ident binders := term) in goal_occurrences
?

This is equivalent to set (ident := fun binders => term) in goal_occurrences
? .

Variant: set term in goal_occurrences
?

This behaves as set (ident := term) in goal_occurrences
? but ident is generated by

Coq.

Variant: eset (ident binders
?

:= term) in goal_occurrences
?

Variant: eset term in goal_occurrences
?

While the different variants of set expect that no existential variables are generated by the tactic, eset
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removes this constraint. In practice, this is relevant only when eset is used as a synonym of epose, i.e.
when the term does not occur in the goal.

remember term as ident1 eqn:naming_intropattern
?

This behaves asset (ident := term) in *, using a logical (Leibniz’s) equality instead of a local definition.
Use naming_intropattern to name or split up the new equation.

Variant: remember term as ident1 eqn:naming_intropattern
?

in goal_occurrences
This is a more general form of remember that remembers the occurrences of term specified by an occur-
rence set.

Variant: eremember term as ident1 eqn:naming_intropattern
?

in goal_occurrences
?

While the different variants of remember expect that no existential variables are generated by the tactic,
eremember removes this constraint.

pose (ident := term)
This adds the local definition ident := term to the current context without performing any replacement in the
goal or in the hypotheses. It is equivalent to set (ident := term) in |-.
Variant: pose (ident binders := term)

This is equivalent to pose (ident := fun binders => term).
Variant: pose term

This behaves as pose (ident := term) but ident is generated by Coq.

Variant: epose (ident binders
?

:= term)
Variant: epose term

While the different variants of pose expect that no existential variables are generated by the tactic, epose
removes this constraint.

decompose [ qualid
+
] term

This tactic recursively decomposes a complex proposition in order to obtain atomic ones.

Example

Goal forall A B C:Prop, A /\ B /\ C \/ B /\ C \/ C /\ A -> C.
1 subgoal

============================
forall A B C : Prop, A /\ B /\ C \/ B /\ C \/ C /\ A -> C

intros A B C H; decompose [and or] H.
3 subgoals

A, B, C : Prop
H : A /\ B /\ C \/ B /\ C \/ C /\ A
H1 : A
H0 : B
H3 : C
============================
C

subgoal 2 is:
C

subgoal 3 is:
C

(continues on next page)
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(continued from previous page)
all: assumption.

No more subgoals.

Qed.

Note: decompose does not work on right-hand sides of implications or products.

Variant: decompose sum term
This decomposes sum types (like or).

Variant: decompose record term
This decomposes record types (inductive types with one constructor, like and and exists and those defined
with the Record command.

5.3.4 Controlling the proof flow

assert (ident : type)
This tactic applies to any goal. assert (H : U) adds a new hypothesis of name H asserting U to the current
goal and opens a new subgoal U2. The subgoal U comes first in the list of subgoals remaining to prove.
Error: Not a proposition or a type.

Arises when the argument type is neither of type Prop, Set nor Type.
Variant: assert type

This behaves as assert (ident : type) but ident is generated by Coq.
Variant: assert type by tactic

This tactic behaves like assert but applies tactic to solve the subgoals generated by assert.
Error: Proof is not complete.

Variant: assert type as simple_intropattern
If simple_intropattern is an intro pattern (see Intro patterns), the hypothesis is named after this
introduction pattern (in particular, if simple_intropattern is ident, the tactic behaves like assert
(ident : type)). If simple_intropattern is an action introduction pattern, the tactic behaves
like assert type followed by the action done by this introduction pattern.

Variant: assert type as simple_intropattern by tactic
This combines the two previous variants of assert.

Variant: assert (ident := term)
This behaves as assert (ident : type) by exact termwhere type is the type of term. This
is equivalent to using pose proof. If the head of term is ident, the tactic behaves as specialize.
Error: Variable ident is already declared.

Variant: eassert type as simple_intropattern by tactic
While the different variants of assert expect that no existential variables are generated by the tactic, eassert
removes this constraint. This lets you avoid specifying the asserted statement completely before starting to prove
it.

Variant: pose proof term as simple_intropattern
?

This tactic behaves like assert type as simple_intropattern
?

by exact term where
2 This corresponds to the cut rule of sequent calculus.
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type is the type of term. In particular, pose proof term as ident behaves as assert
(ident := term) and pose proof term as simple_intropattern is the same as applying the
simple_intropattern to term.

Variant: epose proof term as simple_intropattern
?

While pose proof expects that no existential variables are generated by the tactic, epose proof removes
this constraint.

Variant: enough (ident : type)
This adds a new hypothesis of name ident asserting type to the goal the tactic enough is applied to. A new
subgoal stating type is inserted after the initial goal rather than before it as assert would do.

Variant: enough type
This behaves like enough (ident : type) with the name ident of the hypothesis generated by Coq.

Variant: enough type as simple_intropattern
This behaves like enough type using simple_intropattern to name or destruct the new hypothesis.

Variant: enough (ident : type) by tactic

Variant: enough type as simple_intropattern
?

by tactic
This behaves as above but with tactic expected to solve the initial goal after the extra assumption type is added
and possibly destructed. If the as simple_intropattern clause generates more than one subgoal, tactic
is applied to all of them.

Variant: eenough type as simple_intropattern
?

by tactic
?

Variant: eenough (ident : type) by tactic
?

While the different variants of enough expect that no existential variables are generated by the tactic, eenough
removes this constraint.

Variant: cut type
This tactic applies to any goal. It implements the non-dependent case of the “App” rule given in Typing rules. (This
is Modus Ponens inference rule.) cut U transforms the current goal T into the two following subgoals: U -> T
and U. The subgoal U -> T comes first in the list of remaining subgoal to prove.

Variant: specialize (ident term
*
) as simple_intropattern

?

Variant: specialize ident with bindings_list as simple_intropattern
?

This tactic works on local hypothesis ident. The premises of this hypothesis (either universal quantifications or
non-dependent implications) are instantiated by concrete terms coming either from arguments term * or from a
bindings list. In the first form the application to term

* can be partial. The first form is equivalent to assert
(ident := ident term

*
). In the second form, instantiation elements can also be partial. In this case the

uninstantiated arguments are inferred by unification if possible or left quantified in the hypothesis otherwise. With
the as clause, the local hypothesis ident is left unchanged and instead, the modified hypothesis is introduced as
specified by the simple_intropattern. The name ident can also refer to a global lemma or hypothesis.
In this case, for compatibility reasons, the behavior of specialize is close to that of generalize: the
instantiated statement becomes an additional premise of the goal. The as clause is especially useful in this case to
immediately introduce the instantiated statement as a local hypothesis.
Error: ident is used in hypothesis ident.

Error: ident is used in conclusion.

generalize term
This tactic applies to any goal. It generalizes the conclusion with respect to some term.
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Example

Show.
1 subgoal

x, y : nat
============================
0 <= x + y + y

generalize (x + y + y).
1 subgoal

x, y : nat
============================
forall n : nat, 0 <= n

If the goal is G and t is a subterm of type T in the goal, then generalize t replaces the goal by forall (x:T),
G′ where G′ is obtained from G by replacing all occurrences of t by x. The name of the variable (here n) is chosen
based on T.

Variant: generalize term
+

This is equivalent to generalize term; ... ; generalize term. Note that the sequence of term i
’s are processed from n to 1.

Variant: generalize term at num
+

This is equivalent togeneralize term but it generalizes only over the specified occurrences ofterm (counting
from left to right on the expression printed using the Printing All flag).

Variant: generalize term as ident
This is equivalent to generalize term but it uses ident to name the generalized hypothesis.

Variant: generalize term at num
+

as ident

+

,

This is the most general form of generalize that combines the previous behaviors.
Variant: generalize dependent term

This generalizes term but also all hypotheses that depend on term. It clears the generalized hypotheses.
evar (ident : term)

The evar tactic creates a new local definition named ident with type term in the context. The body of this
binding is a fresh existential variable.

instantiate (ident := term )
The instantiate tactic refines (see refine) an existential variable ident with the term term. It is equivalent to
only [ident]: refine term (preferred alternative).

Note: To be able to refer to an existential variable by name, the user must have given the name explicitly (see
Existential variables).

Note: When you are referring to hypotheses which you did not name explicitly, be aware that Coq may make a
different decision on how to name the variable in the current goal and in the context of the existential variable. This
can lead to surprising behaviors.
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Variant: instantiate (num := term)
This variant allows to refer to an existential variable which was not named by the user. The num argument is the
position of the existential variable from right to left in the goal. Because this variant is not robust to slight changes
in the goal, its use is strongly discouraged.

Variant: instantiate ( num := term ) in ident
Variant: instantiate ( num := term ) in ( value of ident )
Variant: instantiate ( num := term ) in ( type of ident )

These allow to refer respectively to existential variables occurring in a hypothesis or in the body or the type of a
local definition.

Variant: instantiate
Without argument, the instantiate tactic tries to solve as many existential variables as possible, using information
gathered from other tactics in the same tactical. This is automatically done after each complete tactic (i.e. after a
dot in proof mode), but not, for example, between each tactic when they are sequenced by semicolons.

admit
This tactic allows temporarily skipping a subgoal so as to progress further in the rest of the proof. A proof containing
admitted goals cannot be closed with Qed but only with Admitted.

Variant: give_up
Synonym of admit.

absurd term
This tactic applies to any goal. The argument term is any proposition P of type Prop. This tactic applies False
elimination, that is it deduces the current goal from False, and generates as subgoals ∼P and P. It is very useful in
proofs by cases, where some cases are impossible. In most cases, P or ∼P is one of the hypotheses of the local
context.

contradiction
This tactic applies to any goal. The contradiction tactic attempts to find in the current context (after all intros) a
hypothesis that is equivalent to an empty inductive type (e.g. False), to the negation of a singleton inductive type
(e.g. True or x=x), or two contradictory hypotheses.
Error: No such assumption.

Variant: contradiction ident
The proof of False is searched in the hypothesis named ident.

contradict ident
This tactic allows manipulating negated hypothesis and goals. The name ident should correspond to a hypothesis.
With contradict H, the current goal and context is transformed in the following way:

• H:¬A ⊢ B becomes ⊢ A
• H:¬A ⊢ ¬B becomes H: B ⊢ A
• H: A ⊢ B becomes ⊢ ¬A
• H: A ⊢ ¬B becomes H: B ⊢ ¬A

exfalso
This tactic implements the “ex falso quodlibet” logical principle: an elimination of False is performed on the current
goal, and the user is then required to prove that False is indeed provable in the current context. This tactic is a macro
for elimtype False.

5.3.5 Case analysis and induction

The tactics presented in this section implement induction or case analysis on inductive or co-inductive objects (see Inductive
Definitions).
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destruct term
This tactic applies to any goal. The argument term must be of inductive or co-inductive type and the tactic
generates subgoals, one for each possible form of term, i.e. one for each constructor of the inductive or co-
inductive type. Unlike induction, no induction hypothesis is generated by destruct.
Variant: destruct ident

If ident denotes a quantified variable of the conclusion of the goal, then destruct ident behaves as
intros until ident; destruct ident. If ident is not anymore dependent in the goal after
application of destruct, it is erased (to avoid erasure, use parentheses, as in destruct (ident)).
If ident is a hypothesis of the context, and ident is not anymore dependent in the goal after application
of destruct, it is erased (to avoid erasure, use parentheses, as in destruct (ident)).

Variant: destruct num

destruct num behaves as intros until num followed by destruct applied to the last in-
troduced hypothesis.

Note: For destruction of a numeral, use syntax destruct (num) (not very interesting anyway).

Variant: destruct pattern
The argument of destruct can also be a pattern of which holes are denoted by “_”. In this case, the
tactic checks that all subterms matching the pattern in the conclusion and the hypotheses are compatible and
performs case analysis using this subterm.

Variant: destruct term
+
,

This is a shortcut for destruct term; ...; destruct term.
Variant: destruct term as or_and_intropattern_loc

This behaves as destruct term but uses the names in or_and_intropattern_loc to name the
variables introduced in the context. The or_and_intropattern_loc must have the form [p11 ...
p1n | ... | pm1 ... pmn ] with m being the number of constructors of the type of term. Each
variable introduced by destruct in the context of the i-th goal gets its name from the list pi1 ... pin
in order. If there are not enough names, destruct invents names for the remaining variables to introduce.
More generally, the pij can be any introduction pattern (see intros). This provides a concise notation for
chaining destruction of a hypothesis.

Variant: destruct term eqn:naming_intropattern
This behaves as destruct term but adds an equation between term and the value that it takes in each
of the possible cases. The name of the equation is specified by naming_intropattern (see intros),
in particular ? can be used to let Coq generate a fresh name.

Variant: destruct term with bindings_list
This behaves like destruct term providing explicit instances for the dependent premises of the type of
term.

Variant: edestruct term
This tactic behaves like destruct term except that it does not fail if the instance of a dependent premises
of the type of term is not inferable. Instead, the unresolved instances are left as existential variables to be
inferred later, in the same way as eapply does.

Variant: destruct term using term with bindings_list
?

This is synonym of induction term using term with bindings_list
? .

Variant: destruct term in goal_occurrences
This syntax is used for selecting which occurrences of term the case analysis has to be done on. The in
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goal_occurrences clause is an occurrence clause whose syntax and behavior is described in occurrences
sets.

Variant: destruct term with bindings_list
?

as or_and_intropattern_loc
?

eqn:naming_intropattern
?

using term with bindings_list
?

?

in goal_occurrences
?

Variant: edestruct term with bindings_list
?

as or_and_intropattern_loc
?

eqn:naming_intropattern
?

using term with bindings_list
?

?

in goal_occurrences
?

These are the general forms of destruct and edestruct. They combine the effects of the with, as,
eqn:, using, and in clauses.

case term
The tactic case is a more basic tactic to perform case analysis without recursion. It behaves as elim term but
using a case-analysis elimination principle and not a recursive one.

Variant: case term with bindings_list
Analogous to elim term with bindings_list above.

Variant: ecase term with bindings_list
?

In case the type of term has dependent premises, or dependent premises whose values are not inferable from the
with bindings_list clause, ecase turns them into existential variables to be resolved later on.

Variant: simple destruct ident
This tactic behaves as intros until ident; case ident when ident is a quantified variable of the
goal.

Variant: simple destruct num
This tactic behaves as intros until num; case ident where ident is the name given by intros
until num to the num -th non-dependent premise of the goal.

Variant: case_eq term
The tactic case_eq is a variant of the case tactic that allows to perform case analysis on a term without com-
pletely forgetting its original form. This is done by generating equalities between the original form of the term and
the outcomes of the case analysis.

induction term
This tactic applies to any goal. The argument termmust be of inductive type and the tactic induction generates
subgoals, one for each possible form of term, i.e. one for each constructor of the inductive type.
If the argument is dependent in either the conclusion or some hypotheses of the goal, the argument is replaced by
the appropriate constructor form in each of the resulting subgoals and induction hypotheses are added to the local
context using names whose prefix is IH.
There are particular cases:

• If term is an identifier ident denoting a quantified variable of the conclusion of the goal, then inductionident
behaves as intros until ident; induction ident. If ident is not anymore dependent in the
goal after application of induction, it is erased (to avoid erasure, use parentheses, as in induction
(ident)).

• If term is a num, then induction num behaves as intros until num followed by induction
applied to the last introduced hypothesis.

Note: For simple induction on a numeral, use syntax induction (num) (not very interesting anyway).

• In case term is a hypothesis ident of the context, and ident is not anymore dependent in the goal after
application of induction, it is erased (to avoid erasure, use parentheses, as in induction (ident)).
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• The argument term can also be a pattern of which holes are denoted by “_”. In this case, the tactic checks
that all subterms matching the pattern in the conclusion and the hypotheses are compatible and performs
induction using this subterm.

Example

Lemma induction_test : forall n:nat, n = n -> n <= n.
1 subgoal

============================
forall n : nat, n = n -> n <= n

intros n H.
1 subgoal

n : nat
H : n = n
============================
n <= n

induction n.
2 subgoals

H : 0 = 0
============================
0 <= 0

subgoal 2 is:
S n <= S n

exact (le_n 0).
1 subgoal

n : nat
H : S n = S n
IHn : n = n -> n <= n
============================
S n <= S n

Error: Not an inductive product.

Error: Unable to find an instance for the variables ident ... ident.
Use in this case the variant elim ... with below.

Variant: induction term as or_and_intropattern_loc
This behaves as induction but uses the names in or_and_intropattern_loc to name the variables
introduced in the context. The or_and_intropattern_loc must typically be of the form [ p 11 ... p

1n | ... | pm1 ... pmn ] with m being the number of constructors of the type of term. Each variable
introduced by induction in the context of the i-th goal gets its name from the list pi1 ... pin in order. If there are
not enough names, induction invents names for the remaining variables to introduce. More generally, the pij can
be any disjunctive/conjunctive introduction pattern (see intros ...). For instance, for an inductive type with
one constructor, the pattern notation (p1 , ... , pn ) can be used instead of [ p1 ... pn ].

Variant: induction term with bindings_list
This behaves like induction providing explicit instances for the premises of the type of term (see bindings
list).
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Variant: einduction term
This tactic behaves like induction except that it does not fail if some dependent premise of the type of term
is not inferable. Instead, the unresolved premises are posed as existential variables to be inferred later, in the same
way as eapply does.

Variant: induction term using term
This behaves as induction but using term as induction scheme. It does not expect the conclusion of the type
of the first term to be inductive.

Variant: induction term using term with bindings_list
This behaves as induction ... using ... but also providing instances for the premises of the type of the
second term.

Variant: induction term
+
, using qualid

This syntax is used for the case qualid denotes an induction principle with complex predicates as the induction
principles generated by Function or Functional Scheme may be.

Variant: induction term in goal_occurrences
This syntax is used for selecting which occurrences of term the induction has to be carried on. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior is described in occurrences
sets. If variables or hypotheses not mentioning term in their type are listed in goal_occurrences, those are
generalized as well in the statement to prove.

Example

Lemma comm x y : x + y = y + x.
1 subgoal

x, y : nat
============================
x + y = y + x

induction y in x |- *.
2 subgoals

x : nat
============================
x + 0 = 0 + x

subgoal 2 is:
x + S y = S y + x

Show 2.
subgoal 2 is:

x, y : nat
IHy : forall x : nat, x + y = y + x
============================
x + S y = S y + x

Variant: induction term with bindings_list as or_and_intropattern_loc using term with bindings_list in goal_occurrences
Variant: einduction term with bindings_list as or_and_intropattern_loc using term with bindings_list in goal_occurrences

These are the most general forms of induction and einduction. It combines the effects of the with, as,
using, and in clauses.

Variant: elim term
This is a more basic induction tactic. Again, the type of the argument term must be an inductive type. Then,
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according to the type of the goal, the tactic elim chooses the appropriate destructor and applies it as the tactic
apply would do. For instance, if the proof context contains n:nat and the current goal is T of type Prop, then
elim n is equivalent to apply nat_ind with (n:=n). The tactic elim does not modify the context of
the goal, neither introduces the induction loading into the context of hypotheses. More generally, elim term
also works when the type of term is a statement with premises and whose conclusion is inductive. In that case
the tactic performs induction on the conclusion of the type of term and leaves the non-dependent premises of the
type as subgoals. In the case of dependent products, the tactic tries to find an instance for which the elimination
lemma applies and fails otherwise.

Variant: elim term with bindings_list
Allows to give explicit instances to the premises of the type of term (see bindings list).

Variant: eelim term
In case the type of term has dependent premises, this turns them into existential variables to be resolved later on.

Variant: elim term using term
Variant: elim term using term with bindings_list

Allows the user to give explicitly an induction principle term that is not the standard one for the underlying
inductive type of term. The bindings_list clause allows instantiating premises of the type of term.

Variant: elim term with bindings_list using term with bindings_list
Variant: eelim term with bindings_list using term with bindings_list

These are the most general forms of elim and eelim. It combines the effects of the using clause and of the
two uses of the with clause.

Variant: elimtype type
The argument type must be inductively defined. elimtype I is equivalent to cut I. intro Hn; elim
Hn; clear Hn. Therefore the hypothesis Hn will not appear in the context(s) of the subgoal(s). Conversely, if
t is a term of (inductive) type I that does not occur in the goal, then elim t is equivalent to elimtype I;
2:exact t.

Variant: simple induction ident
This tactic behaves as intros until ident; elim ident when ident is a quantified variable of the
goal.

Variant: simple induction num
This tactic behaves as intros until num; elim ident where ident is the name given by intros
until num to the num-th non-dependent premise of the goal.

double induction ident ident
This tactic is deprecated and should be replaced by induction ident; induction ident (or
induction ident ; destruct ident depending on the exact needs).

Variant: double induction num1 num2
This tactic is deprecated and should be replaced by induction num1; induction num3 where num3 is
the result of num2 - num1

dependent induction ident
The experimental tactic dependent induction performs induction- inversion on an instantiated inductive predicate.
One needs to first require the Coq.Program.Equality module to use this tactic. The tactic is based on the BasicElim
tactic by Conor McBride [McB00] and the work of Cristina Cornes around inversion [CT95]. From an instantiated
inductive predicate and a goal, it generates an equivalent goal where the hypothesis has been generalized over its
indexes which are then constrained by equalities to be the right instances. This permits to state lemmas without
resorting to manually adding these equalities and still get enough information in the proofs.

Example
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Lemma lt_1_r : forall n:nat, n < 1 -> n = 0.
1 subgoal

============================
forall n : nat, n < 1 -> n = 0

intros n H ; induction H.
2 subgoals

n : nat
============================
n = 0

subgoal 2 is:
n = 0

Here we did not get any information on the indexes to help fulfill this proof. The problem is that, when we use the
induction tactic, we lose information on the hypothesis instance, notably that the second argument is 1 here. Depen-
dent induction solves this problem by adding the corresponding equality to the context.

Require Import Coq.Program.Equality.
Lemma lt_1_r : forall n:nat, n < 1 -> n = 0.

1 subgoal

============================
forall n : nat, n < 1 -> n = 0

intros n H ; dependent induction H.
2 subgoals

============================
0 = 0

subgoal 2 is:
n = 0

The subgoal is cleaned up as the tactic tries to automatically simplify the subgoals with respect to the generated equalities.
In this enriched context, it becomes possible to solve this subgoal.

reflexivity.
1 subgoal

n : nat
H : S n <= 0
IHle : 0 = 1 -> n = 0
============================
n = 0

Now we are in a contradictory context and the proof can be solved.

inversion H.
No more subgoals.

This technique works with any inductive predicate. In fact, the dependent induction tactic is just a wrapper
around the induction tactic. One can make its own variant by just writing a new tactic based on the definition found
in Coq.Program.Equality.
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Variant: dependent induction ident generalizing ident
+

This performs dependent induction on the hypothesis ident but first generalizes the goal by the given variables
so that they are universally quantified in the goal. This is generally what one wants to do with the variables that are
inside some constructors in the induction hypothesis. The other ones need not be further generalized.

Variant: dependent destruction ident
This performs the generalization of the instance ident but uses destruct instead of induction on the general-
ized hypothesis. This gives results equivalent to inversion or dependent inversion if the hypothesis is
dependent.

See also the larger example of dependent induction and an explanation of the underlying technique.

function induction (qualid term
+
)

The tactic functional induction performs case analysis and induction following the definition of a function. It makes
use of a principle generated by Function (see Advanced recursive functions) or Functional Scheme (see
Generation of induction principles with Functional Scheme). Note that this tactic is only available after a Require
Import FunInd.

Example

Require Import FunInd.
[Loading ML file extraction_plugin.cmxs ... done]
[Loading ML file recdef_plugin.cmxs ... done]

Functional Scheme minus_ind := Induction for minus Sort Prop.
sub_equation is defined
minus_ind is defined

Check minus_ind.
minus_ind

: forall P : nat -> nat -> nat -> Prop,
(forall n m : nat, n = 0 -> P 0 m n) ->
(forall n m k : nat, n = S k -> m = 0 -> P (S k) 0 n) ->
(forall n m k : nat,
n = S k ->
forall l : nat, m = S l -> P k l (k - l) -> P (S k) (S l) (k - l)) ->

forall n m : nat, P n m (n - m)

Lemma le_minus (n m:nat) : n - m <= n.
1 subgoal

n, m : nat
============================
n - m <= n

functional induction (minus n m) using minus_ind; simpl; auto.
No more subgoals.

Qed.

Note: (qualid term
+
) must be a correct full application of qualid. In particular, the rules for implicit argu-

ments are the same as usual. For example use qualid if you want to write implicit arguments explicitly.
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Note: Parentheses around qualid term
+ are not mandatory and can be skipped.

Note: functional induction (f x1 x2 x3) is actually a wrapper for induction x1, x2, x3, (f
x1 x2 x3) using qualid followed by a cleaning phase, where qualid is the induction principle registered for
f (by the Function (see Advanced recursive functions) or Functional Scheme (see Generation of induction prin-
ciples with Functional Scheme) command) corresponding to the sort of the goal. Therefore functional induction
may fail if the induction scheme qualid is not defined. See also Advanced recursive functions for the function terms
accepted by Function.

Note: There is a difference between obtaining an induction scheme for a function by using Function (see Advanced
recursive functions) and by using Functional Scheme after a normal definition using Fixpoint or Definition.
See Advanced recursive functions for details.

See also:
Advanced recursive functions, Generation of induction principles with Functional Scheme and inversion
Error: Cannot find induction information on qualid.

Error: Not the right number of induction arguments.

Variant: functional induction (qualid term
+
) as simple_intropattern using term with bindings_list

Similarly to induction and elim, this allows giving explicitly the name of the introduced variables, the induc-
tion principle, and the values of dependent premises of the elimination scheme, including predicates for mutual
induction when qualid is part of a mutually recursive definition.

discriminate term
This tactic proves any goal from an assumption stating that two structurally different terms of an inductive set are
equal. For example, from (S (S O))=(S O) we can derive by absurdity any proposition.
The argument term is assumed to be a proof of a statement of conclusion term = term with the two terms
being elements of an inductive set. To build the proof, the tactic traverses the normal forms3 of the terms looking
for a couple of subterms u and w (u subterm of the normal form of term and w subterm of the normal form of
term), placed at the same positions and whose head symbols are two different constructors. If such a couple of
subterms exists, then the proof of the current goal is completed, otherwise the tactic fails.

Note: The syntax discriminate ident can be used to refer to a hypothesis quantified in the goal. In this case,
the quantified hypothesis whose name is ident is first introduced in the local context using intros until ident.

Error: No primitive equality found.

Error: Not a discriminable equality.

Variant: discriminate num
This does the same thing as intros until num followed by discriminate ident where ident is the
identifier for the last introduced hypothesis.

Variant: discriminate term with bindings_list
This does the same thing as discriminate term but using the given bindings to instantiate parameters or
hypotheses of term.

3 Reminder: opaque constants will not be expanded by δ reductions.
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Variant: ediscriminate num

Variant: ediscriminate term with bindings_list
?

This works the same as discriminate but if the type of term, or the type of the hypothesis referred to by
num, has uninstantiated parameters, these parameters are left as existential variables.

Variant: discriminate
This behaves like discriminate ident if ident is the name of an hypothesis to which discriminate is ap-
plicable; if the current goal is of the form term <> term, this behaves as intro ident; discriminate
ident.
Error: No discriminable equalities.

injection term
The injection tactic exploits the property that constructors of inductive types are injective, i.e. that if c is a con-
structor of an inductive type and c t1 and c t2 are equal then t1 and t2 are equal too.
If term is a proof of a statement of conclusion term = term, then injection applies the injectivity of
constructors as deep as possible to derive the equality of all the subterms of term and term at positions where
the terms start to differ. For example, from (S p, S n) = (q, S (S m)) we may derive S p = q and
n = S m. For this tactic to work, the terms should be typed with an inductive type and they should be neither
convertible, nor having a different head constructor. If these conditions are satisfied, the tactic derives the equality
of all the subterms at positions where they differ and adds them as antecedents to the conclusion of the current goal.

Example
Consider the following goal:

Inductive list : Set :=
| nil : list
| cons : nat -> list -> list.
Parameter P : list -> Prop.
Goal forall l n, P nil -> cons n l = cons 0 nil -> P l.

intros.
1 subgoal

l : list
n : nat
H : P nil
H0 : cons n l = cons 0 nil
============================
P l

injection H0.
1 subgoal

l : list
n : nat
H : P nil
H0 : cons n l = cons 0 nil
============================
l = nil -> n = 0 -> P l

Beware that injection yields an equality in a sigma type whenever the injected object has a dependent type P with
its two instances in different types (P t1 ... tn ) and (P u1 ... un ). If t1 and u1 are the same and have for
type an inductive type for which a decidable equality has been declared using the command Scheme Equality
(see Generation of induction principles with Scheme), the use of a sigma type is avoided.
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Note: If some quantified hypothesis of the goal is named ident, then injection ident first introduces the
hypothesis in the local context using intros until ident.

Error: Not a projectable equality but a discriminable one.

Error: Nothing to do, it is an equality between convertible terms.

Error: Not a primitive equality.

Error: Nothing to inject.

Variant: injection num
This does the same thing as intros until num followed by injection ident where ident is
the identifier for the last introduced hypothesis.

Variant: injection term with bindings_list
This does the same as injection term but using the given bindings to instantiate parameters or hypothe-
ses of term.

Variant: einjection num

Variant: einjection term with bindings_list
?

This works the same as injection but if the type of term, or the type of the hypothesis referred to by
num, has uninstantiated parameters, these parameters are left as existential variables.

Variant: injection
If the current goal is of the form term <> term , this behaves as intro ident; injection
ident.
Error: goal does not satisfy the expected preconditions.

Variant: injection term with bindings_list
?

as simple_intropattern
+

Variant: injection num as simple_intropattern
+

Variant: injection as simple_intropattern
+

Variant: einjection term with bindings_list
?

as simple_intropattern
+

Variant: einjection num as simple_intropattern
+

Variant: einjection as simple_intropattern
+

These variants apply intros simple_intropattern
+ after the call to injection or

einjection so that all equalities generated are moved in the context of hypotheses. The number of
simple_intropattern must not exceed the number of equalities newly generated. If it is smaller,
fresh names are automatically generated to adjust the list of simple_intropattern to the number of
new equalities. The original equality is erased if it corresponds to a hypothesis.

Variant: injection term with bindings_list
?

as injection_intropattern
Variant: injection num as injection_intropattern
Variant: injection as injection_intropattern

Variant: einjection term with bindings_list
?

as injection_intropattern
Variant: einjection num as injection_intropattern
Variant: einjection as injection_intropattern

These are equivalent to the previous variants but using instead the syntax injection_intropattern
which intros uses. In particular as [= simple_intropattern

+
] behaves the same as as

simple_intropattern
+ .
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Flag: Structural Injection
This flag ensures that injection term erases the original hypothesis and leaves the generated equalities
in the context rather than putting them as antecedents of the current goal, as if giving injection term
as (with an empty list of names). This flag is off by default.

Flag: Keep Proof Equalities
By default, injection only creates new equalities between terms whose type is in sort Type or Set,
thus implementing a special behavior for objects that are proofs of a statement in Prop. This flag controls
this behavior.

inversion ident
Let the type of ident in the local context be (I t), where I is a (co)inductive predicate. Then, inversion
applied to ident derives for each possible constructor c i of (I t), all the necessary conditions that should
hold for the instance (I t) to be proved by c i.

Note: If ident does not denote a hypothesis in the local context but refers to a hypothesis quantified in the goal, then
the latter is first introduced in the local context using intros until ident.

Note: As inversion proofs may be large in size, we recommend the user to stock the lemmas whenever the same
instance needs to be inverted several times. See Generation of inversion principles with Derive Inversion.

Note: Part of the behavior of the inversion tactic is to generate equalities between expressions that appeared in the
hypothesis that is being processed. By default, no equalities are generated if they relate two proofs (i.e. equalities between
terms whose type is in sort Prop). This behavior can be turned off by using the Keep Proof Equalities setting.

Variant: inversion num
This does the same thing as intros until num then inversion ident where ident is the identifier
for the last introduced hypothesis.

Variant: inversion_clear ident
This behaves as inversion and then erases ident from the context.

Variant: inversion ident as or_and_intropattern_loc
This generally behaves as inversion but using names in or_and_intropattern_loc for naming hypotheses.
The or_and_intropattern_loc must have the form [p11 ... p1n | ... | pm1 ... pmn ] with m
being the number of constructors of the type of ident. Be careful that the list must be of length m even if
inversion discards some cases (which is precisely one of its roles): for the discarded cases, just use an empty
list (i.e. n = 0).The arguments of the i-th constructor and the equalities that inversion introduces in the
context of the goal corresponding to the i-th constructor, if it exists, get their names from the list pi1 ... pin in
order. If there are not enough names, inversion invents names for the remaining variables to introduce. In case
an equation splits into several equations (because inversion applies injection on the equalities it generates),
the corresponding name pij in the list must be replaced by a sublist of the form [pij1 ... pijq ] (or, equivalently,
(pij1 , ..., pijq )) where q is the number of subequalities obtained from splitting the original equation. Here is
an example. The inversion ... as variant of inversion generally behaves in a slightly more expectable
way than inversion (no artificial duplication of some hypotheses referring to other hypotheses). To take benefit
of these improvements, it is enough to use inversion ... as [], letting the names being finally chosen by
Coq.

Example
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Inductive contains0 : list nat -> Prop :=
| in_hd : forall l, contains0 (0 :: l)
| in_tl : forall l b, contains0 l -> contains0 (b :: l).

contains0 is defined
contains0_ind is defined
contains0_sind is defined

Goal forall l:list nat, contains0 (1 :: l) -> contains0 l.
1 subgoal

============================
forall l : list nat, contains0 (1 :: l) -> contains0 l

intros l H; inversion H as [ | l' p Hl' [Heqp Heql'] ].
1 subgoal

l : list nat
H : contains0 (1 :: l)
l' : list nat
p : nat
Hl' : contains0 l
Heqp : p = 1
Heql' : l' = l
============================
contains0 l

Variant: inversion num as or_and_intropattern_loc
This allows naming the hypotheses introduced by inversion num in the context.

Variant: inversion_clear ident as or_and_intropattern_loc
This allows naming the hypotheses introduced by inversion_clear in the context. Notice that hypothesis
names can be provided as if inversion were called, even though the inversion_clear will eventually
erase the hypotheses.

Variant: inversion ident in ident
+

Let ident + be identifiers in the local context. This tactic behaves as generalizing ident
+ , and then per-

forming inversion.

Variant: inversion ident as or_and_intropattern_loc in ident
+

This allows naming the hypotheses introduced in the context by inversion ident in ident
+ .

Variant: inversion_clear ident in ident
+

Let ident + be identifiers in the local context. This tactic behaves as generalizing ident
+ , and then per-

forming inversion_clear.

Variant: inversion_clear ident as or_and_intropattern_loc in ident
+

This allows naming the hypotheses introduced in the context by inversion_clear ident in ident
+ .

Variant: dependent inversion ident
That must be used when ident appears in the current goal. It acts like inversion and then substitutes ident
for the corresponding @term in the goal.

Variant: dependent inversion ident as or_and_intropattern_loc
This allows naming the hypotheses introduced in the context by dependent inversion ident.
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Variant: dependent inversion_clear ident
Like dependent inversion, except that ident is cleared from the local context.

Variant: dependent inversion_clear ident as or_and_intropattern_loc
This allows naming the hypotheses introduced in the context by dependent inversion_clear ident.

Variant: dependent inversion ident with term
This variant allows you to specify the generalization of the goal. It is useful when the system fails to generalize the
goal automatically. If ident has type (I t) and I has type forall (x:T), s, then termmust be of type
I:forall (x:T), I x -> s' where s' is the type of the goal.

Variant: dependent inversion ident as or_and_intropattern_loc with term
This allows naming the hypotheses introduced in the context by dependent inversion ident with
term.

Variant: dependent inversion_clear ident with term
Like dependent inversion ... with ... with but clears ident from the local context.

Variant: dependent inversion_clear ident as or_and_intropattern_loc with term
This allows naming the hypotheses introduced in the context by dependent inversion_clear ident
with term.

Variant: simple inversion ident
It is a very primitive inversion tactic that derives all the necessary equalities but it does not simplify the constraints
as inversion does.

Variant: simple inversion ident as or_and_intropattern_loc
This allows naming the hypotheses introduced in the context by simple inversion.

Variant: inversion ident using ident
Let ident have type (I t) (I an inductive predicate) in the local context, and ident be a (dependent) inversion
lemma. Then, this tactic refines the current goal with the specified lemma.

Variant: inversion ident using ident in ident
+

This tactic behaves as generalizing ident
+ , then doing inversion ident using ident.

Variant: inversion_sigma
This tactic turns equalities of dependent pairs (e.g., existT P x p = existT P y q, frequently left over
by inversion on a dependent type family) into pairs of equalities (e.g., a hypothesis H : x = y and a hypoth-
esis of type rew H in p = q); these hypotheses can subsequently be simplified using subst, without ever
invoking any kind of axiom asserting uniqueness of identity proofs. If you want to explicitly specify the hypoth-
esis to be inverted, or name the generated hypotheses, you can invoke induction H as [H1 H2] using
eq_sigT_rect.This tactic also works forsig, sigT2, andsig2, and there are similareq_sig***_rect
induction lemmas.

Example
Non-dependent inversion.
Let us consider the relation Le over natural numbers:

Inductive Le : nat -> nat -> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).

Let us consider the following goal:
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1 subgoal

P : nat -> nat -> Prop
Q : forall n m : nat, Le n m -> Prop
n, m : nat
H : Le (S n) m
============================
P n m

To prove the goal, we may need to reason by cases on H and to derive that m is necessarily of the form (S m0) for certain
m0 and that (Le n m0). Deriving these conditions corresponds to proving that the only possible constructor of (Le
(S n) m) is LeS and that we can invert the arrow in the type of LeS. This inversion is possible because Le is the
smallest set closed by the constructors LeO and LeS.

inversion_clear H.
1 subgoal

P : nat -> nat -> Prop
Q : forall n m : nat, Le n m -> Prop
n, m, m0 : nat
H0 : Le n m0
============================
P n (S m0)

Note that m has been substituted in the goal for (S m0) and that the hypothesis (Le n m0) has been added to the
context.
Sometimes it is interesting to have the equality m = (S m0) in the context to use it after. In that case we can use
inversion that does not clear the equalities:

inversion H.
1 subgoal

P : nat -> nat -> Prop
Q : forall n m : nat, Le n m -> Prop
n, m : nat
H : Le (S n) m
n0, m0 : nat
H1 : Le n m0
H0 : n0 = n
H2 : S m0 = m
============================
P n (S m0)

Example
Dependent inversion.

Let us consider the following goal:

1 subgoal

P : nat -> nat -> Prop
Q : forall n m : nat, Le n m -> Prop
n, m : nat
H : Le (S n) m

(continues on next page)
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(continued from previous page)
============================
Q (S n) m H

As H occurs in the goal, we may want to reason by cases on its structure and so, we would like inversion tactics to
substitute H by the corresponding @term in constructor form. Neither inversion nor inversion_clear do such
a substitution. To have such a behavior we use the dependent inversion tactics:

dependent inversion_clear H.
1 subgoal

P : nat -> nat -> Prop
Q : forall n m : nat, Le n m -> Prop
n, m, m0 : nat
l : Le n m0
============================
Q (S n) (S m0) (LeS n m0 l)

Note that H has been substituted by (LeS n m0 l) and m by (S m0).

Example
Using inversion_sigma.

Let us consider the following inductive type of length-indexed lists, and a lemma about inverting equality of cons:

Require Import Coq.Logic.Eqdep_dec.
Inductive vec A : nat -> Type :=
| nil : vec A O
| cons {n} (x : A) (xs : vec A n) : vec A (S n).

vec is defined
vec_rect is defined
vec_ind is defined
vec_rec is defined
vec_sind is defined

Lemma invert_cons : forall A n x xs y ys,
@cons A n x xs = @cons A n y ys
-> xs = ys.

1 subgoal

============================
forall (A : Type) (n : nat) (x : A) (xs : vec A n) (y : A) (ys : vec A n),
cons A x xs = cons A y ys -> xs = ys

Proof.
intros A n x xs y ys H.

1 subgoal

A : Type
n : nat
x : A
xs : vec A n
y : A
ys : vec A n
H : cons A x xs = cons A y ys

(continues on next page)
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(continued from previous page)
============================
xs = ys

After performing inversion, we are left with an equality of existTs:

inversion H.
1 subgoal

A : Type
n : nat
x : A
xs : vec A n
y : A
ys : vec A n
H : cons A x xs = cons A y ys
H1 : x = y
H2 : existT (fun n : nat => vec A n) n xs =

existT (fun n : nat => vec A n) n ys
============================
xs = ys

We can turn this equality into a usable form with inversion_sigma:

inversion_sigma.
1 subgoal

A : Type
n : nat
x : A
xs : vec A n
y : A
ys : vec A n
H : cons A x xs = cons A y ys
H1 : x = y
H0 : n = n
H3 : eq_rect n (fun a : nat => vec A a) xs n H0 = ys
============================
xs = ys

To finish cleaning up the proof, we will need to use the fact that that all proofs of n = n for n a nat are eq_refl:

let H := match goal with H : n = n |- _ => H end in
pose proof (Eqdep_dec.UIP_refl_nat _ H); subst H.

1 subgoal

A : Type
n : nat
x : A
xs : vec A n
y : A
ys : vec A n
H : cons A x xs = cons A y ys
H1 : x = y
H3 : eq_rect n (fun a : nat => vec A a) xs n eq_refl = ys
============================
xs = ys

(continues on next page)
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(continued from previous page)
simpl in *.

1 subgoal

A : Type
n : nat
x : A
xs : vec A n
y : A
ys : vec A n
H : cons A x xs = cons A y ys
H1 : x = y
H3 : xs = ys
============================
xs = ys

Finally, we can finish the proof:

assumption.
No more subgoals.

Qed.

fix ident num
This tactic is a primitive tactic to start a proof by induction. In general, it is easier to rely on higher-level induction
tactics such as the ones described in induction.
In the syntax of the tactic, the identifier ident is the name given to the induction hypothesis. The natural number
num tells on which premise of the current goal the induction acts, starting from 1, counting both dependent and
non dependent products, but skipping local definitions. Especially, the current lemma must be composed of at least
num products.
Like in a fix expression, the induction hypotheses have to be used on structurally smaller arguments. The verification
that inductive proof arguments are correct is done only at the time of registering the lemma in the environment. To
know if the use of induction hypotheses is correct at some time of the interactive development of a proof, use the
command Guarded (see Section Requesting information).

Variant: fix ident num with (ident binder
+

[{struct ident}] : type)

+

This starts a proof by mutual induction. The statements to be simultaneously proved are respectively forall
binder ... binder, type. The identifiers ident are the names of the induction hypotheses. The iden-
tifiers ident are the respective names of the premises on which the induction is performed in the statements to
be simultaneously proved (if not given, the system tries to guess itself what they are).

cofix ident
This tactic starts a proof by coinduction. The identifier ident is the name given to the coinduction hypothesis.
Like in a cofix expression, the use of induction hypotheses have to guarded by a constructor. The verification that
the use of co-inductive hypotheses is correct is done only at the time of registering the lemma in the environment.
To know if the use of coinduction hypotheses is correct at some time of the interactive development of a proof, use
the command Guarded (see Section Requesting information).

Variant: cofix ident with (ident binder
+

: type)

+

This starts a proof by mutual coinduction. The statements to be simultaneously proved are respectively forall
binder ... binder, type The identifiers ident are the names of the coinduction hypotheses.
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5.3.6 Rewriting expressions

These tactics use the equality eq:forall A:Type, A->A->Prop defined in file Logic.v (see Logic). The no-
tation for eq T t u is simply t=u dropping the implicit type of t and u.
rewrite term

This tactic applies to any goal. The type of term must have the form
forall (x1 :A1 ) ... (xn :An ), eq term1 term2 .

where eq is the Leibniz equality or a registered setoid equality.
Then rewrite term finds the first subterm matching term1 in the goal, resulting in instances term1’ and
term2’ and then replaces every occurrence of term1’ by term2’. Hence, some of the variables xi are solved by
unification, and some of the types A1, ..., An become new subgoals.
Error: The term provided does not end with an equation.

Error: Tactic generated a subgoal identical to the original goal. This happens if term does not occur in the goal.

Variant: rewrite -> term
Is equivalent to rewrite term

Variant: rewrite <- term
Uses the equality term1 = term 2 from right to left

Variant: rewrite term in goal_occurrences
Analogous to rewrite term but rewriting is done following the clause goal_occurrences. For
instance:
• rewrite H in H' will rewrite H in the hypothesis H' instead of the current goal.
• rewrite H in H' at 1, H'' at - 2 |- * means rewrite H; rewrite H in
H' at 1; rewrite H in H'' at - 2. In particular a failure will happen if any of these
three simpler tactics fails.

• rewrite H in * |- will do rewrite H in H' for all hypotheses H' different from H. A suc-
cess will happen as soon as at least one of these simpler tactics succeeds.

• rewrite H in * is a combination of rewrite H and rewrite H in * |- that succeeds if
at least one of these two tactics succeeds.

Orientation -> or <- can be inserted before the term to rewrite.
Variant: rewrite term at occurrences

Rewrite only the given occurrences of term. Occurrences are specified from left to right as for pattern
(pattern). The rewrite is always performed using setoid rewriting, even for Leibniz’s equality, so one has
to Import Setoid to use this variant.

Variant: rewrite term by tactic
Use tactic to completely solve the side-conditions arising from the rewrite.

Variant: rewrite orientation term
+
, in ident

?

Is equivalent to the n successive tactics rewrite term
+

; , each one working on the first subgoal generated
by the previous one. An orientation -> or <- can be inserted before each term to rewrite. One unique
clause can be added at the end after the keyword in; it will then affect all rewrite operations.

In all forms of rewrite described above, a term to rewrite can be immediately prefixed by one of the following
modifiers:

• ? : the tactic rewrite ?term performs the rewrite of term as many times as possible (perhaps zero
time). This form never fails.
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• num? : works similarly, except that it will do at most num rewrites.
• ! : works as ?, except that at least one rewrite should succeed, otherwise the tactic fails.
• num! (or simply num) : precisely num rewrites of termwill be done, leading to failure if these num rewrites
are not possible.

Variant: erewrite term
This tactic works as rewrite term but turning unresolved bindings into existential variables, if any, in-
stead of failing. It has the same variants as rewrite has.

Flag: Keyed Unification
Makes higher-order unification used by rewrite rely on a set of keys to drive unification. The subterms,
considered as rewriting candidates, must start with the same key as the left- or right-hand side of the lemma
given to rewrite, and the arguments are then unified up to full reduction.

replace term with term’
This tactic applies to any goal. It replaces all free occurrences of term in the current goal with term’ and
generates an equality term = term’ as a subgoal. This equality is automatically solved if it occurs among
the assumptions, or if its symmetric form occurs. It is equivalent to cut term = term’; [intro Hn ;
rewrite <- Hn ; clear Hn|| assumption || symmetry; try assumption].
Error: Terms do not have convertible types.

Variant: replace term with term’ by tactic
This acts as replace term with term’ but applies tactic to solve the generated subgoal term =
term’.

Variant: replace term
Replaces termwith term’ using the first assumption whose type has the form term = term’ or term’
= term.

Variant: replace -> term
Replaces term with term’ using the first assumption whose type has the form term = term’

Variant: replace <- term
Replaces term with term’ using the first assumption whose type has the form term’ = term

Variant: replace term with term
?

in goal_occurrences by tactic
?

Variant: replace -> term in goal_occurrences
Variant: replace <- term in goal_occurrences

Acts as before but the replacements take place in the specified clauses (goal_occurrences) (see Per-
forming computations) and not only in the conclusion of the goal. The clause argument must not contain any
type of nor value of.

Variant: cutrewrite <- (term = term’)
Deprecated since version 8.5: This tactic can be replaced by enough (term = term’) as <-.

Variant: cutrewrite -> (term = term’)
Deprecated since version 8.5: This tactic can be replaced by enough (term = term’) as ->.

subst ident
This tactic applies to a goal that has ident in its context and (at least) one hypothesis, say H, of type ident =
t or t = ident with ident not occurring in t. Then it replaces ident by t everywhere in the goal (in the
hypotheses and in the conclusion) and clears ident and H from the context.
If ident is a local definition of the form ident := t, it is also unfolded and cleared.

Note:
• When several hypotheses have the form ident = t or t = ident, the first one is used.
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• If H is itself dependent in the goal, it is replaced by the proof of reflexivity of equality.

Variant: subst ident
+

This is equivalent to subst ident1; ...; subst identn.
Variant: subst

This applies subst repeatedly from top to bottom to all identifiers of the context for which an equality of the
form ident = t or t = ident or ident := t exists, with ident not occurring in t.

Flag: Regular Subst Tactic
This flag controls the behavior of subst. When it is activated (it is by default), subst also deals with the
following corner cases:
• A context with ordered hypotheses ident1 = ident2 and ident1 = t, or t′ = ident1‘ with t′
not a variable, and no other hypotheses of the form ident2 = u or u = ident2; without the flag, a
second call to subst would be necessary to replace ident2 by t or t′ respectively.

• The presence of a recursive equation which without the flag would be a cause of failure of subst.
• A context with cyclic dependencies as with hypotheses ident1 = f ident2 and ident2 = g
ident1 which without the flag would be a cause of failure of subst.

Additionally, it prevents a local definition such as ident := t to be unfolded which otherwise it would
exceptionally unfold in configurations containing hypotheses of the form ident = u, or u′ = ident
with u′ not a variable. Finally, it preserves the initial order of hypotheses, which without the flag it may
break. default.

stepl term
This tactic is for chaining rewriting steps. It assumes a goal of the form R term termwhere R is a binary relation
and relies on a database of lemmas of the form forall x y z, R x y -> eq x z -> R z y where
eq is typically a setoid equality. The application of stepl term then replaces the goal by R term term and
adds a new goal stating eq term term.
Command: Declare Left Step term

Adds term to the database used by stepl.
This tactic is especially useful for parametric setoids which are not accepted as regular setoids for rewrite and
setoid_replace (see Generalized rewriting).
Variant: stepl term by tactic

This applies stepl term then applies tactic to the second goal.
Variant: stepr term by tactic

This behaves as stepl but on the right-hand-side of the binary relation. Lemmas are expected to be of the
form forall x y z, R x y -> eq y z -> R x z.

Command: Declare Right Step term
Adds term to the database used by stepr.

change term
This tactic applies to any goal. It implements the rule Conv given in Subtyping rules. change U replaces the
current goal T with U providing that U is well-formed and that T and U are convertible.
Error: Not convertible.

Variant: change term with term’
This replaces the occurrences of term by term’ in the current goal. The term term and term’ must be
convertible.
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Variant: change term at num
+

with term’

This replaces the occurrences numbered num
+ of term by term’ in the current goal. The terms term

and term’ must be convertible.
Error: Too few occurrences.

Variant: change term at num
+

?

with term

?

in ident

This applies the change tactic not to the goal but to the hypothesis ident.
Variant: now_show term

This is a synonym of change term. It can be used to make some proof steps explicit when refactoring a
proof script to make it readable.

See also:
Performing computations

5.3.7 Performing computations

This set of tactics implements different specialized usages of the tactic change.
All conversion tactics (including change) can be parameterized by the parts of the goal where the conversion can occur.
This is done using goal clauses which consists in a list of hypotheses and, optionally, of a reference to the conclusion of
the goal. For defined hypothesis it is possible to specify if the conversion should occur on the type part, the body part or
both (default).
Goal clauses are written after a conversion tactic (tactics set, rewrite, replace and autorewrite also use goal
clauses) and are introduced by the keyword in. If no goal clause is provided, the default is to perform the conversion
only in the conclusion.
The syntax and description of the various goal clauses is the following:

• in ident
+

|- only in hypotheses ident +

• in ident
+

|- * in hypotheses ident + and in the conclusion
• in * |- in every hypothesis
• in * (equivalent to in * |- *) everywhere
• in (type of ident) (value of ident) ... |- in type part of ident, in the value part of
ident, etc.

For backward compatibility, the notation in ident
+ performs the conversion in hypotheses ident + .

cbv flag
*

lazy flag
*

These parameterized reduction tactics apply to any goal and perform the normalization of the goal according to the
specified flags. In correspondence with the kinds of reduction considered in Coq namely 𝛽 (reduction of functional
application), 𝛿 (unfolding of transparent constants, see Controlling the reduction strategies and the conversion algo-
rithm), 𝜄 (reduction of pattern matching over a constructed term, and unfolding of fix and cofix expressions)
and 𝜁 (contraction of local definitions), the flags are either beta, delta, match, fix, cofix, iota or zeta.
The iota flag is a shorthand for match, fix and cofix. The delta flag itself can be refined into delta
[ qualid

+
] or delta - [ qualid

+
], restricting in the first case the constants to unfold to the

constants listed, and restricting in the second case the constant to unfold to all but the ones explicitly mentioned.
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Notice that the delta flag does not apply to variables bound by a let-in construction inside the term itself (use
here the zeta flag). In any cases, opaque constants are not unfolded (see Controlling the reduction strategies and
the conversion algorithm).
Normalization according to the flags is done by first evaluating the head of the expression into a weak-head normal
form, i.e. until the evaluation is blocked by a variable (or an opaque constant, or an axiom), as e.g. in x u1 ...
un , or match x with ... end, or (fix f x {struct x} := ...) x, or is a constructed form
(a 𝜆-expression, a constructor, a cofixpoint, an inductive type, a product type, a sort), or is a redex that the flags
prevent to reduce. Once a weak-head normal form is obtained, subterms are recursively reduced using the same
strategy.
Reduction to weak-head normal form can be done using two strategies: lazy (lazy tactic), or call-by-value (cbv
tactic). The lazy strategy is a call-by-need strategy, with sharing of reductions: the arguments of a function call are
weakly evaluated only when necessary, and if an argument is used several times then it is weakly computed only
once. This reduction is efficient for reducing expressions with dead code. For instance, the proofs of a proposition
exists x. P(x) reduce to a pair of a witness t, and a proof that t satisfies the predicate P. Most of the time,
t may be computed without computing the proof of P(t), thanks to the lazy strategy.
The call-by-value strategy is the one used in ML languages: the arguments of a function call are systematically
weakly evaluated first. Despite the lazy strategy always performs fewer reductions than the call-by-value strategy,
the latter is generally more efficient for evaluating purely computational expressions (i.e. with little dead code).

Variant: compute
Variant: cbv

These are synonyms for cbv beta delta iota zeta.
Variant: lazy

This is a synonym for lazy beta delta iota zeta.

Variant: compute [ qualid
+

]

Variant: cbv [ qualid
+

]

These are synonyms of cbv beta delta qualid
+

iota zeta.

Variant: compute - [ qualid
+

]

Variant: cbv - [ qualid
+

]

These are synonyms of cbv beta delta - qualid
+

iota zeta.

Variant: lazy [ qualid
+

]

Variant: lazy - [ qualid
+

]

These are respectively synonyms of lazy beta delta qualid
+

iota zeta and lazy beta

delta - qualid
+

iota zeta.
Variant: vm_compute

This tactic evaluates the goal using the optimized call-by-value evaluation bytecode-based virtual machine described
in [GregoireL02]. This algorithm is dramatically more efficient than the algorithm used for the cbv tactic, but it
cannot be fine-tuned. It is especially interesting for full evaluation of algebraic objects. This includes the case of
reflection-based tactics.

Variant: native_compute
This tactic evaluates the goal by compilation to OCaml as described in [BDenesGregoire11]. If Coq is running in
native code, it can be typically two to five times faster than vm_compute. Note however that the compilation cost
is higher, so it is worth using only for intensive computations.
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Flag: NativeCompute Profiling
On Linux, if you have the perf profiler installed, this flag makes it possible to profile native_compute
evaluations.

Option: NativeCompute Profile Filename string
This option specifies the profile output; the default is native_compute_profile.data. The actual
filename used will contain extra characters to avoid overwriting an existing file; that filename is reported to
the user. That means you can individually profile multiple uses of native_compute in a script. From the
Linux command line, run perf report on the profile file to see the results. Consult the perf documen-
tation for more details.

Flag: Debug Cbv
This flag makes cbv (and its derivative compute) print information about the constants it encounters and the
unfolding decisions it makes.

red
This tactic applies to a goal that has the form:

forall (x:T1) ... (xk:Tk), T

with T 𝛽𝜄𝜁-reducing to c t1 ... tn and c a constant. If c is transparent then it replaces c with its definition
(say t) and then reduces (t t1 ... tn ) according to 𝛽𝜄𝜁-reduction rules.

Error: Not reducible.

Error: No head constant to reduce.

hnf
This tactic applies to any goal. It replaces the current goal with its head normal form according to the 𝛽𝛿𝜄𝜁-reduction
rules, i.e. it reduces the head of the goal until it becomes a product or an irreducible term. All inner 𝛽𝜄-redexes
are also reduced.
Example: The term fun n : nat => S n + S n is not reduced by hnf.

Note: The 𝛿 rule only applies to transparent constants (seeControlling the reduction strategies and the conversion algorithm
on transparency and opacity).

cbn
simpl

These tactics apply to any goal. They try to reduce a term to something still readable instead of fully normalizing
it. They perform a sort of strong normalization with two key differences:

• They unfold a constant if and only if it leads to a 𝜄-reduction, i.e. reducing a match or unfolding a fixpoint.
• While reducing a constant unfolding to (co)fixpoints, the tactics use the name of the constant the (co)fixpoint
comes from instead of the (co)fixpoint definition in recursive calls.

The cbn tactic is claimed to be a more principled, faster and more predictable replacement for simpl.
The cbn tactic accepts the same flags as cbv and lazy. The behavior of both simpl and cbn can be tuned
using the Arguments vernacular command as follows:

• A constant can be marked to be never unfolded by cbn or simpl:

Example

Arguments minus n m : simpl never.
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After that command an expression like (minus (S x) y) is left untouched by the tactics cbn and
simpl.

• A constant can be marked to be unfolded only if applied to enough arguments. The number of arguments
required can be specified using the / symbol in the argument list of the Arguments vernacular command.

Example

Definition fcomp A B C f (g : A -> B) (x : A) : C := f (g x).
fcomp is defined

Arguments fcomp {A B C} f g x /.
Notation "f \o g" := (fcomp f g) (at level 50).

After that command the expression (f \o g) is left untouched by simpl while ((f \o g) t) is
reduced to (f (g t)). The same mechanism can be used to make a constant volatile, i.e. always unfolded.

Example

Definition volatile := fun x : nat => x.
volatile is defined

Arguments volatile / x.

• A constant can be marked to be unfolded only if an entire set of arguments evaluates to a constructor. The !
symbol can be used to mark such arguments.

Example

Arguments minus !n !m.

After that command, the expression (minus (S x) y) is left untouched by simpl, while (minus (S
x) (S y)) is reduced to (minus x y).

• A special heuristic to determine if a constant has to be unfolded can be activated with the following command:

Example

Arguments minus n m : simpl nomatch.

The heuristic avoids to perform a simplification step that would expose a match construct in head position.
For example the expression (minus (S (S x)) (S y)) is simplified to (minus (S x) y) even
if an extra simplification is possible.

In detail, the tactic simpl first applies 𝛽𝜄-reduction. Then, it expands transparent constants and tries to reduce
further using 𝛽𝜄-reduction. But, when no 𝜄 rule is applied after unfolding then 𝛿-reductions are not applied. For
instance trying to use simpl on (plus n O) = n changes nothing.
Notice that only transparent constants whose name can be reused in the recursive calls are possibly unfolded by
simpl. For instance a constant defined by plus' := plus is possibly unfolded and reused in the recursive
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calls, but a constant such as succ := plus (S O) is never unfolded. This is the main difference between
simpl and cbn. The tactic cbn reduces whenever it will be able to reuse it or not: succ t is reduced to S t.

Variant: cbn [ qualid
+

]

Variant: cbn - [ qualid
+

]

These are respectively synonyms of cbn beta delta [ qualid
+

] iota zeta and cbn beta

delta - [ qualid
+

] iota zeta (see cbn).
Variant: simpl pattern

This applies simpl only to the subterms matching pattern in the current goal.

Variant: simpl pattern at num
+

This applies simpl only to the num
+ occurrences of the subterms matching pattern in the current goal.

Error: Too few occurrences.

Variant: simpl qualid
Variant: simpl string

This applies simpl only to the applicative subterms whose head occurrence is the unfoldable constant qualid
(the constant can be referred to by its notation using string if such a notation exists).

Variant: simpl qualid at num
+

Variant: simpl string at num
+

This applies simpl only to the num
+ applicative subterms whose head occurrence is qualid (or string).

Flag: Debug RAKAM
This flag makes cbn print various debugging information. RAKAM is the Refolding Algebraic Krivine Abstract
Machine.

unfold qualid
This tactic applies to any goal. The argument qualid must denote a defined transparent constant or local definition
(see Definitions and Controlling the reduction strategies and the conversion algorithm). The tactic unfold applies
the 𝛿 rule to each occurrence of the constant to which qualid refers in the current goal and then replaces it with
its 𝛽𝜄𝜁-normal form. Use the general reduction tactics if you want to avoid this final reduction, for instance cbv
delta [qualid].
Error: Cannot coerce qualid to an evaluable reference.

This error is frequent when trying to unfold something that has defined as an inductive type (or constructor)
and not as a definition.

Example

Goal 0 <= 1.
1 subgoal

============================
0 <= 1

unfold le.
Toplevel input, characters 0-10:
> unfold le.
> ^^^^^^^^^^
Error: Cannot coerce le to an evaluable reference.
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This error can also be raised if you are trying to unfold something that has been marked as opaque.

Example

Opaque Nat.add.
Goal 1 + 0 = 1.

1 subgoal

============================
1 + 0 = 1

unfold Nat.add.
Toplevel input, characters 0-15:
> unfold Nat.add.
> ^^^^^^^^^^^^^^^
Error: Cannot coerce Nat.add to an evaluable reference.

Variant: unfold qualid in goal_occurrences
Replaces qualid in hypothesis (or hypotheses) designated by goal_occurrences with its definition
and replaces the hypothesis with its 𝛽𝜄 normal form.

Variant: unfold qualid
+

,

Replaces qualid +

, with their definitions and replaces the current goal with its 𝛽𝜄 normal form.

Variant: unfold qualid at occurrences
+

,

The list occurrences specify the occurrences of qualid to be unfolded. Occurrences are located from
left to right.
Error: Bad occurrence number of qualid.

Error: qualid does not occur.

Variant: unfold string
If string denotes the discriminating symbol of a notation (e.g. ”+”) or an expression defining a notation
(e.g. "_ + _"), and this notation denotes an application whose head symbol is an unfoldable constant, then
the tactic unfolds it.

Variant: unfold string%ident
This is variant of unfold string where string gets its interpretation from the scope bound to the
delimiting key ident instead of its default interpretation (see Local interpretation rules for notations).

Variant: unfold qualid string %ident
?

at occurrences
?

+

,
in goal_occurrences

?

This is the most general form.
fold term

This tactic applies to any goal. The term term is reduced using the red tactic. Every occurrence of the resulting
term in the goal is then replaced by term. This tactic is particularly useful when a fixpoint definition has been
wrongfully unfolded, making the goal very hard to read. On the other hand, when an unfolded function applied to
its argument has been reduced, the fold tactic won’t do anything.

Example
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Goal ~0=0.
1 subgoal

============================
0 <> 0

unfold not.
1 subgoal

============================
0 = 0 -> False

Fail progress fold not.
The command has indeed failed with message:
Failed to progress.

pattern (0 = 0).
1 subgoal

============================
(fun P : Prop => P -> False) (0 = 0)

fold not.
1 subgoal

============================
0 <> 0

Variant: fold term
+

Equivalent to fold term ; ... ; fold term.
pattern term

This command applies to any goal. The argument termmust be a free subterm of the current goal. The command
pattern performs 𝛽-expansion (the inverse of 𝛽-reduction) of the current goal (say T) by

• replacing all occurrences of term in T with a fresh variable
• abstracting this variable
• applying the abstracted goal to term

For instance, if the current goal T is expressible as 𝜑(t) where the notation captures all the instances of t in
𝜑(t), then pattern t transforms it into (fun x:A => 𝜑(x)) t. This tactic can be used, for instance,
when the tactic apply fails on matching.

Variant: pattern term at num
+

Only the occurrences num + of term are considered for 𝛽-expansion. Occurrences are located from left to right.

Variant: pattern term at - num
+

All occurrences except the occurrences of indexes num + of term are considered for 𝛽-expansion. Occurrences
are located from left to right.

Variant: pattern term
+
,

Starting from a goal 𝜑(t1 ... tm), the tactic pattern t1, ..., tm generates the equivalent goal (fun
(x1:A1) ... (xm :Am ) =>𝜑(x1 ... xm )) t1 ... tm. If ti occurs in one of the generated types Aj
these occurrences will also be considered and possibly abstracted.
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Variant: pattern term at num
+

+

,

This behaves as above but processing only the occurrences num + of term starting from term.

Variant: pattern term at - ? num
+
,

?
+

,

This is the most general syntax that combines the different variants.

Conversion tactics applied to hypotheses

tactic in ident
+
,

Applies tactic (any of the conversion tactics listed in this section) to the hypotheses ident + .
If ident is a local definition, then ident can be replaced by type of ident to address not the body but the
type of the local definition.
Example: unfold not in (type of H1) (type of H3).

Error: No such hypothesis: ident.

5.3.8 Automation

auto
This tactic implements a Prolog-like resolution procedure to solve the current goal. It first tries to solve the goal
using the assumption tactic, then it reduces the goal to an atomic one using intros and introduces the newly
generated hypotheses as hints. Then it looks at the list of tactics associated to the head symbol of the goal and tries
to apply one of them (starting from the tactics with lower cost). This process is recursively applied to the generated
subgoals.
By default, auto only uses the hypotheses of the current goal and the hints of the database named core.

Warning: auto uses a weaker version of apply that is closer to simple apply so it is expected that
sometimes auto will fail even if applying manually one of the hints would succeed.

Variant: auto num
Forces the search depth to be num. The maximal search depth is 5 by default.

Variant: auto with ident
+

Uses the hint databases ident + in addition to the database core.

Note: Use the fake database nocore if you want to not use the core database.

Variant: auto with *
Uses all existing hint databases. Using this variant is highly discouraged in finished scripts since it is both
slower and less robust than the variant where the required databases are explicitly listed.

See also:
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The Hints Databases for auto and eauto for the list of pre-defined databases and the way to create or extend a
database.

Variant: auto using qualidi
+

with ident
+

?

Uses lemmas qualidi in addition to hints. If qualid is an inductive type, it is the collection of its
constructors which are added as hints.

Note: The hints passed through the using clause are used in the same way as if they were passed through
a hint database. Consequently, they use a weaker version of apply and auto using qualid may fail
where apply qualid succeeds.
Given that this can be seen as counter-intuitive, it could be useful to have an option to use full-blown apply
for lemmas passed through the using clause. Contributions welcome!

Variant: info_auto
Behaves like auto but shows the tactics it uses to solve the goal. This variant is very useful for getting a
better understanding of automation, or to know what lemmas/assumptions were used.

Variant: debug auto
Behaves like auto but shows the tactics it tries to solve the goal, including failing paths.

Variant: info_
?
auto num

?
using qualid

+
?

with ident
+

?

This is the most general form, combining the various options.
Variant: trivial

This tactic is a restriction of auto that is not recursive and tries only hints that cost 0. Typically it solves trivial
equalities like X=X.

Variant: trivial with ident
+

Variant: trivial with *

Variant: trivial using qualid
+

Variant: debug trivial
Variant: info_trivial

Variant: info_
?
trivial using qualid

+
?

with ident
+

?

Note: auto and trivial either solve completely the goal or else succeed without changing the goal. Use solve
[ auto ] and solve [ trivial ] if you would prefer these tactics to fail when they do not manage to solve the
goal.

Flag: Info Auto
Flag: Debug Auto
Flag: Info Trivial
Flag: Debug Trivial

These flags enable printing of informative or debug information for the auto and trivial tactics.
eauto

This tactic generalizes auto. While auto does not try resolution hints which would leave existential variables in
the goal, eauto does try them (informally speaking, it internally uses a tactic close to simple eapply instead
of a tactic close to simple apply in the case of auto). As a consequence, eauto can solve such a goal:

Example
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Hint Resolve ex_intro : core.
The hint ex_intro will only be used by eauto, because applying ex_intro would
leave variable x as unresolved existential variable.

Goal forall P:nat -> Prop, P 0 -> exists n, P n.
1 subgoal

============================
forall P : nat -> Prop, P 0 -> exists n : nat, P n

eauto.
No more subgoals.

Note that ex_intro should be declared as a hint.

Variant: info_
?
eauto num

?
using qualid

+
?

with ident
+

?

The various options for eauto are the same as for auto.
eauto also obeys the following flags:
Flag: Info Eauto
Flag: Debug Eauto

See also:
The Hints Databases for auto and eauto

autounfold with ident
+

This tactic unfolds constants that were declared through a Hint Unfold in the given databases.

Variant: autounfold with ident
+

in goal_occurrences
Performs the unfolding in the given clause (goal_occurrences).

Variant: autounfold with *
Uses the unfold hints declared in all the hint databases.

autorewrite with ident
+

This tactic carries out rewritings according to the rewriting rule bases ident + .
Each rewriting rule from the base ident is applied to the main subgoal until it fails. Once all the rules have been
processed, if the main subgoal has progressed (e.g., if it is distinct from the initial main goal) then the rules of this
base are processed again. If the main subgoal has not progressed then the next base is processed. For the bases,
the behavior is exactly similar to the processing of the rewriting rules.
The rewriting rule bases are built with the Hint Rewrite command.

Warning: This tactic may loop if you build non terminating rewriting systems.

Variant: autorewrite with ident
+

using tactic

Performs, in the same way, all the rewritings of the bases ident + applying tactic to the main subgoal after each
rewriting step.

Variant: autorewrite with ident
+

in qualid
Performs all the rewritings in hypothesis qualid.
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Variant: autorewrite with ident
+

in qualid using tactic
Performs all the rewritings in hypothesis qualid applying tactic to the main subgoal after each rewriting step.

Variant: autorewrite with ident
+

in goal_occurrences
Performs all the rewriting in the clause goal_occurrences.

See also:
Hint-Rewrite for feeding the database of lemmas used by autorewrite and autorewrite for examples showing
the use of this tactic.
easy

This tactic tries to solve the current goal by a number of standard closing steps. In particular, it tries to close
the current goal using the closing tactics trivial, reflexivity, symmetry, contradiction and
inversion of hypothesis. If this fails, it tries introducing variables and splitting and-hypotheses, using the
closing tactics afterwards, and splitting the goal using split and recursing.
This tactic solves goals that belong to many common classes; in particular, many cases of unsatisfiable hypotheses,
and simple equality goals are usually solved by this tactic.

Variant: now tactic
Run tactic followed by easy. This is a notation for tactic; easy.

5.3.9 Controlling automation

The hints databases for auto and eauto

The hints for auto and eauto are stored in databases. Each database maps head symbols to a list of hints.
Command: Print Hint ident

Use this command to display the hints associated to the head symbol ident (see Print Hint). Each hint has a cost
that is a nonnegative integer, and an optional pattern. The hints with lower cost are tried first. A hint is tried by
auto when the conclusion of the current goal matches its pattern or when it has no pattern.

Creating Hint databases

One can optionally declare a hint database using the command Create HintDb. If a hint is added to an unknown
database, it will be automatically created.

Command: Create HintDb ident discriminated
?

This command creates a new database named ident. The database is implemented by a Discrimination Tree (DT)
that serves as an index of all the lemmas. The DT can use transparency information to decide if a constant should
be indexed or not (c.f. The hints databases for auto and eauto), making the retrieval more efficient. The legacy
implementation (the default one for new databases) uses the DT only on goals without existentials (i.e., auto goals),
for non-Immediate hints and does not make use of transparency hints, putting more work on the unification that is
run after retrieval (it keeps a list of the lemmas in case the DT is not used). The new implementation enabled by
the discriminated option makes use of DTs in all cases and takes transparency information into account. However,
the order in which hints are retrieved from the DT may differ from the order in which they were inserted, making
this implementation observationally different from the legacy one.

Command: Hint hint_definition : ident
+

The general command to add a hint to some databases ident + . The various possible hint_definitions
are given below.
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Variant: Hint hint_definition
No database name is given: the hint is registered in the core database.
Deprecated since version 8.10.

Variant: Local Hint hint_definition : ident
+

This is used to declare hints that must not be exported to the other modules that require and import the current
module. Inside a section, the flag Local is useless since hints do not survive anyway to the closure of sections.

Variant: Hint Resolve term | num
?

pattern
?

?

: ident

This command adds simple apply term to the hint list with the head symbol of the type of term.
The cost of that hint is the number of subgoals generated by simple apply term or num if specified.
The associated pattern is inferred from the conclusion of the type of term or the given pattern if
specified. In case the inferred type of term does not start with a product the tactic added in the hint list is
exact term. In case this type can however be reduced to a type starting with a product, the tactic simple
apply term is also stored in the hints list. If the inferred type of term contains a dependent quantification
on a variable which occurs only in the premisses of the type and not in its conclusion, no instance could be
inferred for the variable by unification with the goal. In this case, the hint is added to the hint list of eauto
instead of the hint list of auto and a warning is printed. A typical example of a hint that is used only by
eauto is a transitivity lemma.
Error: term cannot be used as a hint

The head symbol of the type of term is a bound variable such that this tactic cannot be associated to a
constant.

Variant: Hint Resolve term
+

: ident
Adds each Hint Resolve term.

Variant: Hint Resolve -> term : ident
Adds the left-to-right implication of an equivalence as a hint (informally the hint will be used as apply <-
term, although as mentioned before, the tactic actually used is a restricted version of apply).

Variant: Hint Resolve <- term
Adds the right-to-left implication of an equivalence as a hint.

Variant: Hint Immediate term : ident
This command adds simple apply term; trivial to the hint list associated with the head symbol
of the type of ident in the given database. This tactic will fail if all the subgoals generated by simple
apply term are not solved immediately by the trivial tactic (which only tries tactics with cost 0).This
command is useful for theorems such as the symmetry of equality or n+1=m+1 -> n=m that we may like
to introduce with a limited use in order to avoid useless proof-search. The cost of this tactic (which never
generates subgoals) is always 1, so that it is not used by trivial itself.

Error: term cannot be used as a hint

Variant: Hint Immediate term
+

: ident
Adds each Hint Immediate term.

Variant: Hint Constructors qualid : ident
If qualid is an inductive type, this command adds all its constructors as hints of type Resolve. Then,
when the conclusion of current goal has the form (qualid ...), auto will try to apply each constructor.

Error: qualid is not an inductive type

Variant: Hint Constructors qualid
+

: ident
Extends the previous command for several inductive types.
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Variant: Hint Unfold qualid : ident
This adds the tactic unfold qualid to the hint list that will only be used when the head constant of the
goal is qualid. Its cost is 4.

Variant: Hint Unfold qualid
+

Extends the previous command for several defined constants.

Variant: Hint Transparent qualid
+

: ident

Variant: Hint Opaque qualid
+

: ident
This adds transparency hints to the database, making qualid transparent or opaque constants during reso-
lution. This information is used during unification of the goal with any lemma in the database and inside the
discrimination network to relax or constrain it in the case of discriminated databases.

Variant: Hint Variables Transparent Opaque : ident

Variant: Hint Constants Transparent Opaque : ident
This sets the transparency flag used during unification of hints in the database for all constants or all variables,
overwriting the existing settings of opacity. It is advised to use this just after a Create HintDb command.

Variant: Hint Extern num pattern
?

=> tactic : ident
This hint type is to extend auto with tactics other than apply and unfold. For that, we must specify a
cost, an optional pattern and a tactic to execute.

Example

Hint Extern 4 (~(_ = _)) => discriminate : core.

Now, when the head of the goal is a disequality, auto will try discriminate if it does not manage to solve the
goal with hints with a cost less than 4.

One can even use some sub-patterns of the pattern in the tactic script. A sub-pattern is a question mark
followed by an identifier, like ?X1 or ?X2. Here is an example:

Example

Require Import List.
Hint Extern 5 ({?X1 = ?X2} + {?X1 <> ?X2}) => generalize X1, X2; decide␣

↪equality : eqdec.
Goal forall a b:list (nat * nat), {a = b} + {a <> b}.

1 subgoal

============================
forall a b : list (nat * nat), {a = b} + {a <> b}

Info 1 auto with eqdec.
<ltac_plugin::auto@0> eqdec
No more subgoals.

Variant: Hint Cut regexp : ident

Warning: These hints currently only apply to typeclass proof search and the typeclasses eauto
tactic.
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This command can be used to cut the proof-search tree according to a regular expression matching paths to
be cut. The grammar for regular expressions is the following. Beware, there is no operator precedence during
parsing, one can check with Print HintDb to verify the current cut expression:

regexp ::= ident (hint or instance identifier)
_ (any hint)
regexp | regexp (disjunction)
regexp regexp (sequence)
regexp * (Kleene star)
emp (empty)
eps (epsilon)
( regexp )

The emp regexp does not match any search path while eps matches the empty path. During proof search,
the path of successive successful hints on a search branch is recorded, as a list of identifiers for the hints (note
that Hint Extern’s do not have an associated identifier). Before applying any hint ident the current path
p extended with ident is matched against the current cut expression c associated to the hint database. If
matching succeeds, the hint is not applied. The semantics ofHint Cut regexp is to set the cut expression
to c | regexp, the initial cut expression being emp.

Variant: Hint Mode qualid + ! -
*

: ident
This sets an optional mode of use of the identifier qualid. When proof-search faces a goal that ends in an
application of qualid to arguments term ... term, the mode tells if the hints associated to qualid
can be applied or not. A mode specification is a list of n +, ! or - items that specify if an argument of the
identifier is to be treated as an input (+), if its head only is an input (!) or an output (-) of the identifier. For
a mode to match a list of arguments, input terms and input heads must not contain existential variables or be
existential variables respectively, while outputs can be any term. Multiple modes can be declared for a single
identifier, in that case only one mode needs to match the arguments for the hints to be applied. The head of a
term is understood here as the applicative head, or the match or projection scrutinee’s head, recursively, casts
being ignored. Hint Mode is especially useful for typeclasses, when one does not want to support default
instances and avoid ambiguity in general. Setting a parameter of a class as an input forces proof-search to be
driven by that index of the class, with ! giving more flexibility by allowing existentials to still appear deeper
in the index but not at its head.

Note:
• One can use a Hint Extern with no pattern to do pattern matching on hypotheses using match goal
with inside the tactic.

• If you want to add hints such as Hint Transparent, Hint Cut, or Hint Mode, for typeclass reso-
lution, do not forget to put them in the typeclass_instances hint database.

Hint databases defined in the Coq standard library

Several hint databases are defined in the Coq standard library. The actual content of a database is the collection of hints
declared to belong to this database in each of the various modules currently loaded. Especially, requiring new modules
may extend the database. At Coq startup, only the core database is nonempty and can be used.

core This special database is automatically used by auto, except when pseudo-database nocore is given
to auto. The core database contains only basic lemmas about negation, conjunction, and so on. Most
of the hints in this database come from the Init and Logic directories.

arith This database contains all lemmas about Peano’s arithmetic proved in the directories Init and Arith.
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zarith contains lemmas about binary signed integers from the directories theories/ZArith. When required,
the module Omega also extends the database zarith with a high-cost hint that calls omega on equations
and inequalities in nat or Z.

bool contains lemmas about booleans, mostly from directory theories/Bool.
datatypes is for lemmas about lists, streams and so on that are mainly proved in the Lists subdirectory.
sets contains lemmas about sets and relations from the directories Sets and Relations.
typeclass_instances contains all the typeclass instances declared in the environment, including those used

for setoid_rewrite, from the Classes directory.
fset internal database for the implementation of the FSets library.
ordered_type lemmas about ordered types (as defined in the legacy OrderedTypemodule), mainly used

in the FSets and FMaps libraries.
You are advised not to put your own hints in the core database, but use one or several databases specific to your develop-
ment.

Command: Remove Hints term
+

: ident
+

This command removes the hints associated to terms term + in databases ident + .
Command: Print Hint

This command displays all hints that apply to the current goal. It fails if no proof is being edited, while the two
variants can be used at every moment.

Variants:
Command: Print Hint ident

This command displays only tactics associated with ident in the hints list. This is independent of the goal being
edited, so this command will not fail if no goal is being edited.

Command: Print Hint *
This command displays all declared hints.

Command: Print HintDb ident
This command displays all hints from database ident.

Command: Hint Rewrite term
+

: ident
+

This vernacular command adds the terms term
+ (their types must be equalities) in the rewriting bases

ident
+ with the default orientation (left to right). Notice that the rewriting bases are distinct from the auto

hint bases and that auto does not take them into account.
This command is synchronous with the section mechanism (see Section mechanism): when closing a section,
all aliases created by Hint Rewrite in that section are lost. Conversely, when loading a module, all Hint
Rewrite declarations at the global level of that module are loaded.

Variants:

Command: Hint Rewrite -> term
+

: ident
+

This is strictly equivalent to the command above (we only make explicit the orientation which otherwise defaults to
->).

Command: Hint Rewrite <- term
+

: ident
+

Adds the rewriting rules term + with a right-to-left orientation in the bases ident + .
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Command: Hint Rewrite term
+

using tactic : ident
+

When the rewriting rules term + in ident
+ will be used, the tactic tactic will be applied to the generated

subgoals, the main subgoal excluded.
Command: Print Rewrite HintDb ident

This command displays all rewrite hints contained in ident.

Hint locality

Hints provided by the Hint commands are erased when closing a section. Conversely, all hints of a module A that are
not defined inside a section (and not defined with option Local) become available when the module A is imported (using
e.g. Require Import A.).
As of today, hints only have a binary behavior regarding locality, as described above: either they disappear at the end of a
section scope, or they remain global forever. This causes a scalability issue, because hints coming from an unrelated part
of the code may badly influence another development. It can be mitigated to some extent thanks to the Remove Hints
command, but this is a mere workaround and has some limitations (for instance, external hints cannot be removed).
A proper way to fix this issue is to bind the hints to their module scope, as for most of the other objects Coq uses. Hints
should only be made available when the module they are defined in is imported, not just required. It is very difficult to
change the historical behavior, as it would break a lot of scripts. We propose a smooth transitional path by providing the
Loose Hint Behavior option which accepts three flags allowing for a fine-grained handling of non-imported hints.

Option: Loose Hint Behavior "Lax" "Warn" "Strict"
This option accepts three values, which control the behavior of hints w.r.t. Import:

• ”Lax”: this is the default, and corresponds to the historical behavior, that is, hints defined outside of a section
have a global scope.

• ”Warn”: outputs a warning when a non-imported hint is used. Note that this is an over-approximation, because
a hint may be triggered by a run that will eventually fail and backtrack, resulting in the hint not being actually
useful for the proof.

• ”Strict”: changes the behavior of an unloaded hint to a immediate fail tactic, allowing to emulate an import-
scoped hint mechanism.

Setting implicit automation tactics

Command: Proof with tactic
This command may be used to start a proof. It defines a default tactic to be used each time a tactic command
tactic1 is ended by .... In this case the tactic command typed by the user is equivalent to tactic1 ;tactic.
See also:
Proof in Switching on/off the proof editing mode.

Variant: Proof with tactic using ident
+

Combines in a single line Proof with and Proof using, see Switching on/off the proof editing mode

Variant: Proof using ident
+

with tactic
Combines in a single line Proof with and Proof using, see Switching on/off the proof editing mode
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5.3.10 Decision procedures

tauto
This tactic implements a decision procedure for intuitionistic propositional calculus based on the contraction-free
sequent calculi LJT* of Roy Dyckhoff [Dyc92]. Note that tauto succeeds on any instance of an intuitionistic
tautological proposition. tauto unfolds negations and logical equivalence but does not unfold any other definition.

Example
The following goal can be proved by tauto whereas auto would fail:

Goal forall (x:nat) (P:nat -> Prop), x = 0 \/ P x -> x <> 0 -> P x.
1 subgoal

============================
forall (x : nat) (P : nat -> Prop), x = 0 \/ P x -> x <> 0 -> P x

intros.
1 subgoal

x : nat
P : nat -> Prop
H : x = 0 \/ P x
H0 : x <> 0
============================
P x

tauto.
No more subgoals.

Moreover, if it has nothing else to do, tauto performs introductions. Therefore, the use of intros in the previous
proof is unnecessary. tauto can for instance for:

Example

Goal forall (A:Prop) (P:nat -> Prop), A \/ (forall x:nat, ~ A -> P x) -> forall x:nat,
↪ ~ A -> P x.

1 subgoal

============================
forall (A : Prop) (P : nat -> Prop),
A \/ (forall x : nat, ~ A -> P x) -> forall x : nat, ~ A -> P x

tauto.
No more subgoals.

Note: In contrast, tauto cannot solve the following goal Goal forall (A:Prop) (P:nat -> Prop),
A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ ~ (A \/ P x). because (forall
x:nat, ~ A -> P x) cannot be treated as atomic and an instantiation of x is necessary.

Variant: dtauto
While tauto recognizes inductively defined connectives isomorphic to the standard connectives and, prod, or,
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sum, False, Empty_set, unit, True, dtauto also recognizes all inductive types with one constructor and
no indices, i.e. record-style connectives.

intuition tactic
The tactic intuition takes advantage of the search-tree built by the decision procedure involved in the tactic
tauto. It uses this information to generate a set of subgoals equivalent to the original one (but simpler than it)
and applies the tactic tactic to them [Mun94]. If this tactic fails on some goals then intuition fails. In fact,
tauto is simply intuition fail.

Example
For instance, the tactic intuition auto applied to the goal:

(forall (x:nat), P x) /\ B -> (forall (y:nat), P y) /\ P O \/ B /\ P O

internally replaces it by the equivalent one:

(forall (x:nat), P x), B |- P O

and then uses auto which completes the proof.

Originally due to César Muñoz, these tactics (tauto and intuition) have been completely re-engineered by David
Delahaye using mainly the tactic language (see Ltac). The code is now much shorter and a significant increase in perfor-
mance has been noticed. The general behavior with respect to dependent types, unfolding and introductions has slightly
changed to get clearer semantics. This may lead to some incompatibilities.
Variant: intuition

Is equivalent to intuition auto with *.
Variant: dintuition

Whileintuition recognizes inductively defined connectives isomorphic to the standard connectivesand, prod,
or, sum, False, Empty_set, unit, True, dintuition also recognizes all inductive types with one con-
structor and no indices, i.e. record-style connectives.

Flag: Intuition Negation Unfolding
Controls whether intuition unfolds inner negations which do not need to be unfolded. This flag is on by default.

rtauto
The rtauto tactic solves propositional tautologies similarly to what tauto does. The main difference is that the
proof term is built using a reflection scheme applied to a sequent calculus proof of the goal. The search procedure
is also implemented using a different technique.
Users should be aware that this differencemay result in faster proof-search but slower proof-checking, and rtauto
might not solve goals that tauto would be able to solve (e.g. goals involving universal quantifiers).
Note that this tactic is only available after a Require Import Rtauto.

firstorder
The tactic firstorder is an experimental extension of tauto to first- order reasoning, written by Pierre Cor-
bineau. It is not restricted to usual logical connectives but instead may reason about any first-order class inductive
definition.

Option: Firstorder Solver tactic
The default tactic used by firstorder when no rule applies is auto with *, it can be reset locally or globally
using this option.
Command: Print Firstorder Solver

Prints the default tactic used by firstorder when no rule applies.
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Variant: firstorder tactic
Tries to solve the goal with tactic when no logical rule may apply.

Variant: firstorder using qualid
+

Deprecated since version 8.3: Use the syntax below instead (with commas).

Variant: firstorder using qualid
+

,

Adds lemmas qualid
+

, to the proof-search environment. If qualid refers to an inductive type, it is the
collection of its constructors which are added to the proof-search environment.

Variant: firstorder with ident
+

Adds lemmas from auto hint bases ident + to the proof-search environment.

Variant: firstorder tactic using qualid
+

,
with ident

+

This combines the effects of the different variants of firstorder.
Option: Firstorder Depth num

This option controls the proof-search depth bound.
congruence

The tactic congruence, by Pierre Corbineau, implements the standard Nelson and Oppen congruence closure
algorithm, which is a decision procedure for ground equalities with uninterpreted symbols. It also includes con-
structor theory (see injection and discriminate). If the goal is a non-quantified equality, congruence tries
to prove it with non-quantified equalities in the context. Otherwise it tries to infer a discriminable equality from
those in the context. Alternatively, congruence tries to prove that a hypothesis is equal to the goal or to the negation
of another hypothesis.
congruence is also able to take advantage of hypotheses stating quantified equalities, but you have to provide a
bound for the number of extra equalities generated that way. Please note that one of the sides of the equality must
contain all the quantified variables in order for congruence to match against it.

Example

Theorem T (A:Type) (f:A -> A) (g: A -> A -> A) a b: a=(f a) -> (g b (f a))=(f (f a)) ->
↪ (g a b)=(f (g b a)) -> (g a b)=a.

1 subgoal

A : Type
f : A -> A
g : A -> A -> A
a, b : A
============================
a = f a -> g b (f a) = f (f a) -> g a b = f (g b a) -> g a b = a

intros.
1 subgoal

A : Type
f : A -> A
g : A -> A -> A
a, b : A
H : a = f a
H0 : g b (f a) = f (f a)
H1 : g a b = f (g b a)

(continues on next page)
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(continued from previous page)
============================
g a b = a

congruence.
No more subgoals.

Qed.
Theorem inj (A:Type) (f:A -> A * A) (a c d: A) : f = pair a -> Some (f c) = Some (f␣

↪d) -> c=d.
1 subgoal

A : Type
f : A -> A * A
a, c, d : A
============================
f = pair a -> Some (f c) = Some (f d) -> c = d

intros.
1 subgoal

A : Type
f : A -> A * A
a, c, d : A
H : f = pair a
H0 : Some (f c) = Some (f d)
============================
c = d

congruence.
No more subgoals.

Qed.

Variant: congruence num
Tries to add at most num instances of hypotheses stating quantified equalities to the problem in order to solve it.
A bigger value of num does not make success slower, only failure. You might consider adding some lemmas as
hypotheses using assert in order for congruence to use them.

Variant: congruence with term
+

Adds term
+ to the pool of terms used by congruence. This helps in case you have partially applied con-

structors in your goal.
Error: I don’t know how to handle dependent equality.

The decision procedure managed to find a proof of the goal or of a discriminable equality but this proof could not
be built in Coq because of dependently-typed functions.

Error: Goal is solvable by congruence but some arguments are missing. Try congruence with term
+
, replacing metavariables by arbitrary terms.

The decision procedure could solve the goal with the provision that additional arguments are supplied for some
partially applied constructors. Any term of an appropriate type will allow the tactic to successfully solve the goal.
Those additional arguments can be given to congruence by filling in the holes in the terms given in the error message,
using the congruence with variant described above.

Flag: Congruence Verbose
This flag makes congruence print debug information.
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5.3.11 Checking properties of terms

Each of the following tactics acts as the identity if the check succeeds, and results in an error otherwise.
constr_eq term term

This tactic checks whether its arguments are equal modulo alpha conversion, casts and universe constraints. It may
unify universes.

Error: Not equal.

Error: Not equal (due to universes).

constr_eq_strict term term
This tactic checks whether its arguments are equal modulo alpha conversion, casts and universe constraints. It does
not add new constraints.

Error: Not equal.

Error: Not equal (due to universes).

unify term term
This tactic checks whether its arguments are unifiable, potentially instantiating existential variables.

Error: Unable to unify term with term.

Variant: unify term term with ident
Unification takes the transparency information defined in the hint database ident into account (see the hints
databases for auto and eauto).

is_evar term
This tactic checks whether its argument is a current existential variable. Existential variables are uninstantiated
variables generated by eapply and some other tactics.

Error: Not an evar.

has_evar term
This tactic checks whether its argument has an existential variable as a subterm. Unlike context patterns combined
with is_evar, this tactic scans all subterms, including those under binders.

Error: No evars.

is_var term
This tactic checks whether its argument is a variable or hypothesis in the current goal context or in the opened
sections.

Error: Not a variable or hypothesis.

5.3.12 Equality

f_equal
This tactic applies to a goal of the form f a1 ... an = f′a′1 ... a′n. Using f_equal on such a goal
leads to subgoals f=f′ and a1 = a′1 and so on up to an = a′n. Amongst these subgoals, the simple ones (e.g.
provable by reflexivity or congruence) are automatically solved by f_equal.

reflexivity
This tactic applies to a goal that has the form t=u. It checks that t and u are convertible and then solves the goal.
It is equivalent to apply refl_equal.
Error: The conclusion is not a substitutive equation.

Error: Unable to unify ... with ...
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symmetry
This tactic applies to a goal that has the form t=u and changes it into u=t.

Variant: symmetry in ident
If the statement of the hypothesis ident has the form t=u, the tactic changes it to u=t.

transitivity term
This tactic applies to a goal that has the form t=u and transforms it into the two subgoals t=term and term=u.
Variant: etransitivity

This tactic behaves like transitivity, using a fresh evar instead of a concrete term.

5.3.13 Equality and inductive sets

We describe in this section some special purpose tactics dealing with equality and inductive sets or types. These tactics
use the equality eq:forall (A:Type), A->A->Prop, simply written with the infix symbol =.
decide equality

This tactic solves a goal of the form forall x y : R, {x = y} + {~ x = y}, where R is an inductive
type such that its constructors do not take proofs or functions as arguments, nor objects in dependent types. It solves
goals of the form {x = y} + {~ x = y} as well.

compare term term
This tactic compares two given objects term and term of an inductive datatype. If G is the current goal, it leaves
the sub- goals term =term -> G and ~ term = term -> G. The type of term and term must satisfy
the same restrictions as in the tactic decide equality.

simplify_eq term
Let term be the proof of a statement of conclusion term = term. If term and term are structurally
different (in the sense described for the tactic discriminate), then the tactic simplify_eq behaves as
discriminate term, otherwise it behaves as injection term.

Note: If some quantified hypothesis of the goal is named ident, then simplify_eq ident first introduces the
hypothesis in the local context using intros until ident.

Variant: simplify_eq num
This does the same thing as intros until num then simplify_eq ident where ident is the identifier
for the last introduced hypothesis.

Variant: simplify_eq term with bindings_list
This does the same as simplify_eq term but using the given bindings to instantiate parameters or hypotheses
of term.

Variant: esimplify_eq num

Variant: esimplify_eq term with bindings_list
?

This works the same as simplify_eq but if the type of term, or the type of the hypothesis referred to by num,
has uninstantiated parameters, these parameters are left as existential variables.

Variant: simplify_eq
If the current goal has form t1 <> t2, it behaves as intro ident; simplify_eq ident.

dependent rewrite -> ident
This tactic applies to any goal. If ident has type (existT B a b)=(existT B a' b') in the local
context (i.e. each term of the equality has a sigma type { a:A & (B a)}) this tactic rewrites a into a' and
b into b' in the current goal. This tactic works even if B is also a sigma type. This kind of equalities between
dependent pairs may be derived by the injection and inversion tactics.
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Variant: dependent rewrite <- ident
Analogous to dependent rewrite -> but uses the equality from right to left.

5.3.14 Inversion

functional inversion ident
functional inversion is a tactic that performs inversion on hypothesis ident of the form qualid

term
+

= term or term = qualid term
+ where qualid must have been defined using Function

(see Advanced recursive functions). Note that this tactic is only available after a Require Import FunInd.
Error: Hypothesis ident must contain at least one Function.

Error: Cannot find inversion information for hypothesis ident.
This error may be raised when some inversion lemma failed to be generated by Function.

Variant: functional inversion num
This does the same thing as intros until num followed by functional inversion ident
where ident is the identifier for the last introduced hypothesis.

Variant: functional inversion ident qualid
Variant: functional inversion num qualid

If the hypothesis ident (or num) has a type of the form qualid1 termi
+

= qualid2 termj
+

where qualid1 and qualid2 are valid candidates to functional inversion, this variant allows choosing
which qualid is inverted.

5.3.15 Classical tactics

In order to ease the proving process, when the Classical module is loaded, a few more tactics are available. Make
sure to load the module using the Require Import command.
classical_left
classical_right

These tactics are the analog of left and right but using classical logic. They can only be used for disjunctions.
Use classical_left to prove the left part of the disjunction with the assumption that the negation of right part
holds. Use classical_right to prove the right part of the disjunction with the assumption that the negation
of left part holds.

5.3.16 Automating

btauto
The tactic btauto implements a reflexive solver for boolean tautologies. It solves goals of the form t = u where
t and u are constructed over the following grammar:

btauto_term ::= ident
true
false
orb btauto_term btauto_term
andb btauto_term btauto_term
xorb btauto_term btauto_term
negb btauto_term
if btauto_term then btauto_term else btauto_term
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Whenever the formula supplied is not a tautology, it also provides a counter-example.
Internally, it uses a system very similar to the one of the ring tactic.
Note that this tactic is only available after a Require Import Btauto.
Error: Cannot recognize a boolean equality.

The goal is not of the form t = u. Especially note that btauto doesn’t introduce variables into the context
on its own.

omega
The tactic omega, due to Pierre Crégut, is an automatic decision procedure for Presburger arithmetic. It solves
quantifier-free formulas built with ~, \/, /\, -> on top of equalities, inequalities and disequalities on both the
type nat of natural numbers and Z of binary integers. This tactic must be loaded by the command Require
Import Omega. See the additional documentation about omega (see ChapterOmega: a solver for quantifier-free
problems in Presburger Arithmetic).

ring
This tactic solves equations upon polynomial expressions of a ring (or semiring) structure. It proceeds by normal-
izing both hand sides of the equation (w.r.t. associativity, commutativity and distributivity, constant propagation)
and comparing syntactically the results.

ring_simplify term
*

This tactic applies the normalization procedure described above to the given terms. The tactic then replaces all
occurrences of the terms given in the conclusion of the goal by their normal forms. If no term is given, then the
conclusion should be an equation and both hand sides are normalized.

See The ring and field tactic families for more information on the tactic and how to declare new ring structures. All
declared field structures can be printed with the Print Rings command.
field

field_simplify term
*

field_simplify_eq
The field tactic is built on the same ideas as ring: this is a reflexive tactic that solves or simplifies equations in a field
structure. The main idea is to reduce a field expression (which is an extension of ring expressions with the inverse
and division operations) to a fraction made of two polynomial expressions.

Tactic field is used to solve subgoals, whereas field_simplify term
+ replaces the provided terms by

their reduced fraction. field_simplify_eq applies when the conclusion is an equation: it simplifies both
hand sides and multiplies so as to cancel denominators. So it produces an equation without division nor inverse.
All of these 3 tactics may generate a subgoal in order to prove that denominators are different from zero.
See The ring and field tactic families for more information on the tactic and how to declare new field structures. All
declared field structures can be printed with the Print Fields command.

Example

Require Import Reals.
[Loading ML file newring_plugin.cmxs ... done]
[Loading ML file r_syntax_plugin.cmxs ... done]
[Loading ML file zify_plugin.cmxs ... done]
[Loading ML file micromega_plugin.cmxs ... done]

Goal forall x y:R,
(x * y > 0)%R ->
(x * (1 / x + x / (x + y)))%R =
((- 1 / y) * y * (- x * (x / (x + y)) - 1))%R.

(continues on next page)
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(continued from previous page)
1 subgoal

============================
forall x y : R,
(x * y > 0)%R ->
(x * (1 / x + x / (x + y)))%R = (-1 / y * y * (- x * (x / (x + y)) - 1))%R

intros; field.
1 subgoal

x, y : R
H : (x * y > 0)%R
============================
(x + y)%R <> 0%R /\ y <> 0%R /\ x <> 0%R

See also:
File plugins/setoid_ring/RealField.v for an example of instantiation, theory theories/Reals for many examples of use of
field.

5.3.17 Non-logical tactics

cycle num
This tactic puts the num first goals at the end of the list of goals. If num is negative, it will put the last |𝑛𝑢𝑚| goals
at the beginning of the list.

Example

Goal P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5.
1 subgoal

============================
P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5

repeat split.
5 subgoals

============================
P 1

subgoal 2 is:
P 2

subgoal 3 is:
P 3

subgoal 4 is:
P 4

subgoal 5 is:
P 5

all: cycle 2.
5 subgoals

============================
P 3

(continues on next page)
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(continued from previous page)

subgoal 2 is:
P 4

subgoal 3 is:
P 5

subgoal 4 is:
P 1

subgoal 5 is:
P 2

all: cycle -3.
5 subgoals

============================
P 5

subgoal 2 is:
P 1

subgoal 3 is:
P 2

subgoal 4 is:
P 3

subgoal 5 is:
P 4

swap num num
This tactic switches the position of the goals of indices num and num. If either num or num is negative then goals
are counted from the end of the focused goal list. Goals are indexed from 1, there is no goal with position 0.

Example

Goal P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5.
1 subgoal

============================
P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5

repeat split.
5 subgoals

============================
P 1

subgoal 2 is:
P 2

subgoal 3 is:
P 3

subgoal 4 is:
P 4

subgoal 5 is:
P 5

all: swap 1 3.
5 subgoals

(continues on next page)
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(continued from previous page)
============================
P 3

subgoal 2 is:
P 2

subgoal 3 is:
P 1

subgoal 4 is:
P 4

subgoal 5 is:
P 5

all: swap 1 -1.
5 subgoals

============================
P 5

subgoal 2 is:
P 2

subgoal 3 is:
P 1

subgoal 4 is:
P 4

subgoal 5 is:
P 3

revgoals
This tactics reverses the list of the focused goals.

Example

Goal P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5.
1 subgoal

============================
P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5

repeat split.
5 subgoals

============================
P 1

subgoal 2 is:
P 2

subgoal 3 is:
P 3

subgoal 4 is:
P 4

subgoal 5 is:
P 5

all: revgoals.
5 subgoals

(continues on next page)
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(continued from previous page)

============================
P 5

subgoal 2 is:
P 4

subgoal 3 is:
P 3

subgoal 4 is:
P 2

subgoal 5 is:
P 1

shelve
This tactic moves all goals under focus to a shelf. While on the shelf, goals will not be focused on. They can be
solved by unification, or they can be called back into focus with the command Unshelve.
Variant: shelve_unifiable

Shelves only the goals under focus that are mentioned in other goals. Goals that appear in the type of other
goals can be solved by unification.

Example

Goal exists n, n=0.
1 subgoal

============================
exists n : nat, n = 0

refine (ex_intro _ _ _).
1 focused subgoal
(shelved: 1)

============================
?Goal = 0

all: shelve_unifiable.
reflexivity.

No more subgoals.

Command: Unshelve
This command moves all the goals on the shelf (see shelve) from the shelf into focus, by appending them to the
end of the current list of focused goals.

unshelve tactic
Performs tactic, then unshelves existential variables added to the shelf by the execution of tactic, prepending
them to the current goal.

give_up
This tactic removes the focused goals from the proof. They are not solved, and cannot be solved later in the proof.
As the goals are not solved, the proof cannot be closed.
The give_up tactic can be used while editing a proof, to choose to write the proof script in a non-sequential
order.
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5.3.18 Delaying solving unification constraints

solve_constraints

Flag: Solve Unification Constraints
By default, after each tactic application, postponed typechecking unification problems are resolved using heuris-
tics. Unsetting this flag disables this behavior, allowing tactics to leave unification constraints unsolved. Use the
solve_constraints tactic at any point to solve the constraints.

5.3.19 Proof maintenance

Experimental. Many tactics, such as intros, can automatically generate names, such as ”H0” or ”H1” for a new hypoth-
esis introduced from a goal. Subsequent proof steps may explicitly refer to these names. However, future versions of Coq
may not assign names exactly the same way, which could cause the proof to fail because the new names don’t match the
explicit references in the proof.
The following ”Mangle Names” settings let users find all the places where proofs rely on automatically generated names,
which can then be named explicitly to avoid any incompatibility. These settings cause Coq to generate different names,
producing errors for references to automatically generated names.
Flag: Mangle Names

When set, generated names use the prefix specified in the following option instead of the default prefix.
Option: Mangle Names Prefix string

Specifies the prefix to use when generating names.

5.3.20 Performance-oriented tactic variants

change_no_check term
For advanced usage. Similar to change term, but as an optimization, it skips checking that term is convertible
to the goal.
Recall that the Coq kernel typechecks proofs again when they are concluded to ensure safety. Hence, usingchange
checks convertibility twice overall, while change_no_check can produce ill-typed terms, but checks convert-
ibility only once. Hence, change_no_check can be useful to speed up certain proof scripts, especially if one
knows by construction that the argument is indeed convertible to the goal.
In the following example, change_no_check replaces False by True, but Qed then rejects the proof, en-
suring consistency.

Example

Goal False.
1 subgoal

============================
False

change_no_check True.
1 subgoal

============================
True

exact I.

(continues on next page)
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(continued from previous page)
No more subgoals.

Fail Qed.
The command has indeed failed with message:
The term "I" has type "True" while it is expected to have type "False".

change_no_check supports all of change’s variants.
Variant: change_no_check term with term’

Variant: change_no_check term at num
+

with term’

Variant: change_no_check term at num
+

?

with term

?

in ident

Example

Goal True -> False.
1 subgoal

============================
True -> False

intro H.
1 subgoal

H : True
============================
False

change_no_check False in H.
1 subgoal

H : False
============================
False

exact H.
No more subgoals.

Fail Qed.
The command has indeed failed with message:
The term "fun H : True => H" has type "True -> True"
while it is expected to have type "True -> False".

Variant: convert_concl_no_check term
Deprecated since version 8.11.
Deprecated old name for change_no_check. Does not support any of its variants.

exact_no_check term
For advanced usage. Similar to exact term, but as an optimization, it skips checking that term has the goal’s
type, relying on the kernel check instead. See change_no_check for more explanations.
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Example

Goal False.
1 subgoal

============================
False

exact_no_check I.
No more subgoals.

Fail Qed.
The command has indeed failed with message:
The term "I" has type "True" while it is expected to have type "False".

Variant: vm_cast_no_check term
For advanced usage. Similar to exact_no_check term, but additionally instructs the kernel to use
vm_compute to compare the goal’s type with the term’s type.

Example

Goal False.
1 subgoal

============================
False

vm_cast_no_check I.
No more subgoals.

Fail Qed.
The command has indeed failed with message:
The term "I" has type "True" while it is expected to have type "False".

Variant: native_cast_no_check term
for advanced usage. similar to exact_no_check term, but additionally instructs the kernel to use
native_compute to compare the goal’s type with the term’s type.

Example

Goal False.
1 subgoal

============================
False

native_cast_no_check I.
No more subgoals.

Fail Qed.
The command has indeed failed with message:
The term "I" has type "True" while it is expected to have type "False".

334 Chapter 5. The proof engine



The Coq Reference Manual, Release 8.11.2

5.4 Ltac

This chapter documents the tactic language Ltac.
We start by giving the syntax, and next, we present the informal semantics. To learnmore about the language and especially
about its foundations, please refer to [Del00].

Example: Basic tactic macros
Here are some examples of simple tactic macros that the language lets you write.

Ltac reduce_and_try_to_solve := simpl; intros; auto.

Ltac destruct_bool_and_rewrite b H1 H2 :=
destruct b; [ rewrite H1; eauto | rewrite H2; eauto ].

See Section Examples of using Ltac for more advanced examples.

5.4.1 Syntax

The syntax of the tactic language is given below. See Chapter The Gallina specification language for a description of the
BNF metasyntax used in these grammar rules. Various already defined entries will be used in this chapter: entries num,
int, ident qualid, term, cpattern and tactic represent respectively natural and integer numbers, identifiers,
qualified names, Coq terms, patterns and the atomic tactics described in Chapter Tactics.
The syntax of cpattern is the same as that of terms, but it is extended with pattern matching metavariables. In
cpattern, a pattern matching metavariable is represented with the syntax ?ident. The notation _ can also be used to
denote metavariable whose instance is irrelevant. In the notation ?ident, the identifier allows us to keep instantiations
and to make constraints whereas _ shows that we are not interested in what will be matched. On the right hand side of
pattern matching clauses, the named metavariables are used without the question mark prefix. There is also a special
notation for second-order pattern matching problems: in an applicative pattern of the form %@?ident ident1 …
identn, the variable ident matches any complex expression with (possible) dependencies in the variables identi
and returns a functional term of the form fun ident1 … identn => term.
The main entry of the grammar is ltac_expr. This language is used in proof mode but it can also be used in toplevel
definitions as shown below.

Note:
• The infix tacticals  … || … ,  … + … , and  … ; …  are associative.

Example
If you want that tactic2; tactic3 be fully run on the first subgoal generated by tactic1, before running
on the other subgoals, then you should not write tactic1; (tactic2; tactic3) but rather tactic1;
[> tactic2; tactic3 .. ].

• In tacarg, there is an overlap between qualid as a direct tactic argument and qualid as a particular case of
term. The resolution is done by first looking for a reference of the tactic language and if it fails, for a reference
to a term. To force the resolution as a reference of the tactic language, use the form ltac:(qualid). To force
the resolution as a reference to a term, use the syntax (qualid).
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• As shown by the figure, tactical  … || …  binds more than the prefix tacticals try, repeat, do and abstract
which themselves bind more than the postfix tactical  … ;[ … ] which binds at the same level as  … ; … .

Example

try repeat tactic1 || tactic2; tactic3; [ tactic
+

|
]; tactic4

is understood as:

((try (repeat (tactic1 || tactic2)); tactic3); [ tactic
+

|
]); tactic4

ltac_expr ::= ltac_expr ; ltac_expr
[> ltac_expr | ... | ltac_expr ]
ltac_expr ; [ ltac_expr | ... | ltac_expr ]
ltac_expr3

ltac_expr3 ::= do (natural | ident) ltac_expr3
progress ltac_expr3
repeat ltac_expr3
try ltac_expr3
once ltac_expr3
exactly_once ltac_expr3
timeout (natural | ident) ltac_expr3
time [string] ltac_expr3
only selector: ltac_expr3
ltac_expr2

ltac_expr2 ::= ltac_expr1 || ltac_expr3
ltac_expr1 + ltac_expr3
tryif ltac_expr1 then ltac_expr1 else ltac_expr1
ltac_expr1

ltac_expr1 ::= fun name ... name => atom
let [rec] let_clause with ... with let_clause in atom
match goal with context_rule | ... | context_rule end
match reverse goal with context_rule | ... | context_rule end
match ltac_expr with match_rule | ... | match_rule end
lazymatch goal with context_rule | ... | context_rule end
lazymatch reverse goal with context_rule | ... | context_rule end
lazymatch ltac_expr with match_rule | ... | match_rule end
multimatch goal with context_rule | ... | context_rule end
multimatch reverse goal with context_rule | ... | context_rule end
multimatch ltac_expr with match_rule | ... | match_rule end
abstract atom
abstract atom using ident
first [ ltac_expr | ... | ltac_expr ]
solve [ ltac_expr | ... | ltac_expr ]
idtac [ message_token ... message_token]
fail [natural] [message_token ... message_token]
gfail [natural] [message_token ... message_token]
fresh [ component … component ]
context ident [term]
eval redexpr in term
type of term
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constr : term
uconstr : term
type_term term
numgoals
guard test
assert_fails ltac_expr3
assert_succeeds ltac_expr3
tactic
qualid tacarg ... tacarg
atom

atom ::= qualid
()
int
( ltac_expr )

component ::= string | qualid
message_token ::= string | ident | int
tacarg ::= qualid

()
ltac : atom
term

let_clause ::= ident [name ... name] := ltac_expr
context_rule ::= context_hyp, ..., context_hyp |- cpattern => ltac_expr

cpattern => ltac_expr
|- cpattern => ltac_expr
_ => ltac_expr

context_hyp ::= name : cpattern
name := cpattern [: cpattern]

match_rule ::= cpattern => ltac_expr
context [ident] [ cpattern ] => ltac_expr
_ => ltac_expr

test ::= int = int
int (< | <= | > | >=) int

selector ::= [ident]
int
(int | int - int), ..., (int | int - int)

toplevel_selector ::= selector
all
par
!

top ::= [Local] Ltac ltac_def with ... with ltac_def
ltac_def ::= ident [ident ... ident] := ltac_expr

qualid [ident ... ident] ::= ltac_expr

5.4.2 Semantics

Tactic expressions can only be applied in the context of a proof. The evaluation yields either a term, an integer or a tactic.
Intermediate results can be terms or integers but the final result must be a tactic which is then applied to the focused goals.
There is a special case for match goal expressions of which the clauses evaluate to tactics. Such expressions can only
be used as end result of a tactic expression (never as argument of a non-recursive local definition or of an application).
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The rest of this section explains the semantics of every construction of Ltac.

Sequence

A sequence is an expression of the following form:
ltac_expr1 ; ltac_expr2

The expression ltac_expr1 is evaluated to v1, which must be a tactic value. The tactic v1 is applied to the
current goal, possibly producing more goals. Then ltac_expr2 is evaluated to produce v2, which must be a
tactic value. The tactic v2 is applied to all the goals produced by the prior application. Sequence is associative.

Local application of tactics

Different tactics can be applied to the different goals using the following form:

[> ltac_expr
*

|
]

The expressions ltac_expri are evaluated to vi, for i = 1, ..., n and all have to be tactics. The vi is applied to
the i-th goal, for i = 1, ..., n. It fails if the number of focused goals is not exactly n.

Note: If no tactic is given for the i-th goal, it behaves as if the tactic idtac were given. For instance, [> | auto]
is a shortcut for [> idtac | auto ].

Variant: [> ltac_expri
*

|
| ltac_expr .. | ltac_exprj

*

|
]

In this variant, ltac_expr is used for each goal coming after those covered by the list of ltac_expri
but before those covered by the list of ltac_exprj.

Variant: [> ltac_expr
*

|
| .. | ltac_expr

*

|
]

In this variant, idtac is used for the goals not covered by the two lists of ltac_expr.
Variant: [> ltac_expr .. ]

In this variant, the tactic ltac_expr is applied independently to each of the goals, rather than globally. In
particular, if there are no goals, the tactic is not run at all. A tactic which expects multiple goals, such as
swap, would act as if a single goal is focused.

Variant: ltac_expr0 ; [ ltac_expri
*

|
]

This variant of local tactic application is paired with a sequence. In this variant, there must be as many
ltac_expri as goals generated by the application of ltac_expr0 to each of the individual goals inde-
pendently. All the above variants work in this form too. Formally, ltac_expr ; [ ... ] is equivalent
to [> ltac_expr ; [> ... ] .. ].

Goal selectors

We can restrict the application of a tactic to a subset of the currently focused goals with:
toplevel_selector : ltac_expr

We can also use selectors as a tactical, which allows to use them nested in a tactic expression, by using the keyword
only:
Variant: only selector : ltac_expr

When selecting several goals, the tactic ltac_expr is applied globally to all selected goals.
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Variant: [ident] : ltac_expr
In this variant, ltac_expr is applied locally to a goal previously named by the user (see Existential vari-
ables).

Variant: num : ltac_expr
In this variant, ltac_expr is applied locally to the num-th goal.

Variant: num-num
+
, : ltac_expr

In this variant, ltac_expr is applied globally to the subset of goals described by the given ranges. You can
write a single n as a shortcut for n-n when specifying multiple ranges.

Variant: all: ltac_expr
In this variant, ltac_expr is applied to all focused goals. all: can only be used at the toplevel of a tactic
expression.

Variant: !: ltac_expr
In this variant, if exactly one goal is focused, ltac_expr is applied to it. Otherwise the tactic fails. !: can
only be used at the toplevel of a tactic expression.

Variant: par: ltac_expr
In this variant, ltac_expr is applied to all focused goals in parallel. The number of workers can be con-
trolled via the command line option -async-proofs-tac-j taking as argument the desired number of
workers. Limitations: par: only works on goals containing no existential variables and ltac_expr must
either solve the goal completely or do nothing (i.e. it cannot make some progress). par: can only be used
at the toplevel of a tactic expression.

Error: No such goal.

For loop

There is a for loop that repeats a tactic num times:
do num ltac_expr

ltac_expr is evaluated to v which must be a tactic value. This tactic value v is applied num times. Supposing
num > 1, after the first application of v, v is applied, at least once, to the generated subgoals and so on. It fails if
the application of v fails before the num applications have been completed.

Repeat loop

We have a repeat loop with:
repeat ltac_expr

ltac_expr is evaluated to v. If v denotes a tactic, this tactic is applied to each focused goal independently. If
the application succeeds, the tactic is applied recursively to all the generated subgoals until it eventually fails. The
recursion stops in a subgoal when the tactic has failed to make progress. The tactic repeat ltac_expr itself
never fails.

Error catching

We can catch the tactic errors with:
try ltac_expr

ltac_expr is evaluated to v which must be a tactic value. The tactic value v is applied to each focused goal
independently. If the application of v fails in a goal, it catches the error and leaves the goal unchanged. If the level
of the exception is positive, then the exception is re-raised with its level decremented.
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Detecting progress

We can check if a tactic made progress with:
progress ltac_expr

ltac_expr is evaluated to v which must be a tactic value. The tactic value v is applied to each focused subgoal
independently. If the application of v to one of the focused subgoal produced subgoals equal to the initial goals (up
to syntactical equality), then an error of level 0 is raised.
Error: Failed to progress.

Backtracking branching

We can branch with the following structure:
ltac_expr1 + ltac_expr2

ltac_expr1 and ltac_expr2 are evaluated respectively to v1 and v2 which must be tactic values. The tactic
value v1 is applied to each focused goal independently and if it fails or a later tactic fails, then the proof backtracks
to the current goal and v2 is applied.
Tactics can be seen as having several successes. When a tactic fails it asks for more successes of the prior
tactics. ltac_expr1 + ltac_expr2 has all the successes of v1 followed by all the successes of v2.
Algebraically, (ltac_expr1 + ltac_expr2); ltac_expr3 = (ltac_expr1; ltac_expr3) +
(ltac_expr2; ltac_expr3).
Branching is left-associative.

First tactic to work

Backtracking branching may be too expensive. In this case we may restrict to a local, left biased, branching and consider
the first tactic to work (i.e. which does not fail) among a panel of tactics:

first [ ltac_expr
*

|
]

The ltac_expri are evaluated to vi and vi must be tactic values for i = 1, ..., n. Supposing n > 1, first
[ltac_expr1 | ... | ltac_exprn] applies v1 in each focused goal independently and stops if it suc-
ceeds; otherwise it tries to apply v2 and so on. It fails when there is no applicable tactic. In other words, first
[ltac_expr1 | ... | ltac_exprn] behaves, in each goal, as the first vi to have at least one success.
Error: No applicable tactic.

Variant: first ltac_expr
This is an Ltac alias that gives a primitive access to the first tactical as an Ltac definition without going through
a parsing rule. It expects to be given a list of tactics through a Tactic Notation, allowing to write
notations of the following form:

Example

Tactic Notation "foo" tactic_list(tacs) := first tacs.

Left-biased branching

Yet another way of branching without backtracking is the following structure:
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ltac_expr1 || ltac_expr2
ltac_expr1 and ltac_expr2 are evaluated respectively to v1 and v2 which must be tactic values. The tactic
value v1 is applied in each subgoal independently and if it fails to progress then v2 is applied. ltac_expr1
|| ltac_expr2 is equivalent to first [ progress ltac_expr1 | ltac_expr2 ] (except that if
it fails, it fails like v2). Branching is left-associative.

Generalized biased branching

The tactic
tryif ltac_expr1 then ltac_expr2 else ltac_expr3

is a generalization of the biased-branching tactics above. The expression ltac_expr1 is evaluated to v1, which is
then applied to each subgoal independently. For each goal where v1 succeeds at least once, ltac_expr2 is evalu-
ated to v2 which is then applied collectively to the generated subgoals. The v2 tactic can trigger backtracking points
in v1: where v1 succeeds at least once, tryif ltac_expr1 then ltac_expr2 else ltac_expr3
is equivalent to v1; v2. In each of the goals where v1 does not succeed at least once, ltac_expr3 is evaluated
in v3 which is is then applied to the goal.

Soft cut

Another way of restricting backtracking is to restrict a tactic to a single success a posteriori:
once ltac_expr

ltac_expr is evaluated to v which must be a tactic value. The tactic value v is applied but only its first success
is used. If v fails, once ltac_expr fails like v. If v has at least one success, once ltac_expr succeeds
once, but cannot produce more successes.

Checking the successes

Coq provides an experimental way to check that a tactic has exactly one success:
exactly_once ltac_expr

ltac_expr is evaluated to v which must be a tactic value. The tactic value v is applied if it has at most one
success. If v fails, exactly_once ltac_expr fails like v. If v has a exactly one success, exactly_once
ltac_expr succeeds like v. If v has two or more successes, exactly_once ltac_expr fails.

Warning: The experimental status of this tactic pertains to the fact if v performs side effects, they may occur
in an unpredictable way. Indeed, normally v would only be executed up to the first success until backtracking is
needed, however exactly_once needs to look ahead to see whether a second success exists, and may run further
effects immediately.

Error: This tactic has more than one success.

Checking the failure

Coq provides a derived tactic to check that a tactic fails:
assert_fails ltac_expr

This behaves like idtac if ltac_expr fails, and behaves like fail 0 ltac_expr "succeeds" if
ltac_expr has at least one success.
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Checking the success

Coq provides a derived tactic to check that a tactic has at least one success:
assert_succeeds ltac_expr

This behaves like tryif (assert_fails ltac_expr) then fail 0 ltac_expr "fails"
else idtac.

Solving

We may consider the first to solve (i.e. which generates no subgoal) among a panel of tactics:

solve [ ltac_expr
*

|
]

The ltac_expri are evaluated to vi and vi must be tactic values, for i = 1, ..., n. Supposing n > 1, solve
[ltac_expr1 | ... | ltac_exprn] applies v1 to each goal independently and stops if it succeeds; oth-
erwise it tries to apply v2 and so on. It fails if there is no solving tactic.
Error: Cannot solve the goal.

Variant: solve ltac_expr
This is an Ltac alias that gives a primitive access to the solve: tactical. See the first tactical for more
information.

Identity

The constant idtac is the identity tactic: it leaves any goal unchanged but it appears in the proof script.

idtac message_token
*

This prints the given tokens. Strings and integers are printed literally. If a (term) variable is given, its contents are
printed.

Failing

fail
This is the always-failing tactic: it does not solve any goal. It is useful for defining other tacticals since it can be
caught by try, repeat, match goal, or the branching tacticals.
Variant: fail num

The number is the failure level. If no level is specified, it defaults to 0. The level is used by try, repeat,
match goal and the branching tacticals. If 0, it makes match goal consider the next clause (backtrack-
ing). If nonzero, the current match goal block, try, repeat, or branching command is aborted and
the level is decremented. In the case of +, a nonzero level skips the first backtrack point, even if the call to
fail num is not enclosed in a + command, respecting the algebraic identity.

Variant: fail message_token
*

The given tokens are used for printing the failure message.

Variant: fail num message_token
*

This is a combination of the previous variants.
Variant: gfail

This variant fails even when used after ; and there are no goals left. Similarly, gfail fails even when used
after all: and there are no goals left. See the example for clarification.
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Variant: gfail message_token
*

Variant: gfail num message_token
*

These variants fail with an error message or an error level even if there are no goals left. Be careful however
if Coq terms have to be printed as part of the failure: term construction always forces the tactic into the goals,
meaning that if there are no goals when it is evaluated, a tactic call like let x := H in fail 0 x will
succeed.

Error: Tactic Failure message (level num).

Error: No such goal.

Example

Goal True.
1 subgoal

============================
True

Proof.
fail.

Toplevel input, characters 0-5:
> fail.
> ^^^^^
Error: Tactic failure.

Abort.
Goal True.

1 subgoal

============================
True

Proof.
trivial; fail.

No more subgoals.

Qed.
Goal True.

1 subgoal

============================
True

Proof.
trivial.

No more subgoals.

fail.
Toplevel input, characters 0-5:
> fail.
> ^^^^^
Error: No such goal.

Abort.
Goal True.

1 subgoal
(continues on next page)
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(continued from previous page)

============================
True

Proof.
trivial.

No more subgoals.

all: fail.
Qed.
Goal True.

1 subgoal

============================
True

Proof.
gfail.

Toplevel input, characters 0-6:
> gfail.
> ^^^^^^
Error: Tactic failure.

Abort.
Goal True.

1 subgoal

============================
True

Proof.
trivial; gfail.

Toplevel input, characters 0-7:
> trivial; gfail.
> ^^^^^^^
Error: Tactic failure.

Abort.
Goal True.

1 subgoal

============================
True

Proof.
trivial.

No more subgoals.

gfail.
Toplevel input, characters 0-6:
> gfail.
> ^^^^^^
Error: No such goal.

Abort.
Goal True.

1 subgoal
(continues on next page)
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(continued from previous page)

============================
True

Proof.
trivial.

No more subgoals.

all: gfail.
Toplevel input, characters 0-11:
> all: gfail.
> ^^^^^^^^^^^
Error: Tactic failure.

Abort.

Timeout

We can force a tactic to stop if it has not finished after a certain amount of time:
timeout num ltac_expr

ltac_expr is evaluated to v which must be a tactic value. The tactic value v is applied normally, except that it
is interrupted after num seconds if it is still running. In this case the outcome is a failure.

Warning: For the moment, timeout is based on elapsed time in seconds, which is very machine-dependent:
a script that works on a quick machine may fail on a slow one. The converse is even possible if you combine
a timeout with some other tacticals. This tactical is hence proposed only for convenience during debugging or
other development phases, we strongly advise you to not leave any timeout in final scripts. Note also that this
tactical isn’t available on the native Windows port of Coq.

Timing a tactic

A tactic execution can be timed:
time string ltac_expr

evaluates ltac_expr and displays the running time of the tactic expression, whether it fails or succeeds. In case
of several successes, the time for each successive run is displayed. Time is in seconds and is machine-dependent.
The string argument is optional. When provided, it is used to identify this particular occurrence of time.

Timing a tactic that evaluates to a term

Tactic expressions that produce terms can be timed with the experimental tactic
time_constr ltac_expr

which evaluates ltac_expr () and displays the time the tactic expression evaluated, assuming successful eval-
uation. Time is in seconds and is machine-dependent.
This tactic currently does not support nesting, and will report times based on the innermost execution. This is due
to the fact that it is implemented using the following internal tactics:
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restart_timer string
Reset a timer

finish_timing (string)
?

string
Display an optionally named timer. The parenthesized string argument is also optional, and determines the
label associated with the timer for printing.

By copying the definition of time_constr from the standard library, users can achieve support for a fixed pattern
of nesting by passing different string parameters to restart_timer and finish_timing at each level
of nesting.

Example

Ltac time_constr1 tac :=
let eval_early := match goal with _ => restart_timer "(depth 1)" end in
let ret := tac () in
let eval_early := match goal with _ => finish_timing ( "Tactic evaluation" )

↪"(depth 1)" end in
ret.
time_constr1 is defined

Goal True.
1 subgoal

============================
True

let v := time_constr
ltac:(fun _ =>

let x := time_constr1 ltac:(fun _ => constr:(10 * 10)) in
let y := time_constr1 ltac:(fun _ => eval compute in x) in
y) in

pose v.
Tactic evaluation (depth 1) ran for 0. secs (0.u,0.s)
Tactic evaluation (depth 1) ran for 0. secs (0.u,0.s)
Tactic evaluation ran for 0.001 secs (0.u,0.s)
1 subgoal

n := 100 : nat
============================
True

Local definitions

Local definitions can be done as follows:

let ident1 := ltac_expr1 with identi := ltac_expri
*

in ltac_expr
each ltac_expri is evaluated to vi, then, ltac_expr is evaluated by substituting vi to each occurrence of
identi, for i = 1, ..., n. There are no dependencies between the ltac_expri and the identi.
Local definitions can be made recursive by using let rec instead of let. In this latter case, the definitions are
evaluated lazily so that the rec keyword can be used also in non-recursive cases so as to avoid the eager evaluation
of local definitions.
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Application

An application is an expression of the following form:

qualid tacarg
+

The reference qualid must be bound to some defined tactic definition expecting at least as many arguments as
the provided tacarg. The expressions ltac_expri are evaluated to vi, for i = 1, ..., n.

Function construction

A parameterized tactic can be built anonymously (without resorting to local definitions) with:

fun ident
+

=> ltac_expr
Indeed, local definitions of functions are a syntactic sugar for binding a fun tactic to an identifier.

Pattern matching on terms

We can carry out pattern matching on terms with:

match ltac_expr with cpatterni => ltac_expri
+

|
end

The expression ltac_expr is evaluated and should yield a term which is matched against cpattern1. The
matching is non-linear: if a metavariable occurs more than once, it should match the same expression every time.
It is first-order except on the variables of the form @?id that occur in head position of an application. For these
variables, the matching is second-order and returns a functional term.
Alternatively, when a metavariable of the form ?id occurs under binders, say x1, …, xn and the expression
matches, the metavariable is instantiated by a term which can then be used in any context which also binds the
variables x1, …, xn with same types. This provides with a primitive form of matching under context which does
not require manipulating a functional term.
If the matching with cpattern1 succeeds, then ltac_expr1 is evaluated into some value by substituting the
patternmatching instantiations to themetavariables. Ifltac_expr1 evaluates to a tactic and thematch expression
is in position to be applied to a goal (e.g. it is not bound to a variable by a let in), then this tactic is applied.
If the tactic succeeds, the list of resulting subgoals is the result of the match expression. If ltac_expr1 does
not evaluate to a tactic or if the match expression is not in position to be applied to a goal, then the result of the
evaluation of ltac_expr1 is the result of the match expression.
If the matching with cpattern1 fails, or if it succeeds but the evaluation of ltac_expr1 fails, or if the evalua-
tion of ltac_expr1 succeeds but returns a tactic in execution position whose execution fails, then cpattern2
is used and so on. The pattern _ matches any term and shadows all remaining patterns if any. If all clauses fail (in
particular, there is no pattern _) then a no-matching-clause error is raised.
Failures in subsequent tactics do not cause backtracking to select new branches or inside the right-hand side of the
selected branch even if it has backtracking points.
Error: No matching clauses for match.

No pattern can be used and, in particular, there is no _ pattern.
Error: Argument of match does not evaluate to a term.

This happens when ltac_expr does not denote a term.

Variant: multimatch ltac_expr with cpatterni => ltac_expri
+

|
end

Using multimatch instead of match will allow subsequent tactics to backtrack into a right-hand side tactic
which has backtracking points left and trigger the selection of a new matching branch when all the backtrack-
ing points of the right-hand side have been consumed.
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The syntax match … is, in fact, a shorthand for once multimatch ….

Variant: lazymatch ltac_expr with cpatterni => ltac_expri
+

|
end

Using lazymatch instead of match will perform the same pattern matching procedure but will commit to the
first matching branch rather than trying a new matching if the right-hand side fails. If the right-hand side of
the selected branch is a tactic with backtracking points, then subsequent failures cause this tactic to backtrack.

Variant: context ident [cpattern]
This special form of patterns matches any term with a subterm matching cpattern. If there is a match, the
optional ident is assigned the ”matched context”, i.e. the initial termwhere the matched subterm is replaced
by a hole. The example below will show how to use such term contexts.
If the evaluation of the right-hand-side of a valid match fails, the next matching subterm is tried. If no further
subtermmatches, the next clause is tried. Matching subterms are considered top-bottom and from left to right
(with respect to the raw printing obtained by setting the Printing All flag).

Example

Ltac f x :=
match x with
context f [S ?X] =>
idtac X; (* To display the evaluation order *)
assert (p := eq_refl 1 : X=1); (* To filter the case X=1 *)
let x:= context f[O] in assert (x=O) (* To observe the context *)

end.
f is defined

Goal True.
1 subgoal

============================
True

f (3+4).
2
1
2 subgoals

p : 1 = 1
============================
1 + 4 = 0

subgoal 2 is:
True

Pattern matching on goals

We can perform pattern matching on goals using the following expression:

match goal with context_hyp
+

,
|- cpattern => ltac_expr

+

|

| _ => ltac_expr end

If each hypothesis pattern hyp1,i, with i = 1, ..., m1 is matched (non-linear first-order unification) by a hypothesis
of the goal and if cpattern_1 is matched by the conclusion of the goal, then ltac_expr1 is evaluated to
v1 by substituting the pattern matching to the metavariables and the real hypothesis names bound to the possible
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hypothesis names occurring in the hypothesis patterns. If v1 is a tactic value, then it is applied to the goal. If
this application fails, then another combination of hypotheses is tried with the same proof context pattern. If
there is no other combination of hypotheses then the second proof context pattern is tried and so on. If the next
to last proof context pattern fails then the last ltac_expr is evaluated to v and v is applied. Note also that
matching against subterms (using the context ident [ cpattern ]) is available and is also subject to
yielding several matchings.
Failures in subsequent tactics do not cause backtracking to select new branches or combinations of hypotheses, or
inside the right-hand side of the selected branch even if it has backtracking points.
Error: No matching clauses for match goal.

No clause succeeds, i.e. all matching patterns, if any, fail at the application of the right-hand-side.

Note: It is important to know that each hypothesis of the goal can be matched by at most one hypothesis pattern.
The order of matching is the following: hypothesis patterns are examined from right to left (i.e. hypi,mi‘ before
hypi,1). For each hypothesis pattern, the goal hypotheses are matched in order (newest first), but it possible to
reverse this order (oldest first) with the match reverse goal with variant.

Variant: multimatch goal with context_hyp
+

,
|- cpattern => ltac_expr

+

|

| _ => ltac_expr end

Using multimatch instead of match will allow subsequent tactics to backtrack into a right-hand side
tactic which has backtracking points left and trigger the selection of a new matching branch or combination
of hypotheses when all the backtracking points of the right-hand side have been consumed.
The syntax match [reverse] goal … is, in fact, a shorthand for once multimatch
[reverse] goal ….

Variant: lazymatch goal with context_hyp
+

,
|- cpattern => ltac_expr

+

|

| _ => ltac_expr end

Using lazymatch instead of match will perform the same pattern matching procedure but will commit to the
first matching branch with the first matching combination of hypotheses rather than trying a new matching
if the right-hand side fails. If the right-hand side of the selected branch is a tactic with backtracking points,
then subsequent failures cause this tactic to backtrack.

Filling a term context

The following expression is not a tactic in the sense that it does not produce subgoals but generates a term to be used in
tactic expressions:
context ident [ltac_expr]

identmust denote a context variable bound by a context pattern of a match expression. This expression evaluates
replaces the hole of the value of ident by the value of ltac_expr.
Error: Not a context variable.

Error: Unbound context identifier ident.

Generating fresh hypothesis names

Tactics sometimes have to generate new names for hypothesis. Letting the system decide a name with the intro tactic is
not so good since it is very awkward to retrieve the name the system gave. The following expression returns an identifier:
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fresh component
*

It evaluates to an identifier unbound in the goal. This fresh identifier is obtained by concatenating the value of the
components (each of them is, either a qualid which has to refer to a (unqualified) name, or directly a name
denoted by a string).
If the resulting name is already used, it is padded with a number so that it becomes fresh. If no component is given,
the name is a fresh derivative of the name H.

Computing in a constr

Evaluation of a term can be performed with:
eval redexpr in term

where redexpr is a reduction tactic among red, hnf, compute, simpl, cbv, lazy, unfold, fold,
pattern.

Recovering the type of a term

type of term
This tactic returns the type of term.

Manipulating untyped terms

uconstr : term
The terms built in Ltac are well-typed by default. It may not be appropriate for building large terms using a recursive
Ltac function: the term has to be entirely type checked at each step, resulting in potentially very slow behavior. It
is possible to build untyped terms using Ltac with the uconstr : term syntax.

type_term term
An untyped term, inLtac, can contain references to hypotheses or toLtac variables containing typed or untyped terms.
An untyped term can be type checked using the function type_term whose argument is parsed as an untyped term
and returns a well-typed term which can be used in tactics.

Untyped terms built using uconstr : can also be used as arguments to the refine tactic. In that case the untyped
term is type checked against the conclusion of the goal, and the holes which are not solved by the typing procedure are
turned into new subgoals.

Counting the goals

numgoals
The number of goals under focus can be recovered using the numgoals function. Combined with the guard
command below, it can be used to branch over the number of goals produced by previous tactics.

Example

Ltac pr_numgoals := let n := numgoals in idtac "There are" n "goals".
Goal True /\ True /\ True.
split;[|split].

all:pr_numgoals.
There are 3 goals
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Testing boolean expressions

guard test
Theguard tactic tests a boolean expression, and fails if the expression evaluates to false. If the expression evaluates
to true, it succeeds without affecting the proof.
The accepted tests are simple integer comparisons.

Example

Goal True /\ True /\ True.
split;[|split].

all:let n:= numgoals in guard n<4.
Fail all:let n:= numgoals in guard n=2.

The command has indeed failed with message:
Condition not satisfied: 3=2

Error: Condition not satisfied.

Proving a subgoal as a separate lemma

abstract ltac_expr
From the outside, abstract ltac_expr is the same as solve ltac_expr. Internally it saves an auxiliary
lemma called ident_subproofn where ident is the name of the current goal and n is chosen so that this is
a fresh name. Such an auxiliary lemma is inlined in the final proof term.
This tactical is useful with tactics such as omega or discriminate that generate huge proof terms. With that
tool the user can avoid the explosion at time of the Save command without having to cut manually the proof in
smaller lemmas.
It may be useful to generate lemmas minimal w.r.t. the assumptions they depend on. This can be obtained thanks
to the option below.

Warning: The abstract tactic, while very useful, still has some known limitations, see https://github.com/coq/
coq/issues/9146 for more details. Thus we recommend using it caution in some ”non-standard” contexts. In
particular, abstract won’t properly work when used inside quotations ltac:(...), or if used as part of
typeclass resolution, it may produce wrong terms when in universe polymorphic mode.

Variant: abstract ltac_expr using ident
Give explicitly the name of the auxiliary lemma.

Warning: Use this feature at your own risk; explicitly named and reused subterms don’t play well with
asynchronous proofs.

Variant: transparent_abstract ltac_expr
Save the subproof in a transparent lemma rather than an opaque one.

Warning: Use this feature at your own risk; building computationally relevant terms with tactics is
fragile.
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Variant: transparent_abstract ltac_expr using ident
Give explicitly the name of the auxiliary transparent lemma.

Warning: Use this feature at your own risk; building computationally relevant terms with tactics is
fragile, and explicitly named and reused subterms don’t play well with asynchronous proofs.

Error: Proof is not complete.

5.4.3 Tactic toplevel definitions

Defining Ltac functions

Basically, Ltac toplevel definitions are made as follows:

Command: Local
?

Ltac ident ident
*

:= ltac_expr
This defines a new Ltac function that can be used in any tactic script or new Ltac toplevel definition.
If preceded by the keyword Local, the tactic definition will not be exported outside the current module.

Note: The preceding definition can equivalently be written:

Ltac ident := fun ident
+

=> ltac_expr

Variant: Ltac ident ident
*

with ident ident
*

*

:= ltac_expr
This syntax allows recursive and mutual recursive function definitions.

Variant: Ltac qualid ident
*

::= ltac_expr
This syntax redefines an existing user-defined tactic.
A previous definition of qualid must exist in the environment. The new definition will always be used instead
of the old one and it goes across module boundaries.

Printing Ltac tactics

Command: Print Ltac qualid
Defined Ltac functions can be displayed using this command.

Command: Print Ltac Signatures
This command displays a list of all user-defined tactics, with their arguments.

5.4.4 Examples of using Ltac

Proof that the natural numbers have at least two elements

Example: Proof that the natural numbers have at least two elements
The first example shows how to use pattern matching over the proof context to prove that natural numbers have at least
two elements. This can be done as follows:
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Lemma card_nat :
~ exists x y : nat, forall z:nat, x = z \/ y = z.
1 subgoal

============================
~ (exists x y : nat, forall z : nat, x = z \/ y = z)

Proof.
intros (x & y & Hz).

1 subgoal

x, y : nat
Hz : forall z : nat, x = z \/ y = z
============================
False

destruct (Hz 0), (Hz 1), (Hz 2).
8 subgoals

x, y : nat
Hz : forall z : nat, x = z \/ y = z
H : x = 0
H0 : x = 1
H1 : x = 2
============================
False

subgoal 2 is:
False

subgoal 3 is:
False

subgoal 4 is:
False

subgoal 5 is:
False

subgoal 6 is:
False

subgoal 7 is:
False

subgoal 8 is:
False

At this point, the congruence tactic would finish the job:

all: congruence.
No more subgoals.

But for the purpose of the example, let’s craft our own custom tactic to solve this:

all: match goal with
| _ : ?a = ?b, _ : ?a = ?c |- _ => assert (b = c) by now transitivity a
end.

8 subgoals

x, y : nat
Hz : forall z : nat, x = z \/ y = z
H : x = 0
H0 : x = 1

(continues on next page)
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(continued from previous page)
H1 : x = 2
H2 : 1 = 2
============================
False

subgoal 2 is:
False

subgoal 3 is:
False

subgoal 4 is:
False

subgoal 5 is:
False

subgoal 6 is:
False

subgoal 7 is:
False

subgoal 8 is:
False

all: discriminate.
No more subgoals.

Notice that all the (very similar) cases coming from the three eliminations (with three distinct natural numbers) are
successfully solved by a match goal structure and, in particular, with only one pattern (use of non-linear matching).

Proving that a list is a permutation of a second list

Example: Proving that a list is a permutation of a second list
Let’s first define the permutation predicate:

Section Sort.
Variable A : Set.
Inductive perm : list A -> list A -> Prop :=

| perm_refl : forall l, perm l l
| perm_cons : forall a l0 l1, perm l0 l1 -> perm (a :: l0) (a :: l1)
| perm_append : forall a l, perm (a :: l) (l ++ a :: nil)
| perm_trans : forall l0 l1 l2, perm l0 l1 -> perm l1 l2 -> perm l0 l2.

End Sort.

Next we define an auxiliary tactic perm_aux which takes an argument used to control the recursion depth. This tactic
works as follows: If the lists are identical (i.e. convertible), it completes the proof. Otherwise, if the lists have identical
heads, it looks at their tails. Finally, if the lists have different heads, it rotates the first list by putting its head at the end.
Every time we perform a rotation, we decrement n. When n drops down to 1, we stop performing rotations and we fail.
The idea is to give the length of the list as the initial value of n. This way of counting the number of rotations will avoid
going back to a head that had been considered before.
From Section Syntaxwe know that Ltac has a primitive notion of integers, but they are only used as arguments for primitive
tactics and we cannot make computations with them. Thus, instead, we use Coq’s natural number type nat.

Ltac perm_aux n :=
match goal with

(continues on next page)
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(continued from previous page)
| |- (perm _ ?l ?l) => apply perm_refl
| |- (perm _ (?a :: ?l1) (?a :: ?l2)) =>

let newn := eval compute in (length l1) in
(apply perm_cons; perm_aux newn)

| |- (perm ?A (?a :: ?l1) ?l2) =>
match eval compute in n with
| 1 => fail
| _ =>

let l1' := constr:(l1 ++ a :: nil) in
(apply (perm_trans A (a :: l1) l1' l2);
[ apply perm_append | compute; perm_aux (pred n) ])

end
end.

The main tactic is solve_perm. It computes the lengths of the two lists and uses them as arguments to call perm_aux
if the lengths are equal. (If they aren’t, the lists cannot be permutations of each other.)

Ltac solve_perm :=
match goal with
| |- (perm _ ?l1 ?l2) =>

match eval compute in (length l1 = length l2) with
| (?n = ?n) => perm_aux n
end

end.

And now, here is how we can use the tactic solve_perm:

1 subgoal

============================
perm nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil)

solve_perm.
No more subgoals.

1 subgoal

============================
perm nat (0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil)

(0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil)

solve_perm.
No more subgoals.

Deciding intuitionistic propositional logic

Pattern matching on goals allows powerful backtracking when returning tactic values. An interesting application is the
problem of deciding intuitionistic propositional logic. Considering the contraction-free sequent calculi LJT* of Roy
Dyckhoff [Dyc92], it is quite natural to code such a tactic using the tactic language as shown below.

Ltac basic :=
match goal with

| |- True => trivial

(continues on next page)
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(continued from previous page)
| _ : False |- _ => contradiction
| _ : ?A |- ?A => assumption

end.

Ltac simplify :=
repeat (intros;

match goal with
| H : ~ _ |- _ => red in H
| H : _ /\ _ |- _ =>

elim H; do 2 intro; clear H
| H : _ \/ _ |- _ =>

elim H; intro; clear H
| H : ?A /\ ?B -> ?C |- _ =>

cut (A -> B -> C);
[ intro | intros; apply H; split; assumption ]

| H: ?A \/ ?B -> ?C |- _ =>
cut (B -> C);

[ cut (A -> C);
[ intros; clear H
| intro; apply H; left; assumption ]

| intro; apply H; right; assumption ]
| H0 : ?A -> ?B, H1 : ?A |- _ =>

cut B; [ intro; clear H0 | apply H0; assumption ]
| |- _ /\ _ => split
| |- ~ _ => red

end).

Ltac my_tauto :=
simplify; basic ||
match goal with

| H : (?A -> ?B) -> ?C |- _ =>
cut (B -> C);

[ intro; cut (A -> B);
[ intro; cut C;

[ intro; clear H | apply H; assumption ]
| clear H ]

| intro; apply H; intro; assumption ]; my_tauto
| H : ~ ?A -> ?B |- _ =>

cut (False -> B);
[ intro; cut (A -> False);

[ intro; cut B;
[ intro; clear H | apply H; assumption ]

| clear H ]
| intro; apply H; red; intro; assumption ]; my_tauto

| |- _ \/ _ => (left; my_tauto) || (right; my_tauto)
end.

The tactic basic tries to reason using simple rules involving truth, falsity and available assumptions. The tactic
simplify applies all the reversible rules of Dyckhoff’s system. Finally, the tactic my_tauto (the main tactic to
be called) simplifies with simplify, tries to conclude with basic and tries several paths using the backtracking rules
(one of the four Dyckhoff’s rules for the left implication to get rid of the contraction and the right or).
Having defined my_tauto, we can prove tautologies like these:

Lemma my_tauto_ex1 :
forall A B : Prop, A /\ B -> A \/ B.

(continues on next page)
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Proof.
my_tauto.
Qed.

Lemma my_tauto_ex2 :
forall A B : Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.

Proof.
my_tauto.
Qed.

Deciding type isomorphisms

A trickier problem is to decide equalities between types modulo isomorphisms. Here, we choose to use the isomorphisms
of the simply typed λ-calculus with Cartesian product and unit type (see, for example, [dC95]). The axioms of this
λ-calculus are given below.

Open Scope type_scope.

Section Iso_axioms.

Variables A B C : Set.

Axiom Com : A * B = B * A.
Axiom Ass : A * (B * C) = A * B * C.
Axiom Cur : (A * B -> C) = (A -> B -> C).
Axiom Dis : (A -> B * C) = (A -> B) * (A -> C).
Axiom P_unit : A * unit = A.
Axiom AR_unit : (A -> unit) = unit.
Axiom AL_unit : (unit -> A) = A.

Lemma Cons : B = C -> A * B = A * C.
Proof.
intro Heq; rewrite Heq; reflexivity.
Qed.

End Iso_axioms.

Ltac simplify_type ty :=
match ty with

| ?A * ?B * ?C =>
rewrite <- (Ass A B C); try simplify_type_eq

| ?A * ?B -> ?C =>
rewrite (Cur A B C); try simplify_type_eq

| ?A -> ?B * ?C =>
rewrite (Dis A B C); try simplify_type_eq

| ?A * unit =>
rewrite (P_unit A); try simplify_type_eq

| unit * ?B =>
rewrite (Com unit B); try simplify_type_eq

| ?A -> unit =>
rewrite (AR_unit A); try simplify_type_eq

| unit -> ?B =>
rewrite (AL_unit B); try simplify_type_eq

(continues on next page)
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| ?A * ?B =>

(simplify_type A; try simplify_type_eq) ||
(simplify_type B; try simplify_type_eq)

| ?A -> ?B =>
(simplify_type A; try simplify_type_eq) ||
(simplify_type B; try simplify_type_eq)

end
with simplify_type_eq :=
match goal with

| |- ?A = ?B => try simplify_type A; try simplify_type B
end.

Ltac len trm :=
match trm with

| _ * ?B => let succ := len B in constr:(S succ)
| _ => constr:(1)

end.

Ltac assoc := repeat rewrite <- Ass.

Ltac solve_type_eq n :=
match goal with

| |- ?A = ?A => reflexivity
| |- ?A * ?B = ?A * ?C =>

apply Cons; let newn := len B in solve_type_eq newn
| |- ?A * ?B = ?C =>

match eval compute in n with
| 1 => fail
| _ =>

pattern (A * B) at 1; rewrite Com; assoc; solve_type_eq (pred n)
end

end.

Ltac compare_structure :=
match goal with

| |- ?A = ?B =>
let l1 := len A
with l2 := len B in

match eval compute in (l1 = l2) with
| ?n = ?n => solve_type_eq n

end
end.

Ltac solve_iso := simplify_type_eq; compare_structure.

The tactic to judge equalities modulo this axiomatization is shown above. The algorithm is quite simple. First types
are simplified using axioms that can be oriented (this is done by simplify_type and simplify_type_eq). The
normal forms are sequences of Cartesian products without a Cartesian product in the left component. These normal
forms are then compared modulo permutation of the components by the tactic compare_structure. If they have
the same length, the tactic solve_type_eq attempts to prove that the types are equal. The main tactic that puts all
these components together is solve_iso.
Here are examples of what can be solved by solve_iso.
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Lemma solve_iso_ex1 :
forall A B : Set, A * unit * B = B * (unit * A).

Proof.
intros; solve_iso.
Qed.

Lemma solve_iso_ex2 :
forall A B C : Set,
(A * unit -> B * (C * unit)) =
(A * unit -> (C -> unit) * C) * (unit -> A -> B).

Proof.
intros; solve_iso.
Qed.

5.4.5 Debugging Ltac tactics

Backtraces

Flag: Ltac Backtrace
Setting this flag displays a backtrace on Ltac failures that can be useful to find out what went wrong. It is disabled
by default for performance reasons.

Info trace

Command: Info num ltac_expr
This command can be used to print the trace of the path eventually taken by an Ltac script. That is, the list of
executed tactics, discarding all the branches which have failed. To that end the Info command can be used with
the following syntax.
The number num is the unfolding level of tactics in the trace. At level 0, the trace contains a sequence of tactics in
the actual script, at level 1, the trace will be the concatenation of the traces of these tactics, etc…

Example

Ltac t x := exists x; reflexivity.
Goal exists n, n=0.

Info 0 t 1||t 0.
exists with 0;<ltac_plugin::reflexivity@0>
No more subgoals.

Undo.

Info 1 t 1||t 0.
<ltac_plugin::exists@1> with 0;simple refine ?X12;<unknown>
No more subgoals.

The trace produced byInfo tries its best to be a reparsableLtac script, but this goal is not achievable in all generality.
So some of the output traces will contain oddities.
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As an additional help for debugging, the trace produced by Info contains (in comments) the messages produced
by the idtac tactical at the right position in the script. In particular, the calls to idtac in branches which failed are
not printed.
Option: Info Level num

This option is an alternative to the Info command.
This will automatically print the same trace as Info num at each tactic call. The unfolding level can be
overridden by a call to the Info command.

Interactive debugger

Flag: Ltac Debug
This flag governs the step-by-step debugger that comes with the Ltac interpreter.

When the debugger is activated, it stops at every step of the evaluation of the current Ltac expression and prints information
on what it is doing. The debugger stops, prompting for a command which can be one of the following:

simple newline: go to the next step
h: get help
x: exit current evaluation
s: continue current evaluation without stopping
r n: advance n steps further
r string: advance up to the next call to “idtac string”

Error: Debug mode not available in the IDE

A non-interactive mode for the debugger is available via the flag:
Flag: Ltac Batch Debug

This flag has the effect of presenting a newline at every prompt, when the debugger is on. The debug log thus
created, which does not require user input to generate when this flag is set, can then be run through external tools
such as diff.

Profiling Ltac tactics

It is possible to measure the time spent in invocations of primitive tactics as well as tactics defined in Ltac and their inner
invocations. The primary use is the development of complex tactics, which can sometimes be so slow as to impede
interactive usage. The reasons for the performance degradation can be intricate, like a slowly performing Ltac match or a
sub-tactic whose performance only degrades in certain situations. The profiler generates a call tree and indicates the time
spent in a tactic depending on its calling context. Thus it allows to locate the part of a tactic definition that contains the
performance issue.
Flag: Ltac Profiling

This flag enables and disables the profiler.
Command: Show Ltac Profile

Prints the profile
Variant: Show Ltac Profile string

Prints a profile for all tactics that start with string. Append a period (.) to the string if you only want
exactly that name.

Command: Reset Ltac Profile
Resets the profile, that is, deletes all accumulated information.
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Warning: Backtracking across a Reset Ltac Profile will not restore the information.

Require Import Coq.omega.Omega.
Ltac mytauto := tauto.
Ltac tac := intros; repeat split; omega || mytauto.
Notation max x y := (x + (y - x)) (only parsing).
Goal forall x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z,

max x (max y z) = max (max x y) z /\ max x (max y z) = max (max x y) z
/\
(A /\ B /\ C /\ D /\ E /\ F /\ G /\ H /\ I /\ J /\ K /\ L /\ M /\
N /\ O /\ P /\ Q /\ R /\ S /\ T /\ U /\ V /\ W /\ X /\ Y /\ Z
->
Z /\ Y /\ X /\ W /\ V /\ U /\ T /\ S /\ R /\ Q /\ P /\ O /\ N /\
M /\ L /\ K /\ J /\ I /\ H /\ G /\ F /\ E /\ D /\ C /\ B /\ A).

Proof.

Set Ltac Profiling.
tac.

No more subgoals.

Show Ltac Profile.
total time: 4.599s

tactic local total calls max
────────────────────────────────────────┴──────┴──────┴───────┴─────────┘
─tac ----------------------------------- 0.4% 100.0% 1 4.599s
─<Coq.Init.Tauto.with_uniform_flags> --- 0.0% 79.0% 26 0.347s
─<Coq.Init.Tauto.tauto_gen> ------------ 0.0% 78.9% 26 0.347s
─<Coq.Init.Tauto.tauto_intuitionistic> - 0.0% 78.9% 26 0.347s
─t_tauto_intuit ------------------------ 0.1% 78.8% 26 0.347s
─<Coq.Init.Tauto.simplif> -------------- 53.6% 71.3% 26 0.342s
─omega --------------------------------- 20.4% 20.4% 28 0.369s
─<Coq.Init.Tauto.is_conj> -------------- 10.9% 10.9% 28756 0.019s
─<Coq.Init.Tauto.axioms> --------------- 7.0% 7.5% 0 0.242s
─elim id ------------------------------- 4.2% 4.2% 650 0.039s

tactic local total calls max
────────────────────────────────────────┴──────┴──────┴───────┴─────────┘
─tac ----------------------------------- 0.4% 100.0% 1 4.599s
├─<Coq.Init.Tauto.with_uniform_flags> - 0.0% 79.0% 26 0.347s
│└<Coq.Init.Tauto.tauto_gen> ---------- 0.0% 78.9% 26 0.347s
│└<Coq.Init.Tauto.tauto_intuitionistic> 0.0% 78.9% 26 0.347s
│└t_tauto_intuit ---------------------- 0.1% 78.8% 26 0.347s
│ ├─<Coq.Init.Tauto.simplif> ---------- 53.6% 71.3% 26 0.342s
│ │ ├─<Coq.Init.Tauto.is_conj> -------- 10.9% 10.9% 28756 0.019s
│ │ └─elim id ------------------------- 4.2% 4.2% 650 0.039s
│ └─<Coq.Init.Tauto.axioms> ----------- 7.0% 7.5% 0 0.242s
└─omega ------------------------------- 20.4% 20.4% 28 0.369s

Show Ltac Profile "omega".
total time: 4.599s

tactic local total calls max
────────────────────────────────────────┴──────┴──────┴───────┴─────────┘
─omega --------------------------------- 20.4% 20.4% 28 0.369s

(continues on next page)
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(continued from previous page)
tactic local total calls max

Abort.
Unset Ltac Profiling.

start ltac profiling
This tactic behaves like idtac but enables the profiler.

stop ltac profiling
Similarly to start ltac profiling, this tactic behaves like idtac. Together, they allow you to exclude
parts of a proof script from profiling.

reset ltac profile
This tactic behaves like the corresponding vernacular command and allow displaying and resetting the profile from
tactic scripts for benchmarking purposes.

show ltac profile
This tactic behaves like the corresponding vernacular command and allow displaying and resetting the profile from
tactic scripts for benchmarking purposes.

show ltac profile string
This tactic behaves like the corresponding vernacular command and allow displaying and resetting the profile from
tactic scripts for benchmarking purposes.

You can also pass the -profile-ltac command line option to coqc, which turns the Ltac Profiling flag on
at the beginning of each document, and performs a Show Ltac Profile at the end.

Warning: Note that the profiler currently does not handle backtracking into multi-success tactics, and issues a
warning to this effect in many cases when such backtracking occurs.

Run-time optimization tactic

optimize_heap
This tactic behaves like idtac, except that running it compacts the heap in the OCaml run-time system. It is
analogous to the Vernacular command Optimize Heap.

5.5 Ltac2

The Ltac tactic language is probably one of the ingredients of the success of Coq, yet it is at the same time its Achilles’
heel. Indeed, Ltac:

• has often unclear semantics
• is very non-uniform due to organic growth
• lacks expressivity (data structures, combinators, types, ...)
• is slow
• is error-prone and fragile
• has an intricate implementation

Following the need of users who are developing huge projects relying critically on Ltac, we believe that we should offer a
proper modern language that features at least the following:
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• at least informal, predictable semantics
• a type system
• standard programming facilities (e.g., datatypes)

This new language, called Ltac2, is described in this chapter. It is still experimental but we nonetheless encourage users to
start testing it, especially wherever an advanced tactic language is needed. The previous implementation of Ltac, described
in the previous chapter, will be referred to as Ltac1.

5.5.1 General design

There are various alternatives to Ltac1, such as Mtac or Rtac for instance. While those alternatives can be quite different
from Ltac1, we designed Ltac2 to be as close as reasonably possible to Ltac1, while fixing the aforementioned defects.
In particular, Ltac2 is:

• a member of the ML family of languages, i.e.
– a call-by-value functional language
– with effects
– together with the Hindley-Milner type system

• a language featuring meta-programming facilities for the manipulation of Coq-side terms
• a language featuring notation facilities to help write palatable scripts

We describe more in details each point in the remainder of this document.

5.5.2 ML component

Overview

Ltac2 is a member of the ML family of languages, in the sense that it is an effectful call-by-value functional language, with
static typing à la Hindley-Milner (see [DM82]). It is commonly accepted that ML constitutes a sweet spot in PL design,
as it is relatively expressive while not being either too lax (unlike dynamic typing) nor too strict (unlike, say, dependent
types).
The main goal of Ltac2 is to serve as a meta-language for Coq. As such, it naturally fits in the ML lineage, just as the
historical ML was designed as the tactic language for the LCF prover. It can also be seen as a general-purpose language,
by simply forgetting about the Coq-specific features.
Sticking to a standard ML type system can be considered somewhat weak for a meta-language designed to manipulate
Coq terms. In particular, there is no way to statically guarantee that a Coq term resulting from an Ltac2 computation will
be well-typed. This is actually a design choice, motivated by backward compatibility with Ltac1. Instead, well-typedness
is deferred to dynamic checks, allowing many primitive functions to fail whenever they are provided with an ill-typed
term.
The language is naturally effectful as it manipulates the global state of the proof engine. This allows to think of proof-
modifying primitives as effects in a straightforward way. Semantically, proof manipulation lives in a monad, which allows
to ensure that Ltac2 satisfies the same equations as a generic MLwith unspecified effects would do, e.g. function reduction
is substitution by a value.
To import Ltac2, use the following command:

From Ltac2 Require Import Ltac2.
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Type Syntax

At the level of terms, we simply elaborate on Ltac1 syntax, which is quite close to OCaml. Types follow the simply-typed
syntax of OCaml.
The non-terminal lident designates identifiers starting with a lowercase.

ltac2_type ::= ( ltac2_type, ... , ltac2_type ) ltac2_typeconst
( ltac2_type * ... * ltac2_type )
ltac2_type -> ltac2_type
ltac2_typevar

ltac2_typeconst ::= ( modpath . )* lident
ltac2_typevar ::= 'lident
ltac2_typeparams ::= ( ltac2_typevar, ... , ltac2_typevar )

The set of base types can be extended thanks to the usual ML type declarations such as algebraic datatypes and records.
Built-in types include:

• int, machine integers (size not specified, in practice inherited from OCaml)
• string, mutable strings
• 'a array, mutable arrays
• exn, exceptions
• constr, kernel-side terms
• pattern, term patterns
• ident, well-formed identifiers

Type declarations

One can define new types with the following commands.

Command: Ltac2 Type ltac2_typeparams
?

lident
This command defines an abstract type. It has no use for the end user and is dedicated to types representing data
coming from the OCaml world.

Variant: Ltac2 Type rec
?

ltac2_typeparams
?

lident := ltac2_typedef
This command defines a type with a manifest. There are four possible kinds of such definitions: alias, variant,
record and open variant types.

ltac2_typedef ::= ltac2_type
[ ltac2_constructordef | ... | ltac2_constructordef ]
{ ltac2_fielddef ; ... ; ltac2_fielddef }
[ .. ]

ltac2_constructordef ::= uident [ ( ltac2_type , ... , ltac2_type ) ]
ltac2_fielddef ::= [ mutable ] ident : ltac2_type

Aliases are just a name for a given type expression and are transparently unfoldable to it. They cannot be recursive.
The non-terminal uident designates identifiers starting with an uppercase.
Variants are sum types defined by constructors and eliminated by pattern-matching. They can be recursive, but the
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rec flag must be explicitly set. Pattern matching must be exhaustive.
Records are product types with named fields and eliminated by projection. Likewise they can be recursive if the
rec flag is set.

Variant: Ltac2 Type ltac2_typeparams
?

ltac2_qualid ::= [ ltac2_constructordef ]
Open variants are a special kind of variant types whose constructors are not statically defined, but can instead
be extended dynamically. A typical example is the standard exn type. Pattern matching on open variants
must always include a catch-all clause. They can be extended with this command.

Term Syntax

The syntax of the functional fragment is very close to the one of Ltac1, except that it adds a true pattern-matching feature,
as well as a few standard constructs from ML.

ltac2_var ::= lident
ltac2_qualid ::= ( modpath . )* lident
ltac2_constructor ::= uident
ltac2_term ::= ltac2_qualid

ltac2_constructor
ltac2_term ltac2_term ... ltac2_term
fun ltac2_var => ltac2_term
let ltac2_var := ltac2_term in ltac2_term
let rec ltac2_var := ltac2_term in ltac2_term
match ltac2_term with ltac2_branch ... ltac2_branch end
int
string
ltac2_term ; ltac2_term
[| ltac2_term ; ... ; ltac2_term |]
( ltac2_term , ... , ltac2_term )
{ ltac2_field ltac2_field ... ltac2_field }
ltac2_term . ( ltac2_qualid )
ltac2_term . ( ltac2_qualid ) := ltac2_term
[; ltac2_term ; ... ; ltac2_term ]
ltac2_term :: ltac2_term
...

ltac2_branch ::= ltac2_pattern => ltac2_term
ltac2_pattern ::= ltac2_var

_
( ltac2_pattern , ... , ltac2_pattern )
ltac2_constructor ltac2_pattern ... ltac2_pattern
[ ]
ltac2_pattern :: ltac2_pattern

ltac2_field ::= ltac2_qualid := ltac2_term

In practice, there is some additional syntactic sugar that allows e.g. to bind a variable and match on it at the same time,
in the usual ML style.
There is dedicated syntax for list and array literals.

Note: For now, deep pattern matching is not implemented.
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Ltac Definitions

Command: Ltac2 mutable
?

rec
?

lident := ltac2_term
This command defines a new global Ltac2 value.
For semantic reasons, the body of the Ltac2 definition must be a syntactical value, that is, a function, a constant or
a pure constructor recursively applied to values.
If rec is set, the tactic is expanded into a recursive binding.
If mutable is set, the definition can be redefined at a later stage (see below).

Command: Ltac2 Set qualid := ltac2_term
This command redefines a previous mutable definition. Mutable definitions act like dynamic binding, i.e. at
runtime, the last defined value for this entry is chosen. This is useful for global flags and the like.

Reduction

We use the usual ML call-by-value reduction, with an otherwise unspecified evaluation order. This is a design choice
making it compatible with OCaml, if ever we implement native compilation. The expected equations are as follows:

(fun x => t) V ≡ t{x := V} (βv)

let x := V in t ≡ t{x := V} (let)

match C V0 ... V� with ... | C x0 ... x� => t | ... end ≡ t {x� := V�} (ι)

(t any term, V values, C constructor)

Note that call-by-value reduction is already a departure from Ltac1 which uses heuristics to decide when to evaluate an
expression. For instance, the following expressions do not evaluate the same way in Ltac1.
foo (idtac; let x := 0 in bar)

foo (let x := 0 in bar)

Instead of relying on the idtac idiom, we would now require an explicit thunk to not compute the argument, and foo
would have e.g. type (unit -> unit) -> unit.
foo (fun () => let x := 0 in bar)

Typing

Typing is strict and follows the Hindley-Milner system. Unlike Ltac1, there are no type casts at runtime, and one has to
resort to conversion functions. See notations though to make things more palatable.
In this setting, all the usual argument-free tactics have type unit -> unit, but one can return a value of type t thanks
to terms of type unit -> t, or take additional arguments.

Effects

Effects in Ltac2 are straightforward, except that instead of using the standard IO monad as the ambient effectful world,
Ltac2 is has a tactic monad.
Note that the order of evaluation of application is not specified and is implementation-dependent, as in OCaml.
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We recall that the Proofview.tacticmonad is essentially a IO monad together with backtracking state representing
the proof state.
Intuitively a thunk of type unit -> 'a can do the following:

• It can perform non-backtracking IO like printing and setting mutable variables
• It can fail in a non-recoverable way
• It can use first-class backtracking. One way to think about this is that thunks are isomorphic to this type: (unit
-> 'a) ~ (unit -> exn + ('a * (exn -> 'a))) i.e. thunks can produce a lazy list of results
where each tail is waiting for a continuation exception.

• It can access a backtracking proof state, consisting among other things of the current evar assignation and the list
of goals under focus.

We now describe more thoroughly the various effects in Ltac2.

Standard IO

The Ltac2 language features non-backtracking IO, notably mutable data and printing operations.
Mutable fields of records can be modified using the set syntax. Likewise, built-in types like string and array feature
imperative assignment. See modules String and Array respectively.
A few printing primitives are provided in the Message module, allowing to display information to the user.

Fatal errors

The Ltac2 language provides non-backtracking exceptions, also known as panics, through the following primitive in mod-
ule Control:

val throw : exn -> 'a

Unlike backtracking exceptions from the next section, this kind of error is never caught by backtracking primitives, that
is, throwing an exception destroys the stack. This is codified by the following equation, where E is an evaluation context:

E[throw e] ≡ throw e

(e value)

There is currently no way to catch such an exception, which is a deliberate design choice. Eventually there might be a way
to catch it and destroy all backtrack and return values.

Backtracking

In Ltac2, we have the following backtracking primitives, defined in the Control module:

Ltac2 Type 'a result := [ Val ('a) | Err (exn) ].

val zero : exn -> 'a
val plus : (unit -> 'a) -> (exn -> 'a) -> 'a
val case : (unit -> 'a) -> ('a * (exn -> 'a)) result
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If one views thunks as lazy lists, then zero is the empty list and plus is list concatenation, while case is pattern-
matching.
The backtracking is first-class, i.e. one can write plus (fun () => "x") (fun _ => "y") : string pro-
ducing a backtracking string.
These operations are expected to satisfy a few equations, most notably that they form a monoid compatible with sequen-
tialization.:

plus t zero ≡ t ()
plus (fun () => zero e) f ≡ f e
plus (plus t f) g ≡ plus t (fun e => plus (f e) g)

case (fun () => zero e) ≡ Err e
case (fun () => plus (fun () => t) f) ≡ Val (t,f)

let x := zero e in u ≡ zero e
let x := plus t f in u ≡ plus (fun () => let x := t in u) (fun e => let x := f e in u)

(t, u, f, g, e values)

Goals

A goal is given by the data of its conclusion and hypotheses, i.e. it can be represented as [Γ ⊢ A].
The tactic monad naturally operates over the whole proofview, which may represent several goals, including none. Thus,
there is no such thing as the current goal. Goals are naturally ordered, though.
It is natural to do the same in Ltac2, but we must provide a way to get access to a given goal. This is the role of the enter
primitive, which applies a tactic to each currently focused goal in turn:

val enter : (unit -> unit) -> unit

It is guaranteed that when evaluating enter f, f is called with exactly one goal under focus. Note that fmay be called
several times, or never, depending on the number of goals under focus before the call to enter.
Accessing the goal data is then implicit in the Ltac2 primitives, and may panic if the invariants are not respected. The
two essential functions for observing goals are given below.:

val hyp : ident -> constr
val goal : unit -> constr

The two above functions panic if there is not exactly one goal under focus. In addition, hyp may also fail if there is no
hypothesis with the corresponding name.

5.5.3 Meta-programming

Overview

One of the major implementation issues of Ltac1 is the fact that it is never clear whether an object refers to the object
world or the meta-world. This is an incredible source of slowness, as the interpretation must be aware of bound variables
and must use heuristics to decide whether a variable is a proper one or referring to something in the Ltac context.
Likewise, in Ltac1, constr parsing is implicit, so that foo 0 is not foo applied to the Ltac integer expression 0 (Ltac
does have a notion of integers, though it is not first-class), but rather the Coq term Datatypes.O.
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The implicit parsing is confusing to users and often gives unexpected results. Ltac2 makes these explicit using quoting
and unquoting notation, although there are notations to do it in a short and elegant way so as not to be too cumbersome
to the user.

Generic Syntax for Quotations

In general, quotations can be introduced in terms using the following syntax, where quotentry is some parsing entry.
ltac2_term += ident : ( quotentry )

Built-in quotations

The current implementation recognizes the following built-in quotations:
• ident, which parses identifiers (type Init.ident).
• constr, which parses Coq terms and produces an-evar free term at runtime (type Init.constr).
• open_constr, which parses Coq terms and produces a term potentially with holes at runtime (type Init.
constr as well).

• pattern, which parses Coq patterns and produces a pattern used for term matching (type Init.pattern).
• reference, which parses either a qualid or &ident. Qualified names are globalized at internalization into
the corresponding global reference, while &id is turned into Std.VarRef id. This produces at runtime a
Std.reference. There shall be no white space between the ampersand symbol (&) and the identifier (ident).

The following syntactic sugar is provided for two common cases.
• @id is the same as ident:(id)
• 't is the same as open_constr:(t)

Strict vs. non-strict mode

Depending on the context, quotation-producing terms (i.e. constr or open_constr) are not internalized in the same
way. There are two possible modes, the strict and the non-strict mode.

• In strict mode, all simple identifiers appearing in a term quotation are required to be resolvable statically. That is,
they must be the short name of a declaration which is defined globally, excluding section variables and hypotheses.
If this doesn’t hold, internalization will fail. To work around this error, one has to specifically use the & notation.

• In non-strict mode, any simple identifier appearing in a term quotation which is not bound in the global context is
turned into a dynamic reference to a hypothesis. That is to say, internalization will succeed, but the evaluation of
the term at runtime will fail if there is no such variable in the dynamic context.

Strict mode is enforced by default, such as for all Ltac2 definitions. Non-strict mode is only set when evaluating Ltac2
snippets in interactive proof mode. The rationale is that it is cumbersome to explicitly add & interactively, while it is
expected that global tactics enforce more invariants on their code.

Term Antiquotations

Syntax

One can also insert Ltac2 code into Coq terms, similarly to what is possible in Ltac1.
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term += ltac2:( ltac2_term )

Antiquoted terms are expected to have type unit, as they are only evaluated for their side-effects.

Semantics

A quoted Coq term is interpreted in two phases, internalization and evaluation.
• Internalization is part of the static semantics, that is, it is done at Ltac2 typing time.
• Evaluation is part of the dynamic semantics, that is, it is done when a term gets effectively computed by Ltac2.

Note that typing of Coq terms is a dynamic process occurring at Ltac2 evaluation time, and not at Ltac2 typing time.

Static semantics

During internalization, Coq variables are resolved and antiquotations are type-checked as Ltac2 terms, effectively pro-
ducing a glob_constr in Coq implementation terminology. Note that although it went through the type-checking of
Ltac2, the resulting term has not been fully computed and is potentially ill-typed as a runtime Coq term.

Example
The following term is valid (with type unit -> constr), but will fail at runtime:

Ltac2 myconstr () := constr:(nat -> 0).

Term antiquotations are type-checked in the enclosing Ltac2 typing context of the corresponding term expression.

Example
The following will type-check, with type constr.

let x := '0 in constr:(1 + ltac2:(exact x))

Beware that the typing environment of antiquotations is not expanded by the Coq binders from the term.

Example
The following Ltac2 expression will not type-check:

`constr:(fun x : nat => ltac2:(exact x))`
`(* Error: Unbound variable 'x' *)`

There is a simple reason for that, which is that the following expression would not make sense in general.
constr:(fun x : nat => ltac2:(clear @x; exact x))

Indeed, a hypothesis can suddenly disappear from the runtime context if some other tactic pulls the rug from under you.
Rather, the tactic writer has to resort to the dynamic goal environment, and must write instead explicitly that she is
accessing a hypothesis, typically as follows.
constr:(fun x : nat => ltac2:(exact (hyp @x)))

This pattern is so common that we provide dedicated Ltac2 and Coq term notations for it.
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• &x as an Ltac2 expression expands to hyp @x.
• &x as a Coq constr expression expands to ltac2:(Control.refine (fun () => hyp @x)).

In the special case where Ltac2 antiquotations appear inside a Coq term notation, the notation variables are systematically
bound in the body of the tactic expression with type Ltac2.Init.preterm. Such a type represents untyped syntactic
Coq expressions, which can by typed in the current context using the Ltac2.Constr.pretype function.

Example
The following notation is essentially the identity.

Notation "[ x ]" := ltac2:(let x := Ltac2.Constr.pretype x in exact $x) (only parsing).
↪

Dynamic semantics

During evaluation, a quoted term is fully evaluated to a kernel term, and is in particular type-checked in the current
environment.
Evaluation of a quoted term goes as follows.

• The quoted term is first evaluated by the pretyper.
• Antiquotations are then evaluated in a context where there is exactly one goal under focus, with the hypotheses
coming from the current environment extended with the bound variables of the term, and the resulting term is fed
into the quoted term.

Relative orders of evaluation of antiquotations and quoted term are not specified.
For instance, in the following example, tac will be evaluated in a context with exactly one goal under focus, whose last
hypothesis is H : nat. The whole expression will thus evaluate to the term fun H : nat => H.
let tac () := hyp @H in constr:(fun H : nat => ltac2:(tac ()))

Many standard tactics perform type-checking of their argument before going further. It is your duty to ensure that terms
are well-typed when calling such tactics. Failure to do so will result in non-recoverable exceptions.
Trivial Term Antiquotations
It is possible to refer to a variable of type constr in the Ltac2 environment through a specific syntax consistent with the
antiquotations presented in the notation section.
term += $lident

In a Coq term, writing $x is semantically equivalent to ltac2:(Control.refine (fun () => x)), up to
re-typechecking. It allows to insert in a concise way an Ltac2 variable of type constr into a Coq term.

Match over terms

Ltac2 features a construction similar to Ltac1 match over terms, although in a less hard-wired way.

ltac2_term ::= match! ltac2_term with constrmatching .. constrmatching end
lazy_match! ltac2_term with constrmatching .. constrmatching end
multi_match! ltac2_term with constrmatching .. constrmatching end

constrmatching ::= | constrpattern => ltac2_term
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constrpattern ::= term
context [ term ]
context lident [ term ]

This construction is not primitive and is desugared at parsing time into calls to termmatching functions from thePattern
module. Internally, it is implemented thanks to a specific scope accepting the constrmatching syntax.
Variables from the constrpattern are statically bound in the body of the branch, to values of type constr for the
variables from the term pattern and to a value of type Pattern.context for the variable lident.
Note that unlike Ltac, only lowercase identifiers are valid as Ltac2 bindings, so that there will be a syntax error if one of
the bound variables starts with an uppercase character.
The semantics of this construction is otherwise the same as the corresponding one from Ltac1, except that it requires the
goal to be focused.

Match over goals

Similarly, there is a way to match over goals in an elegant way, which is just a notation desugared at parsing time.

ltac2_term ::= match! [ reverse ] goal with goalmatching ... goalmatching end
lazy_match! [ reverse ] goal with goalmatching ... goalmatching end
multi_match! [ reverse ] goal with goalmatching ... goalmatching end

goalmatching ::= | [ hypmatching ... hypmatching |- constrpattern ] => ltac2_term
hypmatching ::= lident : constrpattern

_ : constrpattern

Variables from hypmatching and constrpattern are bound in the body of the branch. Their types are:
• constr for pattern variables appearing in a term
• Pattern.context for variables binding a context
• ident for variables binding a hypothesis name.

The same identifier caveat as in the case of matching over constr applies, and this features has the same semantics as in
Ltac1. In particular, a reverse flag can be specified to match hypotheses from the more recently introduced to the least
recently introduced one.

5.5.4 Notations

Notations are the crux of the usability of Ltac1. We should be able to recover a feeling similar to the old implementation
by using and abusing notations.

Scopes

A scope is a name given to a grammar entry used to produce some Ltac2 expression at parsing time. Scopes are described
using a form of S-expression.

ltac2_scope ::= string int lident ( ltac2_scope
+

,
)

A few scopes contain antiquotation features. For the sake of uniformity, all antiquotations are introduced by the syntax
$lident.
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The following scopes are built-in.
• constr:

– parses c = term and produces constr:(c)
This scope can be parameterized by a list of delimiting keys of interpretation scopes (as described in Local inter-
pretation rules for notations), describing how to interpret the parsed term. For instance, constr(A, B) parses
c = term and produces constr:(c%A%B).

• ident:
– parses id = ident and produces ident:(id)
– parses $(x = ident) and produces the variable x

• list0(ltac2_scope):
– if ltac2_scope parses quotentry, then it parses (quotentry0, ..., quotentryn) and pro-
duces [quotentry0; ...; quotentryn].

• list0(ltac2_scope, sep = stringsep):
– if ltac2_scope parses quotentry, then it parses (quotentry0 stringsep ... stringsep
quotentryn) and produce [quotentry0; ...; quotentryn].

• list1: same as list0 (with or without separator) but parses quotentry + instead of quotentry * .
• opt(ltac2_scope)

– if ltac2_scope parses quotentry, parses quotentry
? and produces either None or Some x

where x is the parsed expression.
• self:

– parses a Ltac2 expression at the current level and returns it as is.
• next:

– parses a Ltac2 expression at the next level and returns it as is.
• tactic(n = int):

– parses a Ltac2 expression at the provided level n and returns it as is.
• thunk(ltac2_scope):

– parses the same as scope, and if e is the parsed expression, returns fun () => e.
• STRING:

– parses the corresponding string as an identifier and returns ().
• keyword(s = string):

– parses the string s as a keyword and returns ().
• terminal(s = string):

– parses the string s as a keyword, if it is already a keyword, otherwise as an ident. Returns ().
• seq(ltac2_scope1, ..., ltac2_scope2):

– parses scope1, ..., scopen in this order, and produces a tuple made out of the parsed values in the same
order. As an optimization, all subscopes of the form STRING are left out of the returned tuple, instead of
returning a useless unit value. It is forbidden for the various subscopes to refer to the global entry using self
or next.
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A few other specific scopes exist to handle Ltac1-like syntax, but their use is discouraged and they are thus not documented.
For now there is no way to declare new scopes from Ltac2 side, but this is planned.

Notations

The Ltac2 parser can be extended with syntactic notations.

Command: Ltac2 Notation lident (ltac2_scope) string
+

: int
?

:= ltac2_term
A Ltac2 notation adds a parsing rule to the Ltac2 grammar, which is expanded to the provided body where every
token from the notation is let-bound to the corresponding generated expression.

Example
Assume we perform:

Ltac2 Notation "foo" c(thunk(constr)) ids(list0(ident)) := Bar.f c ids.

Then the following expression
let y := @X in foo (nat -> nat) x $y

will expand at parsing time to
let y := @X in let c := fun () => constr:(nat -> nat) with ids := [@x; y]
in Bar.f c ids

Beware that the order of evaluation of multiple let-bindings is not specified, so that you may have to resort to
thunking to ensure that side-effects are performed at the right time.

Abbreviations

Variant: Ltac2 Notation lident := ltac2_term
This command introduces a special kind of notation, called an abbreviation, that is designed so that it does not add
any parsing rules. It is similar in spirit to Coq abbreviations, insofar as its main purpose is to give an absolute name
to a piece of pure syntax, which can be transparently referred to by this name as if it were a proper definition.
The abbreviation can then be manipulated just as a normal Ltac2 definition, except that it is expanded at internal-
ization time into the given expression. Furthermore, in order to make this kind of construction useful in practice
in an effectful language such as Ltac2, any syntactic argument to an abbreviation is thunked on-the-fly during its
expansion.

For instance, suppose that we define the following.
Ltac2 Notation foo := fun x => x ().

Then we have the following expansion at internalization time.
foo 0 ↦ (fun x => x ()) (fun _ => 0)

Note that abbreviations are not typechecked at all, and may result in typing errors after expansion.

5.5.5 Evaluation

Ltac2 features a toplevel loop that can be used to evaluate expressions.
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Command: Ltac2 Eval ltac2_term
This command evaluates the term in the current proof if there is one, or in the global environment otherwise, and
displays the resulting value to the user together with its type. This command is pure in the sense that it does not
modify the state of the proof, and in particular all side-effects are discarded.

5.5.6 Debug

Flag: Ltac2 Backtrace
When this flag is set, toplevel failures will be printed with a backtrace.

5.5.7 Compatibility layer with Ltac1

Ltac1 from Ltac2

Simple API

One can call Ltac1 code from Ltac2 by using the ltac1 quotation. It parses a Ltac1 expression, and semantics of this
quotation is the evaluation of the corresponding code for its side effects. In particular, it cannot return values, and the
quotation has type unit.

ltac2_term ::= ltac1 : ( ltac_expr )

Ltac1 cannot implicitly access variables from the Ltac2 scope, but this can be done with an explicit annotation on the
ltac1 quotation.

ltac2_term ::= ltac1 : ( ident ... ident |- ltac_expr )

The return type of this expression is a function of the same arity as the number of identifiers, with arguments of type
Ltac2.Ltac1.t (see below). This syntax will bind the variables in the quoted Ltac1 code as if they had been bound
from Ltac1 itself. Similarly, the arguments applied to the quotation will be passed at runtime to the Ltac1 code.

Low-level API

There exists a lower-level FFI into Ltac1 that is not recommended for daily use, which is available in the Ltac2.Ltac1
module. This API allows to directly manipulate dynamically-typed Ltac1 values, either through the function calls, or using
the ltac1val quotation. The latter parses the same as ltac1, but has type Ltac2.Ltac1.t instead of unit, and
dynamically behaves as an Ltac1 thunk, i.e. ltac1val:(foo) corresponds to the tactic closure that Ltac1 would
generate from idtac; foo.
Due to intricate dynamic semantics, understanding when Ltac1 value quotations focus is very hard. This is why some
functions return a continuation-passing style value, as it can dispatch dynamically between focused and unfocused be-
haviour.
The same mechanism for explicit binding of variables as described in the previous section applies.

Ltac2 from Ltac1

Same as above by switching Ltac1 by Ltac2 and using the ltac2 quotation instead.
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ltac_expr ::= ltac2 : ( ltac2_term )
ltac2 : ( ident ... ident |- ltac2_term )

The typing rules are dual, that is, the optional identifiers are bound with type Ltac2.Ltac1.t in the Ltac2 expression,
which is expected to have type unit. The value returned by this quotation is an Ltac1 function with the same arity as the
number of bound variables.
Note that when no variables are bound, the inner tactic expression is evaluated eagerly, if one wants to use it as an argument
to a Ltac1 function, one has to resort to the good old idtac; ltac2:(foo) trick. For instance, the code below will
fail immediately and won’t print anything.

From Ltac2 Require Import Ltac2.
Set Default Proof Mode "Classic".

Ltac mytac tac := idtac "I am being evaluated"; tac.
mytac is defined

Goal True.
1 subgoal

============================
True

Proof.
(* Doesn't print anything *)
Fail mytac ltac2:(fail).

The command has indeed failed with message:
Uncaught Ltac2 exception: Tactic_failure (None)

(* Prints and fails *)
Fail mytac ltac:(idtac; ltac2:(fail)).

I am being evaluated
The command has indeed failed with message:
Uncaught Ltac2 exception: Tactic_failure (None)

In any case, the value returned by the fully applied quotation is an unspecified dummy Ltac1 closure and should not be
further used.

Switching between Ltac languages

We recommend using the Default Proof Mode option to switch between tactic languages with a proof-based gran-
ularity. This allows to incrementally port the proof scripts.

5.5.8 Transition from Ltac1

Owing to the use of a lot of notations, the transition should not be too difficult. In particular, it should be possible to do
it incrementally. That said, we do not guarantee you it is going to be a blissful walk either. Hopefully, owing to the fact
Ltac2 is typed, the interactive dialogue with Coq will help you.
We list the major changes and the transition strategies hereafter.
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Syntax changes

Due to conflicts, a few syntactic rules have changed.
• The dispatch tactical tac; [foo|bar] is now written tac > [foo|bar].
• Levels of a few operators have been revised. Some tacticals now parse as if they were normal functions. Parentheses
are now required around complex arguments, such as abstractions. The tacticals affected are: try, repeat, do,
once, progress, time, abstract.

• idtac is no more. Either use () if you expect nothing to happen, (fun () => ()) if you want a thunk (see
next section), or use printing primitives from the Message module if you want to display something.

Tactic delay

Tactics are not magically delayed anymore, neither as functions nor as arguments. It is your responsibility to thunk them
beforehand and apply them at the call site.
A typical example of a delayed function:
Ltac foo := blah.

becomes
Ltac2 foo () := blah.

All subsequent calls to foo must be applied to perform the same effect as before.
Likewise, for arguments:
Ltac bar tac := tac; tac; tac.

becomes
Ltac2 bar tac := tac (); tac (); tac ().

We recommend the use of syntactic notations to ease the transition. For instance, the first example can alternatively be
written as:
Ltac2 foo0 () := blah. Ltac2 Notation foo := foo0 ().

This allows to keep the subsequent calls to the tactic as-is, as the expression foo will be implicitly expanded everywhere
into foo0 (). Such a trick also works for arguments, as arguments of syntactic notations are implicitly thunked. The
second example could thus be written as follows.
Ltac2 bar0 tac := tac (); tac (); tac (). Ltac2 Notation bar := bar0.

Variable binding

Ltac1 relies on complex dynamic trickery to be able to tell apart bound variables from terms, hypotheses, etc. There is no
such thing in Ltac2, as variables are recognized statically and other constructions do not live in the same syntactic world.
Due to the abuse of quotations, it can sometimes be complicated to know what a mere identifier represents in a tactic
expression. We recommend tracking the context and letting the compiler print typing errors to understand what is going
on.
We list below the typical changes one has to perform depending on the static errors produced by the typechecker.

5.5. Ltac2 377



The Coq Reference Manual, Release 8.11.2

In Ltac expressions

Error: Unbound value constructor X

• if X is meant to be a term from the current stactic environment, replace the problematic use by 'X.
• if X is meant to be a hypothesis from the goal context, replace the problematic use by &X.

In quotations

Error: The reference X was not found in the current environment

• if X is meant to be a tactic expression bound by a Ltac2 let or function, replace the problematic use by $X.
• if X is meant to be a hypothesis from the goal context, replace the problematic use by &X.

Exception catching

Ltac2 features a proper exception-catching mechanism. For this reason, the Ltac1 mechanism relying on fail taking
integers, and tacticals decreasing it, has been removed. Now exceptions are preserved by all tacticals, and it is your duty
to catch them and re-raise them as needed.

5.6 Detailed examples of tactics

This chapter presents detailed examples of certain tactics, to illustrate their behavior.

5.6.1 dependent induction

The tactics dependent induction and dependent destruction are another solution for inverting induc-
tive predicate instances and potentially doing induction at the same time. It is based on the BasicElim tactic of Conor
McBride which works by abstracting each argument of an inductive instance by a variable and constraining it by equal-
ities afterwards. This way, the usual induction and destruct tactics can be applied to the abstracted instance and after
simplification of the equalities we get the expected goals.
The abstracting tactic is called generalize_eqs and it takes as argument a hypothesis to generalize. It uses the JMeq
datatype defined in Coq.Logic.JMeq, hence we need to require it before. For example, revisiting the first example of the
inversion documentation:

Require Import Coq.Logic.JMeq.
Inductive Le : nat -> nat -> Set :=

| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).

Parameter P : nat -> nat -> Prop.
Goal forall n m:nat, Le (S n) m -> P n m.
intros n m H.

generalize_eqs H.
1 subgoal

n, m, gen_x : nat
H : Le gen_x m

(continues on next page)
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(continued from previous page)
============================
gen_x = S n -> P n m

The index S n gets abstracted by a variable here, but a corresponding equality is added under the abstract instance so
that no information is actually lost. The goal is now almost amenable to do induction or case analysis. One should indeed
first move n into the goal to strengthen it before doing induction, or n will be fixed in the inductive hypotheses (this does
not matter for case analysis). As a rule of thumb, all the variables that appear inside constructors in the indices of the
hypothesis should be generalized. This is exactly what the generalize_eqs_vars variant does:

generalize_eqs_vars H.
induction H.

2 subgoals

n, n0 : nat
============================
0 = S n -> P n n0

subgoal 2 is:
S n0 = S n -> P n (S m)

As the hypothesis itself did not appear in the goal, we did not need to use an heterogeneous equality to relate the new
hypothesis to the old one (which just disappeared here). However, the tactic works just as well in this case, e.g.:

Parameter Q : forall (n m : nat), Le n m -> Prop.
Goal forall n m (p : Le (S n) m), Q (S n) m p.

intros n m p.
1 subgoal

n, m : nat
p : Le (S n) m
============================
Q (S n) m p

generalize_eqs_vars p.
1 subgoal

m, gen_x : nat
p : Le gen_x m
============================
forall (n : nat) (p0 : Le (S n) m), gen_x = S n -> p ~= p0 -> Q (S n) m p0

One drawback of this approach is that in the branches one will have to substitute the equalities back into the instance
to get the right assumptions. Sometimes injection of constructors will also be needed to recover the needed equalities.
Also, some subgoals should be directly solved because of inconsistent contexts arising from the constraints on indexes.
The nice thing is that we can make a tactic based on discriminate, injection and variants of substitution to automatically
do such simplifications (which may involve the axiom K). This is what the simplify_dep_elim tactic from Coq.
Program.Equality does. For example, we might simplify the previous goals considerably:

induction p ; simplify_dep_elim.
1 subgoal

n, m : nat
p : Le n m
IHp : forall (n0 : nat) (p0 : Le (S n0) m),

n = S n0 -> p ~= p0 -> Q (S n0) m p0
(continues on next page)
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(continued from previous page)
============================
Q (S n) (S m) (LeS n m p)

The higher-order tactic do_depind defined in Coq.Program.Equality takes a tactic and combines the building
blocks we have seen with it: generalizing by equalities calling the given tactic with the generalized induction hypothesis
as argument and cleaning the subgoals with respect to equalities. Its most important instantiations are dependent
induction and dependent destruction that do induction or simply case analysis on the generalized hypothesis.
For example we can redo what we’ve done manually with dependent destruction:

Lemma ex : forall n m:nat, Le (S n) m -> P n m.

intros n m H.

dependent destruction H.
1 subgoal

n, m : nat
H : Le n m
============================
P n (S m)

This gives essentially the same result as inversion. Now if the destructed hypothesis actually appeared in the goal, the
tactic would still be able to invert it, contrary to dependent inversion. Consider the following example on vectors:

Set Implicit Arguments.

Parameter A : Set.

Inductive vector : nat -> Type :=
| vnil : vector 0
| vcons : A -> forall n, vector n -> vector (S n).

Goal forall n, forall v : vector (S n),
exists v' : vector n, exists a : A, v = vcons a v'.

intros n v.

dependent destruction v.
1 subgoal

n : nat
a : A
v : vector n
============================
exists (v' : vector n) (a0 : A), vcons a v = vcons a0 v'

In this case, the v variable can be replaced in the goal by the generalized hypothesis only when it has a type of the form
vector (S n), that is only in the second case of the destruct. The first one is dismissed because S n <> 0.

A larger example

Let’s see how the technique works with induction on inductive predicates on a real example. We will develop an example
application to the theory of simply-typed lambda-calculus formalized in a dependently-typed style:
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Inductive type : Type :=
| base : type
| arrow : type -> type -> type.

Notation " t --> t' " := (arrow t t') (at level 20, t' at next level).

Inductive ctx : Type :=
| empty : ctx
| snoc : ctx -> type -> ctx.

Notation " G , tau " := (snoc G tau) (at level 20, tau at next level).

Fixpoint conc (G D : ctx) : ctx :=
match D with
| empty => G
| snoc D' x => snoc (conc G D') x
end.

Notation " G ; D " := (conc G D) (at level 20).

Inductive term : ctx -> type -> Type :=
| ax : forall G tau, term (G, tau) tau
| weak : forall G tau,

term G tau -> forall tau', term (G, tau') tau
| abs : forall G tau tau',

term (G , tau) tau' -> term G (tau --> tau')
| app : forall G tau tau',

term G (tau --> tau') -> term G tau -> term G tau'.

We have defined types and contexts which are snoc-lists of types. We also have a conc operation that concatenates two
contexts. The term datatype represents in fact the possible typing derivations of the calculus, which are isomorphic to
the well-typed terms, hence the name. A term is either an application of:

• the axiom rule to type a reference to the first variable in a context
• the weakening rule to type an object in a larger context
• the abstraction or lambda rule to type a function
• the application to type an application of a function to an argument

Once we have this datatype we want to do proofs on it, like weakening:

Lemma weakening : forall G D tau, term (G ; D) tau ->
forall tau', term (G , tau' ; D) tau.

The problem here is that we can’t just use induction on the typing derivation because it will forget about the G ; D
constraint appearing in the instance. A solution would be to rewrite the goal as:

Lemma weakening' : forall G' tau, term G' tau ->
forall G D, (G ; D) = G' ->
forall tau', term (G, tau' ; D) tau.

With this proper separation of the index from the instance and the right induction loading (putting G and D after the
inducted-on hypothesis), the proof will go through, but it is a very tedious process. One is also forced to make a wrapper
lemma to get back the more natural statement. The dependent induction tactic alleviates this trouble by doing all
of this plumbing of generalizing and substituting back automatically. Indeed we can simply write:
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Require Import Coq.Program.Tactics.
Require Import Coq.Program.Equality.

Lemma weakening : forall G D tau, term (G ; D) tau ->
forall tau', term (G , tau' ; D) tau.

Proof with simpl in * ; simpl_depind ; auto.

intros G D tau H.
dependent induction H generalizing G D ; intros.

This call to dependent induction has an additional arguments which is a list of variables appearing in the instance that
should be generalized in the goal, so that they can vary in the induction hypotheses. By default, all variables appearing
inside constructors (except in a parameter position) of the instantiated hypothesis will be generalized automatically but
one can always give the list explicitly.

Show.
4 subgoals

G0 : ctx
tau : type
G, D : ctx
x : G0, tau = G; D
tau' : type
============================
term ((G, tau'); D) tau

subgoal 2 is:
term ((G, tau'0); D) tau

subgoal 3 is:
term ((G, tau'0); D) (tau --> tau')

subgoal 4 is:
term ((G, tau'0); D) tau'

The simpl_depind tactic includes an automatic tactic that tries to simplify equalities appearing at the beginning of
induction hypotheses, generally using trivial applications of reflexivity. In cases where the equality is not between
constructor forms though, one must help the automation by giving some arguments, using the specialize tactic for
example.

destruct D... apply weak; apply ax.
apply ax.

destruct D...

Show.
4 subgoals

G0 : ctx
tau : type
H : term G0 tau
tau' : type
IHterm : forall G D : ctx,

G0 = G; D -> forall tau' : type, term ((G, tau'); D) tau
tau'0 : type
============================

(continues on next page)
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(continued from previous page)
term ((G0, tau'), tau'0) tau

subgoal 2 is:
term (((G, tau'0); D), t) tau

subgoal 3 is:
term ((G, tau'0); D) (tau --> tau')

subgoal 4 is:
term ((G, tau'0); D) tau'

specialize (IHterm G0 empty eq_refl).
4 subgoals

G0 : ctx
tau : type
H : term G0 tau
tau' : type
IHterm : forall tau' : type, term ((G0, tau'); empty) tau
tau'0 : type
============================
term ((G0, tau'), tau'0) tau

subgoal 2 is:
term (((G, tau'0); D), t) tau

subgoal 3 is:
term ((G, tau'0); D) (tau --> tau')

subgoal 4 is:
term ((G, tau'0); D) tau'

Once the induction hypothesis has been narrowed to the right equality, it can be used directly.

apply weak, IHterm.
3 subgoals

tau : type
G, D : ctx
IHterm : forall G0 D0 : ctx,

G; D = G0; D0 -> forall tau' : type, term ((G0, tau'); D0) tau
H : term (G; D) tau
t, tau'0 : type
============================
term (((G, tau'0); D), t) tau

subgoal 2 is:
term ((G, tau'0); D) (tau --> tau')

subgoal 3 is:
term ((G, tau'0); D) tau'

Now concluding this subgoal is easy.

constructor; apply IHterm; reflexivity.

See also:
The induction, case, and inversion tactics.
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5.6.2 autorewrite

Here are two examples of autorewrite use. The first one ( Ackermann function) shows actually a quite basic use
where there is no conditional rewriting. The second one (Mac Carthy function) involves conditional rewritings and shows
how to deal with them using the optional tactic of the Hint Rewrite command.

Example: Ackermann function

Require Import Arith.

Parameter Ack : nat -> nat -> nat.

Axiom Ack0 : forall m:nat, Ack 0 m = S m.
Axiom Ack1 : forall n:nat, Ack (S n) 0 = Ack n 1.
Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m).

Hint Rewrite Ack0 Ack1 Ack2 : base0.

Lemma ResAck0 : Ack 3 2 = 29.
1 subgoal

============================
Ack 3 2 = 29

autorewrite with base0 using try reflexivity.
No more subgoals.

Example: MacCarthy function

Require Import Omega.

Parameter g : nat -> nat -> nat.

Axiom g0 : forall m:nat, g 0 m = m.
Axiom g1 : forall n m:nat, (n > 0) -> (m > 100) -> g n m = g (pred n) (m - 10).
Axiom g2 : forall n m:nat, (n > 0) -> (m <= 100) -> g n m = g (S n) (m + 11).

Hint Rewrite g0 g1 g2 using omega : base1.

Lemma Resg0 : g 1 110 = 100.

1 subgoal

============================
g 1 110 = 100

autorewrite with base1 using reflexivity || simpl.
No more subgoals.

Lemma Resg1 : g 1 95 = 91.
1 subgoal

(continues on next page)
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(continued from previous page)

============================
g 1 95 = 91

autorewrite with base1 using reflexivity || simpl.
No more subgoals.

5.7 The SSReflect proof language

Authors Georges Gonthier, Assia Mahboubi, Enrico Tassi

5.7.1 Introduction

This chapter describes a set of tactics known as SSReflect originally designed to provide support for the so-called small
scale reflection proof methodology. Despite the original purpose this set of tactic is of general interest and is available in
Coq starting from version 8.7.
SSReflect was developed independently of the tactics described in Chapter Tactics. Indeed the scope of the tactics part
of SSReflect largely overlaps with the standard set of tactics. Eventually the overlap will be reduced in future releases of
Coq.
Proofs written in SSReflect typically look quite different from the ones written using only tactics as per Chapter Tactics.
We try to summarise here the most “visible” ones in order to help the reader already accustomed to the tactics described
in Chapter Tactics to read this chapter.
The first difference between the tactics described in this chapter and the tactics described in Chapter Tactics is the way
hypotheses are managed (we call this bookkeeping). In Chapter Tactics the most common approach is to avoid moving
explicitly hypotheses back and forth between the context and the conclusion of the goal. On the contrary in SSReflect all
bookkeeping is performed on the conclusion of the goal, using for that purpose a couple of syntactic constructions behaving
similar to tacticals (and often named as such in this chapter). The : tactical moves hypotheses from the context to the
conclusion, while => moves hypotheses from the conclusion to the context, and in moves back and forth a hypothesis
from the context to the conclusion for the time of applying an action to it.
While naming hypotheses is commonly done by means of an as clause in the basic model of Chapter Tactics, it is here
to => that this task is devoted. Tactics frequently leave new assumptions in the conclusion, and are often followed by =>
to explicitly name them. While generalizing the goal is normally not explicitly needed in Chapter Tactics, it is an explicit
operation performed by :.
See also:
Bookkeeping

Beside the difference of bookkeeping model, this chapter includes specific tactics which have no explicit counterpart in
Chapter Tactics such as tactics to mix forward steps and generalizations as generally have or without loss.
SSReflect adopts the point of view that rewriting, definition expansion and partial evaluation participate all to a same
concept of rewriting a goal in a larger sense. As such, all these functionalities are provided by the rewrite tactic.
SSReflect includes a little language of patterns to select subterms in tactics or tacticals where it matters. Its most notable
application is in the rewrite tactic, where patterns are used to specify where the rewriting step has to take place.
Finally, SSReflect supports so-called reflection steps, typically allowing to switch back and forth between the computa-
tional view and logical view of a concept.
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To conclude it is worth mentioning that SSReflect tactics can be mixed with non SSReflect tactics in the same proof, or
in the same Ltac expression. The few exceptions to this statement are described in section Compatibility issues.
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5.7.2 Usage

Getting started

To be available, the tactics presented in this manual need the followingminimal set of libraries to be loaded: ssreflect.
v, ssrfun.v and ssrbool.v. Moreover, these tactics come with a methodology specific to the authors of SSReflect
and which requires a few options to be set in a different way than in their default way. All in all, this corresponds to
working in the following context:

From Coq Require Import ssreflect ssrfun ssrbool.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

See also:
Implicit Arguments, Strict Implicit, Printing Implicit Defensive

Compatibility issues

Requiring the above modules creates an environment which is mostly compatible with the rest of Coq, up to a few
discrepancies:

• New keywords (is) might clash with variable, constant, tactic or tactical names, or with quasi-keywords in tactic
or vernacular notations.

• New tactic(al)s names (last, done, have, suffices, suff, without loss, wlog, congr, unlock)
might clash with user tactic names.

• Identifiers with both leading and trailing _, such as _x_, are reserved by SSReflect and cannot appear in scripts.
• The extensions to the rewrite tactic are partly incompatible with those available in current versions of Coq; in
particular: rewrite .. in (type of k) or rewrite .. in * or any other variant of rewrite will
not work, and the SSReflect syntax and semantics for occurrence selection and rule chaining is different. Use an
explicit rewrite direction (rewrite <- … or rewrite -> …) to access the Coq rewrite tactic.

• New symbols (//, /=, //=) might clash with adjacent existing symbols. This can be avoided by inserting white
spaces.

• New constant and theorem names might clash with the user theory. This can be avoided by not importing all of
SSReflect:

From Coq Require ssreflect.
Import ssreflect.SsrSyntax.

Note that the full syntax of SSReflect’s rewrite and reserved identifiers are enabled only if the ssreflect module has
been required and if SsrSyntax has been imported. Thus a file that requires (without importing) ssreflect
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and imports SsrSyntax, can be required and imported without automatically enabling SSReflect’s extended
rewrite syntax and reserved identifiers.

• Some user notations (in particular, defining an infix ;) might interfere with the ”open term”, parenthesis free, syntax
of tactics such as have, set and pose.

• The generalization of if statements to non-Boolean conditions is turned off by SSReflect, because it is mostly sub-
sumed by Coercion to bool of the sumXXX types (declared in ssrfun.v) and the if term is pattern
then term else term construct (see Pattern conditional). To use the generalized form, turn off the SSRe-
flect Boolean if notation using the command: Close Scope boolean_if_scope.

• The following flags can be unset to make SSReflect more compatible with parts of Coq:
Flag: SsrRewrite

Controls whether the incompatible rewrite syntax is enabled (the default). Disabling the flag makes the syntax
compatible with other parts of Coq.

Flag: SsrIdents
Controls whether tactics can refer to SSReflect-generated variables that are in the form _xxx_. Scripts with explicit
references to such variables are fragile; they are prone to failure if the proof is later modified or if the details of
variable name generation change in future releases of Coq.
The default is on, which gives an error message when the user tries to create such identifiers. Disabling the flag
generates a warning instead, increasing compatibility with other parts of Coq.

5.7.3 Gallina extensions

Small-scale reflection makes an extensive use of the programming subset of Gallina, Coq’s logical specification language.
This subset is quite suited to the description of functions on representations, because it closely follows the well-established
design of the ML programming language. The SSReflect extension provides three additions to Gallina, for pattern assign-
ment, pattern testing, and polymorphism; these mitigate minor but annoying discrepancies between Gallina and ML.

Pattern assignment

The SSReflect extension provides the following construct for irrefutable pattern matching, that is, destructuring assign-
ment:
term += let: pattern := term in term

Note the colon : after the let keyword, which avoids any ambiguity with a function definition or Coq’s basic destruc-
turing let. The let: construct differs from the latter in that

• The pattern can be nested (deep pattern matching), in particular, this allows expression of the form:

let: exist (x, y) p_xy := Hp in … .

• The destructured constructor is explicitly given in the pattern, and is used for type inference.

Example

Definition f u := let: (m, n) := u in m + n.
f is defined

Check f.
f

: nat * nat -> nat
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Using let: Coq infers a type for f, whereas with a usual let the same term requires an extra type annotation in
order to type check.

Fail Definition f u := let (m, n) := u in m + n.
The command has indeed failed with message:
Cannot infer a type for this expression.

The let: construct is just (more legible) notation for the primitive Gallina expression match term with
pattern => term end.
The SSReflect destructuring assignment supports all the dependent match annotations; the full syntax is

term += let: pattern as ident
?

in pattern
?

:= term return term
?

in term

where the second pattern and the second term are types.
When the as and return keywords are both present, then ident is bound in both the second pattern and the
second term; variables in the optional type pattern are bound only in the second term, and other variables in the first
pattern are bound only in the third term, however.

Pattern conditional

The following construct can be used for a refutable pattern matching, that is, pattern testing:
term += if term is pattern then term else term

Although this construct is not strictly ML (it does exist in variants such as the pattern calculus or the ρ-calculus), it turns
out to be very convenient for writing functions on representations, because most such functions manipulate simple data
types such as Peano integers, options, lists, or binary trees, and the pattern conditional above is almost always the right
construct for analyzing such simple types. For example, the null and all list function(al)s can be defined as follows:

Example

Variable d: Set.
d is declared

Fixpoint null (s : list d) :=
if s is nil then true else false.
null is defined
null is recursively defined (decreasing on 1st argument)

Variable a : d -> bool.
a is declared

Fixpoint all (s : list d) : bool :=
if s is cons x s' then a x && all s' else true.
all is defined
all is recursively defined (decreasing on 1st argument)

The pattern conditional also provides a notation for destructuring assignment with a refutable pattern, adapted to the pure
functional setting of Gallina, which lacks a Match_Failure exception.
Likelet: above, theif…is construct is just (more legible) notation for the primitive Gallina expressionmatch term
with pattern => term | _ => term end.
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Similarly, it will always be displayed as the expansion of this form in terms of primitive match expressions (where the
default expression may be replicated).
Explicit pattern testing also largely subsumes the generalization of the if construct to all binary data types; compare if
term is inl _ then term else term and if term then term else term.
The latter appears to be marginally shorter, but it is quite ambiguous, and indeed often requires an explicit annotation
(term : {_} + {_}) to type check, which evens the character count.
Therefore, SSReflect restricts by default the condition of a plain if construct to the standard bool type; this avoids
spurious type annotations.

Example

Definition orb b1 b2 := if b1 then true else b2.
orb is defined

As pointed out in section Compatibility issues, this restriction can be removed with the command:
Close Scope boolean_if_scope.

Like let: above, the if-is-then-else construct supports the dependent match annotations:
term += if term is pattern as ident in pattern return term then term else term

As in let: the variable ident (and those in the type pattern) are bound in the second term; ident is also bound in
the third term (but not in the fourth term), while the variables in the first pattern are bound only in the third term.
Another variant allows to treat the else case first:
term += if term isn't pattern then term else term

Note that pattern eventually binds variables in the third term and not in the second term.

Parametric polymorphism

Unlike ML, polymorphism in core Gallina is explicit: the type parameters of polymorphic functions must be declared
explicitly, and supplied at each point of use. However, Coq provides two features to suppress redundant parameters:

• Sections are used to provide (possibly implicit) parameters for a set of definitions.
• Implicit arguments declarations are used to tell Coq to use type inference to deduce some parameters from the
context at each point of call.

The combination of these features provides a fairly good emulation of ML-style polymorphism, but unfortunately this
emulation breaks down for higher-order programming. Implicit arguments are indeed not inferred at all points of use, but
only at points of call, leading to expressions such as

Example

Definition all_null (s : list T) := all (@null T) s.
all_null is defined

Unfortunately, such higher-order expressions are quite frequent in representation functions, especially those which use
Coq’s Structures to emulate Haskell typeclasses.
Therefore, SSReflect provides a variant of Coq’s implicit argument declaration, which causes Coq to fill in some implicit
parameters at each point of use, e.g., the above definition can be written:
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Example

Prenex Implicits null.
Definition all_null (s : list T) := all null s.

all_null is defined

Better yet, it can be omitted entirely, since all_null s isn’t much of an improvement over all null s.
The syntax of the new declaration is

Command: Prenex Implicits identi
+

This command checks that each identi is the name of a functional constant, whose implicit arguments are prenex,
i.e., the first 𝑛𝑖 > 0 arguments of identi are implicit; then it assigns Maximal Implicit status to these
arguments.
As these prenex implicit arguments are ubiquitous and have often large display strings, it is strongly recommended
to change the default display settings of Coq so that they are not printed (except after a Set Printing All
command). All SSReflect library files thus start with the incantation

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Anonymous arguments

When in a definition, the type of a certain argument is mandatory, but not its name, one usually uses “arrow” abstractions
for prenex arguments, or the (_ : term) syntax for inner arguments. In SSReflect, the latter can be replaced by the
open syntax of term or (equivalently) & term, which are both syntactically equivalent to a (_ : term) expression.
This feature almost behaves as the following extension of the binder syntax:
binder += & term of term

Caveat: & T and of T abbreviations have to appear at the end of a binder list. For instance, the usual two-constructor
polymorphic type list, i.e. the one of the standard List library, can be defined by the following declaration:

Example

Inductive list (A : Type) : Type := nil | cons of A & list A.
list is defined
list_rect is defined
list_ind is defined
list_rec is defined
list_sind is defined

Wildcards

The terms passed as arguments to SSReflect tactics can contain holes, materialized by wildcards _. Since SSReflect allows
a more powerful form of type inference for these arguments, it enhances the possibilities of using such wildcards. These
holes are in particular used as a convenient shorthand for abstractions, especially in local definitions or type expressions.
Wildcards may be interpreted as abstractions (see for example sections Definitions and Structure), or their content can be
inferred from the whole context of the goal (see for example section Abbreviations).
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Definitions

pose
This tactic allows to add a defined constant to a proof context. SSReflect generalizes this tactic in several ways. In
particular, the SSReflect pose tactic supports open syntax: the body of the definition does not need surrounding
parentheses. For instance:

pose t := x + y.

is a valid tactic expression.
The pose tactic is also improved for the local definition of higher order terms. Local definitions of functions can use the
same syntax as global ones. For example, the tactic pose supports parameters:

Example

Lemma test : True.
1 subgoal

============================
True

pose f x y := x + y.
1 subgoal

f := fun x y : nat => x + y : nat -> nat -> nat
============================
True

The SSReflect pose tactic also supports (co)fixpoints, by providing the local counterpart of the Fixpoint f := …
and CoFixpoint f := … constructs. For instance, the following tactic:

pose fix f (x y : nat) {struct x} : nat :=
if x is S p then S (f p y) else 0.

defines a local fixpoint f, which mimics the standard plus operation on natural numbers.
Similarly, local cofixpoints can be defined by a tactic of the form:

pose cofix f (arg : T) := … .

The possibility to include wildcards in the body of the definitions offers a smooth way of defining local abstractions. The
type of “holes” is guessed by type inference, and the holes are abstracted. For instance the tactic:

pose f := _ + 1.

is shorthand for:

pose f n := n + 1.

When the local definition of a function involves both arguments and holes, hole abstractions appear first. For instance, the
tactic:

pose f x := x + _.

is shorthand for:
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pose f n x := x + n.

The interaction of the pose tactic with the interpretation of implicit arguments results in a powerful and concise syntax
for local definitions involving dependent types. For instance, the tactic:

pose f x y := (x, y).

adds to the context the local definition:

pose f (Tx Ty : Type) (x : Tx) (y : Ty) := (x, y).

The generalization of wildcards makes the use of the pose tactic resemble ML-like definitions of polymorphic functions.

Abbreviations

set ident : term
?

:= occ_switch
?

term
The SSReflect set tactic performs abbreviations: it introduces a defined constant for a subterm appearing in the
goal and/or in the context.
SSReflect extends the set tactic by supplying:

• an open syntax, similarly to the pose (ssreflect) tactic;
• a more aggressive matching algorithm;
• an improved interpretation of wildcards, taking advantage of the matching algorithm;
• an improved occurrence selection mechanism allowing to abstract only selected occurrences of a term.

occ_switch ::= { + -
?

num
*

}

where:
• ident is a fresh identifier chosen by the user.
• term 1 is an optional type annotation. The type annotation term 1 can be given in open syntax (no surrounding
parentheses). If no occ_switch (described hereafter) is present, it is also the case for the second term. On the
other hand, in presence of occ_switch, parentheses surrounding the second term are mandatory.

• In the occurrence switch occ_switch, if the first element of the list is a natural, this element should be a number,
and not an Ltac variable. The empty list {} is not interpreted as a valid occurrence switch, it is rather used as a
flag to signal the intent of the user to clear the name following it (see Occurrence switches and redex switches and
Introduction in the context)

The tactic:

Example

Lemma test x : f x + f x = f x.
1 subgoal

x : nat
============================
f x + f x = f x

set t := f _.
1 subgoal

(continues on next page)
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(continued from previous page)
x : nat
t := f x : nat
============================
t + t = t

set t := {2}(f _).
1 subgoal

x : nat
t := f x : nat
============================
f x + t = f x

The type annotation may contain wildcards, which will be filled with the appropriate value by the matching process.
The tactic first tries to find a subterm of the goal matching the second term (and its type), and stops at the first subterm
it finds. Then the occurrences of this subterm selected by the optional occ_switch are replaced by ident and a
definition ident := term is added to the context. If no occ_switch is present, then all the occurrences are
abstracted.

Matching

The matching algorithm compares a pattern term with a subterm of the goal by comparing their heads and then pairwise
unifying their arguments (modulo conversion). Head symbols match under the following conditions:

• If the head of term is a constant, then it should be syntactically equal to the head symbol of the subterm.
• If this head is a projection of a canonical structure, then canonical structure equations are used for the matching.
• If the head of term is not a constant, the subterm should have the same structure (λ abstraction, let…in structure
…).

• If the head of term is a hole, the subterm should have at least as many arguments as term.

Example

Lemma test (x y z : nat) : x + y = z.
1 subgoal

x, y, z : nat
============================
x + y = z

set t := _ x.
1 subgoal

x, y, z : nat
t := Nat.add x : nat -> nat
============================
t y = z

• In the special case where term is of the form (let f := t0 in f) t1 … tn , then the pattern term
is treated as (_ t1 … tn). For each subterm in the goal having the form (A u1 … um) with m ≥ n, the
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matching algorithm successively tries to find the largest partial application (A u1 … uj) convertible to the head
t0 of term.

Example

Lemma test : (let f x y z := x + y + z in f 1) 2 3 = 6.
1 subgoal

============================
(let f := fun x y z : nat => x + y + z in f 1) 2 3 = 6

set t := (let g y z := S y + z in g) 2.
1 subgoal

t := unkeyed (fun y z : nat => S y + z) 2 : nat -> nat
============================
t 3 = 6

The notation unkeyed defined in ssreflect.v is a shorthand for the degenerate term let x := … in x.
Moreover:

• Multiple holes in term are treated as independent placeholders.

Example

Lemma test x y z : x + y = z.
1 subgoal

x, y, z : nat
============================
x + y = z

set t := _ + _.
1 subgoal

x, y, z : nat
t := x + y : nat
============================
t = z

• The type of the subterm matched should fit the type (possibly casted by some type annotations) of the pattern
term.

• The replacement of the subterm found by the instantiated pattern should not capture variables. In the example
above x is bound and should not be captured.

Example

Lemma test : forall x : nat, x + 1 = 0.
1 subgoal

============================
forall x : nat, x + 1 = 0

(continues on next page)
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(continued from previous page)
Fail set t := _ + 1.

The command has indeed failed with message:
The pattern (_ + 1) did not match and has holes. Did you mean pose?

• Typeclass inference should fill in any residual hole, but matching should never assign a value to a global existential
variable.

Occurrence selection

SSReflect provides a generic syntax for the selection of occurrences by their position indexes. These occurrence switches
are shared by all SSReflect tactics which require control on subterm selection like rewriting, generalization, …
An occurrence switch can be:

• A list natural numbers {+ n1 … nm} of occurrences affected by the tactic.

Example

Lemma test : f 2 + f 8 = f 2 + f 2.
1 subgoal

============================
f 2 + f 8 = f 2 + f 2

set x := {+1 3}(f 2).
1 subgoal

x := f 2 : nat
============================
x + f 8 = f 2 + x

Notice that some occurrences of a given term may be hidden to the user, for example because of a notation. The
vernacular Set Printing All command displays all these hidden occurrences and should be used to find the
correct coding of the occurrences to be selected298.

Example

Notation "a < b":= (le (S a) b).
Lemma test x y : x < y -> S x < S y.

1 subgoal

x, y : nat
============================
x < y -> S x < S y

set t := S x.
1 subgoal

x, y : nat

(continues on next page)
298 Unfortunately, even after a call to the Set Printing All command, some occurrences are still not displayed to the user, essentially the ones possibly

hidden in the predicate of a dependent match structure.
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(continued from previous page)
t := S x : nat
============================
t <= y -> t < S y

• A list of natural numbers between {n1 … nm}. This is equivalent to the previous {+ n1 … nm} but the list
should start with a number, and not with an Ltac variable.

• A list {- n1 … nm} of occurrences not to be affected by the tactic.

Example

Lemma test : f 2 + f 8 = f 2 + f 2.
1 subgoal

============================
f 2 + f 8 = f 2 + f 2

set x := {-2}(f 2).
1 subgoal

x := f 2 : nat
============================
x + f 8 = f 2 + x

Note that, in this goal, it behaves like set x := {1 3}(f 2).

• In particular, the switch {+} selects all the occurrences. This switch is useful to turn off the default behavior of a
tactic which automatically clears some assumptions (see section Discharge for instance).

• The switch {-} imposes that no occurrences of the term should be affected by the tactic. The tactic: set x :=
{-}(f 2). leaves the goal unchanged and adds the definition x := f 2 to the context. This kind of tactic may
be used to take advantage of the power of the matching algorithm in a local definition, instead of copying large
terms by hand.

It is important to remember that matching precedes occurrence selection.

Example

Lemma test x y z : x + y = x + y + z.
1 subgoal

x, y, z : nat
============================
x + y = x + y + z

set a := {2}(_ + _).
1 subgoal

x, y, z : nat
a := x + y : nat
============================
x + y = a + z

Hence, in the following goal, the same tactic fails since there is only one occurrence of the selected term.
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Example

Lemma test x y z : (x + y) + (z + z) = z + z.
1 subgoal

x, y, z : nat
============================
x + y + (z + z) = z + z

Fail set a := {2}(_ + _).
The command has indeed failed with message:
Only 1 < 2 occurrence of (x + y + (z + z))

Basic localization

It is possible to define an abbreviation for a term appearing in the context of a goal thanks to the in tactical.

Variant: set ident := term in ident
+

This variant of set (ssreflect) introduces a defined constant called ident in the context, and
folds it in the context entries mentioned on the right hand side of in. The body of ident is the first
subterm matching these context entries (taken in the given order).

Example

Lemma test x t (Hx : x = 3) : x + t = 4.
1 subgoal

x, t : nat
Hx : x = 3
============================
x + t = 4

set z := 3 in Hx.
1 subgoal

x, t : nat
z := 3 : nat
Hx : x = z
============================
x + t = 4

Variant: set ident := term in ident
+

*

This variant matches term and then folds ident similarly in all the given context entries but also folds
ident in the goal.

Example

Lemma test x t (Hx : x = 3) : x + t = 4.
1 subgoal

(continues on next page)
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(continued from previous page)
x, t : nat
Hx : x = 3
============================
x + t = 4

set z := 3 in Hx * .
1 subgoal

x, t : nat
z := 3 : nat
Hx : x = z
============================
x + t = S z

Indeed, remember that 4 is just a notation for (S 3).

The use of the in tactical is not limited to the localization of abbreviations: for a complete description of the in tactical,
see section Bookkeeping and Localization.

5.7.4 Basic tactics

A sizable fraction of proof scripts consists of steps that do not ”prove” anything new, but instead perform menial book-
keeping tasks such as selecting the names of constants and assumptions or splitting conjuncts. Although they are logically
trivial, bookkeeping steps are extremely important because they define the structure of the data-flow of a proof script.
This is especially true for reflection-based proofs, which often involve large numbers of constants and assumptions. Good
bookkeeping consists in always explicitly declaring (i.e., naming) all new constants and assumptions in the script, and sys-
tematically pruning irrelevant constants and assumptions in the context. This is essential in the context of an interactive
development environment (IDE), because it facilitates navigating the proof, allowing to instantly ”jump back” to the point
at which a questionable assumption was added, and to find relevant assumptions by browsing the pruned context. While
novice or casual Coq users may find the automatic name selection feature convenient, the usage of such a feature severely
undermines the readability and maintainability of proof scripts, much like automatic variable declaration in programming
languages. The SSReflect tactics are therefore designed to support precise bookkeeping and to eliminate name generation
heuristics. The bookkeeping features of SSReflect are implemented as tacticals (or pseudo-tacticals), shared across most
SSReflect tactics, and thus form the foundation of the SSReflect proof language.

Bookkeeping

During the course of a proof Coq always present the user with a sequent whose general form is:

ci : Ti
…
dj := ej : Tj
…
Fk : Pk
…
=================
forall (xl : Tl) …,
let ym := bm in … in
Pn -> … -> C

The goal to be proved appears below the double line; above the line is the context of the sequent, a set of declarations of
constants ci , defined constants dj , and facts Fk that can be used to prove the goal (usually, Ti , Tj : Type and Pk
: Prop). The various kinds of declarations can come in any order. The top part of the context consists of declarations
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produced by the Section commands Variable, Let, and Hypothesis. This section context is never affected by
the SSReflect tactics: they only operate on the lower part — the proof context. As in the figure above, the goal often
decomposes into a series of (universally) quantified variables (xl : Tl), local definitions let ym := bm in, and
assumptions P n ->, and a conclusion C (as in the context, variables, definitions, and assumptions can appear in any
order). The conclusion is what actually needs to be proved — the rest of the goal can be seen as a part of the proof
context that happens to be “below the line”.
However, although they are logically equivalent, there are fundamental differences between constants and facts on the one
hand, and variables and assumptions on the others. Constants and facts are unordered, but named explicitly in the proof
text; variables and assumptions are ordered, but unnamed: the display names of variables may change at any time because
of α-conversion.
Similarly, basic deductive steps such as apply can only operate on the goal because the Gallina terms that control their
action (e.g., the type of the lemma used by apply) only provide unnamed bound variables.299 Since the proof script
can only refer directly to the context, it must constantly shift declarations from the goal to the context and conversely in
between deductive steps.
In SSReflect these moves are performed by two tacticals => and :, so that the bookkeeping required by a deductive
step can be directly associated to that step, and that tactics in an SSReflect script correspond to actual logical steps in
the proof rather than merely shuffle facts. Still, some isolated bookkeeping is unavoidable, such as naming variables and
assumptions at the beginning of a proof. SSReflect provides a specific move tactic for this purpose.
Now move does essentially nothing: it is mostly a placeholder for => and :. The => tactical moves variables, local
definitions, and assumptions to the context, while the : tactical moves facts and constants to the goal.

Example
For example, the proof of300

Lemma subnK : forall m n, n <= m -> m - n + n = m.
1 subgoal

============================
forall m n : nat, n <= m -> m - n + n = m

might start with

move=> m n le_n_m.
1 subgoal

m, n : nat
le_n_m : n <= m
============================
m - n + n = m

where move does nothing, but => m n le_m_n changes the variables and assumption of the goal in the constants m
n : nat and the fact le_n_m : n <= m, thus exposing the conclusion m - n + n = m.
The : tactical is the converse of =>, indeed it removes facts and constants from the context by turning them into variables
and assumptions.

move: m le_n_m.
1 subgoal

n : nat

(continues on next page)
299 Thus scripts that depend on bound variable names, e.g., via intros or with, are inherently fragile.
300 The name subnK reads as “right cancellation rule for nat subtraction”.
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(continued from previous page)
============================
forall m : nat, n <= m -> m - n + n = m

turns back m and le_m_n into a variable and an assumption, removing them from the proof context, and changing the
goal to forall m, n <= m -> m - n + n = m which can be proved by induction on n using elim: n.

Because they are tacticals, : and => can be combined, as in

move: m le_n_m => p le_n_p.

simultaneously renames m and le_m_n into p and le_n_p, respectively, by first turning them into unnamed variables,
then turning these variables back into constants and facts.
Furthermore, SSReflect redefines the basic Coq tactics case, elim, and apply so that they can take better advantage
of : and =>. In there SSReflect variants, these tactic operate on the first variable or constant of the goal and they do not
use or change the proof context. The : tactical is used to operate on an element in the context.

Example
For instance the proof of subnK could continue with elim: n. Instead of elim n (note, no colon), this
has the advantage of removing n from the context. Better yet, thiselim can be combined with previous move
and with the branching version of the => tactical (described in Introduction in the context), to encapsulate
the inductive step in a single command:

Lemma subnK : forall m n, n <= m -> m - n + n = m.
1 subgoal

============================
forall m n : nat, n <= m -> m - n + n = m

move=> m n le_n_m.
1 subgoal

m, n : nat
le_n_m : n <= m
============================
m - n + n = m

elim: n m le_n_m => [|n IHn] m => [_ | lt_n_m].
2 subgoals

m : nat
============================
m - 0 + 0 = m

subgoal 2 is:
m - S n + S n = m

which breaks down the proof into two subgoals, the second one having in its context lt_n_m : S n <= m and IHn
: forall m, n <= m -> m - n + n = m.

The : and => tacticals can be explained very simply if one views the goal as a stack of variables and assumptions piled
on a conclusion:

• tactic : a b c pushes the context constants a, b, c as goal variables before performing tactic.
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• tactic => a b c pops the top three goal variables as context constants a, b, c, after tactic has been per-
formed.

These pushes and pops do not need to balance out as in the examples above, so move: m le_n_m => p would
rename m into p, but leave an extra assumption n <= p in the goal.
Basic tactics like apply and elim can also be used without the ’:’ tactical: for example we can directly start a proof of
subnK by induction on the top variable m with

elim=> [|m IHm] n le_n.

The general form of the localization tactical in is also best explained in terms of the goal stack:

tactic in a H1 H2 *.

is basically equivalent to

move: a H1 H2; tactic => a H1 H2.

with two differences: the in tactical will preserve the body of an if a is a defined constant, and if the * is omitted it will
use a temporary abbreviation to hide the statement of the goal from tactic.
The general form of the in tactical can be used directly with the move, case and elim tactics, so that one can write

elim: n => [|n IHn] in m le_n_m *.

instead of

elim: n m le_n_m => [|n IHn] m le_n_m.

This is quite useful for inductive proofs that involve many facts.
See section Localization for the general syntax and presentation of the in tactical.

The defective tactics

In this section we briefly present the three basic tactics performing context manipulations and the main backward chaining
tool.

The move tactic.

move
This tactic, in its defective form, behaves like the hnf tactic.

Example

Require Import ssreflect.
Goal not False.

1 subgoal

============================
~ False

move.
1 subgoal

(continues on next page)
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(continued from previous page)
============================
False -> False

More precisely, the move tactic inspects the goal and does nothing (idtac) if an introduction step is possible, i.e.
if the goal is a product or a let … in, and performs hnf otherwise.
Of course this tactic is most often used in combination with the bookkeeping tacticals (see section Introduction in
the context andDischarge). These combinations mostly subsume theintros, generalize, revert, rename,
clear and pattern tactics.

The case tactic

case
This tactic performs primitive case analysis on (co)inductive types; specifically, it destructs the top variable or
assumption of the goal, exposing its constructor(s) and its arguments, as well as setting the value of its type family
indices if it belongs to a type family (see section Type families).
The SSReflect case tactic has a special behavior on equalities. If the top assumption of the goal is an equality, the
case tactic “destructs” it as a set of equalities between the constructor arguments of its left and right hand sides, as
per the tactic injection. For example, case changes the goal:

(x, y) = (1, 2) -> G.

into:

x = 1 -> y = 2 -> G.

Note also that the case of SSReflect performs False elimination, even if no branch is generated by this case
operation. Hence the tactic case on a goal of the form False -> G will succeed and prove the goal.

The elim tactic

elim
This tactic performs inductive elimination on inductive types. In its defective form, the tactic performs inductive
elimination on a goal whose top assumption has an inductive type.

Example

Lemma test m : forall n : nat, m <= n.
1 subgoal

m : nat
============================
forall n : nat, m <= n

elim.
2 subgoals

m : nat
============================
m <= 0

(continues on next page)
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(continued from previous page)
subgoal 2 is:
forall n : nat, m <= n -> m <= S n

The apply tactic

apply term
?

This is the main backward chaining tactic of the proof system. It takes as argument any term and applies it to the
goal. Assumptions in the type of term that don’t directly match the goal may generate one or more subgoals.
In its defective form, this tactic is a synonym for:

intro top; first [refine top | refine (top _) | refine (top _ _) | …]; clear top.

where top is a fresh name, and the sequence of refine tactics tries to catch the appropriate number of wildcards
to be inserted. Note that this use of the refine tactic implies that the tactic tries to match the goal up to expansion
of constants and evaluation of subterms.

apply (ssreflect) has a special behavior on goals containing existential metavariables of sort Prop.

Example

Lemma test : forall y, 1 < y -> y < 2 -> exists x : { n | n < 3 }, 0 < proj1_sig x.
1 subgoal

============================
forall y : nat,
1 < y -> y < 2 -> exists x : {n : nat | n < 3}, 0 < proj1_sig x

move=> y y_gt1 y_lt2; apply: (ex_intro _ (exist _ y _)).
2 focused subgoals
(shelved: 2)

y : nat
y_gt1 : 1 < y
y_lt2 : y < 2
============================
y < 3

subgoal 2 is:
forall Hyp0 : y < 3, 0 < proj1_sig (exist (fun n : nat => n < 3) y Hyp0)

by apply: lt_trans y_lt2 _.
1 focused subgoal
(shelved: 1)

y : nat
y_gt1 : 1 < y
y_lt2 : y < 2
============================
forall Hyp0 : y < 3, 0 < proj1_sig (exist (fun n : nat => n < 3) y Hyp0)

by move=> y_lt3; apply: lt_trans y_gt1.
No more subgoals.
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Note that the last _ of the tactic apply: (ex_intro _ (exist _ y _)) represents a proof that y < 3. In-
stead of generating the goal:

0 < proj1_sig (exist (fun n : nat => n < 3) y ?Goal).

the system tries to prove y < 3 calling the trivial tactic. If it succeeds, let’s say because the context contains H : y <
3, then the system generates the following goal:

0 < proj1_sig (exist (fun n => n < 3) y H).

Otherwise the missing proof is considered to be irrelevant, and is thus discharged generating the two goals shown above.
Last, the user can replace the trivial tactic by defining an Ltac expression named ssrautoprop.

Discharge

The general syntax of the discharging tactical : is:

tactic ident
?

: d_item
+

clear_switch
?

d_item ::= occ_switch clear_switch
?

term

clear_switch ::= { ident
+

}

with the following requirements:
• tactic must be one of the four basic tactics described in The defective tactics, i.e., move, case, elim or
apply, the exact tactic (section Terminators), the congr tactic (section Congruence), or the application of the
view tactical ‘/’ (section Interpreting assumptions) to one of move, case, or elim.

• The optional ident specifies equation generation (section Generation of equations), and is only allowed if tactic
is move, case or elim, or the application of the view tactical ‘/’ (section Interpreting assumptions) to case or
elim.

• An occ_switch selects occurrences of term, as in Abbreviations; occ_switch is not allowed if tactic is
apply or exact.

• A clear item clear_switch specifies facts and constants to be deleted from the proof context (as per the clear
tactic).

The : tactical first discharges all the d_item, right to left, and then performs tactic, i.e., for each d_item, starting with
the last one :

1. The SSReflect matching algorithm described in section Abbreviations is used to find occurrences of term in the
goal, after filling any holes ‘_’ in term; however if tactic is apply or exact a different matching algorithm, described
below, is used301.

2. These occurrences are replaced by a new variable; in particular, if term is a fact, this adds an assumption to the
goal.

3. If term is exactly the name of a constant or fact in the proof context, it is deleted from the context, unless there is
an occ_switch.

Finally, tactic is performed just after the first d_item has been generalized— that is, between steps 2 and 3. The names
listed in the final clear_switch (if it is present) are cleared first, before d_item n is discharged.
Switches affect the discharging of a d_item as follows:
301 Also, a slightly different variant may be used for the first d_item of case and elim; see section Type families.
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• An occ_switch restricts generalization (step 2) to a specific subset of the occurrences of term, as per section
Abbreviations, and prevents clearing (step 3).

• All the names specified by a clear_switch are deleted from the context in step 3, possibly in addition to term.
For example, the tactic:

move: n {2}n (refl_equal n).

• first generalizes (refl_equal n : n = n);
• then generalizes the second occurrence of n.
• finally generalizes all the other occurrences of n, and clears n from the proof context (assuming n is a proof
constant).

Therefore this tactic changes any goal G into

forall n n0 : nat, n = n0 -> G.

where the name n0 is picked by the Coq display function, and assuming n appeared only in G.
Finally, note that a discharge operation generalizes defined constants as variables, and not as local definitions. To override
this behavior, prefix the name of the local definition with a @, like in move: @n.
This is in contrast with the behavior of the in tactical (see section Localization), which preserves local definitions by
default.

Clear rules

The clear step will fail if term is a proof constant that appears in other facts; in that case either the facts should be
cleared explicitly with a clear_switch, or the clear step should be disabled. The latter can be done by adding an
occ_switch or simply by putting parentheses around term: both move: (n). and move: {+}n. generalize n
without clearing n from the proof context.
The clear step will also fail if the clear_switch contains a ident that is not in the proof context. Note that SSReflect
never clears a section constant.
If tactic is move or case and an equation ident is given, then clear (step 3) for d_item is suppressed (see section
Generation of equations).
Intro patterns (see section Introduction in the context) and the rewrite tactic (see section Rewriting) let one place a
clear_switch in the middle of other items (namely identifiers, views and rewrite rules). This can trigger the addition
of proof context items to the ones being explicitly cleared, and in turn this can result in clear errors (e.g. if the context
item automatically added occurs in the goal). The relevant sections describe ways to avoid the unintended clear of context
items.

Matching for apply and exact

The matching algorithm for d_item of the SSReflect apply and exact tactics exploits the type of the first d_item to
interpret wildcards in the other d_item and to determine which occurrences of these should be generalized. Therefore,
occur switches are not needed for apply and exact.
Indeed, the SSReflect tactic apply: H x is equivalent to refine (@H _ … _ x); clear H x with an appro-
priate number of wildcards between H and x.
Note that this means that matching for apply and exact has much more context to interpret wildcards; in particular it
can accommodate the _ d_item, which would always be rejected after move:.
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Example

Lemma test (Hfg : forall x, f x = g x) a b : f a = g b.
1 subgoal

Hfg : forall x : nat, f x = g x
a, b : nat
============================
f a = g b

apply: trans_equal (Hfg _) _.
1 focused subgoal
(shelved: 1)

Hfg : forall x : nat, f x = g x
a, b : nat
============================
g a = g b

This tactic is equivalent (see section Bookkeeping) to: refine (trans_equal (Hfg _) _). and this is a com-
mon idiom for applying transitivity on the left hand side of an equation.

The abstract tactic

abstract: d_item
+

This tactic assigns an abstract constant previously introduced with the [: ident ] intro pattern (see section
Introduction in the context).

In a goal like the following:

m : nat
abs : <hidden>
n : nat
=============
m < 5 + n

The tactic abstract: abs n first generalizes the goal with respect to n (that is not visible to the abstract constant
abs) and then assigns abs. The resulting goal is:

m : nat
n : nat
=============
m < 5 + n

Once this subgoal is closed, all other goals having abs in their context see the type assigned to abs. In this case:

m : nat
abs : forall n, m < 5 + n
=============
…

For a more detailed example the reader should refer to section Structure.
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Introduction in the context

The application of a tactic to a given goal can generate (quantified) variables, assumptions, or definitions, which the user
may want to introduce as new facts, constants or defined constants, respectively. If the tactic splits the goal into several
subgoals, each of them may require the introduction of different constants and facts. Furthermore it is very common
to immediately decompose or rewrite with an assumption instead of adding it to the context, as the goal can often be
simplified and even proved after this.
All these operations are performed by the introduction tactical =>, whose general syntax is

tactic => i_item
+

i_item ::= i_pattern s_item clear_switch i_view i_block

s_item ::= /= // //=

i_view ::= {}
?

/term /ltac:( tactic )

i_pattern ::= ident > _ ? * + occ_switch
?

-> <- [ i_item
?

|
] - [: ident

+
]

i_block ::= [^ ident ] [^~ ident num ]

The => tactical first executes tactic, then the i_items, left to right. An s_item specifies a simplification operation;
a clear_switch specifies context pruning as inDischarge. The i_patterns can be seen as a variant of intro patterns
(see intros:) each performs an introduction operation, i.e., pops some variables or assumptions from the goal.

Simplification items

An s_item can simplify the set of subgoals or the subgoals themselves:
• // removes all the “trivial” subgoals that can be resolved by the SSReflect tactic done described in Terminators,
i.e., it executes try done.

• /= simplifies the goal by performing partial evaluation, as per the tactic simpl302.
• //= combines both kinds of simplification; it is equivalent to /= //, i.e., simpl; try done.

When an s_item immediately precedes a clear_switch, then the clear_switch is executed after the s_item,
e.g., {IHn}//will solve some subgoals, possibly using the factIHn, andwill eraseIHn from the context of the remaining
subgoals.

Views

The first entry in the i_view grammar rule, /term, represents a view (see section Views and reflection). It interprets
the top of the stack with the view term. It is equivalent to move/term.
A clear_switch that immediately precedes an i_view is complemented with the name of the view if an only if
the i_view is a simple proof context entry307. E.g. {}/v is equivalent to /v{v}. This behavior can be avoided by
separating the clear_switch from the i_view with the - intro pattern or by putting parentheses around the view.
A clear_switch that immediately precedes an i_view is executed after the view application.
If the next i_item is a view, then the view is applied to the assumption in top position once all the previous i_item
have been performed.
302 Except /= does not expand the local definitions created by the SSReflect in tactical.
307 A simple proof context entry is a naked identifier (i.e. not between parentheses) designating a context entry that is not a section variable.
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The second entry in the i_view grammar rule, /ltac:( tactic ), executes tactic. Notations can be used to
name tactics, for example

Notation "'myop'" := (ltac:(my ltac code)) : ssripat_scope.

lets one write just /myop in the intro pattern. Note the scope annotation: views are interpreted opening the ssripat
scope.

Intro patterns

SSReflect supports the following i_patterns:
ident pops the top variable, assumption, or local definition into a new constant, fact, or defined constant ident,

respectively. Note that defined constants cannot be introduced when δ-expansion is required to expose the top vari-
able or assumption. A clear_switch (even an empty one) immediately preceding an ident is complemented
with that ident if and only if the identifier is a simple proof context entry307. As a consequence by prefixing the
ident with {} one can replace a context entry. This behavior can be avoided by separating the clear_switch
from the ident with the - intro pattern.

> pops every variable occurring in the rest of the stack. Type class instances are popped even if they don’t occur in the
rest of the stack. The tactic move=> > is equivalent to move=> ? ? on a goal such as:

forall x y, x < y -> G

A typical use if move=>> H to name H the first assumption, in the example above x < y.
? pops the top variable into an anonymous constant or fact, whose name is picked by the tactic interpreter. SSReflect

only generates names that cannot appear later in the user script303.
_ pops the top variable into an anonymous constant that will be deleted from the proof context of all the subgoals produced

by the => tactical. They should thus never be displayed, except in an error message if the constant is still actually
used in the goal or context after the last i_item has been executed (s_item can erase goals or terms where the
constant appears).

* pops all the remaining apparent variables/assumptions as anonymous constants/facts. Unlike ? and move the *
i_item does not expand definitions in the goal to expose quantifiers, so it may be useful to repeat a move=> *
tactic, e.g., on the goal:

forall a b : bool, a <> b

a first move=> * adds only _a_ : bool and _b_ : bool to the context; it takes a second move=> * to
add _Hyp_ : _a_ = _b_.

+ temporarily introduces the top variable. It is discharged at the end of the intro pattern. For example move=> + y
on a goal:

forall x y, P

is equivalent to move=> _x_ y; move: _x_ that results in the goal:

forall x, P

occ_switch
?

-> (resp. occ_switch <-) pops the top assumption (which should be a rewritable proposition)
into an anonymous fact, rewrites (resp. rewrites right to left) the goal with this fact (using the SSReflect rewrite
tactic described in section Rewriting, and honoring the optional occurrence selector), and finally deletes the anony-
mous fact from the context.

303 SSReflect reserves all identifiers of the form “_x_”, which is used for such generated names.
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[ i_item * | … | i_item * ] when it is the very first i_pattern after tactic => tactical and tactic is not a
move, is a branchingi_pattern. It executes the sequence i_item𝑖 on the i-th subgoal produced by tactic. The
execution of tactic should thus generate exactly m subgoals, unless the […] i_pattern comes after an initial
// or //= s_item that closes some of the goals produced by tactic, in which case exactly m subgoals should
remain after the s_item, or we have the trivial branching i_pattern [], which always does nothing, regardless
of the number of remaining subgoals.

[ i_item * | … | i_item * ] when it is not the first i_pattern or when tactic is a move, is a destructing
i_pattern. It starts by destructing the top variable, using the SSReflect case tactic described in The de-
fective tactics. It then behaves as the corresponding branching i_pattern, executing the sequence i_itemi in
the i-th subgoal generated by the case analysis; unless we have the trivial destructing i_pattern [], the latter
should generate exactly m subgoals, i.e., the top variable should have an inductive type with exactly m construc-
tors304. While it is good style to use the i_item i * to pop the variables and assumptions corresponding to each
constructor, this is not enforced by SSReflect.

- does nothing, but counts as an intro pattern. It can also be used to force the interpretation of [ i_item * | … |
i_item * ] as a case analysis like in move=> -[H1 H2]. It can also be used to indicate explicitly the link
between a view and a name like in move=> /eqP-H1. Last, it can serve as a separator between views. Section
Views and reflection306 explains in which respect the tactic move=> /v1/v2 differs from the tactic move=>
/v1-/v2.

[: ident …] introduces in the context an abstract constant for each ident. Its type has to be fixed later on by using
the abstract tactic. Before then the type displayed is <hidden>.

Note that SSReflect does not support the syntax (ipat, …, ipat) for destructing intro patterns.

Clear switch

Clears are deferred until the end of the intro pattern.

Example

Lemma test x y : Nat.leb 0 x = true -> (Nat.leb 0 x) && (Nat.leb y 2) = true.
1 subgoal

x, y : nat
============================
Nat.leb 0 x = true -> Nat.leb 0 x && Nat.leb y 2 = true

move=> {x} ->.
1 subgoal

y : nat
============================
true && Nat.leb y 2 = true

If the cleared names are reused in the same intro pattern, a renaming is performed behind the scenes.
Facts mentioned in a clear switch must be valid names in the proof context (excluding the section context).

304 More precisely, it should have a quantified inductive type with a assumptions and m − a constructors.
306 The current state of the proof shall be displayed by the Show Proof command of Coq proof mode.
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Branching and destructuring

The rules for interpreting branching and destructing i_pattern are motivated by the fact that it would be pointless to
have a branching pattern if tactic is a move, and in most of the remaining cases tactic is case or elim, which implies
destruction. The rules above imply that:

• move=> [a b].

• case=> [a b].

• case=> a b.

are all equivalent, so which one to use is a matter of style; move should be used for casual decomposition, such as splitting
a pair, and case should be used for actual decompositions, in particular for type families (see Type families) and proof
by contradiction.
The trivial branching i_pattern can be used to force the branching interpretation, e.g.:

• case=> [] [a b] c.

• move=> [[a b] c].

• case; case=> a b c.

are all equivalent.

Block introduction

SSReflect supports the following i_blocks:
[^ ident ] block destructing i_pattern. It performs a case analysis on the top variable and introduces, in one

go, all the variables coming from the case analysis. The names of these variables are obtained by taking the names
used in the inductive type declaration and prefixing them with ident. If the intro pattern immediately follows a
call to elim with a custom eliminator (see Interpreting eliminations) then the names are taken from the ones used
in the type of the eliminator.

Example

Record r := { a : nat; b := (a, 3); _ : bool; }.
r is defined
a is defined
b is defined

Lemma test : r -> True.
1 subgoal

============================
r -> True

Proof.
move => [^ x ].

1 subgoal

xa : nat
xb := (xa, 3) : nat * nat
_x?_ : bool
============================
True
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[^~ ident ] block destructing using ident as a suffix.
[^~ num ] block destructing using num as a suffix.

Only a s_item is allowed between the elimination tactic and the block destructing.

Generation of equations

The generation of named equations option stores the definition of a new constant as an equation. The tactic:

move En: (size l) => n.

where l is a list, replaces size l by n in the goal and adds the fact En : size l = n to the context. This is quite
different from:

pose n := (size l).

which generates a definition n := (size l). It is not possible to generalize or rewrite such a definition; on the other
hand, it is automatically expanded during computation, whereas expanding the equation En requires explicit rewriting.
The use of this equation name generation option with a case or an elim tactic changes the status of the first i_item,
in order to deal with the possible parameters of the constants introduced.

Example

Lemma test (a b :nat) : a <> b.
1 subgoal

a, b : nat
============================
a <> b

case E : a => [|n].
2 subgoals

a, b : nat
E : a = 0
============================
0 <> b

subgoal 2 is:
S n <> b

If the user does not provide a branching i_item as first i_item, or if the i_item does not provide enough names
for the arguments of a constructor, then the constants generated are introduced under fresh SSReflect names.

Example

Lemma test (a b :nat) : a <> b.
1 subgoal

a, b : nat
============================

(continues on next page)
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(continued from previous page)
a <> b

case E : a => H.
2 subgoals

a, b : nat
E : a = 0
H : 0 = b
============================
False

subgoal 2 is:
False

Show 2.
subgoal 2 is:

a, b, _n_ : nat
E : a = S _n_
H : S _n_ = b
============================
False

Combining the generation of named equations mechanism with the case tactic strengthens the power of a case analysis.
On the other hand, when combined with the elim tactic, this feature is mostly useful for debug purposes, to trace the
values of decomposed parameters and pinpoint failing branches.

Type families

When the top assumption of a goal has an inductive type, two specific operations are possible: the case analysis performed
by thecase tactic, and the application of an induction principle, performed by theelim tactic. When this top assumption
has an inductive type, which is moreover an instance of a type family, Coq may need help from the user to specify which
occurrences of the parameters of the type should be substituted.

Variant: case: d_item
+

/ d_item
+

Variant: elim: d_item
+

/ d_item
+

A specific / switch indicates the type family parameters of the type of a d_item immediately following this /
switch. The d_item on the right side of the / switch are discharged as described in section Discharge. The case
analysis or elimination will be done on the type of the top assumption after these discharge operations.
Every d_item preceding the / is interpreted as arguments of this type, which should be an instance of an inductive
type family. These terms are not actually generalized, but rather selected for substitution. Occurrence switches can
be used to restrict the substitution. If a term is left completely implicit (e.g. writing just _), then a pattern is inferred
looking at the type of the top assumption. This allows for the compact syntax:

case: {2}_ / eqP.

where _ is interpreted as (_ == _) since eqP T a b : reflect (a = b) (a == b) and reflect is a
type family with one index.
Moreover if the d_item list is too short, it is padded with an initial sequence of _ of the right length.

Example
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Here is a small example on lists. We define first a function which adds an element at the end of a given list.

Require Import List.
Section LastCases.
Variable A : Type.

A is declared

Implicit Type l : list A.
Fixpoint add_last a l : list A :=
match l with

| nil => a :: nil
| hd :: tl => hd :: (add_last a tl) end.

add_last is defined
add_last is recursively defined (decreasing on 2nd argument)

Then we define an inductive predicate for case analysis on lists according to their last element:

Inductive last_spec : list A -> Type :=
| LastSeq0 : last_spec nil
| LastAdd s x : last_spec (add_last x s).

last_spec is defined
last_spec_rect is defined
last_spec_ind is defined
last_spec_rec is defined
last_spec_sind is defined

Theorem lastP : forall l : list A, last_spec l.
1 subgoal

A : Type
============================
forall l : list A, last_spec l

Admitted.
lastP is declared

We are now ready to use lastP in conjunction with case.

Lemma test l : (length l) * 2 = length (l ++ l).
1 subgoal

A : Type
l : list A
============================
length l * 2 = length (l ++ l)

case: (lastP l).
2 subgoals

A : Type
l : list A
============================
length nil * 2 = length (nil ++ nil)

subgoal 2 is:
forall (s : list A) (x : A),
length (add_last x s) * 2 = length (add_last x s ++ add_last x s)

Applied to the same goal, the tactc case: l / (lastP l) generates the same subgoals but l has been cleared
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from both contexts:

case: l / (lastP l).
2 subgoals

A : Type
============================
length nil * 2 = length (nil ++ nil)

subgoal 2 is:
forall (s : list A) (x : A),
length (add_last x s) * 2 = length (add_last x s ++ add_last x s)

Again applied to the same goal:

case: {1 3}l / (lastP l).
2 subgoals

A : Type
l : list A
============================
length nil * 2 = length (l ++ nil)

subgoal 2 is:
forall (s : list A) (x : A),
length (add_last x s) * 2 = length (l ++ add_last x s)

Note that selected occurrences on the left of the / switch have been substituted with l instead of being affected by
the case analysis.

The equation name generation feature combined with a type family / switch generates an equation for the first
dependent d_item specified by the user. Again starting with the above goal, the command:

Example

Lemma test l : (length l) * 2 = length (l ++ l).
1 subgoal

A : Type
l : list A
============================
length l * 2 = length (l ++ l)

case E: {1 3}l / (lastP l) => [|s x].
2 subgoals

A : Type
l : list A
E : l = nil
============================
length nil * 2 = length (l ++ nil)

subgoal 2 is:
length (add_last x s) * 2 = length (l ++ add_last x s)

Show 2.
subgoal 2 is:

(continues on next page)
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(continued from previous page)

A : Type
l, s : list A
x : A
E : l = add_last x s
============================
length (add_last x s) * 2 = length (l ++ add_last x s)

There must be at least one d_item to the left of the / switch; this prevents any confusion with the view feature.
However, the d_item to the right of the / are optional, and if they are omitted the first assumption provides the
instance of the type family.
The equation always refers to the first d_item in the actual tactic call, before any padding with initial _. Thus, if
an inductive type has two family parameters, it is possible to have SSReflect generate an equation for the second
one by omitting the pattern for the first; note however that this will fail if the type of the second parameter depends
on the value of the first parameter.

5.7.5 Control flow

Indentation and bullets

A linear development of Coq scripts gives little information on the structure of the proof. In addition, replaying a proof
after some changes in the statement to be proved will usually not display information to distinguish between the various
branches of case analysis for instance.
To help the user in this organization of the proof script at development time, SSReflect provides some bullets to highlight
the structure of branching proofs. The available bullets are -, + and *. Combined with tabulation, this lets us highlight
four nested levels of branching; the most we have ever needed is three. Indeed, the use of “simpl and closing” switches,
of terminators (see above section Terminators) and selectors (see section Selectors) is powerful enough to avoid most of
the time more than two levels of indentation.
Here is a fragment of such a structured script:

case E1: (abezoutn _ _) => [[| k1] [| k2]].
- rewrite !muln0 !gexpn0 mulg1 => H1.

move/eqP: (sym_equal F0); rewrite -H1 orderg1 eqn_mul1.
by case/andP; move/eqP.

- rewrite muln0 gexpn0 mulg1 => H1.
have F1: t %| t * S k2.+1 - 1.
apply: (@dvdn_trans (orderg x)); first by rewrite F0; exact: dvdn_mull.
rewrite orderg_dvd; apply/eqP; apply: (mulgI x).
rewrite -{1}(gexpn1 x) mulg1 gexpn_add leq_add_sub //.
by move: P1; case t.

rewrite dvdn_subr in F1; last by exact: dvdn_mulr.
+ rewrite H1 F0 -{2}(muln1 (p ^ l)); congr (_ * _).
by apply/eqP; rewrite -dvdn1.

+ by move: P1; case: (t) => [| [| s1]].
- rewrite muln0 gexpn0 mul1g => H1.
...
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Terminators

To further structure scripts, SSReflect supplies terminating tacticals to explicitly close off tactics. When replaying scripts,
we then have the nice property that an error immediately occurs when a closed tactic fails to prove its subgoal.
It is hence recommended practice that the proof of any subgoal should end with a tactic which fails if it does not solve the
current goal, like discriminate, contradiction or assumption.
In fact, SSReflect provides a generic tactical which turns any tactic into a closing one (similar to now). Its general syntax
is:
by tactic

The Ltac expression by [tactic | tactic | …] is equivalent to do [done | by tactic | by
tactic | …], which corresponds to the standard Ltac expression first [done | tactic; done |
tactic; done | …].
In the script provided as example in section Indentation and bullets, the paragraph corresponding to each sub-case ends
with a tactic line prefixed with a by, like in:

by apply/eqP; rewrite -dvdn1.

done
The by tactical is implemented using the user-defined, and extensible done tactic. This done tactic tries to solve
the current goal by some trivial means and fails if it doesn’t succeed. Indeed, the tactic expression by tactic is
equivalent to tactic; done.
Conversely, the tactic by [ ] is equivalent to done.
The default implementation of the done tactic, in the ssreflect.v file, is:

Ltac done :=
trivial; hnf; intros; solve
[ do ![solve [trivial | apply: sym_equal; trivial]

| discriminate | contradiction | split]
| case not_locked_false_eq_true; assumption
| match goal with H : ~ _ |- _ => solve [case H; trivial] end ].

The lemma not_locked_false_eq_true is needed to discriminate locked boolean predicates (see section
Locking, unlocking). The iterator tactical do is presented in section Iteration. This tactic can be customized by the
user, for instance to include an auto tactic.

A natural and common way of closing a goal is to apply a lemma which is the exact one needed for the goal to be solved.
The defective form of the tactic:

exact.

is equivalent to:

do [done | by move=> top; apply top].

where top is a fresh name assigned to the top assumption of the goal. This applied form is supported by the : discharge
tactical, and the tactic:

exact: MyLemma.

is equivalent to:

by apply: MyLemma.
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(see section Discharge for the documentation of the apply: combination).

Warning: The list of tactics (possibly chained by semicolons) that follows the by keyword is considered to be a
parenthesized block applied to the current goal. Hence for example if the tactic:
by rewrite my_lemma1.

succeeds, then the tactic:
by rewrite my_lemma1; apply my_lemma2.

usually fails since it is equivalent to:
by (rewrite my_lemma1; apply my_lemma2).

Selectors

last
first

When composing tactics, the two tacticals first and last let the user restrict the application of a tactic to only
one of the subgoals generated by the previous tactic. This covers the frequent cases where a tactic generates two
subgoals one of which can be easily disposed of.
This is another powerful way of linearization of scripts, since it happens very often that a trivial subgoal can be
solved in a less than one line tactic. For instance, tactic ; last by tactic tries to solve the last subgoal
generated by the first tactic using the given second tactic, and fails if it does not succeed. Its analogue tactic ;
first by tactic tries to solve the first subgoal generated by the first tactic using the second given tactic, and
fails if it does not succeed.

SSReflect also offers an extension of this facility, by supplying tactics to permute the subgoals generated by a tactic.
Variant: last first
Variant: first last

These two equivalent tactics invert the order of the subgoals in focus.
Variant: last num first

If num’s value is 𝑘, this tactic rotates the 𝑛 subgoals 𝐺1 , …, 𝐺𝑛 in focus. The first subgoal becomes 𝐺𝑛+1−𝑘
and the circular order of subgoals remains unchanged.

first num last
If num’s value is 𝑘, this tactic rotates the 𝑛 subgoals 𝐺1 , …, 𝐺𝑛 in focus. The first subgoal becomes 𝐺𝑘 and
the circular order of subgoals remains unchanged.

Finally, the tactics last and first combine with the branching syntax of Ltac: if the tactic generates n subgoals on a
given goal, then the tactic

tactic ; last k [ tactic1 |…| tacticm ] || tacticn.

where natural denotes the integer 𝑘 as above, applies tactic1 to the 𝑛 − 𝑘 + 1-th goal, … tacticm to the 𝑛 − 𝑘 + 2-th goal
and tacticn to the others.

Example
Here is a small example on lists. We define first a function which adds an element at the end of a given list.

Inductive test : nat -> Prop :=
| C1 n of n = 1 : test n

(continues on next page)

5.7. The SSReflect proof language 417



The Coq Reference Manual, Release 8.11.2

(continued from previous page)
| C2 n of n = 2 : test n
| C3 n of n = 3 : test n
| C4 n of n = 4 : test n.

test is defined
test_ind is defined
test_sind is defined

Lemma example n (t : test n) : True.
1 subgoal

n : nat
t : test n
============================
True

case: t; last 2 [move=> k| move=> l]; idtac.
4 subgoals

n : nat
============================
forall n0 : nat, n0 = 1 -> True

subgoal 2 is:
k = 2 -> True

subgoal 3 is:
l = 3 -> True

subgoal 4 is:
forall n0 : nat, n0 = 4 -> True

Iteration

do num
?

tactic [ tactic
+

|
]

This tactical offers an accurate control on the repetition of tactics. mult is a multiplier.
Brackets can only be omitted if a single tactic is given and a multiplier is present.

A tactic of the form:

do [ tactic 1 | … | tactic n ].

is equivalent to the standard Ltac expression:

first [ tactic 1 | … | tactic n ].

The optional multiplier mult specifies how many times the action of tactic should be repeated on the current subgoal.
There are four kinds of multipliers:
mult ::= num ! ! num ? ?

Their meaning is:
• n! the step tactic is repeated exactly n times (where n is a positive integer argument).
• ! the step tactic is repeated as many times as possible, and done at least once.
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• ? the step tactic is repeated as many times as possible, optionally.
• n? the step tactic is repeated up to n times, optionally.

For instance, the tactic:

tactic; do 1? rewrite mult_comm.

rewrites at most one time the lemma mult_comm in all the subgoals generated by tactic, whereas the tactic:

tactic; do 2! rewrite mult_comm.

rewrites exactly two times the lemma mult_comm in all the subgoals generated by tactic, and fails if this rewrite is not
possible in some subgoal.
Note that the combination of multipliers and rewrite is so often used that multipliers are in fact integrated to the syntax
of the SSReflect rewrite tactic, see section Rewriting.

Localization

In sections Basic localization and Bookkeeping, we have already presented the localization tactical in, whose general syntax
is:

tactic in ident
+

*
?

where ident is a name in the context. On the left side of in, tactic can be move, case, elim, rewrite, set,
or any tactic formed with the general iteration tactical do (see section Iteration).
The operation described by tactic is performed in the facts listed after in and in the goal if a * ends the list of names.
The in tactical successively:

• generalizes the selected hypotheses, possibly “protecting” the goal if * is not present,
• performs tactic, on the obtained goal,
• reintroduces the generalized facts, under the same names.

This defective form of the do tactical is useful to avoid clashes between standard Ltac in and the SSReflect tactical in.

Example

Ltac mytac H := rewrite H.
mytac is defined

Lemma test x y (H1 : x = y) (H2 : y = 3) : x + y = 6.
1 subgoal

x, y : nat
H1 : x = y
H2 : y = 3
============================
x + y = 6

do [mytac H2] in H1 *.
1 subgoal

x, y : nat
H2 : y = 3

(continues on next page)
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(continued from previous page)
H1 : x = 3
============================
x + 3 = 6

the last tactic rewrites the hypothesis H2 : y = 3 both in H1 : x = y and in the goal x + y = 6.

By default in keeps the body of local definitions. To erase the body of a local definition during the generalization phase,
the name of the local definition must be written between parentheses, like in rewrite H in H1 (def_n) H2.

Variant: tactic in clear_switch @
?
ident ( ident ) ( @

?
ident := c_pattern )

+

*
?

This is the most general form of the in tactical. In its simplest form the last option lets one rename hypotheses
that can’t be cleared (like section variables). For example, (y := x) generalizes over x and reintroduces the
generalized variable under the name y (and does not clear x). For a more precise description of this form of
localization refer to Advanced generalization.

Structure

Forward reasoning structures the script by explicitly specifying some assumptions to be added to the proof context. It
is closely associated with the declarative style of proof, since an extensive use of these highlighted statements make the
script closer to a (very detailed) textbook proof.
Forward chaining tactics allow to state an intermediate lemma and start a piece of script dedicated to the proof of this
statement. The use of closing tactics (see section Terminators) and of indentation makes syntactically explicit the portion
of the script building the proof of the intermediate statement.

The have tactic.

have : term
This is the main SSReflect forward reasoning tactic. It can be used in two modes: one starts a new (sub)proof for
an intermediate result in the main proof, and the other provides explicitly a proof term for this intermediate step.
This tactic supports open syntax for term. Applied to a goal G, it generates a first subgoal requiring a proof of
term in the context of G. The second generated subgoal is of the form term -> G, where term becomes the
new top assumption, instead of being introduced with a fresh name. At the proof-term level, the have tactic creates
a β redex, and introduces the lemma under a fresh name, automatically chosen.

Like in the case of the pose (ssreflect) tactic (see section Definitions), the types of the holes are abstracted in
term.

Example

Lemma test : True.
1 subgoal

============================
True

have: _ * 0 = 0.
2 subgoals

============================

(continues on next page)
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(continued from previous page)
forall n : nat, n * 0 = 0

subgoal 2 is:
(forall n : nat, n * 0 = 0) -> True

The invocation of have is equivalent to:

have: forall n : nat, n * 0 = 0.
2 subgoals

============================
forall n : nat, n * 0 = 0

subgoal 2 is:
(forall n : nat, n * 0 = 0) -> True

The have tactic also enjoys the same abstraction mechanism as the pose tactic for the non-inferred implicit arguments.
For instance, the tactic:

Example

have: forall x y, (x, y) = (x, y + 0).
2 subgoals

============================
forall (T : Type) (x : T) (y : nat), (x, y) = (x, y + 0)

subgoal 2 is:
(forall (T : Type) (x : T) (y : nat), (x, y) = (x, y + 0)) -> True

opens a new subgoal where the type of x is quantified.

The behavior of the defective have tactic makes it possible to generalize it in the following general construction:

have i_item
*

i_pattern
?

s_item ssr_binder
+

?

: term
?

:= term by tactic
?

Open syntax is supported for both term. For the description of i_item and s_item see section Introduction in the
context. The first mode of the have tactic, which opens a sub-proof for an intermediate result, uses tactics of the form:
Variant: have clear_switch i_item : term by tactic

which behave like:

have: term ; first by tactic.
move=> clear_switch i_item.

Note that the clear_switch precedes the i_item, which allows to reuse a name of the context, possibly used by the
proof of the assumption, to introduce the new assumption itself.
The by feature is especially convenient when the proof script of the statement is very short, basically when it fits in one
line like in:

have H23 : 3 + 2 = 2 + 3 by rewrite addnC.

The possibility of using i_item supplies a very concise syntax for the further use of the intermediate step. For instance,
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Example

Lemma test a : 3 * a - 1 = a.
1 subgoal

a : nat
============================
3 * a - 1 = a

have -> : forall x, x * a = a.
2 subgoals

a : nat
============================
forall x : nat, x * a = a

subgoal 2 is:
a - 1 = a

Note how the second goal was rewritten using the stated equality. Also note that in this last subgoal, the intermediate
result does not appear in the context.

Thanks to the deferred execution of clears, the following idiom is also supported (assuming x occurs in the goal only):

have {x} -> : x = y.

Another frequent use of the intro patterns combined with have is the destruction of existential assumptions like in the
tactic:

Example

Lemma test : True.
1 subgoal

============================
True

have [x Px]: exists x : nat, x > 0; last first.
2 subgoals

x : nat
Px : x > 0
============================
True

subgoal 2 is:
exists x : nat, x > 0

An alternative use of the have tactic is to provide the explicit proof term for the intermediate lemma, using tactics of
the form:

Variant: have ident
?

:= term
This tactic creates a new assumption of type the type of term. If the optional ident is present, this assumption
is introduced under the name ident. Note that the body of the constant is lost for the user.
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Again, non inferred implicit arguments and explicit holes are abstracted.

Example

Lemma test : True.
1 subgoal

============================
True

have H := forall x, (x, x) = (x, x).
1 subgoal

H : Type -> Prop
============================
True

adds to the context H : Type -> Prop. This is a schematic example but the feature is specially useful when the
proof term to give involves for instance a lemma with some hidden implicit arguments.

After the i_pattern, a list of binders is allowed.

Example

Lemma test : True.
1 subgoal

============================
True

have H x (y : nat) : 2 * x + y = x + x + y by omega.
1 subgoal

H : forall x y : nat, 2 * x + y = x + x + y
============================
True

A proof term provided after := can mention these bound variables (that are automatically introduced with the given
names). Since the i_pattern can be omitted, to avoid ambiguity, bound variables can be surrounded with parentheses
even if no type is specified:

have (x) : 2 * x = x + x by omega.
1 subgoal

============================
(forall x : nat, 2 * x = x + x) -> True

The i_item and s_item can be used to interpret the asserted hypothesis with views (see section Views and reflection)
or simplify the resulting goals.
The have tactic also supports a suffmodifier which allows for asserting that a given statement implies the current goal
without copying the goal itself.

Example
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have suff H : 2 + 2 = 3; last first.
2 subgoals

H : 2 + 2 = 3 -> True
============================
True

subgoal 2 is:
2 + 2 = 3 -> True

Note that H is introduced in the second goal.

The suff modifier is not compatible with the presence of a list of binders.

Generating let in context entries with have

Since SSReflect 1.5 the have tactic supports a “transparent” modifier to generate let in context entries: the @ symbol in
front of the context entry name.

Example

Inductive Ord n := Sub x of x < n.
Ord is defined
Ord_rect is defined
Ord_ind is defined
Ord_rec is defined
Ord_sind is defined

Notation "'I_ n" := (Ord n) (at level 8, n at level 2, format "''I_' n").
Arguments Sub {_} _ _.
Lemma test n m (H : m + 1 < n) : True.

1 subgoal

n, m : nat
H : m + 1 < n
============================
True

have @i : 'I_n by apply: (Sub m); omega.
1 subgoal

n, m : nat
H : m + 1 < n
i := Sub m

(Decidable.dec_not_not (m < n) (dec_lt m n) (fun ... => ... ...))
: 'I_n

============================
True

Note that the subterm produced by omega is in general huge and uninteresting, and hence one may want to hide it. For
this purpose the [: name ] intro pattern and the tactic abstract (see The abstract tactic) are provided.

Example
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Lemma test n m (H : m + 1 < n) : True.
1 subgoal

n, m : nat
H : m + 1 < n
============================
True

have [:pm] @i : 'I_n by apply: (Sub m); abstract: pm; omega.
1 subgoal

n, m : nat
H : m + 1 < n
pm : m < n (*1*)
i := Sub m pm : 'I_n
============================
True

The type of pm can be cleaned up by its annotation (*1*) by just simplifying it. The annotations are there for technical
reasons only.

When intro patterns for abstract constants are used in conjunction with have and an explicit term, they must be used as
follows:

Example

Lemma test n m (H : m + 1 < n) : True.
1 subgoal

n, m : nat
H : m + 1 < n
============================
True

have [:pm] @i : 'I_n := Sub m pm.
2 subgoals

n, m : nat
H : m + 1 < n
============================
S m <= n

subgoal 2 is:
True

by omega.
1 subgoal

n, m : nat
H : m + 1 < n
pm : S m <= n (*1*)
i := Sub m pm : 'I_n : 'I_n
============================
True

5.7. The SSReflect proof language 425



The Coq Reference Manual, Release 8.11.2

In this case the abstract constant pm is assigned by using it in the term that follows := and its corresponding goal is left
to be solved. Goals corresponding to intro patterns for abstract constants are opened in the order in which the abstract
constants are declared (not in the “order” in which they are used in the term).
Note that abstract constants do respect scopes. Hence, if a variable is declared after their introduction, it has to be properly
generalized (i.e. explicitly passed to the abstract constant when one makes use of it).

Example

Lemma test n m (H : m + 1 < n) : True.
1 subgoal

n, m : nat
H : m + 1 < n
============================
True

have [:pm] @i k : 'I_(n+k) by apply: (Sub m); abstract: pm k; omega.
1 subgoal

n, m : nat
H : m + 1 < n
pm : (forall k : nat, m < n + k) (*1*)
i := fun k : nat => Sub m (pm k) : forall k : nat, 'I_(n + k)
============================
True

Last, notice that the use of intro patterns for abstract constants is orthogonal to the transparent flag @ for have.

The have tactic and typeclass resolution

Since SSReflect 1.5 the have tactic behaves as follows with respect to typeclass inference.

have foo : ty.
2 subgoals

============================
ty

subgoal 2 is:
True

Full inference for ty. The first subgoal demands a proof of such instantiated statement.

have foo : ty := .

No inference for ty. Unresolved instances are quantified in ty. The first subgoal demands a proof of such
quantified statement. Note that no proof term follows :=, hence two subgoals are generated.

have foo : ty := t.
1 subgoal

foo : ty
============================
True
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No inference for ty and t.

have foo := t.
1 subgoal

foo : ty
============================
True

No inference for t. Unresolved instances are quantified in the (inferred) type of t and abstracted in t.
Flag: SsrHave NoTCResolution

This flag restores the behavior of SSReflect 1.4 and below (never resolve typeclasses).

Variants: the suff and wlog tactics

As it is often the case in mathematical textbooks, forward reasoning may be used in slightly different variants. One of
these variants is to show that the intermediate step L easily implies the initial goal G. By easily we mean here that the
proof of L ⇒ G is shorter than the one of L itself. This kind of reasoning step usually starts with: “It suffices to show that
…”.
This is such a frequent way of reasoning that SSReflect has a variant of the have tactic called suffices (whose
abridged name is suff). The have and suff tactics are equivalent and have the same syntax but:

• the order of the generated subgoals is inverted
• the optional clear item is still performed in the second branch. This means that the tactic:

suff {H} H : forall x : nat, x >= 0.

fails if the context of the current goal indeed contains an assumption named H.
The rationale of this clearing policy is to make possible “trivial” refinements of an assumption, without changing its name
in the main branch of the reasoning.
The have modifier can follow the suff tactic.

Example

Lemma test : G.
1 subgoal

============================
G

suff have H : P.
2 subgoals

H : P
============================
G

subgoal 2 is:
(P -> G) -> G

Note that, in contrast with have suff, the name H has been introduced in the first goal.
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Another useful construct is reduction, showing that a particular case is in fact general enough to prove a general property.
This kind of reasoning step usually starts with: “Without loss of generality, we can suppose that …”. Formally, this
corresponds to the proof of a goal G by introducing a cut wlog_statement -> G. Hence the user shall provide a
proof for both (wlog_statement -> G) -> G and wlog_statement -> G. However, such cuts are usually
rather painful to perform by hand, because the statement wlog_statement is tedious to write by hand, and sometimes
even to read.
SSReflect implements this kind of reasoning step through the without loss tactic, whose short name is wlog. It
offers support to describe the shape of the cut statements, by providing the simplifying hypothesis and by pointing at the
elements of the initial goals which should be generalized. The general syntax of without loss is:

wlog suff
?

clear_switch
?

i_item
?

: ident
*

/ term

without loss suff
?

clear_switch
?

i_item
?

: ident
*

/ term

where each ident is a constant in the context of the goal. Open syntax is supported for term.
In its defective form:
Variant: wlog: / term
Variant: without loss: / term

on a goal G, it creates two subgoals: a first one to prove the formula (term -> G) -> G and a second one to prove the
formula term -> G.
If the optional list of ident is present on the left side of /, these constants are generalized in the premise (term -> G) of
the first subgoal. By default bodies of local definitions are erased. This behavior can be inhibited by prefixing the name
of the local definition with the @ character.
In the second subgoal, the tactic:

move=> clear_switch i_item.

is performed if at least one of these optional switches is present in the wlog tactic.
The wlog tactic is specially useful when a symmetry argument simplifies a proof. Here is an example showing the
beginning of the proof that quotient and reminder of natural number euclidean division are unique.

Example

Lemma quo_rem_unicity d q1 q2 r1 r2 :
q1*d + r1 = q2*d + r2 -> r1 < d -> r2 < d -> (q1, r1) = (q2, r2).
1 subgoal

d, q1, q2, r1, r2 : nat
============================
q1 * d + r1 = q2 * d + r2 -> r1 < d -> r2 < d -> (q1, r1) = (q2, r2)

wlog: q1 q2 r1 r2 / q1 <= q2.
2 subgoals

d, q1, q2, r1, r2 : nat
============================
(forall q3 q4 r3 r4 : nat,
q3 <= q4 ->
q3 * d + r3 = q4 * d + r4 -> r3 < d -> r4 < d -> (q3, r3) = (q4, r4)) ->

q1 * d + r1 = q2 * d + r2 -> r1 < d -> r2 < d -> (q1, r1) = (q2, r2)

subgoal 2 is:

(continues on next page)
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(continued from previous page)
q1 <= q2 ->
q1 * d + r1 = q2 * d + r2 -> r1 < d -> r2 < d -> (q1, r1) = (q2, r2)

by case (le_gt_dec q1 q2)=> H; last symmetry; eauto with arith.
1 subgoal

d, q1, q2, r1, r2 : nat
============================
q1 <= q2 ->
q1 * d + r1 = q2 * d + r2 -> r1 < d -> r2 < d -> (q1, r1) = (q2, r2)

The wlog suff variant is simpler, since it cuts wlog_statement instead of wlog_statement -> G. It thus
opens the goals wlog_statement -> G and wlog_statement.
In its simplest form the generally have : … tactic is equivalent to wlog suff : … followed by last first. When
the have tactic is used with the generally (or gen) modifier it accepts an extra identifier followed by a comma before
the usual intro pattern. The identifier will name the new hypothesis in its more general form, while the intro pattern will
be used to process its instance.

Example

Lemma simple n (ngt0 : 0 < n ) : P n.
1 subgoal

n : nat
ngt0 : 0 < n
============================
P n

gen have ltnV, /andP[nge0 neq0] : n ngt0 / (0 <= n) && (n != 0); last first.
2 subgoals

n : nat
ngt0 : 0 < n
ltnV : forall n : nat, 0 < n -> (0 <= n) && (n != 0)
nge0 : 0 <= n
neq0 : n != 0
============================
P n

subgoal 2 is:
(0 <= n) && (n != 0)

Advanced generalization

The complete syntax for the items on the left hand side of the / separator is the following one:

Variant: wlog … : clear_switch @
?
ident ( @

?
ident := c_pattern)

?

/ term

Clear operations are intertwined with generalization operations. This helps in particular avoiding dependency issues while
generalizing some facts.
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If an ident is prefixed with the @mark, then a let-in redex is created, which keeps track if its body (if any). The syntax
(ident := c_pattern) allows to generalize an arbitrary term using a given name. Note that its simplest form (x
:= y) is just a renaming of y into x. In particular, this can be useful in order to simulate the generalization of a section
variable, otherwise not allowed. Indeed renaming does not require the original variable to be cleared.
The syntax (@x := y) generates a let-in abstraction but with the following caveat: x will not bind y, but its body,
whenever y can be unfolded. This covers the case of both local and global definitions, as illustrated in the following
example.

Example

Section Test.
Variable x : nat.

x is declared

Definition addx z := z + x.
addx is defined

Lemma test : x <= addx x.
1 subgoal

x : nat
============================
x <= addx x

wlog H : (y := x) (@twoy := addx x) / twoy = 2 * y.
2 subgoals

x : nat
============================
(forall y : nat, let twoy := y + y in twoy = 2 * y -> y <= twoy) ->
x <= addx x

subgoal 2 is:
y <= twoy

To avoid unfolding the term captured by the pattern add x one can use the pattern id (addx x), that would produce
the following first subgoal

wlog H : (y := x) (@twoy := id (addx x)) / twoy = 2 * y.
2 subgoals

x : nat
============================
(forall y : nat, let twoy := addx y in twoy = 2 * y -> y <= addx y) ->
x <= addx x

subgoal 2 is:
y <= addx y

5.7.6 Rewriting

The generalized use of reflection implies that most of the intermediate results handled are properties of effectively com-
putable functions. The most efficient mean of establishing such results are computation and simplification of expressions
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involving such functions, i.e., rewriting. SSReflect therefore includes an extended rewrite tactic, that unifies and
combines most of the rewriting functionalities.

An extended rewrite tactic

The main features of the rewrite tactic are:
• It can perform an entire series of such operations in any subset of the goal and/or context;
• It allows to perform rewriting, simplifications, folding/unfolding of definitions, closing of goals;
• Several rewriting operations can be chained in a single tactic;
• Control over the occurrence at which rewriting is to be performed is significantly enhanced.

The general form of an SSReflect rewrite tactic is:

rewrite rstep
+

The combination of a rewrite tactic with the in tactical (see section Localization) performs rewriting in both the context
and the goal.
A rewrite step rstep has the general form:

rstep ::= r_prefix
?

r_item

r_prefix ::= - ? mult
?

occ_switch clear_switch
?

[ r_pattern ]
?

r_pattern ::= term in ident in
?

term term in term as ident in term

r_item ::= /
?

term s_item

An r_prefix contains annotations to qualify where and how the rewrite operation should be performed:
• The optional initial - indicates the direction of the rewriting of r_item: if present the direction is right-to-left
and it is left-to-right otherwise.

• The multiplier mult (see section Iteration) specifies if and how the rewrite operation should be repeated.
• A rewrite operation matches the occurrences of a rewrite pattern, and replaces these occurrences by another term,
according to the given r_item. The optional redex switch [r_pattern], which should always be surrounded
by brackets, gives explicitly this rewrite pattern. In its simplest form, it is a regular term. If no explicit redex switch
is present the rewrite pattern to be matched is inferred from the r_item.

• This optional term, or the r_item, may be preceded by an occ_switch (see section Selectors) or a
clear_switch (see section Discharge), these two possibilities being exclusive.
An occurrence switch selects the occurrences of the rewrite pattern which should be affected by the rewrite opera-
tion.
A clear switch, even an empty one, is performed after the r_item is actually processed and is complemented with
the name of the rewrite rule if an only if it is a simple proof context entry307. As a consequence one can write
rewrite {}H to rewrite with H and dispose H immediately afterwards. This behavior can be avoided by putting
parentheses around the rewrite rule.

An r_item can be:
• A simplification r_item, represented by a s_item (see section Introduction in the context). Simplification oper-
ations are intertwined with the possible other rewrite operations specified by the list of r_item.
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• A folding/unfolding r_item. The tactic: rewrite /term unfolds the head constant of term in every occur-
rence of the first matching of term in the goal. In particular, if my_def is a (local or global) defined constant,
the tactic: rewrite /my_def. is analogous to: unfold my_def. Conversely: rewrite -/my_def.
is equivalent to: fold my_def. When an unfold r_item is combined with a redex pattern, a conversion oper-
ation is performed. A tactic of the form: rewrite -[term1]/term2. is equivalent to: change term1
with term2. If term2 is a single constant and term1 head symbol is not term2, then the head symbol of
term1 is repeatedly unfolded until term2 appears.

• A term, which can be:
– A term whose type has the form: forall (x1 : A1 )…(xn : An ), eq term1 term2
where eq is the Leibniz equality or a registered setoid equality.

– A list of terms (t1 ,…,tn), each ti having a type above. The tactic: rewrite r_prefix (t1
,…,tn ). is equivalent to: do [rewrite r_prefix t1 | … | rewrite r_prefix
tn ].

– An anonymous rewrite lemma (_ : term), where term has a type as above. tactic: rewrite (_
: term) is in fact synonym of: cutrewrite (term)..

Example

Definition double x := x + x.
double is defined

Definition ddouble x := double (double x).
ddouble is defined

Lemma test x : ddouble x = 4 * x.
1 subgoal

x : nat
============================
ddouble x = 4 * x

rewrite [ddouble _]/double.
1 subgoal

x : nat
============================
double x + double x = 4 * x

Warning: The SSReflect terms containing holes are not typed as abstractions in this context. Hence the
following script fails.
Definition f := fun x y => x + y.

f is defined

Lemma test x y : x + y = f y x.
1 subgoal

x, y : nat
============================
x + y = f y x
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rewrite -[f y]/(y + _).
Toplevel input, characters 0-22:
> rewrite -[f y]/(y + _).
> ^^^^^^^^^^^^^^^^^^^^^^
Error: fold pattern (y + _) does not match redex (f y)

but the following script succeeds
rewrite -[f y x]/(y + _).

1 subgoal

x, y : nat
============================
x + y = y + x

Flag: SsrOldRewriteGoalsOrder
Controls the order in which generated subgoals (side conditions) are added to the proof context. The flag is off by
default, which puts subgoals generated by conditional rules first, followed by the main goal. When it is on, the main
goal appears first. If your proofs are organized to complete proving the main goal before side conditions, turning
the flag on will save you from having to add last first tactics that would be needed to keep the main goal as
the currently focused goal.

Remarks and examples

Rewrite redex selection

The general strategy of SSReflect is to grasp as many redexes as possible and to let the user select the ones to be rewritten
thanks to the improved syntax for the control of rewriting.
This may be a source of incompatibilities between the two rewrite tactics.
In a rewrite tactic of the form:

rewrite occ_switch [term1]term2.

term1 is the explicit rewrite redex and term2 is the rewrite rule. This execution of this tactic unfolds as follows:
• First term1 and term2 are βι normalized. Then term2 is put in head normal form if the Leibniz equality
constructor eq is not the head symbol. This may involve ζ reductions.

• Then, the matching algorithm (see section Abbreviations) determines the first subterm of the goal matching the
rewrite pattern. The rewrite pattern is given by term1, if an explicit redex pattern switch is provided, or by the
type of term2 otherwise. However, matching skips over matches that would lead to trivial rewrites. All the
occurrences of this subterm in the goal are candidates for rewriting.

• Then only the occurrences coded by occ_switch (see again section Abbreviations) are finally selected for rewrit-
ing.

• The left hand side of term2 is unified with the subterm found by the matching algorithm, and if this succeeds, all
the selected occurrences in the goal are replaced by the right hand side of term2.

• Finally the goal is βι normalized.
In the case term2 is a list of terms, the first top-down (in the goal) left-to-right (in the list) matching rule gets selected.
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Chained rewrite steps

The possibility to chain rewrite operations in a single tactic makes scripts more compact and gathers in a single command
line a bunch of surgical operations which would be described by a one sentence in a pen and paper proof.
Performing rewrite and simplification operations in a single tactic enhances significantly the concision of scripts. For
instance the tactic:

rewrite /my_def {2}[f _]/= my_eq //=.

unfolds my_def in the goal, simplifies the second occurrence of the first subterm matching pattern [f _], rewrites
my_eq, simplifies the goals and closes trivial goals.
Here are some concrete examples of chained rewrite operations, in the proof of basic results on natural numbers arithmetic.

Example

Axiom addn0 : forall m, m + 0 = m.
addn0 is declared

Axiom addnS : forall m n, m + S n = S (m + n).
addnS is declared

Axiom addSnnS : forall m n, S m + n = m + S n.
addSnnS is declared

Lemma addnCA m n p : m + (n + p) = n + (m + p).
1 subgoal

m, n, p : nat
============================
m + (n + p) = n + (m + p)

by elim: m p => [ | m Hrec] p; rewrite ?addSnnS -?addnS.
No more subgoals.

Qed.
Lemma addnC n m : m + n = n + m.

1 subgoal

n, m : nat
============================
m + n = n + m

by rewrite -{1}[n]addn0 addnCA addn0.
No more subgoals.

Qed.

Note the use of the ? switch for parallel rewrite operations in the proof of addnCA.

Explicit redex switches are matched first

If an r_prefix involves a redex switch, the first step is to find a subterm matching this redex pattern, independently
from the left hand side of the equality the user wants to rewrite.
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Example

Lemma test (H : forall t u, t + u = u + t) x y : x + y = y + x.
1 subgoal

H : forall t u : nat, t + u = u + t
x, y : nat
============================
x + y = y + x

rewrite [y + _]H.
1 subgoal

H : forall t u : nat, t + u = u + t
x, y : nat
============================
x + y = x + y

Note that if this first pattern matching is not compatible with the r_item, the rewrite fails, even if the goal contains a
correct redex matching both the redex switch and the left hand side of the equality.

Example

Lemma test (H : forall t u, t + u * 0 = t) x y : x + y * 4 + 2 * 0 = x + 2 * 0.
1 subgoal

H : forall t u : nat, t + u * 0 = t
x, y : nat
============================
x + y * 4 + 2 * 0 = x + 2 * 0

Fail rewrite [x + _]H.
The command has indeed failed with message:
pattern (x + y * 4) does not match LHS of H

Indeed the left hand side of H does not match the redex identified by the pattern x + y * 4.

Occurrence switches and redex switches

Example

Lemma test x y : x + y + 0 = x + y + y + 0 + 0 + (x + y + 0).
1 subgoal

x, y : nat
============================
x + y + 0 = x + y + y + 0 + 0 + (x + y + 0)

rewrite {2}[_ + y + 0](_: forall z, z + 0 = z).
2 subgoals

(continues on next page)
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(continued from previous page)
x, y : nat
============================
forall z : nat, z + 0 = z

subgoal 2 is:
x + y + 0 = x + y + y + 0 + 0 + (x + y)

The second subgoal is generated by the use of an anonymous lemma in the rewrite tactic. The effect of the tactic on the
initial goal is to rewrite this lemma at the second occurrence of the first matching x + y + 0 of the explicit rewrite
redex _ + y + 0.

Occurrence selection and repetition

Occurrence selection has priority over repetition switches. This means the repetition of a rewrite tactic specified by a
multiplier will perform matching each time an elementary rewrite operation is performed. Repeated rewrite tactics apply
to every subgoal generated by the previous tactic, including the previous instances of the repetition.

Example

Lemma test x y (z : nat) : x + 1 = x + y + 1.
1 subgoal

x, y, z : nat
============================
x + 1 = x + y + 1

rewrite 2!(_ : _ + 1 = z).
4 subgoals

x, y, z : nat
============================
x + 1 = z

subgoal 2 is:
z = z

subgoal 3 is:
x + y + 1 = z

subgoal 4 is:
z = z

This last tactic generates three subgoals because the second rewrite operation specified with the 2! multiplier applies to
the two subgoals generated by the first rewrite.

Multi-rule rewriting

The rewrite tactic can be provided a tuple of rewrite rules, or more generally a tree of such rules, since this tuple can
feature arbitrary inner parentheses. We call multirule such a generalized rewrite rule. This feature is of special interest
when it is combined with multiplier switches, which makes the rewrite tactic iterate the rewrite operations prescribed by
the rules on the current goal.
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Example

Variables (a b c : nat).
a is declared
b is declared
c is declared

Hypothesis eqab : a = b.
eqab is declared

Hypothesis eqac : a = c.
eqac is declared

Lemma test : a = a.
1 subgoal

a, b, c : nat
eqab : a = b
eqac : a = c
============================
a = a

rewrite (eqab, eqac).
1 subgoal

a, b, c : nat
eqab : a = b
eqac : a = c
============================
b = b

Indeed rule eqab is the first to apply among the ones gathered in the tuple passed to the rewrite tactic. This multirule
(eqab, eqac) is actually a Coq term and we can name it with a definition:

Definition multi1 := (eqab, eqac).
multi1 is defined

In this case, the tactic rewrite multi1 is a synonym for rewrite (eqab, eqac).

More precisely, a multirule rewrites the first subterm to which one of the rules applies in a left-to-right traversal of the
goal, with the first rule from the multirule tree in left-to-right order. Matching is performed according to the algorithm
described in Section Abbreviations, but literal matches have priority.

Example

Definition d := a.
d is defined

Hypotheses eqd0 : d = 0.
eqd0 is declared

Definition multi2 := (eqab, eqd0).
multi2 is defined

Lemma test : d = b.

(continues on next page)
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(continued from previous page)
1 subgoal

a, b, c : nat
eqab : a = b
eqac : a = c
eqd0 : d = 0
============================
d = b

rewrite multi2.
1 subgoal

a, b, c : nat
eqab : a = b
eqac : a = c
eqd0 : d = 0
============================
0 = b

Indeed rule eqd0 applies without unfolding the definition of d.

For repeated rewrites the selection process is repeated anew.

Example

Hypothesis eq_adda_b : forall x, x + a = b.
eq_adda_b is declared

Hypothesis eq_adda_c : forall x, x + a = c.
eq_adda_c is declared

Hypothesis eqb0 : b = 0.
eqb0 is declared

Definition multi3 := (eq_adda_b, eq_adda_c, eqb0).
multi3 is defined

Lemma test : 1 + a = 12 + a.
1 subgoal

a, b, c : nat
eqab : a = b
eqac : a = c
eqd0 : d = 0
eq_adda_b : forall x : nat, x + a = b
eq_adda_c : forall x : nat, x + a = c
eqb0 : b = 0
============================
1 + a = 12 + a

rewrite 2!multi3.
1 subgoal

a, b, c : nat
eqab : a = b

(continues on next page)
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(continued from previous page)
eqac : a = c
eqd0 : d = 0
eq_adda_b : forall x : nat, x + a = b
eq_adda_c : forall x : nat, x + a = c
eqb0 : b = 0
============================
0 = 12 + a

It uses eq_adda_b then eqb0 on the left-hand side only. Without the bound 2 one would obtain 0 = 0.

The grouping of rules inside a multirule does not affect the selection strategy but can make it easier to include one rule
set in another or to (universally) quantify over the parameters of a subset of rules (as there is special code that will omit
unnecessary quantifiers for rules that can be syntactically extracted). It is also possible to reverse the direction of a rule
subset, using a special dedicated syntax: the tactic rewrite (=~ multi1) is equivalent to rewrite multi1_rev.

Example

Hypothesis eqba : b = a.
eqba is declared

Hypothesis eqca : c = a.
eqca is declared

Definition multi1_rev := (eqba, eqca).
multi1_rev is defined

except that the constants eqba, eqab, mult1_rev have not been created.
Rewriting with multirules is useful to implement simplification or transformation procedures, to be applied on terms of
small to medium size. For instance the library ssrnat (Mathematical Components library) provides two implemen-
tations for arithmetic operations on natural numbers: an elementary one and a tail recursive version, less inefficient but
also less convenient for reasoning purposes. The library also provides one lemma per such operation, stating that both
versions return the same values when applied to the same arguments:

Lemma addE : add =2 addn.
Lemma doubleE : double =1 doublen.
Lemma add_mulE n m s : add_mul n m s = addn (muln n m) s.
Lemma mulE : mul =2 muln.
Lemma mul_expE m n p : mul_exp m n p = muln (expn m n) p.
Lemma expE : exp =2 expn.
Lemma oddE : odd =1 oddn.

The operation on the left hand side of each lemma is the efficient version, and the corresponding naive implementation
is on the right hand side. In order to reason conveniently on expressions involving the efficient operations, we gather all
these rules in the definition trecE:

Definition trecE := (addE, (doubleE, oddE), (mulE, add_mulE, (expE, mul_expE))).

The tactic: rewrite !trecE. restores the naive versions of each operation in a goal involving the efficient ones, e.g.
for the purpose of a correctness proof.
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Wildcards vs abstractions

The rewrite tactic supports r_items containing holes. For example, in the tactic rewrite (_ : _ * 0 = 0).
the term _ * 0 = 0 is interpreted as forall n : nat, n * 0 = 0. Anyway this tactic is not equivalent to
rewrite (_ : forall x, x * 0 = 0)..

Example

Lemma test y z : y * 0 + y * (z * 0) = 0.
1 subgoal

y, z : nat
============================
y * 0 + y * (z * 0) = 0

rewrite (_ : _ * 0 = 0).
2 subgoals

y, z : nat
============================
y * 0 = 0

subgoal 2 is:
0 + y * (z * 0) = 0

while the other tactic results in

rewrite (_ : forall x, x * 0 = 0).
2 subgoals

y, z : nat
============================
forall x : nat, x * 0 = 0

subgoal 2 is:
0 + y * (z * 0) = 0

The first tactic requires you to prove the instance of the (missing) lemma that was used, while the latter requires you prove
the quantified form.

When SSReflect rewrite fails on standard Coq licit rewrite

In a few cases, the SSReflect rewrite tactic fails rewriting some redexes which standard Coq successfully rewrites. There
are two main cases:

• SSReflect never accepts to rewrite indeterminate patterns like:

Lemma foo (x : unit) : x = tt.

SSReflect will however accept the ηζ expansion of this rule:

Lemma fubar (x : unit) : (let u := x in u) = tt.

• The standard rewrite tactic provided by Coq uses a different algorithm to find instances of the rewrite rule.
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Example

Variable g : nat -> nat.
g is declared

Definition f := g.
f is defined

Axiom H : forall x, g x = 0.
H is declared

Lemma test : f 3 + f 3 = f 6.
1 subgoal

g : nat -> nat
============================
f 3 + f 3 = f 6

(* we call the standard rewrite tactic here *)
rewrite -> H.

1 subgoal

g : nat -> nat
============================
0 + 0 = f 6

This rewriting is not possible in SSReflect because there is no occurrence of the head symbol f of the rewrite rule
in the goal.

rewrite H.
Toplevel input, characters 0-9:
> rewrite H.
> ^^^^^^^^^
Error: The LHS of H

(g _)
does not match any subterm of the goal

Rewriting with H first requires unfolding the occurrences of f where the substitution is to be performed (here
there is a single such occurrence), using tactic rewrite /f (for a global replacement of f by g) or rewrite
pattern/f, for a finer selection.

rewrite /f H.
1 subgoal

g : nat -> nat
============================
0 + 0 = g 6

alternatively one can override the pattern inferred from H

rewrite [f _]H.
1 subgoal

g : nat -> nat
============================
0 + 0 = f 6

5.7. The SSReflect proof language 441



The Coq Reference Manual, Release 8.11.2

Existential metavariables and rewriting

The rewrite tactic will not instantiate existing existential metavariables when matching a redex pattern.
If a rewrite rule generates a goal with new existential metavariables in the Prop sort, these will be generalized as for
apply (see The apply tactic) and corresponding new goals will be generated.

Example

Axiom leq : nat -> nat -> bool.
leq is declared

Notation "m <= n" := (leq m n) : nat_scope.
Notation "m < n" := (S m <= n) : nat_scope.
Inductive Ord n := Sub x of x < n.

Ord is defined
Ord_rect is defined
Ord_ind is defined
Ord_rec is defined
Ord_sind is defined

Notation "'I_ n" := (Ord n) (at level 8, n at level 2, format "''I_' n").
Arguments Sub {_} _ _.
Definition val n (i : 'I_n) := let: Sub a _ := i in a.

val is defined

Definition insub n x :=
if @idP (x < n) is ReflectT _ Px then Some (Sub x Px) else None.
insub is defined

Axiom insubT : forall n x Px, insub n x = Some (Sub x Px).
insubT is declared

Lemma test (x : 'I_2) y : Some x = insub 2 y.
1 subgoal

x : 'I_2
y : nat
============================
Some x = insub 2 y

rewrite insubT.
2 subgoals

x : 'I_2
y : nat
============================
forall Hyp0 : y < 2, Some x = Some (Sub y Hyp0)

subgoal 2 is:
y < 2

Since the argument corresponding to Px is not supplied by the user, the resulting goal should be Some x = Some
(Sub y ?Goal). Instead, SSReflect rewrite tactic hides the existential variable.
As in The apply tactic, the ssrautoprop tactic is used to try to solve the existential variable.
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Lemma test (x : 'I_2) y (H : y < 2) : Some x = insub 2 y.
1 subgoal

x : 'I_2
y : nat
H : y < 2
============================
Some x = insub 2 y

rewrite insubT.
1 subgoal

x : 'I_2
y : nat
H : y < 2
============================
Some x = Some (Sub y H)

As a temporary limitation, this behavior is available only if the rewriting rule is stated using Leibniz equality (as opposed
to setoid relations). It will be extended to other rewriting relations in the future.

Rewriting under binders

Goals involving objects definedwith higher-order functions often require ”rewriting under binders”. While setoid rewriting
is a possible approach in this case, it is common to use regular rewriting along with dedicated extensionality lemmas. This
may cause some practical issues during the development of the corresponding scripts, notably as we might be forced to
provide the rewrite tactic with complete terms, as shown by the simple example below.

Example

Axiom subnn : forall n : nat, n - n = 0.
Parameter map : (nat -> nat) -> list nat -> list nat.
Parameter sumlist : list nat -> nat.
Axiom eq_map :

forall F1 F2 : nat -> nat,
(forall n : nat, F1 n = F2 n) ->
forall l : list nat, map F1 l = map F2 l.

Lemma example_map l : sumlist (map (fun m => m - m) l) = 0.
1 subgoal

l : list nat
============================
sumlist (map (fun m : nat => m - m) l) = 0

In this context, one cannot directly use eq_map:

rewrite eq_map.
Toplevel input, characters 0-14:
> rewrite eq_map.
> ^^^^^^^^^^^^^^
Error: Unable to find an instance for the variable F2.
Rule's type:

(continues on next page)
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(continued from previous page)
(forall F1 F2 : nat -> nat,
(forall n : nat, F1 n = F2 n) -> forall l : list nat, map F1 l = map F2 l)

as we need to explicitly provide the non-inferable argument F2, which corresponds here to the term we want to obtain
after the rewriting step. In order to perform the rewrite step one has to provide the term by hand as follows:

rewrite (@eq_map _ (fun _ : nat => 0)).
2 subgoals

l : list nat
============================
forall n : nat, n - n = 0

subgoal 2 is:
sumlist (map (fun _ : nat => 0) l) = 0

by move=> m; rewrite subnn.
1 subgoal

l : list nat
============================
sumlist (map (fun _ : nat => 0) l) = 0

The under tactic lets one perform the same operation in a more convenient way:

Lemma example_map l : sumlist (map (fun m => m - m) l) = 0.
1 subgoal

l : list nat
============================
sumlist (map (fun m : nat => m - m) l) = 0

under eq_map => m do rewrite subnn.
1 subgoal

l : list nat
============================
sumlist (map (fun _ : nat => 0) l) = 0

The under tactic

The convenience under tactic supports the following syntax:

under r_prefix
?

term => i_item
+

?

do tactic [ tactic
*

|
]

?

Operate under the context proved to be extensional by lemma term.
Error: Incorrect number of tactics (expected N tactics, was given M).

This error can occur when using the version with a do clause.
The multiplier part of r_prefix is not supported.

We distinguish twomodes, interactive modewithout a do clause, and one-liner modewith a do clause, which are explained
in more detail below.
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Interactive mode

Let us redo the running example in interactive mode.

Example

Lemma example_map l : sumlist (map (fun m => m - m) l) = 0.
1 subgoal

l : list nat
============================
sumlist (map (fun m : nat => m - m) l) = 0

under eq_map => m.
2 focused subgoals
(shelved: 2)

l : list nat
m : nat
============================
'Under[ m - m ]

subgoal 2 is:
sumlist (map ?Goal l) = 0

rewrite subnn.
2 focused subgoals
(shelved: 2)

l : list nat
m : nat
============================
'Under[ 0 ]

subgoal 2 is:
sumlist (map ?Goal l) = 0

over.
1 focused subgoal
(shelved: 1)

l : list nat
============================
sumlist (map (fun _ : nat => 0) l) = 0

The execution of the Ltac expression:
under term => [ i_item1 | … | i_itemn ].

involves the following steps:
1. It performs a rewrite term without failing like in the first example with rewrite eq_map., but creating

evars (see evar). If term is prefixed by a pattern or an occurrence selector, then the modifiers are honoured.
2. As a n-branches intro pattern is provided under checks that n+1 subgoals have been created. The last one is the

main subgoal, while the other ones correspond to premises of the rewrite rule (such as forall n, F1 n =
F2 n for eq_map).
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3. If so under puts these n goals in head normal form (using the defective form of the tactic move), then executes
the corresponding intro pattern i_patterni in each goal.

4. Then under checks that the first n subgoals are (quantified) Leibniz equalities, double implications or registered re-
lations (w.r.t. Class RewriteRelation) between a term and an evar, e.g. m - m = ?F2 m in the running ex-
ample. (This support for setoid-like relations is enabled as soon as we do both Require Import ssreflect.
and Require Setoid.)

5. If so under protects these n goals against an accidental instantiation of the evar. These protected goals are dis-
played using the 'Under[ … ] notation (e.g. 'Under[ m - m ] in the running example).

6. The expression inside the 'Under[ … ] notation can be proved equivalent to the desired expression by using a
regular rewrite tactic.

7. Interactive editing of the first n goals has to be signalled by using the over tactic or rewrite rule (see below), which
requires that the underlying relation is reflexive. (The running example deals with Leibniz equality, but PreOrder
relations are also supported, for example.)

8. Finally, a post-processing step is performed in the main goal to keep the name(s) for the bound variables chosen
by the user in the intro pattern for the first branch.

The over tactic

Two equivalent facilities (a terminator and a lemma) are provided to close intermediate subgoals generated by under
(i.e. goals displayed as 'Under[ … ]):
over

This terminator tactic allows one to close goals of the form 'Under[ … ].
Variant: by rewrite over

This is a variant of over in order to close 'Under[ … ] goals, relying on the over rewrite rule.
Note that a rewrite rule UnderE is available as well, if one wants to ”unprotect” the evar, without closing the goal
automatically (e.g., to instantiate it manually with another rule than reflexivity).

One-liner mode

The Ltac expression:
under term => [ i_item1 | … | i_itemn ] do [ tactic1 | … | tacticn ].

can be seen as a shorter form for the following expression:
(under term) => [ i_item1 | … | i_itemn | ]; [ tactic1; over | … | tacticn;
over | cbv beta iota ].

Notes:
• The beta-iota reduction here is useful to get rid of the beta redexes that could be introduced after the substi-
tution of the evars by the under tactic.

• Note that the provided tactics can as well involve other under tactics. See below for a typical example involving
the bigop theory from the Mathematical Components library.

• If there is only one tactic, the brackets can be omitted, e.g.: under term => i do tactic. and that shorter
form should be preferred.

• If the do clause is provided and the intro pattern is omitted, then the default i_item * is applied to each branch.
E.g., the Ltac expression: under term do [ tactic1 | … | tacticn ] is equivalent to: under
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term => [ * | … | * ] do [ tactic1 | … | tacticn ] (and it can be noted here that the
under tactic performs a move. before processing the intro patterns => [ * | … | * ]).

Example

Parameter addnC : forall m n : nat, m + n = n + m.
Parameter muln1 : forall n : nat, n * 1 = n.

Check eq_bigr.
eq_bigr

: forall (n m : nat) (P : nat -> bool) (F1 F2 : nat -> nat),
(forall x : nat, P x -> F1 x = F2 x) ->
\sum_(n <= i < m | P i) F1 i = \sum_(n <= i < m | P i) F2 i

Check eq_big.
eq_big

: forall (n m : nat) (P1 P2 : nat -> bool) (F1 F2 : nat -> nat),
(forall x : nat, P1 x = P2 x) ->
(forall i : nat, P1 i -> F1 i = F2 i) ->
\sum_(n <= i < m | P1 i) F1 i = \sum_(n <= i < m | P2 i) F2 i

Lemma test_big_nested (m n : nat) :
\sum_(0 <= a < m | prime a) \sum_(0 <= j < n | odd (j * 1)) (a + j) =
\sum_(0 <= i < m | prime i) \sum_(0 <= j < n | odd j) (j + i).
1 subgoal

m, n : nat
============================
\sum_(0 <= a < m | prime a) \sum_(0 <= j < n | odd (j * 1)) (a + j) =
\sum_(0 <= i < m | prime i) \sum_(0 <= j < n | odd j) (j + i)

under eq_bigr => i prime_i do
under eq_big => [ j | j odd_j ] do
[ rewrite (muln1 j) | rewrite (addnC i j) ].
1 subgoal

m, n : nat
============================
\sum_(0 <= i < m | prime i) \sum_(0 <= j < n | odd j) (j + i) =
\sum_(0 <= i < m | prime i) \sum_(0 <= j < n | odd j) (j + i)

Remark how the final goal uses the name i (the name given in the intro pattern) rather than a in the binder of the first
summation.

Locking, unlocking

As program proofs tend to generate large goals, it is important to be able to control the partial evaluation performed
by the simplification operations that are performed by the tactics. These evaluations can for example come from a /=
simplification switch, or from rewrite steps which may expand large terms while performing conversion. We definitely
want to avoid repeating large subterms of the goal in the proof script. We do this by “clamping down” selected function
symbols in the goal, which prevents them from being considered in simplification or rewriting steps. This clamping is
accomplished by using the occurrence switches (see section Abbreviations) together with “term tagging” operations.
SSReflect provides two levels of tagging.
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The first one uses auxiliary definitions to introduce a provably equal copy of any term t. However this copy is (on purpose)
not convertible to t in the Coq system305. The job is done by the following construction:

Lemma master_key : unit. Proof. exact tt. Qed.
Definition locked A := let: tt := master_key in fun x : A => x.
Lemma lock : forall A x, x = locked x :> A.

Note that the definition of master_key is explicitly opaque. The equation t = locked t given by the lock lemma
can be used for selective rewriting, blocking on the fly the reduction in the term t.

Example

Variable A : Type.
A is declared

Fixpoint has (p : A -> bool) (l : list A) : bool :=
if l is cons x l then p x || (has p l) else false.
has is defined
has is recursively defined (decreasing on 2nd argument)

Lemma test p x y l (H : p x = true) : has p ( x :: y :: l) = true.
1 subgoal

A : Type
p : A -> bool
x, y : A
l : list A
H : p x = true
============================
has p (x :: y :: l) = true

rewrite {2}[cons]lock /= -lock.
1 subgoal

A : Type
p : A -> bool
x, y : A
l : list A
H : p x = true
============================
p x || has p (y :: l) = true

It is sometimes desirable to globally prevent a definition from being expanded by simplification; this is done by adding
locked in the definition.

Example

Definition lid := locked (fun x : nat => x).
lid is defined

Lemma test : lid 3 = 3.
1 subgoal

============================

(continues on next page)
305 This is an implementation feature: there is no such obstruction in the metatheory
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(continued from previous page)
lid 3 = 3

rewrite /=.
1 subgoal

============================
lid 3 = 3

unlock lid.
1 subgoal

============================
3 = 3

unlock occ_switch
?

ident
This tactic unfolds such definitions while removing “locks”, i.e. it replaces the occurrence(s) of ident coded by
the occ_switch with the corresponding body.

We found that it was usually preferable to prevent the expansion of some functions by the partial evaluation switch /=,
unless this allowed the evaluation of a condition. This is possible thanks to another mechanism of term tagging, resting
on the following Notation:

Notation "'nosimpl' t" := (let: tt := tt in t).

The term (nosimpl t) simplifies to t except in a definition. More precisely, given:

Definition foo := (nosimpl bar).

the term foo (or (foo t’)) will not be expanded by the simpl tactic unless it is in a forcing context (e.g., in match
foo t’ with … end, foo t’ will be reduced if this allows match to be reduced). Note that nosimpl bar is
simply notation for a term that reduces to bar; hence unfold foo will replace foo by bar, and fold foo will
replace bar by foo.

Warning: The nosimpl trick only works if no reduction is apparent in t; in particular, the declaration:
Definition foo x := nosimpl (bar x).

will usually not work. Anyway, the common practice is to tag only the function, and to use the following definition,
which blocks the reduction as expected:
Definition foo x := nosimpl bar x.

A standard example making this technique shine is the case of arithmetic operations. We define for instance:

Definition addn := nosimpl plus.

The operation addn behaves exactly like plus, except that (addn (S n) m) will not simplify spontaneously to
(S (addn n m)) (the two terms, however, are convertible). In addition, the unfolding step: rewrite /addn will
replace addn directly with plus, so the nosimpl form is essentially invisible.

Congruence

Because of the way matching interferes with parameters of type families, the tactic:
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apply: my_congr_property.

will generally fail to perform congruence simplification, even on rather simple cases. We therefore provide a more robust
alternative in which the function is supplied:

congr num
?

term
This tactic:

• checks that the goal is a Leibniz equality;
• matches both sides of this equality with “term applied to some arguments”, inferring the right number of
arguments from the goal and the type of term. This may expand some definitions or fixpoints;

• generates the subgoals corresponding to pairwise equalities of the arguments present in the goal.
The goal can be a non dependent product P -> Q. In that case, the system asserts the equation P = Q, uses it to
solve the goal, and calls the congr tactic on the remaining goal P = Q. This can be useful for instance to perform
a transitivity step, like in the following situation.

Example

Lemma test (x y z : nat) (H : x = y) : x = z.
1 subgoal

x, y, z : nat
H : x = y
============================
x = z

congr (_ = _) : H.
1 focused subgoal
(shelved: 1)

x, y, z : nat
============================
y = z

Abort.
Lemma test (x y z : nat) : x = y -> x = z.

1 subgoal

x, y, z : nat
============================
x = y -> x = z

congr (_ = _).
1 focused subgoal
(shelved: 1)

x, y, z : nat
============================
y = z

The optional num forces the number of arguments for which the tactic should generate equality proof obligations.
This tactic supports equalities between applications with dependent arguments. Yet dependent arguments should
have exactly the same parameters on both sides, and these parameters should appear as first arguments.
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Example

Definition f n :=
if n is 0 then plus else mult.
f is defined

Definition g (n m : nat) := plus.
g is defined

Lemma test x y : f 0 x y = g 1 1 x y.
1 subgoal

x, y : nat
============================
f 0 x y = g 1 1 x y

congr plus.
No more subgoals.

This script shows that the congr tactic matches plus with f 0 on the left hand side and g 1 1 on the right
hand side, and solves the goal.

Example

Lemma test n m (Hnm : m <= n) : S m + (S n - S m) = S n.
1 subgoal

n, m : nat
Hnm : m <= n
============================
S m + (S n - S m) = S n

congr S; rewrite -/plus.
1 subgoal

n, m : nat
Hnm : m <= n
============================
m + (S n - S m) = n

The tactic rewrite -/plus folds back the expansion of plus which was necessary for matching both sides of
the equality with an application of S.

Like most SSReflect arguments, term can contain wildcards.

Example

Lemma test x y : x + (y * (y + x - x)) = x * 1 + (y + 0) * y.
1 subgoal

x, y : nat
============================
x + y * (y + x - x) = x * 1 + (y + 0) * y

(continues on next page)
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(continued from previous page)
congr ( _ + (_ * _)).

3 focused subgoals
(shelved: 3)

x, y : nat
============================
x = x * 1

subgoal 2 is:
y = y + 0

subgoal 3 is:
y + x - x = y

5.7.7 Contextual patterns

The simple form of patterns used so far, terms possibly containing wild cards, often require an additional occ_switch
to be specified. While this may work pretty fine for small goals, the use of polymorphic functions and dependent types
may lead to an invisible duplication of function arguments. These copies usually end up in types hidden by the implicit
arguments machinery or by user-defined notations. In these situations computing the right occurrence numbers is very
tedious because they must be counted on the goal as printed after setting the Printing All flag. Moreover the
resulting script is not really informative for the reader, since it refers to occurrence numbers he cannot easily see.
Contextual patterns mitigate these issues allowing to specify occurrences according to the context they occur in.

Syntax

The following table summarizes the full syntax of c_pattern and the corresponding subterm(s) identified by the pattern.
In the third column we use s.m.r. for “the subterms matching the redex” specified in the second column.

c_pattern redex subterms affected
term term all occurrences of term
ident in term subterm of term se-

lected by ident
all the subterms identified by ident in all the occurrences of
term

term1 in ident
in term2

term1 in all s.m.r. in all the subterms identified by ident in all the occurrences
of term2

term1 as ident
in term2

term 1 in all the subterms identified by ident in all the occurrences
of term2[term 1 /ident]

The rewrite tactic supports two more patterns obtained prefixing the first two with in. The intended meaning is that the
pattern identifies all subterms of the specified context. The rewrite tactic will infer a pattern for the redex looking at
the rule used for rewriting.

r_pattern redex subterms affected
in term inferred from

rule
in all s.m.r. in all occurrences of term

in ident in
term

inferred from
rule

in all s.m.r. in all the subterms identified by ident in all the occurrences
of term

The first c_pattern is the simplest form matching any context but selecting a specific redex and has been described
in the previous sections. We have seen so far that the possibility of selecting a redex using a term with holes is already a
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powerful means of redex selection. Similarly, any terms provided by the user in the more complex forms of c_patterns
presented in the tables above can contain holes.
For a quick glance at what can be expressed with the last r_pattern consider the goal a = b and the tactic

rewrite [in X in _ = X]rule.

It rewrites all occurrences of the left hand side of rule inside b only (a, and the hidden type of the equality, are ignored).
Note that the variant rewrite [X in _ = X]rule would have rewritten b exactly (i.e., it would only work if b
and the left hand side of rule can be unified).

Matching contextual patterns

The c_pattern and r_pattern involving terms with holes are matched against the goal in order to find a closed
instantiation. This matching proceeds as follows:

c_pattern instantiation order and place for term_i and redex
term term is matched against the goal, redex is unified with the instantiation of term
ident in
term

term is matched against the goal, redex is unified with the subterm of the instantiation of term
identified by ident

term1 in
ident in
term2

term2 is matched against the goal, term1 is matched against the subterm of the instantiation
of term1 identified by ident, redex is unified with the instantiation of term1

term1 as
ident in
term2

term2[term1/ident] is matched against the goal, redex is unified with the instantiation
of term1

In the following patterns, the redex is intended to be inferred from the rewrite rule.

r_pattern instantiation order and place for term_i and redex
in ident in
term

term is matched against the goal, the redex is matched against the subterm of the instantiation
of term identified by ident

in term term is matched against the goal, redex is matched against the instantiation of term

Examples

Contextual pattern in set and the : tactical

As already mentioned in section Abbreviations the set tactic takes as an argument a term in open syntax. This term is
interpreted as the simplest form of c_pattern. To avoid confusion in the grammar, open syntax is supported only for
the simplest form of patterns, while parentheses are required around more complex patterns.

Example

Lemma test a b : a + b + 1 = b + (a + 1).
1 subgoal

a, b : nat
============================
a + b + 1 = b + (a + 1)

(continues on next page)
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(continued from previous page)
set t := (X in _ = X).

1 subgoal

a, b : nat
t := b + (a + 1) : nat
============================
a + b + 1 = t

rewrite {}/t.
1 subgoal

a, b : nat
============================
a + b + 1 = b + (a + 1)

set t := (a + _ in X in _ = X).
1 subgoal

a, b : nat
t := a + 1 : nat
============================
a + b + 1 = b + t

Since the user may define an infix notation for in the result of the former tactic may be ambiguous. The disambiguation
rule implemented is to prefer patterns over simple terms, but to interpret a pattern with double parentheses as a simple
term. For example, the following tactic would capture any occurrence of the term a in A.

set t := ((a in A)).

Contextual patterns can also be used as arguments of the : tactical. For example:

elim: n (n in _ = n) (refl_equal n).

Contextual patterns in rewrite

Example

Notation "n .+1" := (Datatypes.S n) (at level 2, left associativity,
format "n .+1") : nat_scope.

Axiom addSn : forall m n, m.+1 + n = (m + n).+1.
addSn is declared

Axiom addn0 : forall m, m + 0 = m.
addn0 is declared

Axiom addnC : forall m n, m + n = n + m.
addnC is declared

Lemma test x y z f : (x.+1 + y) + f (x.+1 + y) (z + (x + y).+1) = 0.
1 subgoal

x, y, z : nat
f : nat -> nat -> nat

(continues on next page)

454 Chapter 5. The proof engine



The Coq Reference Manual, Release 8.11.2

(continued from previous page)
============================
x.+1 + y + f (x.+1 + y) (z + (x + y).+1) = 0

rewrite [in f _ _]addSn.
1 subgoal

x, y, z : nat
f : nat -> nat -> nat
============================
x.+1 + y + f (x + y).+1 (z + (x + y).+1) = 0

Note: the simplification rule addSn is applied only under the f symbol. Then we simplify also the first addition and
expand 0 into 0 + 0.

rewrite addSn -[X in _ = X]addn0.
1 subgoal

x, y, z : nat
f : nat -> nat -> nat
============================
(x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + 0

Note that the right hand side of addn0 is undetermined, but the rewrite pattern specifies the redex explicitly. The right
hand side of addn0 is unified with the term identified by X, here 0.
The following pattern does not specify a redex, since it identifies an entire region, hence the rewrite rule has to be instan-
tiated explicitly. Thus the tactic:

rewrite -{2}[in X in _ = X](addn0 0).
1 subgoal

x, y, z : nat
f : nat -> nat -> nat
============================
(x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + (0 + 0)

The following tactic is quite tricky:

rewrite [_.+1 in X in f _ X](addnC x.+1).
1 subgoal

x, y, z : nat
f : nat -> nat -> nat
============================
(x + y).+1 + f (x + y).+1 (z + (y + x.+1)) = 0 + (0 + 0)

The explicit redex _.+1 is important since its head constant S differs from the head constant inferred from (addnC
x.+1) (that is +). Moreover, the pattern f _ X is important to rule out the first occurrence of (x + y).+1. Last,
only the subterms of f _ X identified by X are rewritten, thus the first argument of f is skipped too. Also note the pattern
_.+1 is interpreted in the context identified by X, thus it gets instantiated to (y + x).+1 and not (x + y).+1.
The last rewrite pattern allows to specify exactly the shape of the term identified by X, that is thus unified with the left
hand side of the rewrite rule.

rewrite [x.+1 + y as X in f X _]addnC.
1 subgoal

(continues on next page)
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(continued from previous page)
x, y, z : nat
f : nat -> nat -> nat
============================
(x + y).+1 + f (y + x.+1) (z + (y + x.+1)) = 0 + (0 + 0)

Patterns for recurrent contexts

The user can define shortcuts for recurrent contexts corresponding to the ident in term part. The notation scope
identified with%pattern provides a special notation(X in t) the user must adopt in order to define context shortcuts.
The following example is taken from ssreflect.v where the LHS and RHS shortcuts are defined.

Notation RHS := (X in _ = X)%pattern.
Notation LHS := (X in X = _)%pattern.

Shortcuts defined this way can be freely used in place of the trailing ident in term part of any contextual pattern.
Some examples follow:

set rhs := RHS.
rewrite [in RHS]rule.
case: (a + _ in RHS).

5.7.8 Views and reflection

The bookkeeping facilities presented in section Basic tactics are crafted to ease simultaneous introductions and general-
izations of facts and operations of casing, naming etc. It also a common practice to make a stack operation immediately
followed by an interpretation of the fact being pushed, that is, to apply a lemma to this fact before passing it to a tactic for
decomposition, application and so on.
SSReflect provides a convenient, unified syntax to combine these interpretation operations with the proof stack operations.
This view mechanism relies on the combination of the / view switch with bookkeeping tactics and tacticals.

Interpreting eliminations

The view syntax combined with the elim tactic specifies an elimination scheme to be used instead of the default, gener-
ated, one. Hence the SSReflect tactic:

elim/V.

is a synonym for:

intro top; elim top using V; clear top.

where top is a fresh name and V any second-order lemma.
Since an elimination view supports the two bookkeeping tacticals of discharge and introduction (see section Basic tactics),
the SSReflect tactic:

elim/V: x => y.

is a synonym for:
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elim x using V; clear x; intro y.

where x is a variable in the context, y a fresh name and V any second order lemma; SSReflect relaxes the syntactic
restrictions of the Coq elim. The first pattern following : can be a _ wildcard if the conclusion of the view V specifies
a pattern for its last argument (e.g., if V is a functional induction lemma generated by the Function command).
The elimination view mechanism is compatible with the equation name generation (see section Generation of equations).

Example
The following script illustrates a toy example of this feature. Let us define a function adding an element at
the end of a list:

Variable d : Type.
d is declared

Fixpoint add_last (s : list d) (z : d) {struct s} : list d :=
if s is cons x s' then cons x (add_last s' z) else z :: nil.
add_last is defined
add_last is recursively defined (decreasing on 1st argument)

One can define an alternative, reversed, induction principle on inductively defined lists, by proving the following lemma:

Axiom last_ind_list : forall P : list d -> Prop,
P nil -> (forall s (x : d), P s -> P (add_last s x)) ->
forall s : list d, P s.
last_ind_list is declared

Then the combination of elimination views with equation names result in a concise syntax for reasoning inductively using
the user-defined elimination scheme.

Lemma test (x : d) (l : list d): l = l.
1 subgoal

d : Type
x : d
l : list d
============================
l = l

elim/last_ind_list E : l=> [| u v]; last first.
2 subgoals

d : Type
x : d
u : list d
v : d
l : list d
E : l = add_last u v
============================
u = u -> add_last u v = add_last u v

subgoal 2 is:
nil = nil

User-provided eliminators (potentially generated with Coq’sFunction command) can be combined with the type family
switches described in section Type families. Consider an eliminator foo_ind of type:
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foo_ind : forall …, forall x : T, P p1 … pm.

and consider the tactic:

elim/foo_ind: e1 … / en.

The elim/ tactic distinguishes two cases:
truncated eliminator when x does not occur in P p1 … pm and the type of en unifies with T and en is

not _. In that case, en is passed to the eliminator as the last argument (x in foo_ind) and en−1 …
e1 are used as patterns to select in the goal the occurrences that will be bound by the predicate P, thus
it must be possible to unify the subterm of the goal matched by en−1 with pm , the one matched by
en−2 with pm−1 and so on.

regular eliminator in all the other cases. Here it must be possible to unify the term matched by en with
pm , the one matched by en−1 with pm−1 and so on. Note that standard eliminators have the shape
…forall x, P … x, thus en is the pattern identifying the eliminated term, as expected.

As explained in section Type families, the initial prefix of ei can be omitted.
Here is an example of a regular, but nontrivial, eliminator.

Example
Here is a toy example illustrating this feature.

Function plus (m n : nat) {struct n} : nat :=
if n is S p then S (plus m p) else m.
plus is defined
plus is recursively defined (decreasing on 2nd argument)
plus_equation is defined
plus_rect is defined
plus_ind is defined
plus_rec is defined
R_plus_correct is defined
R_plus_complete is defined

About plus_ind.
plus_ind :
forall (m : nat) (P : nat -> nat -> Prop),
(forall n p : nat, n = S p -> P p (plus m p) -> P (S p) (S (plus m p))) ->
(forall n _x : nat,
n = _x -> match _x with

| 0 => True
| S _ => False
end -> P _x m) -> forall n : nat, P n (plus m n)

plus_ind is not universe polymorphic
Arguments plus_ind [m]%nat_scope [P]%function_scope (_ _)%function_scope

_%nat_scope
plus_ind is transparent
Expands to: Constant Top.Test.plus_ind

Lemma test x y z : plus (plus x y) z = plus x (plus y z).
1 subgoal

x, y, z : nat

(continues on next page)
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(continued from previous page)
============================
plus (plus x y) z = plus x (plus y z)

The following tactics are all valid and perform the same elimination on this goal.

elim/plus_ind: z / (plus _ z).
elim/plus_ind: {z}(plus _ z).
elim/plus_ind: {z}_.
elim/plus_ind: z / _.

elim/plus_ind: z / _.
2 subgoals

x, y : nat
============================
forall n p : nat,
n = S p ->
plus (plus x y) p = plus x (plus y p) ->
S (plus (plus x y) p) = plus x (plus y (S p))

subgoal 2 is:
forall n _x : nat,
n = _x ->
match _x with
| 0 => True
| S _ => False
end -> plus x y = plus x (plus y _x)

The two latter examples feature a wildcard pattern: in this case, the resulting pattern is inferred from the type of the
eliminator. In both these examples, it is (plus _ _), which matches the subterm plus (plus x y) z thus
instantiating the last _ with z. Note that the tactic:

Fail elim/plus_ind: y / _.
The command has indeed failed with message:
The given pattern matches the term y while the inferred pattern z doesn't

triggers an error: in the conclusion of the plus_ind eliminator, the first argument of the predicate P should be the same
as the second argument of plus, in the second argument of P, but y and z do no unify.

Here is an example of a truncated eliminator:

Example
Consider the goal:

Lemma test p n (n_gt0 : 0 < n) (pr_p : prime p) :
p %| \prod_(i <- prime_decomp n | i \in prime_decomp n) i.1 ^ i.2 ->
exists2 x : nat * nat, x \in prime_decomp n & p = x.1.

Proof.
elim/big_prop: _ => [| u v IHu IHv | [q e] /=].

where the type of the big_prop eliminator is

big_prop: forall (R : Type) (Pb : R -> Type)
(idx : R) (op1 : R -> R -> R), Pb idx ->

(continues on next page)

5.7. The SSReflect proof language 459



The Coq Reference Manual, Release 8.11.2

(continued from previous page)
(forall x y : R, Pb x -> Pb y -> Pb (op1 x y)) ->
forall (I : Type) (r : seq I) (P : pred I) (F : I -> R),
(forall i : I, P i -> Pb (F i)) ->
Pb (\big[op1/idx]_(i <- r | P i) F i).

Since the pattern for the argument of Pb is not specified, the inferred one is used instead: big[_/_]_(i <- _ | _
i) _ i, and after the introductions, the following goals are generated:

subgoal 1 is:
p %| 1 -> exists2 x : nat * nat, x \in prime_decomp n & p = x.1

subgoal 2 is:
p %| u * v -> exists2 x : nat * nat, x \in prime_decomp n & p = x.1

subgoal 3 is:
(q, e) \in prime_decomp n -> p %| q ^ e ->
exists2 x : nat * nat, x \in prime_decomp n & p = x.1.

Note that the pattern matching algorithm instantiated all the variables occurring in the pattern.

Interpreting assumptions

Interpreting an assumption in the context of a proof consists in applying to it a lemma before generalizing, and/or decom-
posing this assumption. For instance, with the extensive use of boolean reflection (see section Views and reflection), it is
quite frequent to need to decompose the logical interpretation of (the boolean expression of) a fact, rather than the fact
itself. This can be achieved by a combination of move : _ => _ switches, like in the following example, where ||
is a notation for the boolean disjunction.

Example

Variables P Q : bool -> Prop.
P is declared
Q is declared

Hypothesis P2Q : forall a b, P (a || b) -> Q a.
P2Q is declared

Lemma test a : P (a || a) -> True.
1 subgoal

P, Q : bool -> Prop
P2Q : forall a b : bool, P (a || b) -> Q a
a : bool
============================
P (a || a) -> True

move=> HPa; move: {HPa}(P2Q HPa) => HQa.
1 subgoal

P, Q : bool -> Prop
P2Q : forall a b : bool, P (a || b) -> Q a
a : bool
HQa : Q a
============================
True
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which transforms the hypothesis HPa : P a which has been introduced from the initial statement into HQa : Q a.
This operation is so common that the tactic shell has specific syntax for it. The following scripts:

move=> HPa; move/P2Q: HPa => HQa.
1 subgoal

P, Q : bool -> Prop
P2Q : forall a b : bool, P (a || b) -> Q a
a : bool
HQa : Q a
============================
True

or more directly:

move/P2Q=> HQa.
1 subgoal

P, Q : bool -> Prop
P2Q : forall a b : bool, P (a || b) -> Q a
a : bool
HQa : Q a
============================
True

are equivalent to the former one. The former script shows how to interpret a fact (already in the context), thanks to
the discharge tactical (see section Discharge) and the latter, how to interpret the top assumption of a goal. Note that
the number of wildcards to be inserted to find the correct application of the view lemma to the hypothesis has been
automatically inferred.

The view mechanism is compatible with the case tactic and with the equation name generation mechanism (see section
Generation of equations):

Example

Variables P Q: bool -> Prop.
P is declared
Q is declared

Hypothesis Q2P : forall a b, Q (a || b) -> P a \/ P b.
Q2P is declared

Lemma test a b : Q (a || b) -> True.
1 subgoal

P, Q : bool -> Prop
Q2P : forall a b : bool, Q (a || b) -> P a \/ P b
a, b : bool
============================
Q (a || b) -> True

case/Q2P=> [HPa | HPb].
2 subgoals

P, Q : bool -> Prop
Q2P : forall a b : bool, Q (a || b) -> P a \/ P b

(continues on next page)
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(continued from previous page)
a, b : bool
HPa : P a
============================
True

subgoal 2 is:
True

This view tactic performs:

move=> HQ; case: {HQ}(Q2P HQ) => [HPa | HPb].

The term on the right of the / view switch is called a view lemma. Any SSReflect term coercing to a product type can be
used as a view lemma.
The examples we have given so far explicitly provide the direction of the translation to be performed. In fact, view lemmas
need not to be oriented. The view mechanism is able to detect which application is relevant for the current goal.

Example

Variables P Q: bool -> Prop.
P is declared
Q is declared

Hypothesis PQequiv : forall a b, P (a || b) <-> Q a.
PQequiv is declared

Lemma test a b : P (a || b) -> True.
1 subgoal

P, Q : bool -> Prop
PQequiv : forall a b : bool, P (a || b) <-> Q a
a, b : bool
============================
P (a || b) -> True

move/PQequiv=> HQab.
1 subgoal

P, Q : bool -> Prop
PQequiv : forall a b : bool, P (a || b) <-> Q a
a, b : bool
HQab : Q a
============================
True

has the same behavior as the first example above.
The view mechanism can insert automatically a view hint to transform the double implication into the expected simple
implication. The last script is in fact equivalent to:

Lemma test a b : P (a || b) -> True.
move/(iffLR (PQequiv _ _)).

where:
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Lemma iffLR P Q : (P <-> Q) -> P -> Q.

Specializing assumptions

The special case when the head symbol of the view lemma is a wildcard is used to interpret an assumption by specializing
it. The view mechanism hence offers the possibility to apply a higher-order assumption to some given arguments.

Example

Lemma test z : (forall x y, x + y = z -> z = x) -> z = 0.
1 subgoal

z : nat
============================
(forall x y : nat, x + y = z -> z = x) -> z = 0

move/(_ 0 z).
1 subgoal

z : nat
============================
(0 + z = z -> z = 0) -> z = 0

Interpreting goals

In a similar way, it is also often convenient to changing a goal by turning it into an equivalent proposition. The view
mechanism of SSReflect has a special syntax apply/ for combining in a single tactic simultaneous goal interpretation
operations and bookkeeping steps.

Example
The following example use the ~~ prenex notation for boolean negation:

Variables P Q: bool -> Prop.
P is declared
Q is declared

Hypothesis PQequiv : forall a b, P (a || b) <-> Q a.
PQequiv is declared

Lemma test a : P ((~~ a) || a).
1 subgoal

P, Q : bool -> Prop
PQequiv : forall a b : bool, P (a || b) <-> Q a
a : bool
============================
P (~~ a || a)

apply/PQequiv.

(continues on next page)
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(continued from previous page)
1 focused subgoal
(shelved: 1)

P, Q : bool -> Prop
PQequiv : forall a b : bool, P (a || b) <-> Q a
a : bool
============================
Q (~~ a)

thus in this case, the tactic apply/PQequiv is equivalent to apply: (iffRL (PQequiv _ _)), where iffRL
is the analogue of iffRL for the converse implication.

Any SSReflect term whose type coerces to a double implication can be used as a view for goal interpretation.
Note that the goal interpretation view mechanism supports both apply and exact tactics. As expected, a goal inter-
pretation view command exact/term should solve the current goal or it will fail.

Warning: Goal interpretation view tactics are not compatible with the bookkeeping tactical => since this would be
redundant with the apply: term => _ construction.

Boolean reflection

In the Calculus of Inductive Constructions, there is an obvious distinction between logical propositions and boolean values.
On the one hand, logical propositions are objects of sort Prop which is the carrier of intuitionistic reasoning. Logical
connectives in Prop are types, which give precise information on the structure of their proofs; this information is auto-
matically exploited by Coq tactics. For example, Coq knows that a proof of A \/ B is either a proof of A or a proof of
B. The tactics left and right change the goal A \/ B to A and B, respectively; dually, the tactic case reduces the
goal A \/ B => G to two subgoals A => G and B => G.
On the other hand, bool is an inductive datatype with two constructors true and false. Logical connectives on bool are
computable functions, defined by their truth tables, using case analysis:

Example

Definition orb (b1 b2 : bool) := if b1 then true else b2.
orb is defined

Properties of such connectives are also established using case analysis

Example

Lemma test b : b || ~~ b = true.
1 subgoal

b : bool
============================
b || ~~ b = true

by case: b.
No more subgoals.
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Once b is replaced by true in the first goal and by false in the second one, the goals reduce by computations to the
trivial true = true.

Thus, Prop and bool are truly complementary: the former supports robust natural deduction, the latter allows brute-
force evaluation. SSReflect supplies a generic mechanism to have the best of the two worlds and move freely from a
propositional version of a decidable predicate to its boolean version.
First, booleans are injected into propositions using the coercion mechanism:

Coercion is_true (b : bool) := b = true.

This allows any boolean formula b to be used in a context where Coq would expect a proposition, e.g., after Lemma …
:. It is then interpreted as (is_true b), i.e., the proposition b = true. Coercions are elided by the pretty-printer,
so they are essentially transparent to the user.

The reflect predicate

To get all the benefits of the boolean reflection, it is in fact convenient to introduce the following inductive predicate
reflect to relate propositions and booleans:

Inductive reflect (P: Prop): bool -> Type :=
| Reflect_true : P -> reflect P true
| Reflect_false : ~P -> reflect P false.

The statement (reflect P b) asserts that (is_true b) and P are logically equivalent propositions.
For instance, the following lemma:

Lemma andP: forall b1 b2, reflect (b1 /\ b2) (b1 && b2).

relates the boolean conjunction to the logical one /\. Note that in andP, b1 and b2 are two boolean variables and the
proposition b1 /\ b2 hides two coercions. The conjunction of b1 and b2 can then be viewed as b1 /\ b2 or as b1
&& b2.
Expressing logical equivalences through this family of inductive types makes possible to take benefit from rewritable
equations associated to the case analysis of Coq’s inductive types.
Since the equivalence predicate is defined in Coq as:

Definition iff (A B:Prop) := (A -> B) /\ (B -> A).

where /\ is a notation for and:

Inductive and (A B:Prop) : Prop := conj : A -> B -> and A B.

This make case analysis very different according to the way an equivalence property has been defined.

Lemma andE (b1 b2 : bool) : (b1 /\ b2) <-> (b1 && b2).

Let us compare the respective behaviors of andE and andP.

Example

Lemma test (b1 b2 : bool) : if (b1 && b2) then b1 else ~~(b1||b2).
1 subgoal

(continues on next page)
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(continued from previous page)
b1, b2 : bool
============================
if b1 && b2 then b1 else ~~ (b1 || b2)

case: (@andE b1 b2).
1 subgoal

b1, b2 : bool
============================
(b1 /\ b2 -> b1 && b2) ->
(b1 && b2 -> b1 /\ b2) -> if b1 && b2 then b1 else ~~ (b1 || b2)

case: (@andP b1 b2).
2 subgoals

b1, b2 : bool
============================
b1 /\ b2 -> b1

subgoal 2 is:
~ (b1 /\ b2) -> ~~ (b1 || b2)

Expressing reflection relation through the reflect predicate is hence a very convenient way to deal with classical
reasoning, by case analysis. Using the reflect predicate allows moreover to program rich specifications inside its two
constructors, which will be automatically taken into account during destruction. This formalisation style gives far more
efficient specifications than quantified (double) implications.
A naming convention in SSReflect is to postfix the name of view lemmas with P. For example, orP relates || and \/,
negP relates ~~ and ~.
The view mechanism is compatible with reflect predicates.

Example

Lemma test (a b : bool) (Ha : a) (Hb : b) : a /\ b.
1 subgoal

a, b : bool
Ha : a
Hb : b
============================
a /\ b

apply/andP.
1 focused subgoal
(shelved: 1)

a, b : bool
Ha : a
Hb : b
============================
a && b

Conversely
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Lemma test (a b : bool) : a /\ b -> a.
1 subgoal

a, b : bool
============================
a /\ b -> a

move/andP.
1 subgoal

a, b : bool
============================
a && b -> a

The same tactics can also be used to perform the converse operation, changing a boolean conjunction into a logical one.
The view mechanism guesses the direction of the transformation to be used i.e., the constructor of the reflect predicate
which should be chosen.

General mechanism for interpreting goals and assumptions

Specializing assumptions

The SSReflect tactic:

move/(_ term1 … termn).

is equivalent to the tactic:

intro top; generalize (top term1 … termn); clear top.

where top is a fresh name for introducing the top assumption of the current goal.

Interpreting assumptions

The general form of an assumption view tactic is:
Variant: move case / term

The term , called the view lemma can be:
• a (term coercible to a) function;
• a (possibly quantified) implication;
• a (possibly quantified) double implication;
• a (possibly quantified) instance of the reflect predicate (see section Views and reflection).

Let top be the top assumption in the goal.
There are three steps in the behavior of an assumption view tactic:

• It first introduces top.
• If the type of term is neither a double implication nor an instance of the reflect predicate, then the tactic automat-
ically generalises a term of the form: term term1 … termn where the terms term1 … termn instantiate
the possible quantified variables of term , in order for (term term1 … termn top) to be well typed.
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• If the type of term is an equivalence, or an instance of the reflect predicate, it generalises a term of the form:
(termvh (term term1 … termn )) where the term termvh inserted is called an assumption interpreta-
tion view hint.

• It finally clears top.
For a case/term tactic, the generalisation step is replaced by a case analysis step.
View hints are declared by the user (see section Views and reflection) and are stored in the Hint View database. The proof
engine automatically detects from the shape of the top assumption top and of the view lemma term provided to the
tactic the appropriate view hint in the database to be inserted.
If term is a double implication, then the view hint will be one of the defined view hints for implication. These hints are
by default the ones present in the file ssreflect.v:

Lemma iffLR : forall P Q, (P <-> Q) -> P -> Q.

which transforms a double implication into the left-to-right one, or:

Lemma iffRL : forall P Q, (P <-> Q) -> Q -> P.

which produces the converse implication. In both cases, the two first Prop arguments are implicit.
Ifterm is an instance of thereflect predicate, thenAwill be one of the defined view hints for thereflect predicate,
which are by default the ones present in the file ssrbool.v. These hints are not only used for choosing the appropriate
direction of the translation, but they also allow complex transformation, involving negations.

Example

Check introN.
introN

: forall (P : Prop) (b : bool), reflect P b -> ~ P -> ~~ b

Lemma test (a b : bool) (Ha : a) (Hb : b) : ~~ (a && b).
1 subgoal

a, b : bool
Ha : a
Hb : b
============================
~~ (a && b)

apply/andP.
1 focused subgoal
(shelved: 1)

a, b : bool
Ha : a
Hb : b
============================
~ (a /\ b)

In fact this last script does not exactly use the hint introN, but the more general hint:

Check introNTF.
introNTF

: forall (P : Prop) (b c : bool),
reflect P b -> (if c then ~ P else P) -> ~~ b = c
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The lemma introN is an instantiation of introNF using c := true.

Note that views, being part of i_pattern, can be used to interpret assertions too. For example the following script
asserts a && b but actually uses its propositional interpretation.

Example

Lemma test (a b : bool) (pab : b && a) : b.
1 subgoal

a, b : bool
pab : b && a
============================
b

have /andP [pa ->] : (a && b) by rewrite andbC.
1 subgoal

a, b : bool
pab : b && a
pa : a
============================
true

Interpreting goals
A goal interpretation view tactic of the form:
Variant: apply/term
applied to a goal top is interpreted in the following way:

• If the type of term is not an instance of the reflect predicate, nor an equivalence, then the term term is
applied to the current goal top, possibly inserting implicit arguments.

• If the type of term is an instance of the reflect predicate or an equivalence, then a goal interpretation view hint can
possibly be inserted, which corresponds to the application of a term (termvh (term _ … _)) to the current
goal, possibly inserting implicit arguments.

Like assumption interpretation view hints, goal interpretation ones are user-defined lemmas stored (see section Views and
reflection) in the Hint View database bridging the possible gap between the type of term and the type of the goal.

Interpreting equivalences

Equivalent boolean propositions are simply equal boolean terms. A special construction helps the user to prove boolean
equalities by considering them as logical double implications (between their coerced versions), while performing at the
same time logical operations on both sides.
The syntax of double views is:
Variant: apply/term/term
The first term is the view lemma applied to the left hand side of the equality, while the second term is the one applied to
the right hand side.
In this context, the identity view can be used when no view has to be applied:
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Lemma idP : reflect b1 b1.

Example

Lemma test (b1 b2 b3 : bool) : ~~ (b1 || b2) = b3.
1 subgoal

b1, b2, b3 : bool
============================
~~ (b1 || b2) = b3

apply/idP/idP.
2 focused subgoals
(shelved: 2)

b1, b2, b3 : bool
============================
~~ (b1 || b2) -> b3

subgoal 2 is:
b3 -> ~~ (b1 || b2)

The same goal can be decomposed in several ways, and the user may choose the most convenient interpretation.

Lemma test (b1 b2 b3 : bool) : ~~ (b1 || b2) = b3.
1 subgoal

b1, b2, b3 : bool
============================
~~ (b1 || b2) = b3

apply/norP/idP.
2 focused subgoals
(shelved: 2)

b1, b2, b3 : bool
============================
~~ b1 /\ ~~ b2 -> b3

subgoal 2 is:
b3 -> ~~ b1 /\ ~~ b2

Declaring new Hint Views

Command: Hint View for move / ident | num
?

Command: Hint View for apply / ident | num
?

This command can be used to extend the database of hints for the view mechanism.
As library ssrbool.v already declares a corpus of hints, this feature is probably useful only for users who define
their own logical connectives.
The ident is the name of the lemma to be declared as a hint. If move is used as tactic, the hint is declared for
assumption interpretation tactics, apply declares hints for goal interpretations. Goal interpretation view hints are
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declared for both simple views and left hand side views. The optional natural number is the number of implicit
arguments to be considered for the declared hint view lemma.

Variant: Hint View for apply//ident | num
?

This variant with a double slash //, declares hint views for right hand sides of double views.
See the files ssreflect.v and ssrbool.v for examples.

Multiple views

The hypotheses and the goal can be interpreted by applying multiple views in sequence. Both move and apply can be
followed by an arbitrary number of /term. The main difference between the following two tactics

apply/v1/v2/v3.
apply/v1; apply/v2; apply/v3.

is that the former applies all the views to the principal goal. Applying a view with hypotheses generates new goals, and
the second line would apply the view v2 to all the goals generated by apply/v1.
Note that the NO-OP intro pattern - can be used to separate two views, making the two following examples equivalent:

move=> /v1; move=> /v2.
move=> /v1 - /v2.

The tactic move can be used together with the in tactical to pass a given hypothesis to a lemma.

Example

Variable P2Q : P -> Q.
P2Q is declared

Variable Q2R : Q -> R.
Q2R is declared

Lemma test (p : P) : True.
1 subgoal

P, Q, R : Prop
P2Q : P -> Q
Q2R : Q -> R
p : P
============================
True

move/P2Q/Q2R in p.
1 subgoal

P, Q, R : Prop
P2Q : P -> Q
Q2R : Q -> R
p : R
============================
True

If the list of views is of length two, Hint Views for interpreting equivalences are indeed taken into account, otherwise
only single Hint Views are used.
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5.7.9 SSReflect searching tool

Command: Search pattern
?

- ? string pattern % ident
?

*

in - ? qualid
+

?

This is the SSReflect extension of the Search command. qualid is the name of an open module. This command
returns the list of lemmas:

• whose conclusion contains a subterm matching the optional first pattern. A - reverses the test, producing the
list of lemmas whose conclusion does not contain any subterm matching the pattern;

• whose name contains the given string. A - prefix reverses the test, producing the list of lemmas whose name
does not contain the string. A string that contains symbols or is followed by a scope key, is interpreted as
the constant whose notation involves that string (e.g., + for addn), if this is unambiguous; otherwise the
diagnostic includes the output of the Locate vernacular command.

• whose statement, including assumptions and types, contains a subtermmatching the next patterns. If a pattern
is prefixed by -, the test is reversed;

• contained in the given list of modules, except the ones in the modules prefixed by a -.

Note:
• As for regular terms, patterns can feature scope indications. For instance, the command: Search _ (_ +
_)%N. lists all the lemmas whose statement (conclusion or hypotheses) involves an application of the binary oper-
ation denoted by the infix + symbol in the N scope (which is SSReflect scope for natural numbers).

• Patterns with holes should be surrounded by parentheses.
• Search always volunteers the expansion of the notation, avoiding the need to execute Locate independently. More-
over, a string fragment looks for any notation that contains fragment as a substring. If the ssrbool.v library is
imported, the command: Search "~~". answers :

Search "~~".
"~~" is part of notation ("~~ _")
In bool_scope, ("~~ b") denotes negb b
Toplevel input, characters 0-12:
> Search "~~".
> ^^^^^^^^^^^^
Warning: Listing only lemmas with conclusion matching (~~ ?b)
negbT: forall b : bool, b = false -> ~~ b

contra: forall c b : bool, (c -> b) -> ~~ b -> ~~ c

contraNN: forall c b : bool, (c -> b) -> ~~ b -> ~~ c

contraL: forall c b : bool, (c -> ~~ b) -> b -> ~~ c

contraTN: forall c b : bool, (c -> ~~ b) -> b -> ~~ c

contraFN: forall c b : bool, (c -> b) -> b = false -> ~~ c

introN: forall (P : Prop) (b : bool), reflect P b -> ~ P -> ~~ b

• A diagnostic is issued if there are different matching notations; it is an error if all matches are partial.
• Similarly, a diagnostic warns about multiple interpretations, and signals an error if there is no default one.
• The command Search in M. is a way of obtaining the complete signature of the module M.
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• Strings and pattern indications can be interleaved, but the first indication has a special status if it is a pattern, and
only filters the conclusion of lemmas:

– The command : Search (_ =1 _) "bij". lists all the lemmas whose conclusion features a =1 and
whose name contains the string bij.

– The command : Search "bij" (_ =1 _). lists all the lemmas whose statement, including hypotheses,
features a =1 and whose name contains the string bij.

5.7.10 Synopsis and Index

Parameters

SSReflect tactics
d_tactic ::= elim case congr apply exact move

Notation scope
key ::= ident

Module name
modname ::= qualid

Natural number
natural ::= num ident

where ident is an Ltac variable denoting a standard Coq numeral (should not be the name of a tactic which can be
followed by a bracket [, like do, have,…)

Items and switches

ssr_binder ::= ident ( ident : term
?

)

binder see Abbreviations.

clear_switch ::= { ident
+

}

clear switch see Discharge

c_pattern ::= term in term as
?

ident in term

context pattern see Contextual patterns

d_item ::= occ_switch clear_switch
?

term ( c_pattern )
?

discharge item see Discharge

gen_item ::= @
?

ident ( ident ) ( @
?

ident := c_pattern )

generalization item see Structure

i_pattern ::= ident > _ ? * + occ_switch
?

-> <- [ i_item
?

|
] - [: ident

+
]

intro pattern Introduction in the context
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i_item ::= clear_switch s_item i_pattern i_view i_block

view Introduction in the context

i_view ::= {}
?

/term /ltac:( tactic )

intro block Introduction in the context
i_block ::= [^ ident ] [^~ ident num ]

intro item see Introduction in the context

int_mult ::= num
?

mult_mark

multiplier see Iteration

occ_switch ::= { + -
?

num
*

}

occur. switch see Occurrence selection

mult ::= num
?

mult_mark

multiplier see Iteration
mult_mark ::= ? !

multiplier mark see Iteration

r_item ::= /
?

term s_item

rewrite item see Rewriting

r_prefix ::= - ? int_mult
?

occ_switch clear_switch
?

[ r_pattern ]
?

rewrite prefix see Rewriting

r_pattern ::= term c_pattern in ident in
?

term

rewrite pattern see Rewriting

r_step ::= r_prefix
?

r_item

rewrite step see Rewriting
s_item ::= /= // //=

simplify switch see Introduction in the context

Tactics

Note: without loss and suffices are synonyms for wlog and suff respectively.
move

idtac or hnf (see Bookkeeping)
apply
exact

application (see The defective tactics)
abstract

see The abstract tactic and Generating let in context entries with have
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elim
induction (see The defective tactics)

case
case analysis (see The defective tactics)

rewrite r_step
+

rewrite (see Rewriting)

under r_prefix
?

term => i_item
+

?

do tactic [ tactic
*

|
]

?

under (see Rewriting under binders)
over

over (see The over tactic)

have i_item
*

i_pattern
?

s_item ssr_binder
+

?

: term
?

:= term

have i_item
*

i_pattern
?

s_item ssr_binder
+

?

: term by tactic
?

have suff clear_switch
?

i_pattern
?

: term
?

:= term

have suff clear_switch
?

i_pattern
?

: term by tactic
?

gen have ident ,
?

i_pattern
?

: gen_item
+

/ term by tactic
?

generally have ident ,
?

i_pattern
?

: gen_item
+

/ term by tactic
?

forward chaining (see Structure)

wlog suff
?

i_item
?

: gen_item clear_switch
*

/ term
specializing (see Structure)

suff i_item
*

i_pattern
?

ssr_binder
+

: term by tactic
?

suffices i_item
*

i_pattern
?

ssr_binder
+

: term by tactic
?

suff have
?

clear_switch
?

i_pattern
?

: term by tactic
?

suffices have
?

clear_switch
?

i_pattern
?

: term by tactic
?

backchaining (see Structure)
pose ident := term

local definition (see Definitions)

Variant: pose ident ssr_binder
+

:= term
local function definition

Variant: pose fix fix_body
local fix definition

Variant: pose cofix fix_body
local cofix definition

set ident : term
?

:= occ_switch
?

term ( c_pattern)
abbreviation (see Abbreviations)
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unlock r_prefix
?

ident

*

unlock (see Locking, unlocking)

congr num
?

term
congruence (see Congruence)

Tacticals

tactic += d_tactic ident
?

: d_item
+

clear_switch
?

discharge Discharge

tactic += tactic => i_item
+

introduction see Introduction in the context

tactic += tactic in gen_item clear_switch
+

*
?

localization see Localization

tactic += do mult
?

tactic [ tactic
+

|
]

iteration see Iteration

tactic += tactic ; first last num
?

tactic [ tactic
+

|
]

selector see Selectors

tactic += tactic ; first last num
?

rotation see Selectors

tactic += by tactic [ tactic
*

|
]

closing see Terminators

Commands

Command: Hint View for move apply / ident | num
?

view hint declaration (see Declaring new Hint Views)

Command: Hint View for apply // ident num
?

right hand side double , view hint declaration (see Declaring new Hint Views)

Command: Prenex Implicits ident
+

prenex implicits declaration (see Parametric polymorphism)

Settings

Flag: Debug Ssreflect
Developer only. Print debug information on reflect.
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Flag: Debug SsrMatching
Developer only. Print debug information on SSR matching.
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CHAPTER

SIX

USER EXTENSIONS

6.1 Syntax extensions and interpretation scopes

In this chapter, we introduce advanced commands to modify the way Coq parses and prints objects, i.e. the translations
between the concrete and internal representations of terms and commands.
The main commands to provide custom symbolic notations for terms are Notation and Infix; they will be described
in the next section. There is also a variant of Notation which does not modify the parser; this provides a form of
abbreviation. It is sometimes expected that the same symbolic notation has different meanings in different contexts; to
achieve this form of overloading, Coq offers a notion of interpretation scopes. The main command to provide custom
notations for tactics is Tactic Notation.

6.1.1 Notations

Basic notations

Command: Notation
A notation is a symbolic expression denoting some term or term pattern.

A typical notation is the use of the infix symbol /\ to denote the logical conjunction (and). Such a notation is declared
by

Notation "A /\ B" := (and A B).

The expression (and A B) is the abbreviated term and the string "A /\ B" (called a notation) tells how it is symbol-
ically written.
A notation is always surrounded by double quotes (except when the abbreviation has the form of an ordinary applicative
expression; see Abbreviations). The notation is composed of tokens separated by spaces. Identifiers in the string (such
as A and B) are the parameters of the notation. Each of them must occur at least once in the denoted term. The other
elements of the string (such as /\) are the symbols.
An identifier can be used as a symbol but it must be surrounded by single quotes to avoid the confusion with a parameter.
Similarly, every symbol of at least 3 characters and starting with a simple quote must be quoted (then it starts by two
single quotes). Here is an example.

Notation "'IF' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3).

A notation binds a syntactic expression to a term. Unless the parser and pretty-printer of Coq already know how to deal
with the syntactic expression (see Reserving notations), explicit precedences and associativity rules have to be given.
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Note: The right-hand side of a notation is interpreted at the time the notation is given. In particular, disambiguation of
constants, implicit arguments and other notations are resolved at the time of the declaration of the notation.

Precedences and associativity

Mixing different symbolic notations in the same text may cause serious parsing ambiguity. To deal with the ambiguity of
notations, Coq uses precedence levels ranging from 0 to 100 (plus one extra level numbered 200) and associativity rules.
Consider for example the new notation

Notation "A \/ B" := (or A B).

Clearly, an expression such as forall A:Prop, True /\ A \/ A \/ False is ambiguous. To tell the Coq
parser how to interpret the expression, a priority between the symbols /\ and \/ has to be given. Assume for instance
that we want conjunction to bind more than disjunction. This is expressed by assigning a precedence level to each notation,
knowing that a lower level binds more than a higher level. Hence the level for disjunction must be higher than the level
for conjunction.
Since connectives are not tight articulation points of a text, it is reasonable to choose levels not so far from the highest
level which is 100, for example 85 for disjunction and 80 for conjunction308.
Similarly, an associativity is needed to decide whether True /\ False /\ False defaults to True /\ (False
/\ False) (right associativity) or to (True /\ False) /\ False (left associativity). We may even consider
that the expression is not well-formed and that parentheses are mandatory (this is a “no associativity”)309. We do not know
of a special convention of the associativity of disjunction and conjunction, so let us apply for instance a right associativity
(which is the choice of Coq).
Precedence levels and associativity rules of notations have to be given between parentheses in a list of modifiers that
the Notation command understands. Here is how the previous examples refine.

Notation "A /\ B" := (and A B) (at level 80, right associativity).
Notation "A \/ B" := (or A B) (at level 85, right associativity).

By default, a notation is considered nonassociative, but the precedence level is mandatory (except for special cases whose
level is canonical). The level is either a number or the phrase next level whose meaning is obvious. Some associa-
tivities are predefined in the Notations module.

Complex notations

Notations can be made from arbitrarily complex symbols. One can for instance define prefix notations.

Notation "~ x" := (not x) (at level 75, right associativity).

One can also define notations for incomplete terms, with the hole expected to be inferred during type checking.

Notation "x = y" := (@eq _ x y) (at level 70, no associativity).

One can define closed notations whose both sides are symbols. In this case, the default precedence level for the inner
sub-expression is 200, and the default level for the notation itself is 0.
308 which are the levels effectively chosen in the current implementation of Coq
309 Coq accepts notations declared as nonassociative but the parser on which Coq is built, namely Camlp5, currently does not implement no

associativity and replaces it with left associativity; hence it is the same for Coq: no associativity is in fact left
associativity for the purposes of parsing
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Notation "( x , y )" := (@pair _ _ x y).

One can also define notations for binders.

Notation "{ x : A | P }" := (sig A (fun x => P)).

In the last case though, there is a conflict with the notation for type casts. The notation for types casts, as shown by the
command Print Grammar constr is at level 100. To avoid x : A being parsed as a type cast, it is necessary to
put x at a level below 100, typically 99. Hence, a correct definition is the following:

Notation "{ x : A | P }" := (sig A (fun x => P)) (x at level 99).
Setting notation at level 0.

More generally, it is required that notations are explicitly factorized on the left. See the next section for more about
factorization.

Simple factorization rules

Coq extensible parsing is performed by Camlp5 which is essentially a LL1 parser: it decides which notation to parse by
looking at tokens from left to right. Hence, some care has to be taken not to hide already existing rules by new rules.
Some simple left factorization work has to be done. Here is an example.

Notation "x < y" := (lt x y) (at level 70).
Fail Notation "x < y < z" := (x < y /\ y < z) (at level 70).

The command has indeed failed with message:
Notation "_ < _ < _" is already defined at level 70 with arguments constr
at next level, constr at next level, constr at next level
while it is now required to be at level 70 with arguments constr
at next level, constr Unknown level, constr at next level.

In order to factorize the left part of the rules, the subexpression referred to by y has to be at the same level in both rules.
However the default behavior puts y at the next level below 70 in the first rule (no associativity is the default),
and at level 200 in the second rule (level 200 is the default for inner expressions). To fix this, we need to force the
parsing level of y, as follows.

Notation "x < y" := (lt x y) (at level 70).
Notation "x < y < z" := (x < y /\ y < z) (at level 70, y at next level).

For the sake of factorization with Coq predefined rules, simple rules have to be observed for notations starting with a
symbol, e.g., rules starting with “{” or “(” should be put at level 0. The list of Coq predefined notations can be found in
the chapter on The Coq library.
Command: Print Grammar constr.

This command displays the current state of the Coq term parser.
Command: Print Grammar pattern.

This displays the state of the subparser of patterns (the parser used in the grammar of the match with construc-
tions).

Displaying symbolic notations

The command Notation has an effect both on the Coq parser and on the Coq printer. For example:
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Check (and True True).
True /\ True

: Prop

However, printing, especially pretty-printing, also requires some care. We may want specific indentations, line breaks,
alignment if on several lines, etc. For pretty-printing, Coq relies on OCaml formatting library, which provides indentation
and automatic line breaks depending on page width by means of formatting boxes.
The default printing of notations is rudimentary. For printing a notation, a formatting box is opened in such a way that if
the notation and its arguments cannot fit on a single line, a line break is inserted before the symbols of the notation and
the arguments on the next lines are aligned with the argument on the first line.
A first, simple control that a user can have on the printing of a notation is the insertion of spaces at some places of the
notation. This is performed by adding extra spaces between the symbols and parameters: each extra space (other than
the single space needed to separate the components) is interpreted as a space to be inserted by the printer. Here is an
example showing how to add spaces around the bar of the notation.

Notation "{{ x : A | P }}" := (sig (fun x : A => P)) (at level 0, x at level 99).

Check (sig (fun x : nat => x=x)).
{{x : nat | x = x}}

: Set

The second, more powerful control on printing is by using the format modifier. Here is an example

Notation "'If' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3)
(at level 200, right associativity, format
"'[v ' 'If' c1 '/' '[' 'then' c2 ']' '/' '[' 'else' c3 ']' ']'").

Identifier 'If' now a keyword

Check
(IF_then_else (IF_then_else True False True)
(IF_then_else True False True)
(IF_then_else True False True)).
If If True

then False
else True

then If True
then False
else True

else If True
then False
else True

: Prop

A format is an extension of the string denoting the notation with the possible following elements delimited by single
quotes:

• tokens of the form '/ ' are translated into breaking points. If there is a line break, indents the number of spaces
appearing after the “/” (no indentation in the example)

• tokens of the form '//' force writing on a new line
• well-bracketed pairs of tokens of the form '[ ' and ']' are translated into printing boxes; if there is a line break,
an extra indentation of the number of spaces after the “[” is applied

• well-bracketed pairs of tokens of the form '[hv ' and ']' are translated into horizontal-or-else-vertical printing
boxes; if the content of the box does not fit on a single line, then every breaking point forces a new line and an extra
indentation of the number of spaces after the “[hv” is applied at the beginning of each new line
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• well-bracketed pairs of tokens of the form '[v ' and ']' are translated into vertical printing boxes; every break-
ing point forces a new line, even if the line is large enough to display the whole content of the box, and an extra
indentation of the number of spaces after the “[v” is applied at the beginning of each new line (3 spaces in the
example)

• extra spaces in other tokens are preserved in the output
Notations disappear when a section is closed. No typing of the denoted expression is performed at definition time. Type
checking is done only at the time of use of the notation.

Note: Sometimes, a notation is expected only for the parser. To do so, the option only parsing is allowed in the list
of modifiers of Notation. Conversely, the only printing modifier can be used to declare that a notation
should only be used for printing and should not declare a parsing rule. In particular, such notations do not modify the
parser.

The Infix command

The Infix command is a shortening for declaring notations of infix symbols.

Command: Infix "symbol" := term (modifiers)
?
.

This command is equivalent to

Notation "x symbol y" := (term x y) (modifiers)
?
.

where x and y are fresh names. Here is an example.

Infix "/\" := and (at level 80, right associativity).

Reserving notations

Command: Reserved Notation string (modifiers)
?

A given notation may be used in different contexts. Coq expects all uses of the notation to be defined at the same
precedence and with the same associativity. To avoid giving the precedence and associativity every time, this
command declares a parsing rule (string) in advance without giving its interpretation. Here is an example from
the initial state of Coq.

Reserved Notation "x = y" (at level 70, no associativity).

Reserving a notation is also useful for simultaneously defining an inductive type or a recursive constant and a notation
for it.

Note: The notations mentioned in the module Notations are reserved. Hence their precedence and associativity
cannot be changed.

Variant: Reserved Infix "symbol" modifiers
*

This command declares an infix parsing rule without giving its interpretation.
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Simultaneous definition of terms and notations

Thanks to reserved notations, the inductive, co-inductive, record, recursive and corecursive definitions can benefit from
customized notations. To do this, insert a where notation clause after the definition of the (co)inductive type or
(co)recursive term (or after the definition of each of them in case of mutual definitions). The exact syntax is given
by decl_notation for inductive, co-inductive, recursive and corecursive definitions and in Record types for records.
Here are examples:

Reserved Notation "A & B" (at level 80).

Inductive and' (A B : Prop) : Prop := conj' : A -> B -> A & B
where "A & B" := (and' A B).

Fixpoint plus (n m : nat) {struct n} : nat :=
match n with

| O => m
| S p => S (p+m)

end
where "n + m" := (plus n m).

Displaying information about notations

Flag: Printing Notations
Controls whether to use notations for printing terms wherever possible. Default is on.

See also:
Printing All To disable other elements in addition to notations.

Locating notations

To know to which notations a given symbol belongs to, use the Locate command. You can call it on any (composite)
symbol surrounded by double quotes. To locate a particular notation, use a string where the variables of the notation are
replaced by “_” and where possible single quotes inserted around identifiers or tokens starting with a single quote are
dropped.

Locate "exists".
Notation
"'exists' x .. y , p" := ex (fun x => .. (ex (fun y => p)) ..) : type_scope
(default interpretation)
"'exists' ! x .. y , p" := ex

(unique
(fun x => .. (ex (unique (fun y => p))) ..))

: type_scope (default interpretation)

Locate "exists _ .. _ , _".
Notation
"'exists' x .. y , p" := ex (fun x => .. (ex (fun y => p)) ..) : type_scope
(default interpretation)

Notations and binders

Notations can include binders. This section lists different ways to deal with binders. For further examples, see also
Notations with recursive patterns involving binders.
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Binders bound in the notation and parsed as identifiers

Here is the basic example of a notation using a binder:

Notation "'sigma' x : A , B" := (sigT (fun x : A => B))
(at level 200, x ident, A at level 200, right associativity).

The binding variables in the right-hand side that occur as a parameter of the notation (here x) dynamically bind all the
occurrences in their respective binding scope after instantiation of the parameters of the notation. This means that the
term bound to B can refer to the variable name bound to x as shown in the following application of the notation:

Check sigma z : nat, z = 0.
sigma z : nat, z = 0

: Set

Notice the modifier x ident in the declaration of the notation. It tells to parse x as a single identifier.

Binders bound in the notation and parsed as patterns

In the same way as patterns can be used as binders, as in fun '(x,y) => x+y or fun '(existT _ x _) =>
x, notations can be defined so that any pattern can be used in place of the binder. Here is an example:

Notation "'subset' ' p , P " := (sig (fun p => P))
(at level 200, p pattern, format "'subset' ' p , P").

Check subset '(x,y), x+y=0.
subset '(x, y), x + y = 0

: Set

The modifier p pattern in the declaration of the notation tells to parse p as a pattern. Note that a single variable
is both an identifier and a pattern, so, e.g., the following also works:

Check subset 'x, x=0.
subset 'x, x = 0

: Set

If one wants to prevent such a notation to be used for printing when the pattern is reduced to a single identifier, one has
to use instead the modifier p strict pattern. For parsing, however, a strict pattern will continue to
include the case of a variable. Here is an example showing the difference:

Notation "'subset_bis' ' p , P" := (sig (fun p => P))
(at level 200, p strict pattern).

Notation "'subset_bis' p , P " := (sig (fun p => P))
(at level 200, p ident).

Check subset_bis 'x, x=0.
subset_bis x, x = 0

: Set

The default level for a pattern is 0. One can use a different level by using pattern at level 𝑛 where the scale
is the same as the one for terms (see Notations).
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Binders bound in the notation and parsed as terms

Sometimes, for the sake of factorization of rules, a binder has to be parsed as a term. This is typically the case for a
notation such as the following:

Notation "{ x : A | P }" := (sig (fun x : A => P))
(at level 0, x at level 99 as ident).

This is so because the grammar also contains rules starting with {} and followed by a term, such as the rule for the
notation { A } + { B } for the constant sumbool (see Specification).
Then, in the rule, x ident is replaced by x at level 99 as ident meaning that x is parsed as a term at level
99 (as done in the notation for sumbool), but that this term has actually to be an identifier.
The notation { x | P } is already defined in the standard library with the as ident modifier. We cannot
redefine it but one can define an alternative notation, say { p such that P }, using instead as pattern.

Notation "{ p 'such' 'that' P }" := (sig (fun p => P))
(at level 0, p at level 99 as pattern).

Then, the following works:

Check {(x,y) such that x+y=0}.
{(x, y) such that x + y = 0}

: Set

To enforce that the pattern should not be used for printing when it is just an identifier, one could have said p at level
99 as strict pattern.
Note also that in the absence of a as ident, as strict pattern or as pattern modifiers, the default is
to consider sub-expressions occurring in binding position and parsed as terms to be as ident.

Binders not bound in the notation

We can also have binders in the right-hand side of a notation which are not themselves bound in the notation. In this case,
the binders are considered up to renaming of the internal binder. E.g., for the notation

Notation "'exists_different' n" := (exists p:nat, p<>n) (at level 200).

the next command fails because p does not bind in the instance of n.

Fail Check (exists_different p).
The command has indeed failed with message:
The reference p was not found in the current environment.

Notation "[> a , .. , b <]" :=
(cons a .. (cons b nil) .., cons b .. (cons a nil) ..).

Notations with recursive patterns

A mechanism is provided for declaring elementary notations with recursive patterns. The basic example is:

Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..).
Setting notation at level 0.
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On the right-hand side, an extra construction of the form .. t .. can be used. Notice that .. is part of the Coq syntax
and it must not be confused with the three-dots notation “…” used in this manual to denote a sequence of arbitrary size.
On the left-hand side, the part “x s .. s y” of the notation parses any number of times (but at least once) a sequence
of expressions separated by the sequence of tokens s (in the example, s is just “;”).
The right-hand side must contain a subterm of the form either φ(x, .. φ(y,t) ..) or φ(y, .. φ(x,t) ..)
where 𝜑([ ]𝐸, [ ]𝐼), called the iterator of the recursive notation is an arbitrary expression with distinguished placeholders
and where 𝑡 is called the terminating expression of the recursive notation. In the example, we choose the names 𝑥 and 𝑦
but in practice they can of course be chosen arbitrarily. Note that the placeholder [ ]𝐼 has to occur only once but [ ]𝐸 can
occur several times.
Parsing the notation produces a list of expressions which are used to fill the first placeholder of the iterating pattern
which itself is repeatedly nested as many times as the length of the list, the second placeholder being the nesting point.
In the innermost occurrence of the nested iterating pattern, the second placeholder is finally filled with the terminating
expression.
In the example above, the iterator 𝜑([ ]𝐸, [ ]𝐼) is 𝑐𝑜𝑛𝑠[ ]𝐸 [ ]𝐼 and the terminating expression is nil. Here are other
examples:

Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) (at level 0).
Notation "[| t * ( x , y , .. , z ) ; ( a , b , .. , c ) * u |]" :=

(pair (pair .. (pair (pair t x) (pair t y)) .. (pair t z))
(pair .. (pair (pair a u) (pair b u)) .. (pair c u)))

(t at level 39).

Notations with recursive patterns can be reserved like standard notations, they can also be declared within interpretation
scopes.

Notations with recursive patterns involving binders

Recursive notations can also be used with binders. The basic example is:

Notation "'exists' x .. y , p" :=
(ex (fun x => .. (ex (fun y => p)) ..))
(at level 200, x binder, y binder, right associativity).

The principle is the same as in Notations with recursive patterns except that in the iterator 𝜑([ ]𝐸, [ ]𝐼), the placeholder
[ ]𝐸 can also occur in position of the binding variable of a fun or a forall.
To specify that the part “x .. y” of the notation parses a sequence of binders, x and y must be marked as binder
in the list of modifiers of the notation. The binders of the parsed sequence are used to fill the occurrences of the
first placeholder of the iterating pattern which is repeatedly nested as many times as the number of binders generated. If
ever the generalization operator ' (see Implicit generalization) is used in the binding list, the added binders are taken into
account too.
There are two flavors of binder parsing. If x and y are marked as binder, then a sequence such as a b c : T will be
accepted and interpreted as the sequence of binders (a:T) (b:T) (c:T). For instance, in the notation above, the
syntax exists a b : nat, a = b is valid.
The variables x and y can also be marked as closed binder in which case only well-bracketed binders of the form (a b
c:T) or {a b c:T} etc. are accepted.
With closed binders, the recursive sequence in the left-hand side can be of the more general form x s .. s y where
s is an arbitrary sequence of tokens. With open binders though, s has to be empty. Here is an example of recursive
notation with closed binders:
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Notation "'mylet' f x .. y := t 'in' u":=
(let f := fun x => .. (fun y => t) .. in u)
(at level 200, x closed binder, y closed binder, right associativity).

A recursive pattern for binders can be used in position of a recursive pattern for terms. Here is an example:

Notation "'FUNAPP' x .. y , f" :=
(fun x => .. (fun y => (.. (f x) ..) y ) ..)
(at level 200, x binder, y binder, right associativity).

If an occurrence of the [ ]𝐸 is not in position of a binding variable but of a term, it is the name used in the binding which
is used. Here is an example:

Notation "'exists_non_null' x .. y , P" :=
(ex (fun x => x <> 0 /\ .. (ex (fun y => y <> 0 /\ P)) ..))
(at level 200, x binder).

Predefined entries

By default, sub-expressions are parsed as terms and the corresponding grammar entry is called constr. However, one
may sometimes want to restrict the syntax of terms in a notation. For instance, the following notation will accept to parse
only global reference in position of x:

Notation "'apply' f a1 .. an" := (.. (f a1) .. an)
(at level 10, f global, a1, an at level 9).

In addition to global, one can restrict the syntax of a sub-expression by using the entry names ident or pattern
already seen in Binders not bound in the notation, even when the corresponding expression is not used as a binder in the
right-hand side. E.g.:

Notation "'apply_id' f a1 .. an" := (.. (f a1) .. an)
(at level 10, f ident, a1, an at level 9).

Custom entries

Command: Declare Custom Entry ident
This command allows to define new grammar entries, called custom entries, that can later be referred to using the
entry name custom ident.

Example
For instance, we may want to define an ad hoc parser for arithmetical operations and proceed as follows:

Inductive Expr :=
| One : Expr
| Mul : Expr -> Expr -> Expr
| Add : Expr -> Expr -> Expr.

Expr is defined
Expr_rect is defined
Expr_ind is defined
Expr_rec is defined
Expr_sind is defined

(continues on next page)

6.1. Syntax extensions and interpretation scopes 487



The Coq Reference Manual, Release 8.11.2

(continued from previous page)
Declare Custom Entry expr.
Notation "[ e ]" := e (e custom expr at level 2).

Setting notation at level 0.

Notation "1" := One (in custom expr at level 0).
Notation "x y" := (Mul x y) (in custom expr at level 1, left associativity).
Notation "x + y" := (Add x y) (in custom expr at level 2, left associativity).
Notation "( x )" := x (in custom expr, x at level 2).

Setting notation at level 0.

Notation "{ x }" := x (in custom expr, x constr).
Setting notation at level 0.

Notation "x" := x (in custom expr at level 0, x ident).
Axiom f : nat -> Expr.

f is declared

Check fun x y z => [1 + y z + {f x}].
fun (x : nat) (y z : Expr) => [1 + y z + {f x}]

: nat -> Expr -> Expr -> Expr

Unset Printing Notations.
Check fun x y z => [1 + y z + {f x}].

fun (x : nat) (y z : Expr) => Add (Add One (Mul y z)) (f x)
: forall (_ : nat) (_ : Expr) (_ : Expr), Expr

Set Printing Notations.
Check fun e => match e with
| [1 + 1] => [1]
| [x y + z] => [x + y z]
| y => [y + e]
end.

fun e : Expr =>
match e with
| [1 + 1] => [1]
| [x y + z] => [x + y z]
| _ => [e + e]
end

: Expr -> Expr

Custom entries have levels, like the main grammar of terms and grammar of patterns have. The lower level is 0 and this is
the level used by default to put rules delimited with tokens on both ends. The level is left to be inferred by Coq when using
in custom ident. The level is otherwise given explicitly by using the syntax in custom ident at level
num, where num refers to the level.
Levels are cumulative: a notation at level n of which the left end is a term shall use rules at level less than n to parse this sub-
term. More precisely, it shall use rules at level strictly less than n if the rule is declared with right associativity
and rules at level less or equal than n if the rule is declared with left associativity. Similarly, a notation at
level n of which the right end is a term shall use by default rules at level strictly less than n to parse this subterm if the
rule is declared left associative and rules at level less or equal than n if the rule is declared right associative. This is what
happens for instance in the rule

Notation "x + y" := (Add x y) (in custom expr at level 2, left associativity).

where x is any expression parsed in entry expr at level less or equal than 2 (including, recursively, the given rule) and y
is any expression parsed in entry expr at level strictly less than 2.
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Rules associated to an entry can refer different sub-entries. The grammar entry name constr can be used to refer to
the main grammar of term as in the rule

Notation "{ x }" := x (in custom expr at level 0, x constr).

which indicates that the subterm x should be parsed using the main grammar. If not indicated, the level is computed as
for notations in constr, e.g. using 200 as default level for inner sub-expressions. The level can otherwise be indicated
explicitly by using constr at level n for some n, or constr at next level.
Conversely, custom entries can be used to parse sub-expressions of the main grammar, or from another custom entry as
is the case in

Notation "[ e ]" := e (e custom expr at level 2).

to indicate that e has to be parsed at level 2 of the grammar associated to the custom entry expr. The level can be
omitted, as in

Notation "[ e ]" := e (e custom expr).

in which case Coq infer it. If the sub-expression is at a border of the notation (as e.g. x and y in x + y), the level is
determined by the associativity. If the sub-expression is not at the border of the notation (as e.g. e in "[ e ]), the level
is inferred to be the highest level used for the entry. In particular, this level depends on the highest level existing in the
entry at the time of use of the notation.
In the absence of an explicit entry for parsing or printing a sub-expression of a notation in a custom entry, the default is to
consider that this sub-expression is parsed or printed in the same custom entry where the notation is defined. In particular,
if x at level n is used for a sub-expression of a notation defined in custom entry foo, it shall be understood the
same as x custom foo at level n.
In general, rules are required to be productive on the right-hand side, i.e. that they are bound to an expression which is
not reduced to a single variable. If the rule is not productive on the right-hand side, as it is the case above for

Notation "( x )" := x (in custom expr at level 0, x at level 2).

and

Notation "{ x }" := x (in custom expr at level 0, x constr).

it is used as a grammar coercion which means that it is used to parse or print an expression which is not available in the
current grammar at the current level of parsing or printing for this grammar but which is available in another grammar or
in another level of the current grammar. For instance,

Notation "( x )" := x (in custom expr at level 0, x at level 2).

tells that parentheses can be inserted to parse or print an expression declared at level 2 of expr whenever this expression
is expected to be used as a subterm at level 0 or 1. This allows for instance to parse and print Add x y as a subterm of
Mul (Add x y) z using the syntax (x + y) z. Similarly,

Notation "{ x }" := x (in custom expr at level 0, x constr).

gives a way to let any arbitrary expression which is not handled by the custom entry expr be parsed or printed by the
main grammar of term up to the insertion of a pair of curly brackets.
Command: Print Custom Grammar ident.

This displays the state of the grammar for terms associated to the custom entry ident.

Summary
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Syntax of notations

The different syntactic forms taken by the commands declaring notations are given below. The optional scope is de-
scribed in Interpretation scopes.

notation ::= [Local] Notation string := term [(modifiers)] [: scope].
[Local] Infix string := qualid [(modifiers)] [: scope].
[Local] Reserved Notation string [(modifiers)] .
Inductive ind_body [decl_notation] with … with ind_body [decl_notation].
CoInductive ind_body [decl_notation] with … with ind_body [decl_notation].
Fixpoint fix_body [decl_notation] with … with fix_body [decl_notation].
CoFixpoint cofix_body [decl_notation] with … with cofix_body [decl_notation].
[Local] Declare Custom Entry ident.

decl_notation ::= [where string := term [: scope] and … and string := term [: scope]].
modifiers ::= modifier, … , modifier
modifier ::= at level num

in custom ident
in custom ident at level num
ident , … , ident at level num [binderinterp]
ident , … , ident at next level [binderinterp]
ident explicit_subentry
left associativity
right associativity
no associativity
only parsing
only printing
format string

explicit_subentry ::= ident
global
bigint
[strict] pattern [at level num]
binder
closed binder
constr [binderinterp]
constr at level num [binderinterp]
constr at next level [binderinterp]
custom [binderinterp]
custom at level num [binderinterp]
custom at next level [binderinterp]

binderinterp ::= as ident
as pattern
as strict pattern

Note: No typing of the denoted expression is performed at definition time. Type checking is done only at the time of
use of the notation.

Note: Some examples of Notation may be found in the files composing the initial state of Coq (see directory $COQLIB/
theories/Init).
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Note: The notation "{ x }" has a special status in the main grammars of terms and patterns so that complex notations
of the form "x + { y }" or "x * { y }" can be nested with correct precedences. Especially, every notation
involving a pattern of the form "{ x }" is parsed as a notation where the pattern "{ x }" has been simply replaced
by "x" and the curly brackets are parsed separately. E.g. "y + { z }" is not parsed as a term of the given form
but as a term of the form "y + z" where z has been parsed using the rule parsing "{ x }". Especially, level and
precedences for a rule including patterns of the form "{ x }" are relative not to the textual notation but to the notation
where the curly brackets have been removed (e.g. the level and the associativity given to some notation, say "{ y } &
{ z }" in fact applies to the underlying "{ x }"-free rule which is "y & z").

Note: Notations such as "( p | q )" (or starting with "( x | ", more generally) are deprecated as they conflict
with the syntax for nested disjunctive patterns (see Extended pattern matching), and are not honored in pattern expressions.

Warning: Use of string Notation is deprecated as it is inconsistent with pattern syntax.
This warning is disabled by default to avoid spurious diagnostics due to legacy notation in the Coq standard library.
It can be turned on with the -w disj-pattern-notation flag.

Persistence of notations

Notations disappear when a section is closed.
Command: Local Notation notation

Notations survive modules unless the command Local Notation is used instead of Notation.
Command: Local Declare Custom Entry ident

Custom entries survive modules unless the command Local Declare Custom Entry is used instead of
Declare Custom Entry.

6.1.2 Interpretation scopes

An interpretation scope is a set of notations for termswith their interpretations. Interpretation scopes provide a weak, purely
syntactical form of notation overloading: the same notation, for instance the infix symbol +, can be used to denote distinct
definitions of the additive operator. Depending on which interpretation scopes are currently open, the interpretation is
different. Interpretation scopes can include an interpretation for numerals and strings, either at the OCaml level or using
Numeral Notation or String Notation.
Command: Declare Scope scope

This adds a new scope named scope. Note that the initial state of Coq declares by default the follow-
ing interpretation scopes: core_scope, type_scope, function_scope, nat_scope, bool_scope,
list_scope, int_scope, uint_scope.

The syntax to associate a notation to a scope is given above. Here is a typical example which declares the notation for
conjunction in the scope type_scope.

Notation "A /\ B" := (and A B) : type_scope.

Note: A notation not defined in a scope is called a lonely notation. No example of lonely notations can be found in the
initial state of Coq though.
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Global interpretation rules for notations

At any time, the interpretation of a notation for a term is done within a stack of interpretation scopes and lonely notations.
In case a notation has several interpretations, the actual interpretation is the one defined by (or in) the more recently
declared (or opened) lonely notation (or interpretation scope) which defines this notation. Typically if a given notation is
defined in some scope scope but has also an interpretation not assigned to a scope, then, if scope is open before the
lonely interpretation is declared, then the lonely interpretation is used (and this is the case even if the interpretation of
the notation in scope is given after the lonely interpretation: otherwise said, only the order of lonely interpretations and
opening of scopes matters, and not the declaration of interpretations within a scope).
Command: Open Scope scope

The command to add a scope to the interpretation scope stack is Open Scope scope.
Command: Close Scope scope

It is also possible to remove a scope from the interpretation scope stack by using the command Close Scope
scope.
Notice that this command does not only cancel the last Open Scope scope but all its invocations.

Note: Open Scope and Close Scope do not survive the end of sections where they occur. When defined outside
of a section, they are exported to the modules that import the module where they occur.

Command: Local Open Scope scope.
Command: Local Close Scope scope.

These variants are not exported to the modules that import the module where they occur, even if outside a section.
Command: Global Open Scope scope.
Command: Global Close Scope scope.

These variants survive sections. They behave as if Global were absent when not inside a section.

Local interpretation rules for notations

In addition to the global rules of interpretation of notations, some ways to change the interpretation of subterms are
available.

Local opening of an interpretation scope

It is possible to locally extend the interpretation scope stack using the syntax (term)%ident (or simply term%ident
for atomic terms), where ident is a special identifier called delimiting key and bound to a given scope.
In such a situation, the term term, and all its subterms, are interpreted in the scope stack extended with the scope bound
to ident.
Command: Delimit Scope scope with ident

To bind a delimiting key to a scope, use the command Delimit Scope scope with ident

Command: Undelimit Scope scope
To remove a delimiting key of a scope, use the command Undelimit Scope scope

Binding arguments of a constant to an interpretation scope

Command: Arguments qualid name%ident
+

It is possible to set in advance that some arguments of a given constant have to be interpreted in a given scope. The
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command is Arguments qualid name%ident
+ where the list is a prefix of the arguments of qualid

optionally annotated with their scope ident. Grouping round parentheses can be used to decorate multiple argu-
ments with the same scope. ident can be either a scope name or its delimiting key. For example the following
command puts the first two arguments of plus_fct in the scope delimited by the key F (Rfun_scope) and
the last argument in the scope delimited by the key R (R_scope).

Arguments plus_fct (f1 f2)%F x%R.

The Arguments command accepts scopes decoration to all grouping parentheses. In the following example
arguments A and B are marked as maximally inserted implicit arguments and are put into the type_scope
scope.

Arguments respectful {A B}%type (R R')%signature _ _.

When interpreting a term, if some of the arguments of qualid are built from a notation, then this notation is
interpreted in the scope stack extended by the scope bound (if any) to this argument. The effect of the scope is
limited to the argument itself. It does not propagate to subterms but the subterms that, after interpretation of the
notation, turn to be themselves arguments of a reference are interpreted accordingly to the argument scopes bound
to this reference.
Variant: Arguments qualid : clear scopes

This command can be used to clear argument scopes of qualid.

Variant: Arguments qualid name%ident
+

: extra scopes
Defines extra argument scopes, to be used in case of coercion to Funclass (see the Implicit Coercions
chapter) or with a computed type.

Variant: Global Arguments qualid name%ident
+

This behaves like Arguments qualid name%ident
+ but survives when a section is closed instead

of stopping working at section closing. Without the Globalmodifier, the effect of the command stops when
the section it belongs to ends.

Variant: Local Arguments qualid name%ident
+

This behaves like Arguments qualid name%ident
+ but does not survive modules and files. With-

out the Local modifier, the effect of the command is visible from within other modules or files.
See also:
The command About can be used to show the scopes bound to the arguments of a function.

Note: In notations, the subterms matching the identifiers of the notations are interpreted in the scope in which the
identifiers occurred at the time of the declaration of the notation. Here is an example:

Parameter g : bool -> bool.
g is declared

Declare Scope mybool_scope.
Notation "@@" := true (only parsing) : bool_scope.

Setting notation at level 0.

Notation "@@" := false (only parsing): mybool_scope.
Bind Scope bool_scope with bool.
Notation "# x #" := (g x) (at level 40).
Check # @@ #.

# true #

(continues on next page)
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(continued from previous page)
: bool

Arguments g _%mybool_scope.
Check # @@ #.

# true #
: bool

Delimit Scope mybool_scope with mybool.
Check # @@%mybool #.

# false #
: bool

Binding types of arguments to an interpretation scope

Command: Bind Scope scope with qualid
When an interpretation scope is naturally associated to a type (e.g. the scope of operations on the natural numbers),
it may be convenient to bind it to this type. When a scope scope is bound to a type type, any function gets its
arguments of type type interpreted by default in scope scope (this default behavior can however be overwritten
by explicitly using the command Arguments).
Whether the argument of a function has some typetype is determined statically. For instance, iff is a polymorphic
function of type forall X:Type, X -> X and type t is bound to a scope scope, then a of type t in f t
a is not recognized as an argument to be interpreted in scope scope.
More generally, any coercion class (see the Implicit Coercions chapter) can be bound to an interpretation scope.
The command to do it is Bind Scope scope with class

Parameter U : Set.
Declare Scope U_scope.
Bind Scope U_scope with U.
Parameter Uplus : U -> U -> U.
Parameter P : forall T:Set, T -> U -> Prop.
Parameter f : forall T:Set, T -> U.
Infix "+" := Uplus : U_scope.
Unset Printing Notations.
Open Scope nat_scope.

Check (fun x y1 y2 z t => P _ (x + t) ((f _ (y1 + y2) + z))).
fun (x y1 y2 : nat) (z : U) (t : nat) =>
P nat (Nat.add x t) (Uplus (f nat (Nat.add y1 y2)) z)

: forall (_ : nat) (_ : nat) (_ : nat) (_ : U) (_ : nat), Prop

Note: When active, a bound scope has effect on all defined functions (even if they are defined after the Bind
Scope directive), except if argument scopes were assigned explicitly using the Arguments command.

Note: The scopes type_scope and function_scope also have a local effect on interpretation. See the next
section.
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The type_scope interpretation scope

The scope type_scope has a special status. It is a primitive interpretation scope which is temporarily activated each
time a subterm of an expression is expected to be a type. It is delimited by the key type, and bound to the coercion
class Sortclass. It is also used in certain situations where an expression is statically known to be a type, including
the conclusion and the type of hypotheses within an Ltac goal match (see Pattern matching on goals), the statement of a
theorem, the type of a definition, the type of a binder, the domain and codomain of implication, the codomain of products,
and more generally any type argument of a declared or defined constant.

The function_scope interpretation scope

The scope function_scope also has a special status. It is temporarily activated each time the argument of a global
reference is recognized to be a Funclass instance, i.e., of type forall x:A, B or A -> B.

Interpretation scopes used in the standard library of Coq

We give an overview of the scopes used in the standard library of Coq. For a complete list of notations in each scope, use
the commands Print Scopes or Print Scope.
type_scope This scope includes infix * for product types and infix + for sum types. It is delimited by the key type,

and bound to the coercion class Sortclass, as described above.
function_scope This scope is delimited by the key function, and bound to the coercion class Funclass, as

described above.
nat_scope This scope includes the standard arithmetical operators and relations on type nat. Positive integer numerals

in this scope are mapped to their canonical representent built from O and S. The scope is delimited by the key nat,
and bound to the type nat (see above).

N_scope This scope includes the standard arithmetical operators and relations on type N (binary natural numbers). It
is delimited by the key N and comes with an interpretation for numerals as closed terms of type N.

Z_scope This scope includes the standard arithmetical operators and relations on type Z (binary integer numbers). It
is delimited by the key Z and comes with an interpretation for numerals as closed terms of type Z.

positive_scope This scope includes the standard arithmetical operators and relations on type positive (binary
strictly positive numbers). It is delimited by key positive and comes with an interpretation for numerals as
closed terms of type positive.

Q_scope This scope includes the standard arithmetical operators and relations on type Q (rational numbers defined
as fractions of an integer and a strictly positive integer modulo the equality of the numerator- denominator cross-
product) and comes with an interpretation for numerals as closed terms of type Q.

Qc_scope This scope includes the standard arithmetical operators and relations on the type Qc of rational numbers
defined as the type of irreducible fractions of an integer and a strictly positive integer.

R_scope This scope includes the standard arithmetical operators and relations on type R (axiomatic real numbers). It is
delimited by the key R and comes with an interpretation for numerals using the IZRmorphism from binary integer
numbers to R and Z.pow_pos for potential exponent parts.

bool_scope This scope includes notations for the boolean operators. It is delimited by the key bool, and bound to
the type bool (see above).

list_scope This scope includes notations for the list operators. It is delimited by the key list, and bound to the
type list (see above).

core_scope This scope includes the notation for pairs. It is delimited by the key core.
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string_scope This scope includes notation for strings as elements of the type string. Special characters and escaping
follow Coq conventions on strings (see Lexical conventions). Especially, there is no convention to visualize non
printable characters of a string. The file String.v shows an example that contains quotes, a newline and a beep
(i.e. the ASCII character of code 7).

char_scope This scope includes interpretation for all strings of the form "c"where c is an ASCII character, or of the
form "nnn" where nnn is a three-digits number (possibly with leading 0’s), or of the form """". Their respective
denotations are the ASCII code of c, the decimal ASCII code nnn, or the ascii code of the character " (i.e. the
ASCII code 34), all of them being represented in the type ascii.

Displaying information about scopes

Command: Print Visibility
This displays the current stack of notations in scopes and lonely notations that is used to interpret a notation. The
top of the stack is displayed last. Notations in scopes whose interpretation is hidden by the same notation in a more
recently opened scope are not displayed. Hence each notation is displayed only once.
Variant: Print Visibility scope

This displays the current stack of notations in scopes and lonely notations assuming that scope is pushed on
top of the stack. This is useful to know how a subterm locally occurring in the scope scope is interpreted.

Command: Print Scopes
This displays all the notations, delimiting keys and corresponding classes of all the existing interpretation scopes.
It also displays the lonely notations.
Variant: Print Scope scope

This displays all the notations defined in the interpretation scope scope. It also displays the delimiting key
if any and the class to which the scope is bound, if any.

6.1.3 Abbreviations

Command: Local
?

Notation ident ident
+

:= term (only parsing)
?
.

An abbreviation is a name, possibly applied to arguments, that denotes a (presumably) more complex expression.
Here are examples:

Notation Nlist := (list nat).

Check 1 :: 2 :: 3 :: nil.
1 :: 2 :: 3 :: nil

: Nlist

Notation reflexive R := (forall x, R x x).

Check forall A:Prop, A <-> A.
reflexive iff

: Prop

Check reflexive iff.
reflexive iff

: Prop

An abbreviation expects no precedence nor associativity, since it is parsed as an usual application. Abbreviations
are used as much as possible by the Coq printers unless the modifier (only parsing) is given.
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An abbreviation is bound to an absolute name as an ordinary definition is and it also can be referred to by a qualified
name.
Abbreviations are syntactic in the sense that they are bound to expressions which are not typed at the time of the
definition of the abbreviation but at the time they are used. Especially, abbreviations can be bound to terms with
holes (i.e. with “_”). For example:

Definition explicit_id (A:Set) (a:A) := a.

Notation id := (explicit_id _).

Check (id 0).
id 0

: nat

Abbreviations disappear when a section is closed. No typing of the denoted expression is performed at definition
time. Type checking is done only at the time of use of the abbreviation.

6.1.4 Numeral notations

Command: Numeral Notation ident1 ident2 ident3 : scope.
This command allows the user to customize the way numeral literals are parsed and printed.
The token ident1 should be the name of an inductive type, while ident2 and ident3 should be the names of
the parsing and printing functions, respectively. The parsing function ident2 should have one of the following
types:

• Decimal.int -> ident1

• Decimal.int -> option ident1

• Decimal.uint -> ident1

• Decimal.uint -> option ident1

• Z -> ident1

• Z -> option ident1

• Decimal.decimal -> ident1

• Decimal.decimal -> option ident1

And the printing function ident3 should have one of the following types:
• ident1 -> Decimal.int

• ident1 -> option Decimal.int

• ident1 -> Decimal.uint

• ident1 -> option Decimal.uint

• ident1 -> Z

• ident1 -> option Z

• ident1 -> Decimal.decimal

• ident1 -> option Decimal.decimal

When parsing, the application of the parsing function ident2 to the number will be fully reduced, and
universes of the resulting term will be refreshed.
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Note that only fully-reduced ground terms (terms containing only function application, constructors,
inductive type families, sorts, and primitive integers) will be considered for printing.

Variant: Numeral Notation ident1 ident2 ident3 : scope (warning after num).
When a literal larger than num is parsed, a warning message about possible stack overflow, resulting from
evaluating ident2, will be displayed.

Variant: Numeral Notation ident1 ident2 ident3 : scope (abstract after num).
When a literal m larger than num is parsed, the result will be (ident2 m), without reduction of this ap-
plication to a normal form. Here m will be a Decimal.int or Decimal.uint or Z, depending on the
type of the parsing function ident2. This allows for a more compact representation of literals in types such
as nat, and limits parse failures due to stack overflow. Note that a warning will be emitted when an integer
larger than num is parsed. Note that (abstract after num) has no effect when ident2 lands in an
option type.

Error: Cannot interpret this number as a value of type type
The numeral notation registered for type does not support the given numeral. This error is given when the
interpretation function returns None, or if the interpretation is registered only for integers or non-negative
integers, and the given numeral has a fractional or exponent part or is negative.

Error: ident should go from Decimal.int to type or (option type). Instead of Decimal.int, the types Decimal.uint or Z or Int63.int or Decimal.decimal could be used (you may need to require BinNums or Decimal or Int63 first).
The parsing function given to the Numeral Notation vernacular is not of the right type.

Error: ident should go from type to Decimal.int or (option Decimal.int). Instead of Decimal.int, the types Decimal.uint or Z or Int63.int or Decimal.decimal could be used (you may need to require BinNums or Decimal or Int63 first).
The printing function given to the Numeral Notation vernacular is not of the right type.

Error: type is not an inductive type.
Numeral notations can only be declared for inductive types with no arguments.

Error: Unexpected term term while parsing a numeral notation.
Parsing functions must always return ground terms, made up of applications of constructors, inductive types,
and primitive integers. Parsing functions may not return terms containing axioms, bare (co)fixpoints, lambdas,
etc.

Error: Unexpected non-option term term while parsing a numeral notation.
Parsing functions expected to return an optionmust always return a concrete Some or None when applied
to a concrete numeral expressed as a decimal. They may not return opaque constants.

Error: Cannot interpret in scope because ident could not be found in the current environment.
The inductive type used to register the numeral notation is no longer available in the environment. Most likely,
this is because the numeral notation was declared inside a functor for an inductive type inside the functor. This
use case is not currently supported.
Alternatively, you might be trying to use a primitive token notation from a plugin which forgot to specify
which module you must Require for access to that notation.

Error: Syntax error: [prim:reference] expected after 'Notation' (in [vernac:command]).
The type passed to Numeral Notation must be a single identifier.

Error: Syntax error: [prim:reference] expected after [prim:reference] (in [vernac:command]).
Both functions passed to Numeral Notation must be single identifiers.

Error: The reference ident was not found in the current environment.
Identifiers passed to Numeral Notation must exist in the global environment.

Error: ident is bound to a notation that does not denote a reference.
Identifiers passed to Numeral Notation must be global references, or notations which denote to single
identifiers.

Warning: Stack overflow or segmentation fault happens when working with large numbers in type (threshold may vary depending on your system limits and on the command executed).
When a Numeral Notation is registered in the current scope with (warning after num), this
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warning is emitted when parsing a numeral greater than or equal to num.
Warning: To avoid stack overflow, large numbers in type are interpreted as applications of ident2.

When a Numeral Notation is registered in the current scope with (abstract after num), this
warning is emitted when parsing a numeral greater than or equal to num. Typically, this indicates that the
fully computed representation of numerals can be so large that non-tail-recursive OCaml functions run out of
stack space when trying to walk them.
For example

Check 90000.
Toplevel input, characters 0-12:
> Check 90000.
> ^^^^^^^^^^^^
Warning: To avoid stack overflow, large numbers in nat are interpreted as
applications of Nat.of_uint. [abstract-large-number,numbers]
Nat.of_uint 90000

: nat

Warning: The 'abstract after' directive has no effect when the parsing function (ident2) targets an option type.
As noted above, the (abstract after num) directive has no effect when ident2 lands in an option
type.

6.1.5 String notations

Command: String Notation ident1 ident2 ident3 : scope.
This command allows the user to customize the way strings are parsed and printed.
The token ident1 should be the name of an inductive type, while ident2 and ident3 should be the names of
the parsing and printing functions, respectively. The parsing function ident2 should have one of the following
types:

• Byte.byte -> ident1

• Byte.byte -> option ident1

• list Byte.byte -> ident1

• list Byte.byte -> option ident1

And the printing function ident3 should have one of the following types:
• ident1 -> Byte.byte

• ident1 -> option Byte.byte

• ident1 -> list Byte.byte

• ident1 -> option (list Byte.byte)

When parsing, the application of the parsing function ident2 to the string will be fully reduced, and
universes of the resulting term will be refreshed.
Note that only fully-reduced ground terms (terms containing only function application, constructors,
inductive type families, sorts, and primitive integers) will be considered for printing.

Error: Cannot interpret this string as a value of type type
The string notation registered for type does not support the given string. This error is given when the
interpretation function returns None.

Error: ident should go from Byte.byte or (list Byte.byte) to type or (option type).
The parsing function given to the String Notation vernacular is not of the right type.
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Error: ident should go from type to Byte.byte or (option Byte.byte) or (list Byte.byte) or (option (list Byte.byte)).
The printing function given to the String Notation vernacular is not of the right type.

Error: type is not an inductive type.
String notations can only be declared for inductive types with no arguments.

Error: Unexpected term term while parsing a string notation.
Parsing functions must always return ground terms, made up of applications of constructors, inductive types,
and primitive integers. Parsing functions may not return terms containing axioms, bare (co)fixpoints, lambdas,
etc.

Error: Unexpected non-option term term while parsing a string notation.
Parsing functions expected to return an optionmust always return a concrete Some or None when applied
to a concrete string expressed as a decimal. They may not return opaque constants.

Error: Cannot interpret in scope because ident could not be found in the current environment.
The inductive type used to register the string notation is no longer available in the environment. Most likely,
this is because the string notation was declared inside a functor for an inductive type inside the functor. This
use case is not currently supported.
Alternatively, you might be trying to use a primitive token notation from a plugin which forgot to specify
which module you must Require for access to that notation.

Error: Syntax error: [prim:reference] expected after 'Notation' (in [vernac:command]).
The type passed to String Notation must be a single identifier.

Error: Syntax error: [prim:reference] expected after [prim:reference] (in [vernac:command]).
Both functions passed to String Notation must be single identifiers.

Error: The reference ident was not found in the current environment.
Identifiers passed to String Notation must exist in the global environment.

Error: ident is bound to a notation that does not denote a reference.
Identifiers passed to String Notation must be global references, or notations which denote to single
identifiers.

6.1.6 Tactic Notations

Tactic notations allow to customize the syntax of tactics. They have the following syntax:

tacn ::= Tactic Notation [tactic_level] [prod_item … prod_item] := tactic.
prod_item ::= string | tactic_argument_type(ident)
tactic_level ::= (at level num)
tactic_argument_type ::= ident | simple_intropattern | reference

hyp | hyp_list | ne_hyp_list
constr | uconstr | constr_list | ne_constr_list
integer | integer_list | ne_integer_list
int_or_var | int_or_var_list | ne_int_or_var_list
tactic | tactic0 | tactic1 | tactic2 | tactic3
tactic4 | tactic5

Command: Tactic Notation (at level num)
?

prod_item
+

:= tactic.
A tactic notation extends the parser and pretty-printer of tactics with a new rule made of the list of production
items. It then evaluates into the tactic expression tactic. For simple tactics, it is recommended to use a terminal
symbol, i.e. a string, for the first production item. The tactic level indicates the parsing precedence of the tactic
notation. This information is particularly relevant for notations of tacticals. Levels 0 to 5 are available (default is

500 Chapter 6. User extensions



The Coq Reference Manual, Release 8.11.2

5).
Command: Print Grammar tactic

To know the parsing precedences of the existing tacticals, use the command Print Grammar tactic.
Each type of tactic argument has a specific semantic regarding how it is parsed and how it is interpreted. The se-
mantic is described in the following table. The last command gives examples of tactics which use the corresponding
kind of argument.

Tactic argument type parsed as interpreted as as in tactic
ident identifier a user-given name intro
simple_intropattern simple_intropattern an introduction pattern assert as
hyp identifier a hypothesis defined in context clear
reference qualified identifier a global reference of term unfold
constr term a term exact
uconstr term an untyped term refine
integer integer an integer
int_or_var identifier or integer an integer do
tactic tactic at level 5 a tactic
tacticn tactic at level n a tactic
entry_list list of entry a list of how entry is interpreted
ne_entry_list non-empty list of entry a list of how entry is interpreted

Note: In order to be bound in tactic definitions, each syntactic entry for argument type must include the case of a
simple Ltac identifier as part of what it parses. This is naturally the case for ident, simple_intropattern,
reference, constr, ... but not for integer. This is the reason for introducing a special entry int_or_var
which evaluates to integers only but which syntactically includes identifiers in order to be usable in tactic definitions.

Note: The entry_list and ne_entry_list entries can be used in primitive tactics or in other notations at places
where a list of the underlying entry can be used: entry is either constr, hyp, integer or int_or_var.

Variant: Local Tactic Notation
Tactic notations disappear when a section is closed. They survive when a module is closed unless the command
Local Tactic Notation is used instead of Tactic Notation.

6.2 Proof schemes

6.2.1 Generation of induction principles with Scheme

The Scheme command is a high-level tool for generating automatically (possibly mutual) induction principles for given
types and sorts. Its syntax follows the schema:

Command: Scheme ident1 := Induction for ident2 Sort sort with identi := Induction for identj Sort sort
*

This command is a high-level tool for generating automatically (possibly mutual) induction principles for given types
and sorts. Each identj is a different inductive type identifier belonging to the same package of mutual inductive
definitions. The command generates the identis to be mutually recursive definitions. Each term identi proves
a general principle of mutual induction for objects in type identj.
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Variant: Scheme ident := Minimality for ident Sort sort with ident := Minimality for ident' Sort sort
*

Same as before but defines a non-dependent elimination principle more natural in case of inductively defined rela-
tions.

Variant: Scheme Equality for ident
Tries to generate a Boolean equality and a proof of the decidability of the usual equality. If ident involves some
other inductive types, their equality has to be defined first.

Variant: Scheme Induction for ident Sort sort with Induction for ident Sort sort
*

If you do not provide the name of the schemes, they will be automatically computed from the sorts involved (works
also with Minimality).

Example
Induction scheme for tree and forest.
A mutual induction principle for tree and forest in sort Set can be defined using the command

Inductive tree : Set := node : A -> forest -> tree
with forest : Set :=

leaf : B -> forest
| cons : tree -> forest -> forest.
tree, forest are defined
tree_rect is defined
tree_ind is defined
tree_rec is defined
tree_sind is defined
forest_rect is defined
forest_ind is defined
forest_rec is defined
forest_sind is defined

Scheme tree_forest_rec := Induction for tree Sort Set
with forest_tree_rec := Induction for forest Sort Set.
forest_tree_rec is defined
tree_forest_rec is defined
tree_forest_rec, forest_tree_rec are recursively defined

You may now look at the type of tree_forest_rec:

Check tree_forest_rec.
tree_forest_rec

: forall (P : tree -> Set) (P0 : forest -> Set),
(forall (a : A) (f : forest), P0 f -> P (node a f)) ->
(forall b : B, P0 (leaf b)) ->
(forall t : tree, P t -> forall f1 : forest, P0 f1 -> P0 (cons t f1)) ->
forall t : tree, P t

This principle involves two different predicates for trees andforests; it also has three premises each one corresponding to
a constructor of one of the inductive definitions.
The principle forest_tree_rec shares exactly the same premises, only the conclusion now refers to the property of
forests.

Example
Predicates odd and even on naturals.
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Let odd and even be inductively defined as:

Inductive odd : nat -> Prop := oddS : forall n:nat, even n -> odd (S n)
with even : nat -> Prop :=
| evenO : even 0
| evenS : forall n:nat, odd n -> even (S n).
odd, even are defined
odd_ind is defined
odd_sind is defined
even_ind is defined
even_sind is defined

The following command generates a powerful elimination principle:

Scheme odd_even := Minimality for odd Sort Prop
with even_odd := Minimality for even Sort Prop.

even_odd is defined
odd_even is defined
odd_even, even_odd are recursively defined

The type of odd_even for instance will be:

Check odd_even.
odd_even

: forall P P0 : nat -> Prop,
(forall n : nat, even n -> P0 n -> P (S n)) ->
P0 0 ->
(forall n : nat, odd n -> P n -> P0 (S n)) ->
forall n : nat, odd n -> P n

The type of even_odd shares the same premises but the conclusion is (n:nat)(even n)->(P0 n).

Automatic declaration of schemes

Flag: Elimination Schemes
Enables automatic declaration of induction principles when defining a new inductive type. Defaults to on.

Flag: Nonrecursive Elimination Schemes
Enables automatic declaration of induction principles for types declared with the Variant and Record com-
mands. Defaults to off.

Flag: Case Analysis Schemes
This flag governs the generation of case analysis lemmas for inductive types, i.e. corresponding to the pattern
matching term alone and without fixpoint.

Flag: Boolean Equality Schemes
Flag: Decidable Equality Schemes

These flags control the automatic declaration of those Boolean equalities (see the second variant of Scheme).

Warning: You have to be careful with these flags since Coq may now reject well-defined inductive types because it
cannot compute a Boolean equality for them.

Flag: Rewriting Schemes
This flag governs generation of equality-related schemes such as congruence.
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Combined Scheme

Command: Combined Scheme ident from identi
+

,

This command is a tool for combining induction principles generated by the Scheme command. Each identi is
a different inductive principle that must belong to the same package of mutual inductive principle definitions. This
command generates ident to be the conjunction of the principles: it is built from the common premises of the
principles and concluded by the conjunction of their conclusions. In the case where all the inductive principles used
are in sort Prop, the propositional conjunction and is used, otherwise the simple product prod is used instead.

Example
We can define the induction principles for trees and forests using:

Scheme tree_forest_ind := Induction for tree Sort Prop
with forest_tree_ind := Induction for forest Sort Prop.

forest_tree_ind is defined
tree_forest_ind is defined
tree_forest_ind, forest_tree_ind are recursively defined

Then we can build the combined induction principle which gives the conjunction of the conclusions of each individual
principle:

Combined Scheme tree_forest_mutind from tree_forest_ind,forest_tree_ind.
tree_forest_mutind is defined
tree_forest_mutind is recursively defined

The type of tree_forest_mutind will be:

Check tree_forest_mutind.
tree_forest_mutind

: forall (P : tree -> Prop) (P0 : forest -> Prop),
(forall (a : A) (f : forest), P0 f -> P (node a f)) ->
(forall b : B, P0 (leaf b)) ->
(forall t : tree, P t -> forall f1 : forest, P0 f1 -> P0 (cons t f1)) ->
(forall t : tree, P t) /\ (forall f2 : forest, P0 f2)

Example
We can also combine schemes at sort Type:

Scheme tree_forest_rect := Induction for tree Sort Type
with forest_tree_rect := Induction for forest Sort Type.

forest_tree_rect is defined
tree_forest_rect is defined
tree_forest_rect, forest_tree_rect are recursively defined

Combined Scheme tree_forest_mutrect from tree_forest_rect, forest_tree_rect.
tree_forest_mutrect is defined
tree_forest_mutrect is recursively defined

Check tree_forest_mutrect.
tree_forest_mutrect

: forall (P : tree -> Type) (P0 : forest -> Type),

(continues on next page)
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(continued from previous page)
(forall (a : A) (f : forest), P0 f -> P (node a f)) ->
(forall b : B, P0 (leaf b)) ->
(forall t : tree, P t -> forall f1 : forest, P0 f1 -> P0 (cons t f1)) ->
(forall t : tree, P t) * (forall f2 : forest, P0 f2)

6.2.2 Generation of induction principles with Functional Scheme

Command: Functional Scheme ident0 := Induction for ident' Sort sort with identi := Induction for identi' Sort sort
*

This command is a high-level experimental tool for generating automatically induction principles corresponding to
(possibly mutually recursive) functions. First, it must be made available via Require Import FunInd. Each
identi is a different mutually defined function name (the names must be in the same order as when they were
defined). This command generates the induction principle for each identi, following the recursive structure and
case analyses of the corresponding function identi'.

Warning: There is a difference between induction schemes generated by the command Functional Scheme
and these generated by the Function. Indeed, Function generally produces smaller principles that are closer to
how a user would implement them. See Advanced recursive functions for details.

Example
Induction scheme for div2.
We define the function div2 as follows:

Require Import FunInd.
[Loading ML file extraction_plugin.cmxs ... done]
[Loading ML file recdef_plugin.cmxs ... done]

Require Import Arith.
[Loading ML file newring_plugin.cmxs ... done]

Fixpoint div2 (n:nat) : nat :=
match n with
| O => 0
| S O => 0
| S (S n') => S (div2 n')
end.

div2 is defined
div2 is recursively defined (decreasing on 1st argument)

The definition of a principle of induction corresponding to the recursive structure of div2 is defined by the command:

Functional Scheme div2_ind := Induction for div2 Sort Prop.
div2_equation is defined
div2_ind is defined

You may now look at the type of div2_ind:

Check div2_ind.
div2_ind

(continues on next page)
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(continued from previous page)
: forall P : nat -> nat -> Prop,

(forall n : nat, n = 0 -> P 0 0) ->
(forall n n0 : nat, n = S n0 -> n0 = 0 -> P 1 0) ->
(forall n n0 : nat,
n = S n0 ->
forall n' : nat,
n0 = S n' -> P n' (div2 n') -> P (S (S n')) (S (div2 n'))) ->

forall n : nat, P n (div2 n)

We can now prove the following lemma using this principle:

Lemma div2_le' : forall n:nat, div2 n <= n.
1 subgoal

============================
forall n : nat, div2 n <= n

intro n.
1 subgoal

n : nat
============================
div2 n <= n

pattern n, (div2 n).
1 subgoal

n : nat
============================
(fun n0 n1 : nat => n1 <= n0) n (div2 n)

apply div2_ind; intros.
3 subgoals

n, n0 : nat
e : n0 = 0
============================
0 <= 0

subgoal 2 is:
0 <= 1

subgoal 3 is:
S (div2 n') <= S (S n')

auto with arith.
2 subgoals

n, n0, n1 : nat
e : n0 = S n1
e0 : n1 = 0
============================
0 <= 1

subgoal 2 is:
S (div2 n') <= S (S n')

auto with arith.
(continues on next page)
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(continued from previous page)
1 subgoal

n, n0, n1 : nat
e : n0 = S n1
n' : nat
e0 : n1 = S n'
H : div2 n' <= n'
============================
S (div2 n') <= S (S n')

simpl; auto with arith.
No more subgoals.

Qed.

We can use directly the functional induction (function induction) tactic instead of the pattern/apply trick:

Reset div2_le'.
Lemma div2_le : forall n:nat, div2 n <= n.

1 subgoal

============================
forall n : nat, div2 n <= n

intro n.
1 subgoal

n : nat
============================
div2 n <= n

functional induction (div2 n).
3 subgoals

============================
0 <= 0

subgoal 2 is:
0 <= 1

subgoal 3 is:
S (div2 n') <= S (S n')

auto with arith.
2 subgoals

============================
0 <= 1

subgoal 2 is:
S (div2 n') <= S (S n')

auto with arith.
1 subgoal

n' : nat
IHn0 : div2 n' <= n'
============================

(continues on next page)
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(continued from previous page)
S (div2 n') <= S (S n')

auto with arith.
No more subgoals.

Qed.

Example
Induction scheme for tree_size.
We define trees by the following mutual inductive type:

Axiom A : Set.
A is declared

Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| empty : forest
| cons : tree -> forest -> forest.

tree, forest are defined
tree_rect is defined
tree_ind is defined
tree_rec is defined
tree_sind is defined
forest_rect is defined
forest_ind is defined
forest_rec is defined
forest_sind is defined

We define the function tree_size that computes the size of a tree or a forest. Note that we use Function which generally
produces better principles.

Require Import FunInd.
Function tree_size (t:tree) : nat :=
match t with
| node A f => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| empty => 0
| cons t f' => (tree_size t + forest_size f')
end.

tree_size is defined
forest_size is defined
tree_size, forest_size are recursively defined
(decreasing respectively on 1st, 1st arguments)
tree_size_equation is defined
tree_size_rect is defined
tree_size_ind is defined
tree_size_rec is defined
forest_size_equation is defined
forest_size_rect is defined
forest_size_ind is defined

(continues on next page)
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(continued from previous page)
forest_size_rec is defined
R_tree_size_correct is defined
R_forest_size_correct is defined
R_tree_size_complete is defined
R_forest_size_complete is defined

Notice that the induction principles tree_size_ind and forest_size_ind generated by Function are not
mutual.

Check tree_size_ind.
tree_size_ind

: forall P : tree -> nat -> Prop,
(forall (t : tree) (A : A) (f : forest),
t = node A f -> P (node A f) (S (forest_size f))) ->

forall t : tree, P t (tree_size t)

Mutual induction principles following the recursive structure of tree_size and forest_size can be generated by
the following command:

Functional Scheme tree_size_ind2 := Induction for tree_size Sort Prop
with forest_size_ind2 := Induction for forest_size Sort Prop.

tree_size_ind2 is defined
forest_size_ind2 is defined

You may now look at the type of tree_size_ind2:

Check tree_size_ind2.
tree_size_ind2

: forall (P : tree -> nat -> Prop) (P0 : forest -> nat -> Prop),
(forall (t : tree) (A : A) (f : forest),
t = node A f ->
P0 f (forest_size f) -> P (node A f) (S (forest_size f))) ->

(forall f0 : forest, f0 = empty -> P0 empty 0) ->
(forall (f1 : forest) (t : tree) (f' : forest),
f1 = cons t f' ->
P t (tree_size t) ->
P0 f' (forest_size f') ->
P0 (cons t f') (tree_size t + forest_size f')) ->

forall t : tree, P t (tree_size t)

6.2.3 Generation of inversion principles with Derive Inversion

Command: Derive Inversion ident with ident Sort sort
Command: Derive Inversion ident with (forall binders, ident term) Sort sort

This command generates an inversion principle for the inversion ... using ... tactic. The first ident
is the name of the generated principle. The second ident should be an inductive predicate, and binders the
variables occurring in the term term. This command generates the inversion lemma for the sort sort correspond-
ing to the instance forall binders, ident term. When applied, it is equivalent to having inverted the
instance with the tactic inversion.

Variant: Derive Inversion_clear ident with ident Sort sort
Variant: Derive Inversion_clear ident with (forall binders, ident term) Sort sort

When applied, it is equivalent to having inverted the instance with the tactic inversion replaced by the tactic
inversion_clear.
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Variant: Derive Dependent Inversion ident with ident Sort sort
Variant: Derive Dependent Inversion ident with (forall binders, ident term) Sort sort

When applied, it is equivalent to having inverted the instance with the tactic dependent inversion.
Variant: Derive Dependent Inversion_clear ident with ident Sort sort
Variant: Derive Dependent Inversion_clear ident with (forall binders, ident term) Sort sort

When applied, it is equivalent to having inverted the instance with the tactic dependent inversion_clear.

Example
Consider the relation Le over natural numbers and the following parameter P:

Inductive Le : nat -> nat -> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).

Le is defined
Le_rect is defined
Le_ind is defined
Le_rec is defined
Le_sind is defined

Parameter P : nat -> nat -> Prop.
P is declared

To generate the inversion lemma for the instance (Le (S n) m) and the sort Prop, we do:

Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort Prop.
Check leminv.

leminv
: forall (n m : nat) (P : nat -> nat -> Prop),

(forall m0 : nat, Le n m0 -> P n (S m0)) -> Le (S n) m -> P n m

Then we can use the proven inversion lemma:

Show.
1 subgoal

n, m : nat
H : Le (S n) m
============================
P n m

inversion H using leminv.
1 subgoal

n, m : nat
H : Le (S n) m
============================
forall m0 : nat, Le n m0 -> P n (S m0)
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CHAPTER

SEVEN

PRACTICAL TOOLS

7.1 The Coq commands

There are three Coq commands:
• coqtop: the Coq toplevel (interactive mode);
• coqc: the Coq compiler (batch compilation);
• coqchk: the Coq checker (validation of compiled libraries).

The options are (basically) the same for the first two commands, and roughly described below. You can also look at the
man pages of coqtop and coqc for more details.

7.1.1 Interactive use (coqtop)

In the interactive mode, also known as the Coq toplevel, the user can develop his theories and proofs step by step. The
Coq toplevel is run by the command coqtop.
There are two different binary images of Coq: the byte-code one and the native-code one (if OCaml provides a native-code
compiler for your platform, which is supposed in the following). By default, coqtop executes the native-code version;
run coqtop.byte to get the byte-code version.
The byte-code toplevel is based on an OCaml toplevel (to allow dynamic linking of tactics). You can switch to the OCaml
toplevel with the command Drop., and come back to the Coq toplevel with the command Coqloop.loop();;.
Flag: Coqtop Exit On Error

This flag, off by default, causes coqtop to exit with status code 1 if a command produces an error instead of
recovering from it.

7.1.2 Batch compilation (coqc)

The coqc command takes a name file as argument. Then it looks for a vernacular file named file.v, and tries to compile
it into a file.vo file (See Compiled files).

Caution: The name file should be a regular Coq identifier as defined in Section Lexical conventions. It should contain
only letters, digits or underscores (_). For example /bar/foo/toto.v is valid, but /bar/foo/to-to.v is
not.
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7.1.3 Customization at launch time

By resource file

When Coq is launched, with either coqtop or coqc, the resource file $XDG_CONFIG_HOME/coq/coqrc.xxx,
if it exists, will be implicitly prepended to any document read by Coq, whether it is an interactive session or a file to
compile. Here, $XDG_CONFIG_HOME is the configuration directory of the user (by default it’s ~/.config) and xxx
is the version number (e.g. 8.8). If this file is not found, then the file $XDG_CONFIG_HOME/coqrc is searched. If not
found, it is the file ~/.coqrc.xxx which is searched, and, if still not found, the file ~/.coqrc. If the latter is also
absent, no resource file is loaded. You can also specify an arbitrary name for the resource file (see option -init-file
below).
The resource file may contain, for instance, Add LoadPath commands to add directories to the load path of Coq. It
is possible to skip the loading of the resource file with the option -q.

By environment variables

Load path can be specified to the Coq system by setting up $COQPATH environment variable. It is a list of directo-
ries separated by : (; on Windows). Coq will also honor $XDG_DATA_HOME and $XDG_DATA_DIRS (see Section
Libraries and filesystem).
Some Coq commands call other Coq commands. In this case, they look for the commands in directory specified by
$COQBIN. If this variable is not set, they look for the commands in the executable path.
The $COQ_COLORS environment variable can be used to specify the set of colors used by coqtop to highlight its output.
It uses the same syntax as the $LS_COLORS variable from GNU’s ls, that is, a colon-separated list of assignments of the
form name= attr

*
; where name is the name of the corresponding highlight tag and each attr is an ANSI escape

code. The list of highlight tags can be retrieved with the -list-tags command-line option of coqtop.
The string uses ANSI escape codes to represent attributes. For example:

export COQ_COLORS=”diff.added=4;48;2;0;0;240:diff.removed=41”

sets the highlights for added text in diffs to underlined (the 4) with a background RGB color (0, 0, 240) and for removed
text in diffs to a red background. Note that if you specify COQ_COLORS, the predefined attributes are ignored.

By command line options

The following command-line options are recognized by the commands coqc and coqtop, unless stated otherwise:
-I directory, -include directory Add physical path directory to the OCaml loadpath.

See also:
Names of libraries and the command Declare ML Module Section Compiled files.

-Q directory dirpath Add physical path directory to the list of directories where Coq looks for a file and bind
it to the logical directory dirpath. The subdirectory structure of directory is recursively available from
Coq using absolute names (extending the dirpath prefix) (see Section Qualified names). Note that
only those subdirectories and files which obey the lexical conventions of what is an ident are taken
into account. Conversely, the underlying file systems or operating systems may be more restrictive than
Coq. While Linux’s ext4 file system supports any Coq recursive layout (within the limit of 255 bytes
per filename), the default on NTFS (Windows) or HFS+ (MacOS X) file systems is on the contrary to
disallow two files differing only in the case in the same directory.
See also:
Section Names of libraries.
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-R directory dirpath Do as -Q directory dirpath but make the subdirectory structure of directory recursively
visible so that the recursive contents of physical directory is available from Coq using short or partially
qualified names.
See also:
Section Names of libraries.

-top dirpath Set the toplevel module name to dirpath instead of Top. Not valid for coqc as the toplevel
module name is inferred from the name of the output file.

-exclude-dir directory Exclude any subdirectory named directory while processing options such as -R and
-Q. By default, only the conventional version control management directories named CVS and_darcs
are excluded.

-nois Start from an empty state instead of loading the Init.Prelude module.
-init-file file Load file as the resource file instead of loading the default resource file from the standard

configuration directories.
-q Do not to load the default resource file.
-load-ml-source file Load the OCaml source file file.
-load-ml-object file Load the OCaml object file file.
-l file, -load-vernac-source file Load and execute the Coq script from file.v.
-lv file, -load-vernac-source-verbose file Load and execute the Coq script from file.v. Write its contents

to the standard output as it is executed.
-load-vernac-object qualid Load Coq compiled library qualid. This is equivalent to running Require

qualid.
-ri qualid, -require-import qualid Load Coq compiled library qualid and import it. This is equivalent

to running Require Import qualid.
-re qualid, -require-export qualid Load Coq compiled library qualid and transitively import it. This is

equivalent to running Require Export qualid.
-rifrom dirpath qualid, -require-import-from dirpath qualid Load Coq compiled library qualid and

import it. This is equivalent to running From dirpath Require Import qualid.
-refrom dirpath qualid, -require-export-from dirpath qualid Load Coq compiled library qualid and

transitively import it. This is equivalent to running From dirpath Require Export qualid.
-require qualid Deprecated; use -ri qualid.
-batch Exit just after argument parsing. Available for coqtop only.
-verbose Output the content of the input file as it is compiled. This option is available for coqc only.
-vos Indicate Coq to skip the processing of opaque proofs (i.e., proofs ending with Qed or Admitted),

output a .vos files instead of a .vo file, and to load .vos files instead of .vo files when interpreting
Require commands.

-vok Indicate Coq to check a file completely, to load .vos files instead of .vo files when interpreting
Require commands, and to output an empty .vok files upon success instead of writing a .vo file.

-w (all|none|w1,…,w�) Configure the display of warnings. This option expects all, none or a comma-
separated list of warning names or categories (see Section Controlling display).

-color (on|off|auto) Coqtop only. Enable or disable color output. Default is auto, meaning color is shown
only if the output channel supports ANSI escape sequences.
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-diffs (on|off|removed) Coqtop only. Controls highlighting of differences between proof steps. on high-
lights added tokens, removed highlights both added and removed tokens. Requires that –color is
enabled. (see Section Showing differences between proof steps).

-beautify Pretty-print each command to file.beautified when compiling file.v, in order to get old-fashioned
syntax/definitions/notations.

-emacs, -ide-slave Start a special toplevel to communicate with a specific IDE.
-impredicative-set Change the logical theory of Coq by declaring the sort Set impredicative.

Warning: This is known to be inconsistent with some standard axioms of classical mathematics
such as the functional axiom of choice or the principle of description.

-type-in-type Collapse the universe hierarchy of Coq.

Warning: This makes the logic inconsistent.

-mangle-names ident Experimental. Do not depend on this option. Replace Coq’s auto-generated name
scheme with names of the form ident0, ident1, etc. Within Coq, the Mangle Names flag turns this
behavior on, and the Mangle Names Prefix option sets the prefix to use. This feature is intended
to be used as a linter for developments that want to be robust to changes in the auto-generated name
scheme. The options are provided to facilitate tracking down problems.

-set string Enable flags and set options. string should be Option Name=value, the value is interpreted
according to the type of the option. For flags Option Name is equivalent to Option Name=true.
For instance -set "Universe Polymorphism" will enable Universe Polymorphism.
Note that the quotes are shell syntax, Coq does not see them.

-unset string As -set but used to disable options and flags.
-compat version Attempt to maintain some backward-compatibility with a previous version.
-dump-glob file Dump references for global names in file file (to be used by coqdoc, see Documenting Coq

files with coqdoc). By default, if file.v is being compiled, file.glob is used.
-no-glob Disable the dumping of references for global names.
-image file Set the binary image to be used by coqc to be file instead of the standard one. Not of general

use.
-bindir directory Set the directory containing Coq binaries to be used by coqc. It is equivalent to doing

export COQBIN= directory before launching coqc.
-where Print the location of Coq’s standard library and exit.
-config Print the locations of Coq’s binaries, dependencies, and libraries, then exit.
-filteropts Print the list of command line arguments that coqtop has recognized as options and exit.
-v Print Coq’s version and exit.
-list-tags Print the highlight tags known by Coq as well as their currently associated color and exit.
-h, –help Print a short usage and exit.

514 Chapter 7. Practical tools



The Coq Reference Manual, Release 8.11.2

7.1.4 Compiled interfaces (produced using -vos)

Compiled interfaces help saving time while developing Coq formalizations, by compiling the formal statements exported
by a library independently of the proofs that it contains.

Warning: Compiled interfaces should only be used for development purposes. At the end of the day,
one still needs to proof check all files by producing standard .vo files. (Technically, when using -vos,
fewer universe constraints are collected.) Moreover, this feature is still experimental, it may be subject
to change without prior notice.

Principle.
The compilation using coqc -vos foo.v produces a file called foo.vos, which is similar to foo.vo except that
all opaque proofs are skipped in the compilation process.
The compilation using coqc -vok foo.v checks that the file foo.v correctly compiles, including all its opaque
proofs. If the compilation succeeds, then the output is a file called foo.vok, with empty contents. This file is only a
placeholder indicating that foo.v has been successfully compiled. (This placeholder is useful for build systems such as
make.)
When compiling a filebar.v that depends onfoo.v (for example via aRequire Foo. command), if the compilation
command is coqc -vos bar.v or coqc -vok bar.v, then the file foo.vos gets loaded (instead of foo.vo).
A special case is if file foo.vos exists and has empty contents, and foo.vo exists, then foo.vo is loaded.
Appart from the aforementioned case where foo.vo can be loaded in place of foo.vos, in general the .vos and
.vok files live totally independently from the .vo files.
Dependencies generated by ‘‘coq_makefile‘‘.
The files foo.vos and foo.vok both depend on foo.v.
Furthermore, if a file foo.v requires bar.v, then foo.vos and foo.vok also depend on bar.vos.
Note, however, that foo.vok does not depend on bar.vok. Hence, as detailed further, parallel compilation of proofs
is possible.
In addition, coq_makefile generates for a file foo.v a target foo.required_vos which depends on the list of
.vos files that foo.vos depends upon (excluding foo.vos itself). As explained next, the purpose of this target is to
be able to request the minimal working state for editing interactively the file foo.v.

Warning: When writing a custom build system, be aware that coqdep only produces dependencies related to .vos
and.vok if the-vos command line flag is passed. This is tomaintain compatibility with dune (see ocaml/dune#2642
on github310).

Typical compilation of a set of file using a build system.
Assume a file foo.v that depends on two files f1.v and f2.v. The command make foo.required_vos will
compile f1.v and f2.v using the option -vos to skip the proofs, producing f1.vos and f2.vos. At this point, one
is ready to work interactively on the file foo.v, even though it was never needed to compile the proofs involved in the
files f1.v and f2.v.
Assume a set of files f1.v ... fn.v with linear dependencies. The command make vos enables compiling the
statements (i.e. excluding the proofs) in all the files. Next, make -j vok enables compiling all the proofs in par-
allel. Thus, calling make -j vok directly enables taking advantage of a maximal amount of parallelism during the
compilation of the set of files.
310 https://github.com/ocaml/dune/issues/2842
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Note that this comes at the cost of parsing and typechecking all definitions twice, once for the .vos file and once for the
.vok file. However, if files contain nontrivial proofs, or if the files have many linear chains of dependencies, or if one
has many cores available, compilation should be faster overall.
Need for ‘‘Proof using‘‘
When a theorem is part of a section, typechecking the statement of this theorem might be insufficient for deducing the
type of this statement as of at the end of the section. Indeed, the proof of the theorem could make use of section variables
or section hypotheses that are not mentioned in the statement of the theorem.
For this reason, proofs inside section should begin with Proof using instead of Proof, where after the using
clause one should provide the list of the names of the section variables that are required for the proof but are not involved
in the typechecking of the statement. Note that it is safe to write Proof using. instead of Proof. also for proofs
that are not within a section.
Warning: You should use the “Proof using [...].” syntax instead of “Proof.” to enable skipping this proof which is located inside a section. Give as argument to “Proof using” the list of section variables that are not needed to typecheck the statement but that are required by the proof.

If Coq is invoked using the -vos option, whenever it finds the command Proof. inside a section, it will compile
the proof, that is, refuse to skip it, and it will raise a warning. To disable the warning, one may pass the flag -w
-proof-without-using-in-section.

Interaction with standard compilation
When compiling a file foo.v using coqc in the standard way (i.e., without -vos nor -vok), an empty file foo.vos
and an empty file foo.vok are created in addition to the regular output file foo.vo. If coqc is subsequently invoked
on some other file bar.v using option -vos or -vok, and that bar.v requires foo.v, if Coq finds an empty file
foo.vos, then it will load foo.vo instead of foo.vos.
The purpose of this feature is to allow users to benefit from the -vos option even if they depend on libraries that were
compiled in the traditional manner (i.e., never compiled using the -vos option).

7.1.5 Compiled libraries checker (coqchk)

The coqchk command takes a list of library paths as argument, described either by their logical name or by their physical
filename, hich must end in .vo. The corresponding compiled libraries (.vo files) are searched in the path, recursively
processing the libraries they depend on. The content of all these libraries is then type checked. The effect of coqchk
is only to return with normal exit code in case of success, and with positive exit code if an error has been found. Error
messages are not deemed to help the user understand what is wrong. In the current version, it does not modify the compiled
libraries to mark them as successfully checked.
Note that non-logical information is not checked. By logical information, we mean the type and optional body associated
to names. It excludes for instance anything related to the concrete syntax of objects (customized syntax rules, association
between short and long names), implicit arguments, etc.
This tool can be used for several purposes. One is to check that a compiled library provided by a third-party has not been
forged and that loading it cannot introduce inconsistencies311. Another point is to get an even higher level of security.
Since coqtop can be extended with custom tactics, possibly ill-typed code, it cannot be guaranteed that the produced
compiled libraries are correct. coqchk is a standalone verifier, and thus it cannot be tainted by such malicious code.
Command-line options -Q, -R, -where and -impredicative-set are supported by coqchk and have the same
meaning as for coqtop. As there is no notion of relative paths in object files -Q and -R have exactly the same meaning.

-norec module Check module but do not check its dependencies.
-admit module Do not check module and any of its dependencies, unless explicitly required.
-o At exit, print a summary about the context. List the names of all assumptions and variables (constants

without body).
311 Ill-formed non-logical information might for instance bind Coq.Init.Logic.True to short name False, so apparently False is inhabited, but using

fully qualified names, Coq.Init.Logic.False will always refer to the absurd proposition, what we guarantee is that there is no proof of this latter constant.
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-silent Do not write progress information to the standard output.
Environment variable $COQLIB can be set to override the location of the standard library.
The algorithm for deciding which modules are checked or admitted is the following: assuming that coqchk is called
with argument M, option -norec N, and -admit A. Let us write 𝑆 for the set of reflexive transitive dependencies of
set 𝑆. Then:

• Modules 𝐶 = 𝑀\𝐴 ∪ 𝑀 ∪ 𝑁 are loaded and type checked before being added to the context.
• And𝑀 ∪𝑁\𝐶 is the set of modules that are loaded and added to the context without type checking. Basic integrity
checks (checksums) are nonetheless performed.

As a rule of thumb, -admit can be used to tell Coq that some libraries have already been checked. So coqchk A B can
be split in coqchk A&& coqchk B -admit A without type checking any definition twice. Of course, the latter is
slightly slower since it makes more disk access. It is also less secure since an attacker might have replaced the compiled
library A after it has been read by the first command, but before it has been read by the second command.

7.2 Utilities

The distribution provides utilities to simplify some tedious works beside proof development, tactics writing or documen-
tation.

7.2.1 Using Coq as a library

In previous versions, coqmktop was used to build custom toplevels - for example for better debugging or custom static
linking. Nowadays, the preferred method is to use ocamlfind.
The most basic custom toplevel is built using:

% ocamlfind ocamlopt -thread -rectypes -linkall -linkpkg \
-package coq.toplevel \
topbin/coqtop_bin.ml -o my_toplevel.native

For example, to statically link Ltac, you can just do:

% ocamlfind ocamlopt -thread -rectypes -linkall -linkpkg \
-package coq.toplevel,coq.plugins.ltac \
topbin/coqtop_bin.ml -o my_toplevel.native

and similarly for other plugins.

7.2.2 Building a Coq project

As of today it is possible to build Coq projects using two tools:
• coq_makefile, which is distributed by Coq and is based on generating a makefile,
• Dune, the standard OCaml build tool, which, since version 1.9, supports building Coq libraries.

Building a Coq project with coq_makefile

The majority of Coq projects are very similar: a collection of .v files and eventually some .ml ones (a Coq plugin). The
main piece of metadata needed in order to build the project are the command line options to coqc (e.g. -R, Q, -I, see
command line options). Collecting the list of files and options is the job of the _CoqProject file.
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A simple example of a _CoqProject file follows:

-R theories/ MyCode
-arg -w
-arg all
theories/foo.v
theories/bar.v
-I src/
src/baz.mlg
src/bazaux.ml
src/qux_plugin.mlpack

where options -R, -Q and -I are natively recognized, as well as file names. The lines of the form -arg foo are used
in order to tell to literally pass an argument foo to coqc: in the example, this allows to pass the two-word option -w
all (see command line options).
Currently, both CoqIDE and Proof-General (version ≥ 4.3pre) understand _CoqProject files and invoke Coq with
the desired options.
The coq_makefile utility can be used to set up a build infrastructure for the Coq project based on makefiles. The
recommended way of invoking coq_makefile is the following one:

coq_makefile -f _CoqProject -o CoqMakefile

Such command generates the following files:
CoqMakefile is a generic makefile for GNU Make that provides targets to build the project (both .v and .ml* files),

to install it system-wide in the coq-contrib directory (i.e. where Coq is installed) as well as to invoke coqdoc
to generate HTML documentation.

CoqMakefile.conf contains make variables assignments that reflect the contents of the _CoqProject file as well as
the path relevant to Coq.

An optional file CoqMakefile.local can be provided by the user in order to extend CoqMakefile. In particular
one can declare custom actions to be performed before or after the build process. Similarly one can customize the install
target or even provide new targets. Extension points are documented in paragraph CoqMakefile.local.
The extensions of the files listed in _CoqProject is used in order to decide how to build them. In particular:

• Coq files must use the .v extension
• OCaml files must use the .ml or .mli extension
• OCaml files that require pre processing for syntax extensions (like VERNAC EXTEND) must use the .mlg exten-
sion

• In order to generate a plugin one has to list all OCaml modules (i.e. Baz for baz.ml) in a .mlpack file (or
.mllib file).

The use of .mlpack files has to be preferred over .mllib files, since it results in a “packed” plugin: All auxiliary
modules (as Baz and Bazaux) are hidden inside the plugin’s ”namespace” (Qux_plugin). This reduces the chances
of begin unable to load two distinct plugins because of a clash in their auxiliary module names.

CoqMakefile.local

The optional file CoqMakefile.local is included by the generated file CoqMakefile. It can contain two kinds
of directives.
Variable assignment
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The variable must belong to the variables listed in the Parameters section of the generated makefile. Here we describe
only few of them.

CAMLPKGS can be used to specify third party findlib packages, and is passed to the OCaml compiler on
building or linking of modules. Eg: -package yojson.

CAMLFLAGS can be used to specify additional flags to the OCaml compiler, like -bin-annot or -w....
OCAMLWARN it contains a default of -warn-error +a-3, useful to modify this setting; beware this

is not recommended for projects in Coq’s CI.
COQC, COQDEP, COQDOC can be set in order to use alternative binaries (e.g. wrappers)
COQ_SRC_SUBDIRS can be extended by including other paths in which *.cm* files are searched.

For example COQ_SRC_SUBDIRS+=user-contrib/Unicoq lets you build a plugin containing
OCaml code that depends on the OCaml code of Unicoq

COQFLAGS override the flags passed to coqc. By default -q.
COQEXTRAFLAGS extend the flags passed to coqc
COQCHKFLAGS override the flags passed to coqchk. By default -silent -o.
COQCHKEXTRAFLAGS extend the flags passed to coqchk
COQDOCFLAGS override the flags passed to coqdoc. By default -interpolate -utf8.
COQDOCEXTRAFLAGS extend the flags passed to coqdoc

Rule extension
The following makefile rules can be extended.

Example

pre-all::
echo "This line is print before making the all target"

install-extra::
cp ThisExtraFile /there/it/goes

pre-all:: run before the all target. One can use this to configure the project, or initialize sub modules or check
dependencies are met.

post-all:: run after the all target. One can use this to run a test suite, or compile extracted code.
install-extra:: run after install. One can use this to install extra files.
install-doc:: One can use this to install extra doc.
uninstall::

uninstall-doc::

clean::

cleanall::

archclean::

merlin-hook:: One can append lines to the generated .merlin file extending this target.
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Timing targets and performance testing

The generated Makefile supports the generation of two kinds of timing data: per-file build-times, and per-line times
for an individual file.
The following targets and Makefile variables allow collection of per- file timing data:

• TIMED=1 passing this variable will cause make to emit a line describing the user-space build-time and peak
memory usage for each file built.

Note: On Mac OS, this works best if you’ve installed gnu-time.

Example
For example, the output of make TIMED=1 may look like this:

COQDEP Fast.v
COQDEP Slow.v
COQC Slow.v
Slow (user: 0.34 mem: 395448 ko)
COQC Fast.v
Fast (user: 0.01 mem: 45184 ko)

• pretty-timed this target stores the output of make TIMED=1 into time-of-build.log, and displays a
table of the times, sorted from slowest to fastest, which is also stored in time-of-build-pretty.log.
If you want to construct the log for targets other than the default one, you can pass them via the variable
TGTS, e.g., make pretty-timed TGTS="a.vo b.vo".

Note: This target will append to the timing log; if you want a fresh start, you must remove the
filetime-of-build.log or run make cleanall.

Example
For example, the output of make pretty-timed may look like this:

COQDEP Fast.v
COQDEP Slow.v
COQC Slow.v
Slow (user: 0.36 mem: 393912 ko)
COQC Fast.v
Fast (user: 0.05 mem: 45992 ko)
Time | File Name
--------------------
0m00.41s | Total
--------------------
0m00.36s | Slow
0m00.05s | Fast

• print-pretty-timed-diff this target builds a table of timing changes between two compilations;
run make make-pretty-timed-before to build the log of the “before” times, and run make
make-pretty-timed-after to build the log of the “after” times. The table is printed on the command
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line, and stored in time-of-build-both.log. This target is most useful for profiling the difference
between two commits in a repository.

Note: This target requires python to build the table.

Note: The make-pretty-timed-before and make-pretty-timed-after targets will append
to the timing log; if you want a fresh start, you must remove the files time-of-build-before.log and
time-of-build-after.log or run make cleanall before building either the “before” or “after”
targets.

Note: The table will be sorted first by absolute time differences rounded towards zero to a whole-number
of seconds, then by times in the “after” column, and finally lexicographically by file name. This will put the
biggest changes in either direction first, and will prefer sorting by build-time over subsecond changes in build
time (which are frequently noise); lexicographic sorting forces an order on files which take effectively no time
to compile.

Example
For example, the output table from make print-pretty-timed-diff may look like this:

After | File Name | Before || Change | % Change
--------------------------------------------------------
0m00.39s | Total | 0m00.35s || +0m00.03s | +11.42%
--------------------------------------------------------
0m00.37s | Slow | 0m00.01s || +0m00.36s | +3600.00%
0m00.02s | Fast | 0m00.34s || -0m00.32s | -94.11%

The following targets and Makefile variables allow collection of per- line timing data:
• TIMING=1 passing this variable will cause make to use coqc -time to write to a .v.timing file for each

.v file compiled, which contains line-by-line timing information.

Example
For example, running make all TIMING=1 may result in a file like this:

Chars 0 - 26 [Require~Coq.ZArith.BinInt.] 0.157 secs (0.128u,0.028s)
Chars 27 - 68 [Declare~Reduction~comp~:=~vm_c...] 0. secs (0.u,0.s)
Chars 69 - 162 [Definition~foo0~:=~Eval~comp~i...] 0.153 secs (0.136u,0.019s)
Chars 163 - 208 [Definition~foo1~:=~Eval~comp~i...] 0.239 secs (0.236u,0.s)

• print-pretty-single-time-diff

print-pretty-single-time-diff BEFORE=path/to/file.v.before-timing␣
↪AFTER=path/to/file.v.after-timing

this target will make a sorted table of the per-line timing differences between the timing
logs in the BEFORE and AFTER files, display it, and save it to the file specified by the
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TIME_OF_PRETTY_BUILD_FILE variable, which defaults to time-of-build-pretty.
log. To generate the .v.before-timing or .v.after-timing files, you should pass
TIMING=before or TIMING=after rather than TIMING=1.

Note: The sorting used here is the same as in the print-pretty-timed-diff target.

Note: This target requires python to build the table.

Example
For example, running print-pretty-single-time-diff might give a table like this:

After | Code | Before ␣
↪ || Change | % Change

--------------------------------------------------------------------------
↪-------------------------

0m00.50s | Total | 0m04.
↪17s || -0m03.66s | -87.96%

--------------------------------------------------------------------------
↪-------------------------

0m00.145s | Chars 069 - 162 [Definition~foo0~:=~Eval~comp~i...] | 0m00.
↪192s || -0m00.04s | -24.47%

0m00.126s | Chars 000 - 026 [Require~Coq.ZArith.BinInt.] | 0m00.
↪143s || -0m00.01s | -11.88%
N/A | Chars 027 - 068 [Declare~Reduction~comp~:=~nati...] | 0m00.s ␣

↪ || +0m00.00s | N/A
0m00.s | Chars 027 - 068 [Declare~Reduction~comp~:=~vm_c...] | N/A ␣

↪ || +0m00.00s | N/A
0m00.231s | Chars 163 - 208 [Definition~foo1~:=~Eval~comp~i...] | 0m03.

↪836s || -0m03.60s | -93.97%

• all.timing.diff, path/to/file.v.timing.diff The path/to/file.v.timing.diff tar-
get will make a .v.timing.diff file for the corresponding .v file, with a table as would be generated by
the print-pretty-single-time-diff target; it depends on having already made the corresponding
.v.before-timing and .v.after-timing files, which can be made by passing TIMING=before
and TIMING=after. The all.timing.diff target will make such timing difference files for all
of the .v files that the Makefile knows about. It will fail if some .v.before-timing or .v.
after-timing files don’t exist.

Note: This target requires python to build the table.

Reusing/extending the generated Makefile

Including the generated makefile with an include directive is discouraged. The contents of this file, including variable
names and status of rules shall change in the future. Users are advised to include Makefile.conf or call a target of
the generated Makefile as in make -f Makefile target from another Makefile.
One way to get access to all targets of the generated CoqMakefile is to have a generic target for invoking unknown
targets.
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Example

# KNOWNTARGETS will not be passed along to CoqMakefile
KNOWNTARGETS := CoqMakefile extra-stuff extra-stuff2
# KNOWNFILES will not get implicit targets from the final rule, and so
# depending on them won't invoke the submake
# Warning: These files get declared as PHONY, so any targets depending
# on them always get rebuilt
KNOWNFILES := Makefile _CoqProject

.DEFAULT_GOAL := invoke-coqmakefile

CoqMakefile: Makefile _CoqProject
$(COQBIN)coq_makefile -f _CoqProject -o CoqMakefile

invoke-coqmakefile: CoqMakefile
$(MAKE) --no-print-directory -f CoqMakefile $(filter-out $(KNOWNTARGETS),

↪$(MAKECMDGOALS))

.PHONY: invoke-coqmakefile $(KNOWNFILES)

####################################################################
## Your targets here ##
####################################################################

# This should be the last rule, to handle any targets not declared above
%: invoke-coqmakefile

@true

Building a subset of the targets with -j

To build, say, two targets foo.vo and bar.vo in parallel one can use make only TGTS="foo.vo bar.vo" -j.

Note: make foo.vo bar.vo -j has a different meaning for the make utility, in particular it may build a shared
prerequisite twice.

Note: For users of coq_makefile with version < 8.7
• Support for ”subdirectory” is deprecated. To perform actions before or after the build (like invoking make on a
subdirectory) one can hook in pre-all and post-all extension points.

• -extra-phony and -extra are deprecated. To provide additional target (.PHONY or not) please use
CoqMakefile.local.

Building a Coq project with Dune

Note: Dune’s Coq support is still experimental; we strongly recommend using Dune 2.3 or later.
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Note: The canonical documentation for the Coq Dune extension is maintained upstream; please refer to the Dune
manual312 for up-to-date information. This documentation is up to date for Dune 2.3.

Building a Coq project with Dune requires setting up a Dune project for your files. This involves adding a
dune-project and pkg.opam file to the root (pkg.opam can be empty or generated by Dune itself), and then
providing dune files in the directories your .v files are placed. For the experimental version ”0.1” of the Coq Dune
language, Coq library stanzas look like:

(coq.theory
(name <module_prefix>)
(package <opam_package>)
(synopsis <text>)
(modules <ordered_set_lang>)
(libraries <ocaml_libraries>)
(flags <coq_flags>))

This stanza will build all .v files in the given directory, wrapping the library under <module_prefix>. If
you declare an <opam_package>, an .install file for the library will be generated; the optional (modules
<ordered_set_lang>) field allows you to filter the list of modules, and (libraries <ocaml_libraries>)
allows the Coq theory depend on ML plugins. For the moment, Dune relies on Coq’s standard mechanisms (such as
COQPATH) to locate installed Coq libraries.
By default Dune will skip .v files present in subdirectories. In order to enable the usual recursive organization of Coq
projects add

(include_subdirs qualified)

to you dune file.
Once your project is set up, dune build will generate the pkg.install files and all the files necessary for the
installation of your project.

Example
A typical stanza for a Coq plugin is split into two parts. An OCaml build directive, which is standard Dune:

(library
(name equations_plugin)
(public_name equations.plugin)
(flags :standard -warn-error -3-9-27-32-33-50)
(libraries coq.plugins.cc coq.plugins.extraction))

(coq.pp (modules g_equations))

And a Coq-specific part that depends on it via the libraries field:

(coq.theory
(name Equations) ; -R flag
(package equations)
(synopsis "Equations Plugin")
(libraries coq.plugins.extraction equations.plugin)
(modules :standard \ IdDec NoCycle)) ; exclude some modules that don't build

(include_subdirs qualified)

312 https://dune.readthedocs.io/
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7.2.3 Computing Module dependencies

In order to compute module dependencies (to be used by make or dune), Coq provides the coqdep tool.
coqdep computes inter-module dependencies for Coq andOCaml programs, and prints the dependencies on the standard
output in a format readable by make. When a directory is given as argument, it is recursively looked at.
Dependencies of Coq modules are computed by looking at Require commands (Require, Require Export,
Require Import), but also at the command Declare ML Module.
Dependencies of OCaml modules are computed by looking at open commands and the dot notation module.value. How-
ever, this is done approximately and you are advised to use ocamldep instead for the OCaml module dependencies.
See the man page of coqdep for more details and options.
Both Dune and coq_makefile use coqdep to compute the dependencies among the files part of a Coq project.

7.2.4 Documenting Coq files with coqdoc

coqdoc is a documentation tool for the proof assistant Coq, similar to javadoc or ocamldoc. The task of coqdoc is
1. to produce a nice LaTeX and/or HTML document from Coq source files, readable for a human and not only for

the proof assistant;
2. to help the user navigate his own (or third-party) sources.

Principles

Documentation is inserted into Coq files as special comments. Thus your files will compile as usual, whether you use
coqdoc or not. coqdoc presupposes that the given Coq files are well-formed (at least lexically). Documentation starts with
(**, followed by a space, and ends with *). The documentation format is inspired by Todd A. Coram’s Almost Free Text
(AFT) tool: it is mainly ASCII text with some syntax-light controls, described below. coqdoc is robust: it shouldn’t fail,
whatever the input is. But remember: “garbage in, garbage out”.

Coq material inside documentation.

Coq material is quoted between the delimiters [ and ]. Square brackets may be nested, the inner ones being understood
as being part of the quoted code (thus you can quote a term like fun x => u by writing [fun x => u]). Inside
quotations, the code is pretty-printed in the same way as it is in code parts.
Preformatted vernacular is enclosed by [[ and ]]. The former must be followed by a newline and the latter must follow
a newline.

Pretty-printing.

coqdoc uses different faces for identifiers and keywords. The pretty- printing of Coq tokens (identifiers or symbols) can
be controlled using one of the following commands:

(** printing *token* %...LATEX...% #...html...# *)

or

(** printing *token* $...LATEX math...$ #...html...# *)
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It gives the LaTeX and HTML texts to be produced for the given Coq token. Either the LaTeX or the HTML rule may
be omitted, causing the default pretty-printing to be used for this token.
The printing for one token can be removed with

(** remove printing *token* *)

Initially, the pretty-printing table contains the following mapping:

-> → <- ← * ×
<= ≤ >= ≥ => ⇒
<> ≠ <-> ↔ |- ⊢
\/ ∨ /\ ∧ ~ ¬

Any of these can be overwritten or suppressed using the printing commands.

Note: The recognition of tokens is done by a (ocaml) lex automaton and thus applies the longest-match rule. For
instance, ->~ is recognized as a single token, where Coq sees two tokens. It is the responsibility of the user to insert
space between tokens or to give pretty-printing rules for the possible combinations, e.g.

(** printing ->~ %\ensuremath{\rightarrow\lnot}% *)

Sections

Sections are introduced by 1 to 4 asterisks at the beginning of a line followed by a space and the title of the section. One
asterisk is a section, two a subsection, etc.

Example

(** * Well-founded relations

In this section, we introduce... *)

Lists.

List items are introduced by a leading dash. coqdoc uses whitespace to determine the depth of a new list item and which
text belongs in which list items. A list ends when a line of text starts at or before the level of indenting of the list’s dash.
A list item’s dash must always be the first non-space character on its line (so, in particular, a list can not begin on the first
line of a comment - start it on the second line instead).

Example

We go by induction on [n]:
- If [n] is 0...
- If [n] is [S n'] we require...

two paragraphs of reasoning, and two subcases:

(continues on next page)
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(continued from previous page)
- In the first case...
- In the second case...

So the theorem holds.

Rules.

More than 4 leading dashes produce a horizontal rule.

Emphasis.

Text can be italicized by enclosing it in underscores. A non-identifier character must precede the leading underscore
and follow the trailing underscore, so that uses of underscores in names aren’t mistaken for emphasis. Usually, these are
spaces or punctuation.

This sentence contains some _emphasized text_.

Escaping to LaTeX and HTML.

Pure LaTeX or HTML material can be inserted using the following escape sequences:
• $...LATEX stuff...$ inserts some LaTeX material in math mode. Simply discarded in HTML output.
• %...LATEX stuff...% inserts some LaTeX material. Simply discarded in HTML output.
• #...HTML stuff...# inserts some HTML material. Simply discarded in LaTeX output.

Note: to simply output the characters $, % and # and escaping their escaping role, these characters must be doubled.

Verbatim

Verbatim material is introduced by a leading << and closed by >> at the beginning of a line.

Example

Here is the corresponding caml code:
<<

let rec fact n =
if n <= 1 then 1 else n * fact (n-1)

>>

Hyperlinks

Hyperlinks can be inserted into the HTML output, so that any identifier is linked to the place of its definition.
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coqc file.v automatically dumps localization information in file.glob or appends it to a file specified using the
option --dump-glob file. Take care of erasing this global file, if any, when starting the whole compilation process.
Then invoke coqdoc or coqdoc --glob-from file to tell coqdoc to look for name resolutions in the file file
(it will look in file.glob by default).
Identifiers from the Coq standard library are linked to the Coq website http://coq.inria.fr/library/. This behavior can be
changed using command line options --no-externals and --coqlib; see below.

Hiding / Showing parts of the source.

Some parts of the source can be hidden using command line options -g and -l (see below), or using such comments:

(* begin hide *)
*some Coq material*

(* end hide *)

Conversely, some parts of the source which would be hidden can be shown using such comments:

(* begin show *)
*some Coq material*

(* end show *)

The latter cannot be used around some inner parts of a proof, but can be used around a whole proof.

Usage

coqdoc is invoked on a shell command line as follows: coqdoc <options and files>. Any command line
argument which is not an option is considered to be a file (even if it starts with a -). Coq files are identified by the suffixes
.v and .g and LaTeX files by the suffix .tex.

HTML output This is the default output format. One HTML file is created for each Coq file given on
the command line, together with a file index.html (unless option-no-index is passed).
The HTML pages use a style sheet named style.css. Such a file is distributed with coqdoc.

LaTeX output A single LaTeX file is created, on standard output. It can be redirected to a file using the
option -o. The order of files on the command line is kept in the final document. LaTeX files given
on the command line are copied ‘as is’ in the final document . DVI and PostScript can be produced
directly with the options -dvi and -ps respectively.

TEXmacs output To translate the input files to TEXmacs format, to be used by the TEXmacs Coq interface.

Command line options

Overall options
–HTML Select a HTML output.
–LaTeX Select a LaTeX output.
–dvi Select a DVI output.
–ps Select a PostScript output.
–texmacs Select a TEXmacs output.
–stdout Write output to stdout.
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-o file, –output file Redirect the output into the file ‘file’ (meaningless with -html).
-d dir, –directory dir Output files into directory ‘dir’ instead of the current directory (option -d

does not change the filename specified with the option -o, if any).
–body-only Suppress the header and trailer of the final document. Thus, you can insert the

resulting document into a larger one.
-p string, –preamble string Insert some material in the LaTeX preamble, right before

\begin{document} (meaningless with -html).
–vernac-file file,–tex-file file Considers the file ‘file’ respectively as a .v (or .g) file or a .tex

file.
–files-from file Read filenames to be processed from the file ‘file’ as if they were given on the

command line. Useful for program sources split up into several directories.
-q, –quiet Be quiet. Do not print anything except errors.
-h, –help Give a short summary of the options and exit.
-v, –version Print the version and exit.

Index options
The default behavior is to build an index, for the HTML output only, into index.html.

–no-index Do not output the index.
–multi-index Generate one page for each category and each letter in the index, together with a

top page index.html.
–index string Make the filename of the index string instead of “index”. Useful since “in-

dex.html” is special.
Table of contents option

-toc, –table-of-contents Insert a table of contents. For a LaTeX output, it inserts a
\tableofcontents at the beginning of the document. For a HTML output, it builds a
table of contents into toc.html.

–toc-depth int Only include headers up to depth int in the table of contents.
Hyperlink options

–glob-from file Make references using Coq globalizations from file file. (Such globalizations are
obtained with Coq option -dump-glob).

–no-externals Do not insert links to the Coq standard library.
–external url coqdir Use given URL for linking references whose name starts with prefix

coqdir.
–coqlib url Set base URL for the Coq standard library (default is http://coq.inria.fr/library/).

This is equivalent to --external url Coq.
-R dir coqdir Recursively map physical directory dir to Coq logical directory coqdir (simi-

larly to Coq option -R).
-Q dir coqdir Map physical directory dir to Coq logical directory coqdir (similarly to Coq

option -Q).

Note: options -R and -Q only have effect on the files following them on the command line,
so you will probably need to put this option first.
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Title options
-s , –short Do not insert titles for the files. The default behavior is to insert a title like “Library

Foo” for each file.
–lib-name string Print “string Foo” instead of “Library Foo” in titles. For example “Chapter”

and “Module” are reasonable choices.
–no-lib-name Print just “Foo” instead of “Library Foo” in titles.
–lib-subtitles Look for library subtitles. When enabled, the beginning of each file is checked

for a comment of the form:

(** * ModuleName : text *)

where ModuleName must be the name of the file. If it is present, the text is used as a
subtitle for the module in appropriate places.

-t string, –title string Set the document title.
Contents options

-g, –gallina Do not print proofs.
-l, –light Light mode. Suppress proofs (as with -g) and the following commands:

• [Recursive] Tactic Definition
• Hint / Hints
• Require
• Transparent / Opaque
• Implicit Argument / Implicits
• Section / Variable / Hypothesis / End

The behavior of options -g and -l can be locally overridden using the (* begin show
*) … (* end show *) environment (see above).
There are a few options that control the parsing of comments:

–parse-comments Parse regular comments delimited by (* and *) as well. They are typeset
inline.

–plain-comments Do not interpret comments, simply copy them as plain-text.
–interpolate Use the globalization information to typeset identifiers appearing in Coq escapings

inside comments.
Language options

The default behavior is to assume ASCII 7 bit input files.
-latin1, –latin1 Select ISO-8859-1 input files. It is equivalent to –inputenc latin1 –charset iso-

8859-1.
-utf8, –utf8 Set –inputenc utf8x for LaTeX output and–charset utf-8 for HTML output.

Also use Unicode replacements for a couple of standard plain ASCII notations such
as → for -> and ∀ for forall. LaTeX UTF-8 support can be found at http://
www.ctan.org/pkg/unicode. For the interpretation of Unicode characters by LaTeX, ex-
tra packages which coqdoc does not provide by default might be required, such as
textgreek for some Greek letters or stmaryrd for some mathematical symbols. If
a Unicode character is missing an interpretation in the utf8x input encoding, add

530 Chapter 7. Practical tools

http://www.ctan.org/pkg/unicode
http://www.ctan.org/pkg/unicode


The Coq Reference Manual, Release 8.11.2

\DeclareUnicodeCharacter{code}{LATEX-interpretation}. Packages
and declarations can be added with option -p.

–inputenc string Give a LaTeX input encoding, as an option to LaTeX package inputenc.
–charset string Specify the HTML character set, to be inserted in the HTML header.

The coqdoc LaTeX style file

In case you choose to produce a document without the default LaTeX preamble (by using option --no-preamble),
then you must insert into your own preamble the command

\usepackage{coqdoc}

The package optionally takes the argument [color] to typeset identifiers with colors (this requires the xcolor pack-
age).
Then you may alter the rendering of the document by redefining some macros:

coqdockw, coqdocid, … The one-argument macros for typesetting keywords and identifiers. Defaults are
sans-serif for keywords and italic for identifiers.For example, if you would like a slanted font for key-
words, you may insert

\renewcommand{\coqdockw}[1]{\textsl{#1}}

anywhere between \usepackage{coqdoc} and \begin{document}.
coqdocmodule One-argument macro for typesetting the title of a .v file. Default is

\newcommand{\coqdocmodule}[1]{\section*{Module #1}}

and you may redefine it using \renewcommand.

7.2.5 Embedded Coq phrases inside LaTeX documents

When writing documentation about a proof development, one may want to insert Coq phrases inside a LaTeX document,
possibly together with the corresponding answers of the system. We provide amechanical way to process such Coq phrases
embedded in LaTeX files: the coq-tex filter. This filter extracts Coq phrases embedded in LaTeX files, evaluates them,
and insert the outcome of the evaluation after each phrase.
Starting with a file file.tex containing Coq phrases, the coq-tex filter produces a file named file.v.tex with
the Coq outcome.
There are options to produce the Coq parts in smaller font, italic, between horizontal rules, etc. See the man page of
coq-tex for more details.

7.2.6 Man pages

There are man pages for the commands coqdep and coq-tex. Man pages are installed at installation time (see instal-
lation instructions in file INSTALL, step 6).
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7.3 Coq Integrated Development Environment

The Coq Integrated Development Environment is a graphical tool, to be used as a user-friendly replacement to coqtop.
Its main purpose is to allow the user to navigate forward and backward into a Coq vernacular file, executing corresponding
commands or undoing them respectively.
CoqIDE is run by typing the command coqide on the command line. Without argument, the main screen is displayed
with an “unnamed buffer”, andwith a filename as argument, another buffer displaying the contents of that file. Additionally,
coqide accepts the same options as coqtop, given in The Coq commands, the ones having obviously no meaning for
CoqIDE being ignored.

A sample CoqIDE main screen, while navigating into a file Fermat.v, is shown in the figure CoqIDE main screen. At
the top is a menu bar, and a tool bar below it. The large window on the left is displaying the various script buffers. The
upper right window is the goal window, where goals to be proven are displayed. The lower right window is the message
window, where various messages resulting from commands are displayed. At the bottom is the status bar.

7.3.1 Managing files and buffers, basic editing

In the script window, you may open arbitrarily many buffers to edit. The File menu allows you to open files or create
some, save them, print or export them into various formats. Among all these buffers, there is always one which is the
current running buffer, whose name is displayed on a background in the processed color (green by default), which is the
one where Coq commands are currently executed.
Buffers may be edited as in any text editor, and classical basic editing commands (Copy/Paste, …) are available in the Edit
menu. CoqIDE offers only basic editing commands, so if you need more complex editing commands, you may launch
your favorite text editor on the current buffer, using the Edit/External Editor menu.
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7.3.2 Interactive navigation into Coq scripts

The running buffer is the one where navigation takes place. The toolbar offers five basic commands for this. The first
one, represented by a down arrow icon, is for going forward executing one command. If that command is successful, the
part of the script that has been executed is displayed on a background with the processed color. If that command fails,
the error message is displayed in the message window, and the location of the error is emphasized by an underline in the
error foreground color (red by default).
In the figure CoqIDE main screen, the running buffer is Fermat.v, all commands until the Theorem have been already
executed, and the user tried to go forward executing Induction n. That command failed because no such tactic exists
(names of standard tactics are written in lowercase), and the failing command is underlined.
Notice that the processed part of the running buffer is not editable. If you ever want to modify something you have to
go backward using the up arrow tool, or even better, put the cursor where you want to go back and use the goto button.
Unlike with coqtop, you should never use Undo to go backward.
There are two additional buttons for navigation within the running buffer. The ”down” button with a line goes directly
to the end; the ”up” button with a line goes back to the beginning. The handling of errors when using the go-to-the-end
button depends on whether Coq is running in asynchronous mode or not (see Chapter Asynchronous and Parallel Proof
Processing). If it is not running in that mode, execution stops as soon as an error is found. Otherwise, execution continues,
and the error is marked with an underline in the error foreground color, with a background in the error background color
(pink by default). The same characterization of error-handling applies when running several commands using the ”goto”
button.
If you ever try to execute a command that runs for a long time and would like to abort it before it terminates, you may
use the interrupt button (the white cross on a red circle).
There are other buttons on the CoqIDE toolbar: a button to save the running buffer; a button to close the current buffer
(an ”X”); buttons to switch among buffers (left and right arrows); an ”information” button; and a ”gears” button.
The ”gears” button submits proof terms to the Coq kernel for type checking. When Coq uses asynchronous processing
(see Chapter Asynchronous and Parallel Proof Processing), proofs may have been completed without kernel-checking of
generated proof terms. The presence of unchecked proof terms is indicated by Qed statements that have a subdued being-
processed color (light blue by default), rather than the processed color, though their preceding proofs have the processed
color.
Notice that for all these buttons, except for the ”gears” button, their operations are also available in the menu, where their
keyboard shortcuts are given.

7.3.3 Vernacular commands, templates

The Templates menu allows using shortcuts to insert vernacular commands. This is a nice way to proceed if you are not
sure of the syntax of the command you want.
Moreover, from this menu you can automatically insert templates of complex commands like Fixpoint that you can
conveniently fill afterwards.
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7.3.4 Queries

We call query any vernacular command that does not change the current state, such as Check, Search, etc. To run such
commands interactively, without writing them in scripts, CoqIDE offers a query pane. The query pane can be displayed
on demand by using the View menu, or using the shortcut F1. Queries can also be performed by selecting a particular
phrase, then choosing an item from the Queries menu. The response then appears in the message window. The image
above shows the result after selecting of the phrase Nat.mul in the script window, and choosing Print from the
Queries menu.

7.3.5 Compilation

The Compile menu offers direct commands to:
• compile the current buffer
• run a compilation using make
• go to the last compilation error
• create a Makefile using coq_makefile.
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7.3.6 Customizations

You may customize your environment using the menu Edit/Preferences. A new window will be displayed, with several
customization sections presented as a notebook.
The first section is for selecting the text font used for scripts, goal and message windows.
The second and third sections are for controlling colors and style of the three main buffers. A predefined Coq highlighting
style as well as standard GtkSourceView styles are available. Other styles can be added e.g. in $HOME/.local/
share/gtksourceview-3.0/styles/ (see the general documentation about GtkSourceView for the various
possibilities). Note that the style of the rest of graphical part of Coqide is not under the control of GtkSourceView but of
GTK+ and governed by files such as settings.ini and gtk.css in $XDG_CONFIG_HOME/gtk-3.0 or files in
$HOME/.themes/NameOfTheme/gtk-3.0, as well as the environment variable GTK_THEME (search on internet
for the various possibilities).
The fourth section is for customizing the editor. It includes in particular the ability to activate an Emacs mode named
micro-Proof-General (use the Help menu to know more about the available bindings).
The next section is devoted to file management: you may configure automatic saving of files, by periodically saving the
contents into files named #f# for each opened file f. You may also activate the revert feature: in case a opened file is
modified on the disk by a third party, CoqIDE may read it again for you. Note that in the case you edited that same file,
you will be prompted to choose to either discard your changes or not. The File charset encoding choice is described below
in Character encoding for saved files.
The Externals section allows customizing the external commands for compilation, printing, web browsing.
In the browser command, you may use %s to denote the URL to open, for example: firefox -remote
"OpenURL(%s)".
Notice that these settings are saved in the file coqiderc in the coq subdirectory of the user configuration direc-
tory which is the value of $XDG_CONFIG_HOME if this environment variable is set and which otherwise is $HOME/.
config/.
A GTK+ accelerator keymap is saved under the name coqide.keys in the same coq subdirectory of the user configu-
ration directory. It is not recommended to edit this file manually: to modify a givenmenu shortcut, go to the corresponding
menu item without releasing the mouse button, press the key you want for the new shortcut, and release the mouse button
afterwards. If your system does not allow it, you may still edit this configuration file by hand, but this is more involved.

7.3.7 Using Unicode symbols

CoqIDE is based on GTK+ and inherits from it support for Unicode in its text windows. Consequently a large set of
symbols is available for notations. Furthermore, CoqIDE conveniently provides a simple way to input Unicode characters.

Displaying Unicode symbols

You just need to define suitable notations as described in the chapter Syntax extensions and interpretation scopes. For
example, to use the mathematical symbols ∀ and ∃, you may define:

Notation "∀ x .. y , P" := (forall x, .. (forall y, P) ..)
(at level 200, x binder, y binder, right associativity)
: type_scope.

Notation "∃ x .. y , P" := (exists x, .. (exists y, P) ..)
(at level 200, x binder, y binder, right associativity)
: type_scope.

There exists a small set of such notations already defined, in the file utf8.v of Coq library, so you may enable them
just by Require Import Unicode.Utf8 inside CoqIDE, or equivalently, by starting CoqIDE with coqide -l
utf8.
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However, there are some issues when using such Unicode symbols: you of course need to use a character font which
supports them. In the Fonts section of the preferences, the Preview line displays some Unicode symbols, so you could
figure out if the selected font is OK. Related to this, one thing you may need to do is choosing whether GTK+ should use
antialiased fonts or not, by setting the environment variable GDK_USE_XFT to 1 or 0 respectively.

Bindings for input of Unicode symbols

CoqIDE supports a builtin mechanism to input non-ASCII symbols. For example, to input π, it suffices to type \pi then
press the combination of key Shift+Space (default key binding). Often, it suffices to type a prefix of the latex token,
e.g. typing \p then Shift+Space suffices to insert a π.
For several symbols, ASCII art is also recognized, e.g. \-> for a right arrow, or \>= for a greater than or equal sign.
A larger number of latex tokens are supported by default. The full list is available here: https://github.com/coq/coq/blob/
master/ide/default_bindings_src.ml
Custom bindings may be added, as explained further on.

Note: It remains possible to input non-ASCII symbols using system-wide approaches independent of CoqIDE.

Adding custom bindings

To extend the default set of bindings, create a file named coqide.bindings and place it in the same folder
as coqide.keys. This would be the folder $XDG_CONFIG_HOME/coq, defaulting to ~/.config/coq if
XDG_CONFIG_HOME is unset. The file coqide.bindings should contain one binding per line, in the form \key
value, followed by an optional priority integer. (The key and value should not contain any space character.)

Example
Here is an example configuration file:

\par ||
\pi π 1
\le ≤ 1
\lambda λ 2
\lambdas λs

Above, the priority number 1 on \pi indicates that the prefix \p should resolve to \pi, and not to something else (e.g.
\par). Similarly, the above settings ensure than \l resolves to \le, and that \la resolves to \lambda.
It can be useful to work with per-project binding files. For this purpose CoqIDE accepts a command line argument of the
form -unicode-bindings file1,file2,...,fileN. Each of the file tokens provided may consists of one
of:

• a path to a custom bindings file,
• the token default, which resolves to the default bindings file,
• the token local, which resolves to the coqide.bindings file stored in the user configuration directory.

Warning: If a filename other than the first one includes a ”~” to refer to the home directory, it won’t be ex-
panded properly. To work around that issue, one should not use comas but instead repeat the flag, in the form:
-unicode-bindings file1 .. -unicode-bindings fileN.
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Note: If two bindings for a same token both have the same priority value (or both have no priority value set), then the
binding considered is the one from the file that comes first on the command line.

Character encoding for saved files

In the Files section of the preferences, the encoding option is related to the way files are saved.
If you have no need to exchange files with non UTF-8 aware applications, it is better to choose the UTF-8 encoding, since
it guarantees that your files will be read again without problems. (This is because when CoqIDE reads a file, it tries to
automatically detect its character encoding.)
If you choose something else than UTF-8, then missing characters will be written encoded by x{....} or x{.......
.} where each dot is an hexadecimal digit: the number between braces is the hexadecimal Unicode index for the missing
character.

7.3. Coq Integrated Development Environment 537



CHAPTER

EIGHT

ADDENDUM

8.1 Extended pattern matching

Authors Cristina Cornes and Hugo Herbelin
This section describes the full form of pattern matching in Coq terms.

8.1.1 Patterns

The full syntax of match is presented in section Terms. Identifiers in patterns are either constructor names or variables.
Any identifier that is not the constructor of an inductive or co-inductive type is considered to be a variable. A variable
name cannot occur more than once in a given pattern. It is recommended to start variable names by a lowercase letter.
If a pattern has the form c x where c is a constructor symbol and x is a linear vector of (distinct) variables, it is called
simple: it is the kind of pattern recognized by the basic version of match. On the opposite, if it is a variable x or has the
form c p with p not only made of variables, the pattern is called nested.
A variable pattern matches any value, and the identifier is bound to that value. The pattern “_” (called “don’t care” or
“wildcard” symbol) also matches any value, but does not bind anything. It may occur an arbitrary number of times in a
pattern. Alias patterns written (pattern as ident) are also accepted. This pattern matches the same values as
pattern does and ident is bound to the matched value. A pattern of the form pattern | pattern is called
disjunctive. A list of patterns separated with commas is also considered as a pattern and is calledmultiple pattern. However
multiple patterns can only occur at the root of pattern matching equations. Disjunctions of multiple patterns are allowed
though.
Since extended match expressions are compiled into the primitive ones, the expressiveness of the theory remains the
same. Once parsing has finished only simple patterns remain. The original nesting of the match expressions is recovered
at printing time. An easy way to see the result of the expansion is to toggle off the nesting performed at printing (use
here Printing Matching), then by printing the term with Print if the term is a constant, or using the command
Check.
The extended match still accepts an optional elimination predicate given after the keyword return. Given a pattern
matching expression, if all the right-hand-sides of => have the same type, then this type can be sometimes synthesized,
and so we can omit the return part. Otherwise the predicate after return has to be provided, like for the basicmatch.
Let us illustrate through examples the different aspects of extended pattern matching. Consider for example the function
that computes the maximum of two natural numbers. We can write it in primitive syntax by:

Fixpoint max (n m:nat) {struct m} : nat :=
match n with
| O => m
| S n' => match m with

| O => S n'

(continues on next page)
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(continued from previous page)
| S m' => S (max n' m')
end

end.

8.1.2 Multiple patterns

Using multiple patterns in the definition of max lets us write:

Fixpoint max (n m:nat) {struct m} : nat :=
match n, m with
| O, _ => m
| S n', O => S n'
| S n', S m' => S (max n' m')
end.

which will be compiled into the previous form.
The pattern matching compilation strategy examines patterns from left to right. A match expression is generated only
when there is at least one constructor in the column of patterns. E.g. the following example does not build a match
expression.

Check (fun x:nat => match x return nat with
| y => y
end).

fun x : nat => x
: nat -> nat

8.1.3 Aliasing subpatterns

We can also use as ident to associate a name to a sub-pattern:

Fixpoint max (n m:nat) {struct n} : nat :=
match n, m with
| O, _ => m
| S n' as p, O => p
| S n', S m' => S (max n' m')
end.

8.1.4 Nested patterns

Here is now an example of nested patterns:

Fixpoint even (n:nat) : bool :=
match n with
| O => true
| S O => false
| S (S n') => even n'
end.

This is compiled into:
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Unset Printing Matching.
Print even.

even =
fix even (n : nat) : bool :=

match n with
| 0 => true
| S n0 => match n0 with

| 0 => false
| S n' => even n'
end

end
: nat -> bool

Arguments even _%nat_scope

In the previous examples patterns do not conflict with, but sometimes it is comfortable to write patterns that admit a non
trivial superposition. Consider the boolean function lef that given two natural numbers yields true if the first one is
less or equal than the second one and false otherwise. We can write it as follows:

Fixpoint lef (n m:nat) {struct m} : bool :=
match n, m with
| O, x => true
| x, O => false
| S n, S m => lef n m
end.

Note that the first and the second multiple pattern overlap because the couple of values O O matches both. Thus, what is
the result of the function on those values? To eliminate ambiguity we use the textual priority rule: we consider patterns to
be ordered from top to bottom. A value is matched by the pattern at the ith row if and only if it is not matched by some
pattern from a previous row. Thus in the example, O O is matched by the first pattern, and so (lef O O) yields true.
Another way to write this function is:

Fixpoint lef (n m:nat) {struct m} : bool :=
match n, m with
| O, x => true
| S n, S m => lef n m
| _, _ => false
end.

Here the last pattern superposes with the first two. Because of the priority rule, the last pattern will be used only for values
that do not match neither the first nor the second one.
Terms with useless patterns are not accepted by the system. Here is an example:

Fail Check (fun x:nat =>
match x with
| O => true
| S _ => false
| x => true
end).

The command has indeed failed with message:
Pattern "x" is redundant in this clause.
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8.1.5 Disjunctive patterns

Multiple patterns that share the same right-hand-side can be factorized using the notation mult_pattern
+

|
. For

instance, max can be rewritten as follows:

Fixpoint max (n m:nat) {struct m} : nat :=
match n, m with
| S n', S m' => S (max n' m')
| 0, p | p, 0 => p
end.

Similarly, factorization of (not necessarily multiple) patterns that share the same variables is possible by using the notation
pattern

+

|
. Here is an example:

Definition filter_2_4 (n:nat) : nat :=
match n with
| 2 as m | 4 as m => m
| _ => 0
end.

Nested disjunctive patterns are allowed, inside parentheses, with the notation ( pattern +

|
), as in:

Definition filter_some_square_corners (p:nat*nat) : nat*nat :=
match p with
| ((2 as m | 4 as m), (3 as n | 5 as n)) => (m,n)
| _ => (0,0)
end.

8.1.6 About patterns of parametric types

Parameters in patterns

When matching objects of a parametric type, parameters do not bind in patterns. They must be substituted by “_”.
Consider for example the type of polymorphic lists:

Inductive List (A:Set) : Set :=
| nil : List A
| cons : A -> List A -> List A.

We can check the function tail:

Check
(fun l:List nat =>

match l with
| nil _ => nil nat
| cons _ _ l' => l'
end).

fun l : List nat => match l with
| nil _ => nil nat
| cons _ _ l' => l'
end

: List nat -> List nat

When we use parameters in patterns there is an error message:
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Fail Check
(fun l:List nat =>

match l with
| nil A => nil nat
| cons A _ l' => l'
end).

The command has indeed failed with message:
The parameters do not bind in patterns; they must be replaced by '_'.

Flag: Asymmetric Patterns
This flag (off by default) removes parameters from constructors in patterns:

Set Asymmetric Patterns.
Check (fun l:List nat =>

match l with
| nil => nil _
| cons _ l' => l'
end).
fun l : List nat => match l with

| @nil _ => nil nat
| @cons _ _ l' => l'
end

: List nat -> List nat

Unset Asymmetric Patterns.

8.1.7 Implicit arguments in patterns

By default, implicit arguments are omitted in patterns. So we write:

Arguments nil {A}.
Arguments cons [A] _ _.
Check

(fun l:List nat =>
match l with
| nil => nil
| cons _ l' => l'
end).

fun l : List nat => match l with
| nil => nil
| cons _ l' => l'
end

: List nat -> List nat

But the possibility to use all the arguments is given by “@” implicit explicitations (as for terms, see Explicit applications).

Check
(fun l:List nat =>

match l with
| @nil _ => @nil nat
| @cons _ _ l' => l'
end).

fun l : List nat => match l with
| nil => nil
| cons _ l' => l'

(continues on next page)
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(continued from previous page)
end

: List nat -> List nat

8.1.8 Matching objects of dependent types

The previous examples illustrate pattern matching on objects of non- dependent types, but we can also use the expansion
strategy to destructure objects of dependent types. Consider the type listn of lists of a certain length:

Inductive listn : nat -> Set :=
| niln : listn 0
| consn : forall n:nat, nat -> listn n -> listn (S n).

8.1.9 Understanding dependencies in patterns

We can define the function length over listn by:

Definition length (n:nat) (l:listn n) := n.

Just for illustrating pattern matching, we can define it by case analysis:

Definition length (n:nat) (l:listn n) :=
match l with
| niln => 0
| consn n _ _ => S n
end.

We can understand the meaning of this definition using the same notions of usual pattern matching.

8.1.10 When the elimination predicate must be provided

Dependent pattern matching

The examples given so far do not need an explicit elimination predicate because all the right hand sides have the same
type and Coq succeeds to synthesize it. Unfortunately when dealing with dependent patterns it often happens that we need
to write cases where the types of the right hand sides are different instances of the elimination predicate. The function
concat for listn is an example where the branches have different types and we need to provide the elimination
predicate:

Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} :
listn (n + m) :=
match l in listn n return listn (n + m) with
| niln => l'
| consn n' a y => consn (n' + m) a (concat n' y m l')
end.

The elimination predicate is fun (n:nat) (l:listn n) => listn (n+m). In general if m has type (I q1
… qr t1 … ts) where q1, …, qr are parameters, the elimination predicate should be of the form fun y1 …
ys x : (I q1 … qr y1 … ys ) => Q.
In the concrete syntax, it should be written : match m as x in (I _ … _ y1 … ys) return Q with …
end. The variables which appear in the in and as clause are new and bounded in the property Q in the return clause.
The parameters of the inductive definitions should not be mentioned and are replaced by _.
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Multiple dependent pattern matching

Recall that a list of patterns is also a pattern. So, when we destructure several terms at the same time and the branches
have different types we need to provide the elimination predicate for this multiple pattern. It is done using the same
scheme: each term may be associated to an as clause and an in clause in order to introduce a dependent product.
For example, an equivalent definition for concat (even though the matching on the second term is trivial) would have
been:

Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} :
listn (n + m) :=
match l in listn n, l' return listn (n + m) with
| niln, x => x
| consn n' a y, x => consn (n' + m) a (concat n' y m x)
end.

Even without real matching over the second term, this construction can be used to keep types linked. If a and b are two
listn of the same length, by writing

Check (fun n (a b: listn n) =>
match a, b with
| niln, b0 => tt
| consn n' a y, bS => tt
end).

we have a copy of b in type listn 0 resp. listn (S n').

Patterns in in

If the type of the matched term is more precise than an inductive applied to variables, arguments of the inductive in the
in branch can be more complicated patterns than a variable.
Moreover, constructors whose types do not follow the same pattern will become impossible branches. In an impossible
branch, you can answer anything but False_rect unit has the advantage to be subterm of anything.
To be concrete: the tail function can be written:

Definition tail n (v: listn (S n)) :=
match v in listn (S m) return listn m with
| niln => False_rect unit
| consn n' a y => y
end.

and tail n v will be subterm of v.

8.1.11 Using pattern matching to write proofs

In all the previous examples the elimination predicate does not depend on the object(s) matched. But it may depend and
the typical case is when we write a proof by induction or a function that yields an object of a dependent type. An example
of a proof written using match is given in the description of the tactic refine.
For example, we can write the function buildlist that given a natural number n builds a list of length n containing
zeros as follows:
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Fixpoint buildlist (n:nat) : listn n :=
match n return listn n with
| O => niln
| S n => consn n 0 (buildlist n)
end.

We can also use multiple patterns. Consider the following definition of the predicate less-equal Le:

Inductive LE : nat -> nat -> Prop :=
| LEO : forall n:nat, LE 0 n
| LES : forall n m:nat, LE n m -> LE (S n) (S m).

We can use multiple patterns to write the proof of the lemma forall (n m:nat), (LE n m) \/ (LE m n):

Fixpoint dec (n m:nat) {struct n} : LE n m \/ LE m n :=
match n, m return LE n m \/ LE m n with
| O, x => or_introl (LE x 0) (LEO x)
| x, O => or_intror (LE x 0) (LEO x)
| S n as n', S m as m' =>

match dec n m with
| or_introl h => or_introl (LE m' n') (LES n m h)
| or_intror h => or_intror (LE n' m') (LES m n h)
end

end.

In the example of dec, the first match is dependent while the second is not.
The user can also use match in combination with the tactic refine to build incomplete proofs beginning with a match
construction.

8.1.12 Pattern-matching on inductive objects involving local definitions

If local definitions occur in the type of a constructor, then there are two ways to match on this constructor. Either the
local definitions are skipped and matching is done only on the true arguments of the constructors, or the bindings for local
definitions can also be caught in the matching.

Example

Inductive list : nat -> Set :=
| nil : list 0
| cons : forall n:nat, let m := (2 * n) in list m -> list (S (S m)).

In the next example, the local definition is not caught.

Fixpoint length n (l:list n) {struct l} : nat :=
match l with
| nil => 0
| cons n l0 => S (length (2 * n) l0)
end.

But in this example, it is.

Fixpoint length' n (l:list n) {struct l} : nat :=
match l with
| nil => 0

(continues on next page)
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(continued from previous page)
| @cons _ m l0 => S (length' m l0)
end.

Note: For a given matching clause, either none of the local definitions or all of them can be caught.

Note: You can only catch let bindings in mode where you bind all variables and so you have to use @ syntax.

Note: this feature is incoherent with the fact that parameters cannot be caught and consequently is somehow hidden. For
example, there is no mention of it in error messages.

8.1.13 Pattern-matching and coercions

If a mismatch occurs between the expected type of a pattern and its actual type, a coercion made from constructors is
sought. If such a coercion can be found, it is automatically inserted around the pattern.

Example

Inductive I : Set :=
| C1 : nat -> I
| C2 : I -> I.

Coercion C1 : nat >-> I.

Check (fun x => match x with
| C2 O => 0
| _ => 0
end).

fun x : I => match x with
| C1 _ | _ => 0
end

: I -> nat

8.1.14 When does the expansion strategy fail?

The strategy works very like in ML languages when treating patterns of non-dependent types. But there are new cases of
failure that are due to the presence of dependencies.
The error messages of the current implementation may be sometimes confusing. When the tactic fails because patterns are
somehow incorrect then error messages refer to the initial expression. But the strategy may succeed to build an expression
whose sub-expressions are well typed when the whole expression is not. In this situation the message makes reference
to the expanded expression. We encourage users, when they have patterns with the same outer constructor in different
equations, to name the variable patterns in the same positions with the same name. E.g. to write (cons n O x)
=> e1 and (cons n _ x) => e2 instead of (cons n O x) => e1 and (cons n' _ x') => e2. This
helps to maintain certain name correspondence between the generated expression and the original.
Here is a summary of the error messages corresponding to each situation:
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Error: The constructor ident expects num arguments.
The variable ident is bound several times in pattern termFound a constructor of inductive type term while a con-
structor of term is expectedPatterns are incorrect (because constructors are not applied to the correct number of
the arguments, because they are not linear or they are wrongly typed).

Error: Non exhaustive pattern matching.
The pattern matching is not exhaustive.

Error: The elimination predicate term should be of arity num (for non dependent case) or num (for dependent case).
The elimination predicate provided to match has not the expected arity.

Error: Unable to infer a match predicate
Error: Either there is a type incompatibility or the problem involves dependencies.

There is a type mismatch between the different branches. The user should provide an elimination predicate.

8.2 Implicit Coercions

Author Amokrane Saïbi

8.2.1 General Presentation

This section describes the inheritance mechanism of Coq. In Coq with inheritance, we are not interested in adding any
expressive power to our theory, but only convenience. Given a term, possibly not typable, we are interested in the problem
of determining if it can be well typed modulo insertion of appropriate coercions. We allow to write:

• f a where f:(forall x:A,B) and a:A' when A' can be seen in some sense as a subtype of A.
• x:A when A is not a type, but can be seen in a certain sense as a type: set, group, category etc.
• f a when f is not a function, but can be seen in a certain sense as a function: bijection, functor, any structure
morphism etc.

8.2.2 Classes

A class with 𝑛 parameters is any defined name with a type forall (ident1 : type1)..(identn:typen),
sort. Thus a class with parameters is considered as a single class and not as a family of classes. An object of a class is
any term of type class term1 .. termn. In addition to these user-defined classes, we have two built-in classes:

• Sortclass, the class of sorts; its objects are the terms whose type is a sort (e.g. Prop or Type).
• Funclass, the class of functions; its objects are all the terms with a functional type, i.e. of form forall
x:A,B.

Formally, the syntax of classes is defined as:

class ::= qualid
Sortclass
Funclass
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8.2.3 Coercions

A name f can be declared as a coercion between a source user-defined class C with 𝑛 parameters and a target class D if
one of these conditions holds:

• D is a user-defined class, then the type of f must have the form forall (x1:A1)..(x�:A�)(y:C x1..
x�), D u1..u� where 𝑚 is the number of parameters of D.

• D is Funclass, then the type of f must have the form forall (x1:A1)..(x�:A�)(y:C x1..
x�)(x:A), B.

• D is Sortclass, then the type of f must have the form forall (x1:A1)..(x�:A�)(y:C x1..x�),
s with s a sort.

We then write f : C >-> D. The restriction on the type of coercions is called the uniform inheritance condition.

Note: The built-in class Sortclass can be used as a source class, but the built-in class Funclass cannot.

To coerce an object t:C t1..t� of C towards D, we have to apply the coercion f to it; the obtained term f t1..t�
t is then an object of D.

8.2.4 Identity Coercions

Identity coercions are special cases of coercions used to go around the uniform inheritance condition. Let C and D be two
classes with respectively n and m parameters and f:forall (x1:T1)..(x�:T�)(y:C u1..u�), D v1..v�
a function which does not verify the uniform inheritance condition. To declare f as coercion, one has first to declare a
subclass C' of C:

C' := fun (x1:T1)..(x�:T�) => C u1..u�

We then define an identity coercion between C' and C:
Id_C'_C := fun (x1:T1)..(x�:T�)(y:C' x1..x�) => (y:C u1..u�)

We can now declare f as coercion from C' to D, since we can ”cast” its type as forall (x1:T1)..(x�:T�)(y:C'
x1..x�),D v1..v�.
The identity coercions have a special status: to coerce an object t:C' t1..t� of C' towards C, we do not have to
insert explicitly Id_C'_C since Id_C'_C t1..t� t is convertible with t. However we ”rewrite” the type of t to
become an object of C; in this case, it becomes C u�'..u�' where each u�' is the result of the substitution in u� of
the variables x� by t�.

8.2.5 Inheritance Graph

Coercions form an inheritance graph with classes as nodes. We call coercion path an ordered list of coercions between
two nodes of the graph. A class C is said to be a subclass of D if there is a coercion path in the graph from C to D;
we also say that C inherits from D. Our mechanism supports multiple inheritance since a class may inherit from several
classes, contrary to simple inheritance where a class inherits from at most one class. However there must be at most one
path between two classes. If this is not the case, only the oldest one is valid and the others are ignored. So the order of
declaration of coercions is important.
We extend notations for coercions to coercion paths. For instance [f1;..;f�] : C >-> D is the coercion path
composed by the coercions f1..f�. The application of a coercion path to a term consists of the successive application
of its coercions.
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8.2.6 Declaring Coercions

Command: Coercion qualid : class >-> class
Declares the construction denoted by qualid as a coercion between the two given classes.
Error: qualid not declared.

Error: qualid is already a coercion.

Error: Funclass cannot be a source class.

Error: qualid is not a function.

Error: Cannot find the source class of qualid.

Error: Cannot recognize class as a source class of qualid.

Warning: qualid does not respect the uniform inheritance condition.

Error: Found target class ... instead of ...

Warning: New coercion path ... is ambiguous with existing ...
When the coercion qualid is added to the inheritance graph, new coercion paths which have the same
classes as existing ones are ignored. The Coercion command tries to check the convertibility of new ones
and existing ones. The paths for which this check fails are displayed by a warning in the form [f1;..;f�]
: C >-> D.
The convertibility checking procedure for coercion paths is complete for paths consisting of coercions sat-
isfying the uniform inheritance condition, but some coercion paths could be reported as ambiguous even if
they are convertible with existing ones when they have coercions that don’t satisfy the uniform inheritance
condition.

Variant: Local Coercion qualid : class >-> class
Declares the construction denoted by qualid as a coercion local to the current section.

Variant: Coercion ident := term type
?

This defines ident just like Definition ident := term type
? , and then declares ident as

a coercion between it source and its target.

Variant: Local Coercion ident := term type
?

This defines ident just like Let ident := term type
? , and then declares ident as a coercion

between it source and its target.
Assumptions can be declared as coercions at declaration time. This extends the grammar of assumptions from Figure The
Vernacular as follows:

assumption ::= assumption_keyword assums .
assums ::= simple_assums

(simple_assums) ... (simple_assums)
simple_assums ::= ident ... ident :[>] term

If the extra > is present before the type of some assumptions, these assumptions are declared as coercions.
Similarly, constructors of inductive types can be declared as coercions at definition time of the inductive type. This
extends and modifies the grammar of inductive types from Figure The Vernacular as follows:

inductive ::= Inductive ind_body with ... with ind_body
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CoInductive ind_body with ... with ind_body
ind_body ::= ident [ binders ] : term := [[|] constructor | ... | constructor ]
constructor ::= ident [ binders ] [:[>] term ]

Especially, if the extra > is present in a constructor declaration, this constructor is declared as a coercion.
Command: Identity Coercion ident : class >-> class

If C is the source class and D the destination, we check that C is a constant with a body of the form fun
(x1:T1)..(x�:T�) => D t1..t� where m is the number of parameters of D. Then we define an identity
function with type forall (x1:T1)..(x�:T�)(y:C x1..x�),D t1..t�, and we declare it as an iden-
tity coercion between C and D.
Error: class must be a transparent constant.

Variant: Local Identity Coercion ident : ident >-> ident
Same as Identity Coercion but locally to the current section.

Variant: SubClass ident := type
If type is a class ident' applied to some arguments then ident is defined and an identity coercion of
name Id_ident_ident' is declared. Otherwise said, this is an abbreviation for
Definition ident := type. Identity Coercion Id_ident_ident' : ident >->
ident'.

Variant: Local SubClass ident := type
Same as before but locally to the current section.

8.2.7 Displaying Available Coercions

Command: Print Classes
Print the list of declared classes in the current context.

Command: Print Coercions
Print the list of declared coercions in the current context.

Command: Print Graph
Print the list of valid coercion paths in the current context.

Command: Print Coercion Paths class class
Print the list of valid coercion paths between the two given classes.

8.2.8 Activating the Printing of Coercions

Flag: Printing Coercions
When on, this flag forces all the coercions to be printed. By default, coercions are not printed.

Table: Printing Coercion qualid
Specifies a set of qualids for which coercions are always displayed. Use the Add @table and Remove @table
commands to update the set of qualids.

8.2.9 Classes as Records

We allow the definition of Structures with Inheritance (or classes as records) by extending the existing Record macro.
Its new syntax is:
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Variant: Record >
?

ident binders
?

: sort := ident
?

{ ident : >
?

term

+

;
}

The first identifier ident is the name of the defined record and sort is its type. The optional identifier after :=
is the name of the constructor (it will be Build_ident if not given). The other identifiers are the names of the
fields, and term are their respective types. If :> is used instead of : in the declaration of a field, then the name
of this field is automatically declared as a coercion from the record name to the class of this field type. Note that
the fields always verify the uniform inheritance condition. If the optional > is given before the record name, then
the constructor name is automatically declared as a coercion from the class of the last field type to the record name
(this may fail if the uniform inheritance condition is not satisfied).

Variant: Structure >
?

ident binders
?

: sort := ident
?

{ ident : >
?

term

+

;
}

This is a synonym of Record.

8.2.10 Coercions and Sections

The inheritance mechanism is compatible with the section mechanism. The global classes and coercions defined inside a
section are redefined after its closing, using their new value and new type. The classes and coercions which are local to
the section are simply forgotten. Coercions with a local source class or a local target class, and coercions which do not
verify the uniform inheritance condition any longer are also forgotten.

8.2.11 Coercions and Modules

The coercions present in a module are activated only when the module is explicitly imported.

8.2.12 Examples

There are three situations:

Coercion at function application

f a is ill-typed where f:forall x:A,B and a:A'. If there is a coercion path between A' and A, then f a is
transformed into f a' where a' is the result of the application of this coercion path to a.
We first give an example of coercion between atomic inductive types

Definition bool_in_nat (b:bool) := if b then 0 else 1.
bool_in_nat is defined

Coercion bool_in_nat : bool >-> nat.
bool_in_nat is now a coercion

Check (0 = true).
0 = true

: Prop

Set Printing Coercions.
Check (0 = true).

0 = bool_in_nat true
: Prop

Unset Printing Coercions.
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Warning: Note that Check (true = O) would fail. This is ”normal” behavior of coercions. To validate
true=O, the coercion is searched from nat to bool. There is none.

We give an example of coercion between classes with parameters.

Parameters (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set).
C is declared
D is declared
E is declared

Parameter f : forall n:nat, C n -> D (S n) true.
f is declared

Coercion f : C >-> D.
f is now a coercion

Parameter g : forall (n:nat) (b:bool), D n b -> E b.
g is declared

Coercion g : D >-> E.
g is now a coercion

Parameter c : C 0.
c is declared

Parameter T : E true -> nat.
T is declared

Check (T c).
T c

: nat

Set Printing Coercions.
Check (T c).

T (g 1 true (f 0 c))
: nat

Unset Printing Coercions.

We give now an example using identity coercions.

Definition D' (b:bool) := D 1 b.
D' is defined

Identity Coercion IdD'D : D' >-> D.
Print IdD'D.

IdD'D =
(fun (b : bool) (x : D' b) => x) : forall b : bool, D' b -> D 1 b

: forall b : bool, D' b -> D 1 b

Arguments IdD'D _%bool_scope
IdD'D is a coercion

Parameter d' : D' true.
d' is declared

(continues on next page)
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(continued from previous page)
Check (T d').

T d'
: nat

Set Printing Coercions.
Check (T d').

T (g 1 true d')
: nat

Unset Printing Coercions.

In the case of functional arguments, we use the monotonic rule of sub-typing. To coerce t : forall x : A, B
towards forall x : A', B', we have to coerce A' towards A and B towards B'. An example is given below:

Parameters (A B : Set) (h : A -> B).
A is declared
B is declared
h is declared

Coercion h : A >-> B.
h is now a coercion

Parameter U : (A -> E true) -> nat.
U is declared

Parameter t : B -> C 0.
t is declared

Check (U t).
U (fun x : A => t x)

: nat

Set Printing Coercions.
Check (U t).

U (fun x : A => g 1 true (f 0 (t (h x))))
: nat

Unset Printing Coercions.

Remark the changes in the result following the modification of the previous example.

Parameter U' : (C 0 -> B) -> nat.
U' is declared

Parameter t' : E true -> A.
t' is declared

Check (U' t').
U' (fun x : C 0 => t' x)

: nat

Set Printing Coercions.
Check (U' t').

U' (fun x : C 0 => h (t' (g 1 true (f 0 x))))
: nat

Unset Printing Coercions.
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Coercion to a type

An assumption x:A when A is not a type, is ill-typed. It is replaced by x:A' where A' is the result of the application
to A of the coercion path between the class of A and Sortclass if it exists. This case occurs in the abstraction fun
x:A => t, universal quantification forall x:A,B, global variables and parameters of (co-)inductive definitions and
functions. In forall x:A,B, such a coercion path may also be applied to B if necessary.

Parameter Graph : Type.
Graph is declared

Parameter Node : Graph -> Type.
Node is declared

Coercion Node : Graph >-> Sortclass.
Node is now a coercion

Parameter G : Graph.
G is declared

Parameter Arrows : G -> G -> Type.
Arrows is declared

Check Arrows.
Arrows

: G -> G -> Type

Parameter fg : G -> G.
fg is declared

Check fg.
fg

: G -> G

Set Printing Coercions.
Check fg.

fg
: Node G -> Node G

Unset Printing Coercions.

Coercion to a function

f a is ill-typed because f:A is not a function. The term f is replaced by the term obtained by applying to f the coercion
path between A and Funclass if it exists.

Parameter bij : Set -> Set -> Set.
bij is declared

Parameter ap : forall A B:Set, bij A B -> A -> B.
ap is declared

Coercion ap : bij >-> Funclass.
ap is now a coercion

Parameter b : bij nat nat.
b is declared

(continues on next page)
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(continued from previous page)

Check (b 0).
b 0

: nat

Set Printing Coercions.
Check (b 0).

ap nat nat b 0
: nat

Unset Printing Coercions.

Let us see the resulting graph after all these examples.

Print Graph.
[bool_in_nat] : bool >-> nat
[f] : C >-> D
[f; g] : C >-> E
[g] : D >-> E
[IdD'D] : D' >-> D
[IdD'D; g] : D' >-> E
[h] : A >-> B
[Node] : Graph >-> Sortclass
[ap] : bij >-> Funclass

8.3 Canonical Structures

Authors Assia Mahboubi and Enrico Tassi
This chapter explains the basics of canonical structures and how they can be used to overload notations and build a
hierarchy of algebraic structures. The examples are taken from [MT13]. We invite the interested reader to refer to
this paper for all the details that are omitted here for brevity. The interested reader shall also find in [GZND11] a
detailed description of another, complementary, use of canonical structures: advanced proof search. This latter papers
also presents many techniques one can employ to tune the inference of canonical structures.

8.3.1 Notation overloading

We build an infix notation == for a comparison predicate. Such notation will be overloaded, and its meaning will depend
on the types of the terms that are compared.

Module EQ.
Interactive Module EQ started

Record class (T : Type) := Class { cmp : T -> T -> Prop }.
class is defined
cmp is defined

Structure type := Pack { obj : Type; class_of : class obj }.
type is defined
obj is defined
class_of is defined

Definition op (e : type) : obj e -> obj e -> Prop :=
(continues on next page)
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(continued from previous page)
let 'Pack _ (Class _ the_cmp) := e in the_cmp.
op is defined

Check op.
op

: forall e : type, obj e -> obj e -> Prop

Arguments op {e} x y : simpl never.
Arguments Class {T} cmp.
Module theory.

Interactive Module theory started

Notation "x == y" := (op x y) (at level 70).
End theory.

Module theory is defined

End EQ.
Module EQ is defined

We use Coq modules as namespaces. This allows us to follow the same pattern and naming convention for the rest of the
chapter. The base namespace contains the definitions of the algebraic structure. To keep the example small, the algebraic
structure EQ.type we are defining is very simplistic, and characterizes terms on which a binary relation is defined,
without requiring such relation to validate any property. The inner theory module contains the overloaded notation ==
and will eventually contain lemmas holding all the instances of the algebraic structure (in this case there are no lemmas).
Note that in practice the user may want to declare EQ.obj as a coercion, but we will not do that here.
The following line tests that, when we assume a type e that is in theEQ class, we can relate two of its objects with ==.

Import EQ.theory.
Check forall (e : EQ.type) (a b : EQ.obj e), a == b.

forall (e : EQ.type) (a b : EQ.obj e), a == b
: Prop

Still, no concrete type is in the EQ class.

Fail Check 3 == 3.
The command has indeed failed with message:
The term "3" has type "nat" while it is expected to have type "EQ.obj ?e".

We amend that by equipping nat with a comparison relation.

Definition nat_eq (x y : nat) := Nat.compare x y = Eq.
nat_eq is defined

Definition nat_EQcl : EQ.class nat := EQ.Class nat_eq.
nat_EQcl is defined

Canonical Structure nat_EQty : EQ.type := EQ.Pack nat nat_EQcl.
nat_EQty is defined

Check 3 == 3.
3 == 3

: Prop

Eval compute in 3 == 4.
= Lt = Eq

: Prop
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This last test shows that Coq is now not only able to type check 3 == 3, but also that the infix relation was bound to
the nat_eq relation. This relation is selected whenever == is used on terms of type nat. This can be read in the line
declaring the canonical structure nat_EQty, where the first argument to Pack is the key and its second argument a
group of canonical values associated to the key. In this case we associate to nat only one canonical value (since its class,
nat_EQcl has just one member). The use of the projection op requires its argument to be in the class EQ, and uses
such a member (function) to actually compare its arguments.
Similarly, we could equip any other type with a comparison relation, and use the == notation on terms of this type.

Derived Canonical Structures

We know how to use == on base types, like nat, bool, Z. Here we show how to deal with type constructors, i.e. how
to make the following example work:

Fail Check forall (e : EQ.type) (a b : EQ.obj e), (a, b) == (a, b).
The command has indeed failed with message:
In environment
e : EQ.type
a : EQ.obj e
b : EQ.obj e
The term "(a, b)" has type "(EQ.obj e * EQ.obj e)%type"
while it is expected to have type "EQ.obj ?e".

The error message is telling that Coq has no idea on how to compare pairs of objects. The following construction is telling
Coq exactly how to do that.

Definition pair_eq (e1 e2 : EQ.type) (x y : EQ.obj e1 * EQ.obj e2) :=
fst x == fst y /\ snd x == snd y.
pair_eq is defined

Definition pair_EQcl e1 e2 := EQ.Class (pair_eq e1 e2).
pair_EQcl is defined

Canonical Structure pair_EQty (e1 e2 : EQ.type) : EQ.type :=
EQ.Pack (EQ.obj e1 * EQ.obj e2) (pair_EQcl e1 e2).
pair_EQty is defined

Check forall (e : EQ.type) (a b : EQ.obj e), (a, b) == (a, b).
forall (e : EQ.type) (a b : EQ.obj e), (a, b) == (a, b)

: Prop

Check forall n m : nat, (3, 4) == (n, m).
forall n m : nat, (3, 4) == (n, m)

: Prop

Thanks to the pair_EQty declaration, Coq is able to build a comparison relation for pairs whenever it is able to build a
comparison relation for each component of the pair. The declaration associates to the key * (the type constructor of pairs)
the canonical comparison relation pair_eq whenever the type constructor * is applied to two types being themselves
in the EQ class.

8.3.2 Hierarchy of structures

To get to an interesting example we need another base class to be available. We choose the class of types that are equipped
with an order relation, to which we associate the infix <= notation.
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Module LE.
Interactive Module LE started

Record class T := Class { cmp : T -> T -> Prop }.
class is defined
cmp is defined

Structure type := Pack { obj : Type; class_of : class obj }.
type is defined
obj is defined
class_of is defined

Definition op (e : type) : obj e -> obj e -> Prop :=
let 'Pack _ (Class _ f) := e in f.
op is defined

Arguments op {_} x y : simpl never.
Arguments Class {T} cmp.
Module theory.

Interactive Module theory started

Notation "x <= y" := (op x y) (at level 70).
End theory.

Module theory is defined

End LE.
Module LE is defined

As before we register a canonical LE class for nat.

Import LE.theory.
Definition nat_le x y := Nat.compare x y <> Gt.

nat_le is defined

Definition nat_LEcl : LE.class nat := LE.Class nat_le.
nat_LEcl is defined

Canonical Structure nat_LEty : LE.type := LE.Pack nat nat_LEcl.
nat_LEty is defined

And we enable Coq to relate pair of terms with <=.

Definition pair_le e1 e2 (x y : LE.obj e1 * LE.obj e2) :=
fst x <= fst y /\ snd x <= snd y.
pair_le is defined

Definition pair_LEcl e1 e2 := LE.Class (pair_le e1 e2).
pair_LEcl is defined

Canonical Structure pair_LEty (e1 e2 : LE.type) : LE.type :=
LE.Pack (LE.obj e1 * LE.obj e2) (pair_LEcl e1 e2).
pair_LEty is defined

Check (3,4,5) <= (3,4,5).
(3, 4, 5) <= (3, 4, 5)

: Prop

At the current stage we can use == and <= on concrete types, like tuples of natural numbers, but we can’t develop an
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algebraic theory over the types that are equipped with both relations.

Check 2 <= 3 /\ 2 == 2.
2 <= 3 /\ 2 == 2

: Prop

Fail Check forall (e : EQ.type) (x y : EQ.obj e), x <= y -> y <= x -> x == y.
The command has indeed failed with message:
In environment
e : EQ.type
x : EQ.obj e
y : EQ.obj e
The term "x" has type "EQ.obj e" while it is expected to have type
"LE.obj ?e".

Fail Check forall (e : LE.type) (x y : LE.obj e), x <= y -> y <= x -> x == y.
The command has indeed failed with message:
In environment
e : LE.type
x : LE.obj e
y : LE.obj e
The term "x" has type "LE.obj e" while it is expected to have type
"EQ.obj ?e".

We need to define a new class that inherits from both EQ and LE.

Module LEQ.
Interactive Module LEQ started

Record mixin (e : EQ.type) (le : EQ.obj e -> EQ.obj e -> Prop) :=
Mixin { compat : forall x y : EQ.obj e, le x y /\ le y x <-> x == y }.
mixin is defined
compat is defined

Record class T := Class {
EQ_class : EQ.class T;
LE_class : LE.class T;
extra : mixin (EQ.Pack T EQ_class) (LE.cmp T LE_class) }.

class is defined
EQ_class is defined
LE_class is defined
extra is defined

Structure type := _Pack { obj : Type; #[canonical(false)] class_of : class obj }.
type is defined
obj is defined
class_of is defined

Arguments Mixin {e le} _.
Arguments Class {T} _ _ _.

The mixin component of the LEQ class contains all the extra content we are adding to EQ and LE. In particular it contains
the requirement that the two relations we are combining are compatible.
The class_of projection of the type structure is annotated as not canonical; it plays no role in the search for instances.
Unfortunately there is still an obstacle to developing the algebraic theory of this new class.
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Module theory.
Interactive Module theory started

Fail Check forall (le : type) (n m : obj le), n <= m -> n <= m -> n == m.
The command has indeed failed with message:
In environment
le : type
n : obj le
m : obj le
The term "n" has type "obj le" while it is expected to have type "LE.obj ?e".

The problem is that the two classes LE and LEQ are not yet related by a subclass relation. In other words Coq does not
see that an object of the LEQ class is also an object of the LE class.
The following two constructions tell Coq how to canonically build the LE.type and EQ.type structure given an LEQ.
type structure on the same type.

Definition to_EQ (e : type) : EQ.type :=
EQ.Pack (obj e) (EQ_class _ (class_of e)).
to_EQ is defined

Canonical Structure to_EQ.
Definition to_LE (e : type) : LE.type :=

LE.Pack (obj e) (LE_class _ (class_of e)).
to_LE is defined

Canonical Structure to_LE.

We can now formulate out first theorem on the objects of the LEQ structure.

Lemma lele_eq (e : type) (x y : obj e) : x <= y -> y <= x -> x == y.
1 subgoal

e : type
x, y : obj e
============================
x <= y -> y <= x -> x == y

now intros; apply (compat _ _ (extra _ (class_of e)) x y); split.
No more subgoals.

Qed.
Arguments lele_eq {e} x y _ _.
End theory.

Module theory is defined

End LEQ.
Module LEQ is defined

Import LEQ.theory.
Check lele_eq.

lele_eq
: forall x y : LEQ.obj ?e, x <= y -> y <= x -> x == y

where
?e : [ |- LEQ.type]

Of course one would like to apply results proved in the algebraic setting to any concrete instate of the algebraic structure.
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Example test_algebraic (n m : nat) : n <= m -> m <= n -> n == m.
1 subgoal

n, m : nat
============================
n <= m -> m <= n -> n == m

Fail apply (lele_eq n m).
The command has indeed failed with message:
In environment
n, m : nat
The term "n" has type "nat" while it is expected to have type "LEQ.obj ?e".

Abort.
Example test_algebraic2 (l1 l2 : LEQ.type) (n m : LEQ.obj l1 * LEQ.obj l2) :

n <= m -> m <= n -> n == m.
1 subgoal

l1, l2 : LEQ.type
n, m : LEQ.obj l1 * LEQ.obj l2
============================
n <= m -> m <= n -> n == m

Fail apply (lele_eq n m).
The command has indeed failed with message:
In environment
l1, l2 : LEQ.type
n, m : LEQ.obj l1 * LEQ.obj l2
The term "n" has type "(LEQ.obj l1 * LEQ.obj l2)%type"
while it is expected to have type "LEQ.obj ?e".

Abort.

Again one has to tell Coq that the type nat is in the LEQ class, and how the type constructor * interacts with the LEQ
class. In the following proofs are omitted for brevity.

Lemma nat_LEQ_compat (n m : nat) : n <= m /\ m <= n <-> n == m.
1 subgoal

n, m : nat
============================
n <= m /\ m <= n <-> n == m

Admitted.
nat_LEQ_compat is declared

Definition nat_LEQmx := LEQ.Mixin nat_LEQ_compat.
nat_LEQmx is defined

Lemma pair_LEQ_compat (l1 l2 : LEQ.type) (n m : LEQ.obj l1 * LEQ.obj l2) :
n <= m /\ m <= n <-> n == m.
1 subgoal

l1, l2 : LEQ.type
n, m : LEQ.obj l1 * LEQ.obj l2
============================
n <= m /\ m <= n <-> n == m

(continues on next page)
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(continued from previous page)

Admitted.
pair_LEQ_compat is declared

Definition pair_LEQmx l1 l2 := LEQ.Mixin (pair_LEQ_compat l1 l2).
pair_LEQmx is defined

The following script registers an LEQ class for nat and for the type constructor *. It also tests that they work as expected.
Unfortunately, these declarations are very verbose. In the following subsection we show how to make themmore compact.

Module Add_instance_attempt.
Interactive Module Add_instance_attempt started

Canonical Structure nat_LEQty : LEQ.type :=
LEQ._Pack nat (LEQ.Class nat_EQcl nat_LEcl nat_LEQmx).
nat_LEQty is defined

Canonical Structure pair_LEQty (l1 l2 : LEQ.type) : LEQ.type :=
LEQ._Pack (LEQ.obj l1 * LEQ.obj l2)

(LEQ.Class
(EQ.class_of (pair_EQty (to_EQ l1) (to_EQ l2)))
(LE.class_of (pair_LEty (to_LE l1) (to_LE l2)))
(pair_LEQmx l1 l2)).

pair_LEQty is defined

Example test_algebraic (n m : nat) : n <= m -> m <= n -> n == m.
1 subgoal

n, m : nat
============================
n <= m -> m <= n -> n == m

now apply (lele_eq n m).
No more subgoals.

Qed.
Example test_algebraic2 (n m : nat * nat) : n <= m -> m <= n -> n == m.

1 subgoal

n, m : nat * nat
============================
n <= m -> m <= n -> n == m

now apply (lele_eq n m).
No more subgoals.

Qed.
End Add_instance_attempt.

Module Add_instance_attempt is defined

Note that no direct proof of n <= m -> m <= n -> n == m is provided by the user for n and m of type nat *
nat. What the user provides is a proof of this statement for n and m of type nat and a proof that the pair constructor pre-
serves this property. The combination of these two facts is a simple form of proof search that Coq performs automatically
while inferring canonical structures.
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Compact declaration of Canonical Structures

We need some infrastructure for that.

Require Import Strings.String.
[Loading ML file newring_plugin.cmxs ... done]

Module infrastructure.
Interactive Module infrastructure started

Inductive phantom {T : Type} (t : T) : Type := Phantom.
phantom is defined
phantom_rect is defined
phantom_ind is defined
phantom_rec is defined
phantom_sind is defined

Definition unify {T1 T2} (t1 : T1) (t2 : T2) (s : option string) :=
phantom t1 -> phantom t2.
unify is defined

Definition id {T} {t : T} (x : phantom t) := x.
id is defined

Notation "[find v | t1 ~ t2 ] p" := (fun v (_ : unify t1 t2 None) => p)
(at level 50, v ident, only parsing).

Notation "[find v | t1 ~ t2 | s ] p" := (fun v (_ : unify t1 t2 (Some s)) => p)
(at level 50, v ident, only parsing).

Notation "'Error : t : s" := (unify _ t (Some s))
(at level 50, format "''Error' : t : s").

Open Scope string_scope.
End infrastructure.

Module infrastructure is defined

To explain the notation [find v | t1 ~ t2] let us pick one of its instances: [find e | EQ.obj e ~ T |
"is not an EQ.type" ]. It should be read as: “find a class e such that its objects have type T or fail with message
”T is not an EQ.type””.
The other utilities are used to ask Coq to solve a specific unification problem, that will in turn require the inference of
some canonical structures. They are explained in more details in [MT13].
We now have all we need to create a compact “packager” to declare instances of the LEQ class.

Import infrastructure.
Definition packager T e0 le0 (m0 : LEQ.mixin e0 le0) :=

[find e | EQ.obj e ~ T | "is not an EQ.type" ]
[find o | LE.obj o ~ T | "is not an LE.type" ]
[find ce | EQ.class_of e ~ ce ]
[find co | LE.class_of o ~ co ]
[find m | m ~ m0 | "is not the right mixin" ]
LEQ._Pack T (LEQ.Class ce co m).
packager is defined

Notation Pack T m := (packager T _ _ m _ id _ id _ id _ id _ id).

The object Pack takes a type T (the key) and a mixin m. It infers all the other pieces of the class LEQ and declares them
as canonical values associated to the T key. All in all, the only new piece of information we add in the LEQ class is the
mixin, all the rest is already canonical for T and hence can be inferred by Coq.
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Pack is a notation, hence it is not type checked at the time of its declaration. It will be type checked when it is used, an
in that case T is going to be a concrete type. The odd arguments _ and id we pass to the packager represent respectively
the classes to be inferred (like e, o, etc) and a token (id) to force their inference. Again, for all the details the reader can
refer to [MT13].
The declaration of canonical instances can now be way more compact:

Canonical Structure nat_LEQty := Eval hnf in Pack nat nat_LEQmx.
nat_LEQty is defined

Canonical Structure pair_LEQty (l1 l2 : LEQ.type) :=
Eval hnf in Pack (LEQ.obj l1 * LEQ.obj l2) (pair_LEQmx l1 l2).
pair_LEQty is defined

Error messages are also quite intelligible (if one skips to the end of the message).

Fail Canonical Structure err := Eval hnf in Pack bool nat_LEQmx.
The command has indeed failed with message:
The term "id" has type "phantom (EQ.obj ?e) -> phantom (EQ.obj ?e)"
while it is expected to have type "'Error:bool:"is not an EQ.type"".

8.4 Typeclasses

This chapter presents a quick reference of the commands related to type classes. For an actual introduction to typeclasses,
there is a description of the system [SO08] and the literature on type classes in Haskell which also applies.

8.4.1 Class and Instance declarations

The syntax for class and instance declarations is the same as the record syntax of Coq:

Class classname (p1 : t1) ⋯ (pn : tn) [: sort] := { f1 : u1 ; ⋯ ; fm : um }.

Instance instancename q1 ⋯ qm : classname p1 ⋯ pn := { f1 := t1 ; ⋯ ; fm := tm }.

The pi : ti variables are called the parameters of the class and the fi : ti are called the methods. Each class
definition gives rise to a corresponding record declaration and each instance is a regular definition whose name is given
by instancename and type is an instantiation of the record type.
We’ll use the following example class in the rest of the chapter:

Class EqDec (A : Type) :=
{ eqb : A -> A -> bool ;
eqb_leibniz : forall x y, eqb x y = true -> x = y }.

This class implements a boolean equality test which is compatible with Leibniz equality on some type. An example
implementation is:

Instance unit_EqDec : EqDec unit :=
{ eqb x y := true ;
eqb_leibniz x y H :=

match x, y return x = y with
| tt, tt => eq_refl tt
end }.
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Using the attribute refine, if the term is not sufficient to finish the definition (e.g. due to a missing field or non-inferable
hole) it must be finished in proof mode. If it is sufficient a trivial proof mode with no open goals is started.

#[refine] Instance unit_EqDec' : EqDec unit := { eqb x y := true }.
Proof.
intros [] [];reflexivity.
Defined.

Note that if you finish the proof with Qed the entire instance will be opaque, including the fields given in the initial term.
Alternatively, in Program Mode if one does not give all the members in the Instance declaration, Coq generates obli-
gations for the remaining fields, e.g.:

Require Import Program.Tactics.
Program Instance eq_bool : EqDec bool :=

{ eqb x y := if x then y else negb y }.

Next Obligation.
1 subgoal

x, y : bool
H : (if x then y else negb y) = true
============================
x = y

destruct x ; destruct y ; (discriminate || reflexivity).
No more subgoals.

Defined.

One has to take care that the transparency of every field is determined by the transparency of the Instance proof. One
can use alternatively the Program Instance variant which has richer facilities for dealing with obligations.

8.4.2 Binding classes

Once a typeclass is declared, one can use it in class binders:

Definition neqb {A} {eqa : EqDec A} (x y : A) := negb (eqb x y).
neqb is defined

When one calls a class method, a constraint is generated that is satisfied only in contexts where the appropriate instances
can be found. In the example above, a constraint EqDec A is generated and satisfied by eqa : EqDec A. In case no
satisfying constraint can be found, an error is raised:

Fail Definition neqb' (A : Type) (x y : A) := negb (eqb x y).
The command has indeed failed with message:
Unable to satisfy the following constraints:
In environment:
A : Type
x, y : A

?EqDec : "EqDec A"

The algorithm used to solve constraints is a variant of the eauto tactic that does proof search with a set of lemmas (the
instances). It will use local hypotheses as well as declared lemmas in the typeclass_instances database. Hence
the example can also be written:
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Definition neqb' A (eqa : EqDec A) (x y : A) := negb (eqb x y).
neqb' is defined

However, the generalizing binders should be used instead as they have particular support for typeclasses:
• They automatically set the maximally implicit status for typeclass arguments, making derived functions as easy to
use as class methods. In the example above, A and eqa should be set maximally implicit.

• They support implicit quantification on partially applied type classes (Implicit generalization). Any argument not
given as part of a typeclass binder will be automatically generalized.

• They also support implicit quantification on Superclasses.
Following the previous example, one can write:

Generalizable Variables A B C.
Definition neqb_implicit `{eqa : EqDec A} (x y : A) := negb (eqb x y).

neqb_implicit is defined

Here A is implicitly generalized, and the resulting function is equivalent to the one above.

8.4.3 Parameterized Instances

One can declare parameterized instances as in Haskell simply by giving the constraints as a binding context before the
instance, e.g.:

Program Instance prod_eqb `(EA : EqDec A, EB : EqDec B) : EqDec (A * B) :=
{ eqb x y := match x, y with

| (la, ra), (lb, rb) => andb (eqb la lb) (eqb ra rb)
end }.

These instances are used just as well as lemmas in the instance hint database.

8.4.4 Sections and contexts

To ease developments parameterized by many instances, one can use the Context command to introduce these param-
eters into section contexts, it works similarly to the command Variable, except it accepts any binding context as an
argument, so variables can be implicit, and Implicit generalization can be used. For example:

Section EqDec_defs.
Context `{EA : EqDec A}.

A is declared
EA is declared

Global Program Instance option_eqb : EqDec (option A) :=
{ eqb x y := match x, y with

| Some x, Some y => eqb x y
| None, None => true
| _, _ => false
end }.

Admit Obligations.

End EqDec_defs.
About option_eqb.

option_eqb : forall A : Type, EqDec A -> EqDec (option A)

(continues on next page)
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(continued from previous page)

option_eqb is not universe polymorphic
Arguments option_eqb {A}%type_scope {EA}
option_eqb is transparent
Expands to: Constant Top.option_eqb

Here the Global modifier redeclares the instance at the end of the section, once it has been generalized by the context
variables it uses.
See also:
Section Section mechanism

8.4.5 Building hierarchies

Superclasses

One can also parameterize classes by other classes, generating a hierarchy of classes and superclasses. In the same way,
we give the superclasses as a binding context:

Class Ord `(E : EqDec A) := { le : A -> A -> bool }.
Ord is defined
le is defined

Contrary to Haskell, we have no special syntax for superclasses, but this declaration is equivalent to:

Class `(E : EqDec A) => Ord A :=
{ le : A -> A -> bool }.

This declaration means that any instance of the Ord class must have an instance of EqDec. The parameters of the
subclass contain at least all the parameters of its superclasses in their order of appearance (here A is the only one). As
we have seen, Ord is encoded as a record type with two parameters: a type A and an E of type EqDec A. However, one
can still use it as if it had a single parameter inside generalizing binders: the generalization of superclasses will be done
automatically.

Definition le_eqb `{Ord A} (x y : A) := andb (le x y) (le y x).
le_eqb is defined

In some cases, to be able to specify sharing of structures, one may want to give explicitly the superclasses. It is is possible
to do it directly in regular binders, and using the ! modifier in class binders. For example:

Definition lt `{eqa : EqDec A, ! Ord eqa} (x y : A) := andb (le x y) (neqb x y).
lt is defined

The ! modifier switches the way a binder is parsed back to the regular interpretation of Coq. In particular, it uses the
implicit arguments mechanism if available, as shown in the example.

Substructures

Substructures are components of a class which are instances of a class themselves. They often arise when using classes
for logical properties, e.g.:
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Class Reflexive (A : Type) (R : relation A) :=
reflexivity : forall x, R x x.

Class Transitive (A : Type) (R : relation A) :=
transitivity : forall x y z, R x y -> R y z -> R x z.

This declares singleton classes for reflexive and transitive relations, (see the singleton class variant for an explanation).
These may be used as parts of other classes:

Class PreOrder (A : Type) (R : relation A) :=
{ PreOrder_Reflexive :> Reflexive A R ;
PreOrder_Transitive :> Transitive A R }.
PreOrder is defined
PreOrder_Reflexive is defined
PreOrder_Transitive is defined

The syntax :> indicates that each PreOrder can be seen as a Reflexive relation. So each time a reflexive relation
is needed, a preorder can be used instead. This is very similar to the coercion mechanism of Structure declarations.
The implementation simply declares each projection as an instance.
Warning: Ignored instance declaration for “ident”: “term” is not a class

Using this :> syntax with a right-hand-side that is not itself a Class has no effect (apart from emitting this warning).
In particular, is does not declare a coercion.

One can also declare existing objects or structure projections using the Existing Instance command to achieve the same
effect.

8.4.6 Summary of the commands

Command: Class ident binders
?

: sort
?

:= ident
?

{ ident : >
?

term

+

;
}

The Class command is used to declare a typeclass with parameters binders and fields the declared record
fields.

Variant: Class ident binders
?

: sort
?

:= ident : term
This variant declares a singleton class with a single method. This singleton class is a so-called definitional class,
represented simply as a definition ident binders := term and whose instances are themselves objects
of this type. Definitional classes are not wrapped inside records, and the trivial projection of an instance of
such a class is convertible to the instance itself. This can be useful to make instances of existing objects easily
and to reduce proof size by not inserting useless projections. The class constant itself is declared rigid during
resolution so that the class abstraction is maintained.

Variant: Existing Class ident
This variant declares a class a posteriori from a constant or inductive definition. No methods or instances are
defined.
Warning: ident is already declared as a typeclass

This command has no effect when used on a typeclass.

Command: Instance ident binders
?

: term0 term
+

| num
?

:= { field_def
*

;
}

This command is used to declare a typeclass instance named ident of the class term0 with parameters term
and fields defined by field_def, where each field must be a declared field of the class.
An arbitrary context of binders can be put after the name of the instance and before the colon to declare a
parameterized instance. An optional priority can be declared, 0 being the highest priority as for auto hints. If the
priority num is not specified, it defaults to the number of non-dependent binders of the instance.
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Variant: Instance ident binders
?

: forall binders
?
, term0 term

+
| num

?
:= term

This syntax is used for declaration of singleton class instances or for directly giving an explicit term of type
forall binders, term0 term

+ . One need not even mention the unique field name for singleton
classes.

Variant: Global Instance
One can use the Global modifier on instances declared in a section so that their generalization is automati-
cally redeclared after the section is closed.

Variant: Program Instance
Switches the type checking to Program (chapter Program) and uses the obligation mechanism to manage
missing fields.

Variant: Declare Instance
In a Module Type, this command states that a corresponding concrete instance should exist in any
implementation of this Module Type. This is similar to the distinction between Parameter vs.
Definition, or between Declare Module and Module.

Besides the Class and Instance vernacular commands, there are a few other commands related to typeclasses.

Command: Existing Instance ident
+

| num
?

This command adds an arbitrary list of constants whose type ends with an applied typeclass to the instance database
with an optional priority num. It can be used for redeclaring instances at the end of sections, or declaring structure
projections as instances. This is equivalent to Hint Resolve ident : typeclass_instances, except
it registers instances for Print Instances.

typeclasses eauto
This tactic uses a different resolution engine than eauto and auto. The main differences are the following:

• Contrary toeauto andauto, the resolution is done entirely in the new proof engine (as of Coq 8.6), meaning
that backtracking is available among dependent subgoals, and shelving goals is supported. typeclasses
eauto is a multi-goal tactic. It analyses the dependencies between subgoals to avoid backtracking on subgoals
that are entirely independent.

• When called with no arguments, typeclasses eauto uses the typeclass_instances database
by default (instead of core). Dependent subgoals are automatically shelved, and shelved goals can remain after
resolution ends (following the behavior of Coq 8.5).

Note: As of Coq 8.6, all:once (typeclasses eauto) faithfully mimics what happens during
typeclass resolution when it is called during refinement/type inference, except that only declared class subgoals
are considered at the start of resolution during type inference, while all can select non-class subgoals as well.
It might move to all:typeclasses eauto in future versions when the refinement engine will be able
to backtrack.

• When called with specific databases (e.g. with), typeclasses eauto allows shelved goals to remain at
any point during search and treat typeclass goals like any other.

• The transparency information of databases is used consistently for all hints declared in them. It is always used
when calling the unifier. When considering local hypotheses, we use the transparent state of the first hint
database given. Using an empty database (created with Create HintDb for example) with unfoldable
variables and constants as the first argument of typeclasses eauto hence makes resolution with the
local hypotheses use full conversion during unification.

• When considering local hypotheses, we use the union of all the modes declared in the given databases.
Variant: typeclasses eauto num
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Warning: The semantics for the limit num is different than for auto. By default, if no limit is given,
the search is unbounded. Contrary to auto, introduction steps are counted, which might result in larger
limits being necessary when searching with typeclasses eauto than with auto.

Variant: typeclasses eauto with ident
+

This variant runs resolution with the given hint databases. It treats typeclass subgoals the same as other
subgoals (no shelving of non-typeclass goals in particular).

autoapply term with ident
The tactic autoapply applies a term using the transparency information of the hint database ident, and does
no typeclass resolution. This can be used in Hint Extern’s for typeclass instances (in the hint database
typeclass_instances) to allow backtracking on the typeclass subgoals created by the lemma application,
rather than doing typeclass resolution locally at the hint application time.

Typeclasses Transparent, Typeclasses Opaque

Command: Typeclasses Transparent ident
+

This command makes the identifiers transparent during typeclass resolution. Shortcut for Hint Transparent

ident
+

: typeclass_instances.

Command: Typeclasses Opaque ident
+

Make the identifiers opaque for typeclass search. Shortcut for Hint Opaque ident
+

:
typeclass_instances.
It is useful when some constants prevent some unifications and make resolution fail. It is also useful to declare
constants which should never be unfolded during proof-search, like fixpoints or anything which does not look like
an abbreviation. This can additionally speed up proof search as the typeclass map can be indexed by such rigid
constants (see The hints databases for auto and eauto).

By default, all constants and local variables are considered transparent. One should take care not to make opaque any
constant that is used to abbreviate a type, like:

Definition relation A := A -> A -> Prop.

Settings

Flag: Typeclasses Dependency Order
This flag (off by default) respects the dependency order between subgoals, meaning that subgoals on which other
subgoals depend come first, while the non-dependent subgoals were put before the dependent ones previously (Coq
8.5 and below). This can result in quite different performance behaviors of proof search.

Flag: Typeclasses Filtered Unification
This flag, available since Coq 8.6 and off by default, switches the hint application procedure to a filter-then-unify
strategy. To apply a hint, we first check that the goal matches syntactically the inferred or specified pattern of the
hint, and only then try to unify the goal with the conclusion of the hint. This can drastically improve performance
by calling unification less often, matching syntactic patterns being very quick. This also provides more control on
the triggering of instances. For example, forcing a constant to explicitly appear in the pattern will make it never
apply on a goal where there is a hole in that place.

Flag: Typeclasses Limit Intros
This flag (on by default) controls the ability to apply hints while avoiding (functional) eta-expansions in the generated
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proof term. It does so by allowing hints that conclude in a product to apply to a goal with amatching product directly,
avoiding an introduction.

Warning: This can be expensive as it requires rebuilding hint clauses dynamically, and does not benefit from
the invertibility status of the product introduction rule, resulting in potentially more expensive proof-search (i.e.
more useless backtracking).

Flag: Typeclass Resolution For Conversion
This flag (on by default) controls the use of typeclass resolution when a unification problem cannot be solved during
elaboration/type inference. With this flag on, when a unification fails, typeclass resolution is tried before launching
unification once again.

Flag: Typeclasses Strict Resolution
Typeclass declarations introduced when this flag is set have a stricter resolution behavior (the flag is off by default).
When looking for unifications of a goal with an instance of this class, we “freeze” all the existentials appearing in
the goals, meaning that they are considered rigid during unification and cannot be instantiated.

Flag: Typeclasses Unique Solutions
When a typeclass resolution is launched we ensure that it has a single solution or fail. This ensures that the resolution
is canonical, but can make proof search much more expensive.

Flag: Typeclasses Unique Instances
Typeclass declarations introduced when this flag is set have a more efficient resolution behavior (the flag is off by
default). When a solution to the typeclass goal of this class is found, we never backtrack on it, assuming that it is
canonical.

Flag: Typeclasses Iterative Deepening
When this flag is set, the proof search strategy is breadth-first search. Otherwise, the search strategy is depth-first
search. The default is off. Typeclasses eauto is another way to set this flag.

Option: Typeclasses Depth num
Sets the maximum proof search depth. The default is unbounded. Typeclasses eauto is another way to set
this option.

Flag: Typeclasses Debug
Controls whether typeclass resolution steps are shown during search. Setting this flag also sets Typeclasses
Debug Verbosity to 1. Typeclasses eauto is another way to set this flag.

Option: Typeclasses Debug Verbosity num
Determines how much information is shown for typeclass resolution steps during search. 1 is the default level. 2
shows additional information such as tried tactics and shelving of goals. Setting this option to 1 or 2 turns on the
Typeclasses Debug flag; setting this option to 0 turns that flag off.

Flag: Typeclasses Axioms Are Instances
Deprecated since version 8.10.
This flag (off by default since 8.8) automatically declares axioms whose type is a typeclass at declaration time as
instances of that class.

Typeclasses eauto :=

Command: Typeclasses eauto := debug
?

(dfs) (bfs)
?

num
This command allows more global customization of the typeclass resolution tactic. The semantics of the options
are:
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• debug This sets the debug mode. In debug mode, the trace of successfully applied tactics is printed. The
debug mode can also be set with Typeclasses Debug.

• (dfs), (bfs) This sets the search strategy to depth-first search (the default) or breadth-first search. The
search strategy can also be set with Typeclasses Iterative Deepening.

• num This sets the depth limit of the search. The depth limit can also be set with Typeclasses Depth.

8.5 Omega: a solver for quantifier-free problems in Presburger Arith-
metic

Author Pierre Crégut

Warning: The omega tactic is about to be deprecated in favor of the lia tactic. The goal is to consolidate the
arithmetic solving capabilities of Coq into a single engine; moreover, lia is in general more powerful than omega
(it is a complete Presburger arithmetic solver while omega was known to be incomplete).
Work is in progress to make sure that there are no regressions (including no performance regression) when switching
from omega to lia in existing projects. However, we already recommend using lia in new or refactored proof
scripts. We also ask that you report (in our bug tracker313) any issue you encounter, especially if the issue was not
present in omega.
Note that replacingomegawithlia can break non-robust proof scripts which rely on incompleteness bugs ofomega
(e.g. using the pattern ; try omega).

8.5.1 Description of omega

omega
omega is a tactic for solving goals in Presburger arithmetic, i.e. for proving formulas made of equations and
inequalities over the type nat of natural numbers or the type Z of binary-encoded integers. Formulas on nat are
automatically injected into Z. The procedure may use any hypothesis of the current proof session to solve the goal.
Multiplication is handled by omega but only goals where at least one of the two multiplicands of products is a
constant are solvable. This is the restriction meant by ”Presburger arithmetic”.
If the tactic cannot solve the goal, it fails with an error message. In any case, the computation eventually stops.

8.5.2 Arithmetical goals recognized by omega

omega applies only to quantifier-free formulas built from the connectives:

/\ \/ ~ ->

on atomic formulas. Atomic formulas are built from the predicates:

= < <= > >=

on nat or Z. In expressions of type nat, omega recognizes:

+ - * S O pred

313 https://github.com/coq/coq/issues
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and in expressions of type Z, omega recognizes numeral constants and:

+ - * Z.succ Z.pred

All expressions of type nat or Z not built on these operators are considered abstractly as if they were arbitrary variables
of type nat or Z.

8.5.3 Messages from omega

When omega does not solve the goal, one of the following errors is generated:
Error: omega can't solve this system.

This may happen if your goal is not quantifier-free (if it is universally quantified, try intros first; if it contains
existentials quantifiers too, omega is not strong enough to solve your goal). This may happen also if your goal
contains arithmetical operators not recognized by omega. Finally, your goal may be simply not true!

Error: omega: Not a quantifier-free goal.
If your goal is universally quantified, you should first apply intro as many times as needed.

Error: omega: Unrecognized predicate or connective: ident.

Error: omega: Unrecognized atomic proposition: ...

Error: omega: Can't solve a goal with proposition variables.

Error: omega: Unrecognized proposition.

Error: omega: Can't solve a goal with non-linear products.

Error: omega: Can't solve a goal with equality on type ...

8.5.4 Using omega

The omega tactic does not belong to the core system. It should be loaded by

Require Import Omega.

Example

Require Import Omega.
Open Scope Z_scope.
Goal forall m n:Z, 1 + 2 * m <> 2 * n.

1 subgoal

============================
forall m n : Z, 1 + 2 * m <> 2 * n

intros; omega.
No more subgoals.

Abort.
Goal forall z:Z, z > 0 -> 2 * z + 1 > z.

1 subgoal

============================
forall z : Z, z > 0 -> 2 * z + 1 > z

(continues on next page)
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(continued from previous page)
intro; omega.

No more subgoals.

Abort.

8.5.5 Options

Flag: Stable Omega
Deprecated since version 8.5.
This deprecated flag (on by default) is for compatibility with Coq pre 8.5. It resets internal name counters to make
executions of omega independent.

Flag: Omega UseLocalDefs
This flag (on by default) allows omega to use the bodies of local variables.

Flag: Omega System
This flag (off by default) activate the printing of debug information

Flag: Omega Action
This flag (off by default) activate the printing of debug information

8.5.6 Technical data

Overview of the tactic

• The goal is negated twice and the first negation is introduced as a hypothesis.
• Hypotheses are decomposed in simple equations or inequalities. Multiple goals may result from this phase.
• Equations and inequalities over nat are translated over Z, multiple goals may result from the translation of sub-
traction.

• Equations and inequalities are normalized.
• Goals are solved by the OMEGA decision procedure.
• The script of the solution is replayed.

Overview of the OMEGA decision procedure

The OMEGA decision procedure involved in the omega tactic uses a small subset of the decision procedure presented
in [Pug92] Here is an overview, refer to the original paper for more information.

• Equations and inequalities are normalized by division by the GCD of their coefficients.
• Equations are eliminated, using the Banerjee test to get a coefficient equal to one.
• Note that each inequality cuts the Euclidean space in half.
• Inequalities are solved by projecting on the hyperspace defined by cancelling one of the variables. They are parti-
tioned according to the sign of the coefficient of the eliminated variable. Pairs of inequalities from different classes
define a new edge in the projection.

• Redundant inequalities are eliminated or merged in new equations that can be eliminated by the Banerjee test.
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• The last two steps are iterated until a contradiction is reached (success) or there is no more variable to eliminate
(failure).

It may happen that there is a real solution and no integer one. The last steps of the Omega procedure are not implemented,
so the decision procedure is only partial.

8.5.7 Bugs

• The simplification procedure is very dumb and this results in many redundant cases to explore.
• Much too slow.
• Certainly other bugs! You can report them to https://coq.inria.fr/bugs/.

8.6 Micromega: tactics for solving arithmetic goals over ordered
rings

Authors Frédéric Besson and Evgeny Makarov

8.6.1 Short description of the tactics

The Psatz module (Require Import Psatz.) gives access to several tactics for solving arithmetic goals over ℚ,
ℝ, and ℤ but also nat and N. It also possible to get the tactics for integers by a Require Import Lia, rationals
Require Import Lqa and reals Require Import Lra.

• lia is a decision procedure for linear integer arithmetic;
• nia is an incomplete proof procedure for integer non-linear arithmetic;
• lra is a decision procedure for linear (real or rational) arithmetic;
• nra is an incomplete proof procedure for non-linear (real or rational) arithmetic;
• psatz D n where D is ℤ or ℚ or ℝ, and n is an optional integer limiting the proof search depth, is an incomplete
proof procedure for non-linear arithmetic. It is based on John Harrison’s HOL Light driver to the external prover
csdp314. Note that the csdp driver is generating a proof cache which makes it possible to rerun scripts even
without csdp.

Flag: Simplex
This flag (set by default) instructs the decision procedures to use the Simplex method for solving linear goals. If it
is not set, the decision procedures are using Fourier elimination.

Flag: Lia Cache
This flag (set by default) instructs lia to cache its results in the file .lia.cache

Flag: Nia Cache
This flag (set by default) instructs nia to cache its results in the file .nia.cache

Flag: Nra Cache
This flag (set by default) instructs nra to cache its results in the file .nra.cache

The tactics solve propositional formulas parameterized by atomic arithmetic expressions interpreted over a domain 𝐷 ∈
{ℤ, ℚ, ℝ}. The syntax of the formulas is the following:

314 Sources and binaries can be found at https://projects.coin-or.org/Csdp
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F ::= A ∣ P ∣ True ∣ False ∣ F ∧ F ∣ F ∨ F ∣ F ↔ F ∣ F → F ∣ ¬ F
A ::= p = p ∣ p > p ∣ p < p ∣ p ≥ p ∣ p ≤ p
p ::= c ∣ x ∣ −p ∣ p − p ∣ p + p ∣ p × p ∣ p ^ n

where 𝑐 is a numeric constant, 𝑥 ∈ 𝐷 is a numeric variable, the operators −, +, × are respectively subtraction, addition,
and product; 𝑝𝑛 is exponentiation by a constant 𝑛, 𝑃 is an arbitrary proposition. For ℚ, equality is not Leibniz equality =
but the equality of rationals ==.
For ℤ (resp. ℚ), 𝑐 ranges over integer constants (resp. rational constants). For ℝ, the tactic recognizes as real constants
the following expressions:

c ::= R0 | R1 | Rmul(c,c) | Rplus(c,c) | Rminus(c,c) | IZR z | IQR q | Rdiv(c,c) |␣
↪Rinv c

where 𝑧 is a constant in ℤ and 𝑞 is a constant in ℚ. This includes integer constants written using the decimal notation, i.e.,
c%R.

8.6.2 Positivstellensatz refutations

The name psatz is an abbreviation for positivstellensatz – literally ”positivity theorem” – which generalizes Hilbert’s
nullstellensatz. It relies on the notion of Cone. Given a (finite) set of polynomials 𝑆, Cone(𝑆) is inductively defined as
the smallest set of polynomials closed under the following rules:

𝑝 ∈ 𝑆
𝑝 ∈ Cone(𝑆) 𝑝2 ∈ Cone(𝑆)

𝑝1 ∈ Cone(𝑆) 𝑝2 ∈ Cone(𝑆) � ∈ {+, ∗}
𝑝1 � 𝑝2 ∈ Cone(𝑆)

The following theorem provides a proof principle for checking that a set of polynomial inequalities does not have solu-
tions315.
Theorem (Psatz). Let 𝑆 be a set of polynomials. If −1 belongs to Cone(𝑆), then the conjunction ⋀𝑝∈𝑆 𝑝 ≥ 0 is
unsatisfiable. A proof based on this theorem is called a positivstellensatz refutation. The tactics work as follows. Formulas
are normalized into conjunctive normal form ⋀𝑖 𝐶𝑖 where 𝐶𝑖 has the general form (⋀𝑗∈𝑆𝑖

𝑝𝑗 � 0) → False and � ∈ {>
, ≥, =} for 𝐷 ∈ {ℚ, ℝ} and � ∈ {≥, =} for ℤ.
For each conjunct 𝐶𝑖, the tactic calls an oracle which searches for −1 within the cone. Upon success, the oracle returns
a cone expression that is normalized by the ring tactic (see The ring and field tactic families) and checked to be −1.

8.6.3 lra: a decision procedure for linear real and rational arithmetic

lra
This tactic is searching for linear refutations. As a result, this tactic explores a subset of the Cone defined as
LinCone(𝑆) = {∑𝑝∈𝑆 𝛼𝑝 × 𝑝 ∣ 𝛼𝑝 are positive constants}
The deductive power of lra overlaps with the one of field tactic e.g., 𝑥 = 10 ∗ 𝑥/10 is solved by lra.

8.6.4 lia: a tactic for linear integer arithmetic

lia
This tactic solves linear goals over Z by searching for linear refutations and cutting planes. lia provides support
for Z, nat, positive and N by pre-processing via the zify tactic.

315 Variants deal with equalities and strict inequalities.
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High level view of lia

Over ℝ, positivstellensatz refutations are a complete proof principle316. However, this is not the case over ℤ. Actually,
positivstellensatz refutations are not even sufficient to decide linear integer arithmetic. The canonical example is 2 ∗ 𝑥 =
1− > False which is a theorem of ℤ but not a theorem of ℝ. To remedy this weakness, the lia tactic is using
recursively a combination of:

• linear positivstellensatz refutations;
• cutting plane proofs;
• case split.

Cutting plane proofs

are a way to take into account the discreteness of ℤ by rounding up (rational) constants up-to the closest integer.
Theorem: Bound on the ceiling function

Let 𝑝 be an integer and 𝑐 a rational constant. Then 𝑝 ≥ 𝑐 → 𝑝 ≥ ⌈𝑐⌉.
For instance, from 2 x = 1 we can deduce

• 𝑥 ≥ 1/2 whose cut plane is 𝑥 ≥ ⌈1/2⌉ = 1;
• 𝑥 ≤ 1/2 whose cut plane is 𝑥 ≤ ⌊1/2⌋ = 0.

By combining these two facts (in normal form) 𝑥 − 1 ≥ 0 and −𝑥 ≥ 0, we conclude by exhibiting a positivstellensatz
refutation: −1 ≡ 𝑥 − 1 + −𝑥 ∈ Cone(𝑥 − 1, 𝑥).
Cutting plane proofs and linear positivstellensatz refutations are a complete proof principle for integer linear arithmetic.

Case split

enumerates over the possible values of an expression.
Theorem. Let 𝑝 be an integer and 𝑐1 and 𝑐2 integer constants. Then:

𝑐1 ≤ 𝑝 ≤ 𝑐2 ⇒ ⋁𝑥∈[𝑐1,𝑐2] 𝑝 = 𝑥

Our current oracle tries to find an expression 𝑒 with a small range [𝑐1, 𝑐2]. We generate 𝑐2 − 𝑐1 subgoals which contexts
are enriched with an equation 𝑒 = 𝑖 for 𝑖 ∈ [𝑐1, 𝑐2] and recursively search for a proof.

8.6.5 nra: a proof procedure for non-linear arithmetic

nra
This tactic is an experimental proof procedure for non-linear arithmetic. The tactic performs a limited amount of
non-linear reasoning before running the linear prover of lra. This pre-processing does the following:

• If the context contains an arithmetic expression of the form 𝑒[𝑥2] where 𝑥 is a monomial, the context is enriched
with 𝑥2 ≥ 0;

• For all pairs of hypotheses 𝑒1 ≥ 0, 𝑒2 ≥ 0, the context is enriched with 𝑒1 × 𝑒2 ≥ 0.
After this pre-processing, the linear prover of lra searches for a proof by abstracting monomials by variables.
316 In practice, the oracle might fail to produce such a refutation.
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8.6.6 nia: a proof procedure for non-linear integer arithmetic

nia
This tactic is a proof procedure for non-linear integer arithmetic. It performs a pre-processing similar to nra. The
obtained goal is solved using the linear integer prover lia.

8.6.7 psatz: a proof procedure for non-linear arithmetic

psatz
This tactic explores the Cone by increasing degrees – hence the depth parameter n. In theory, such a proof search
is complete – if the goal is provable the search eventually stops. Unfortunately, the external oracle is using numeric
(approximate) optimization techniques that might miss a refutation.
To illustrate the working of the tactic, consider we wish to prove the following Coq goal:

Require Import ZArith Psatz.
Open Scope Z_scope.
Goal forall x, -x^2 >= 0 -> x - 1 >= 0 -> False.
intro x.
psatz Z 2.

As shown, such a goal is solved by intro x. psatz Z 2.. The oracle returns the cone expression 2 × (𝑥 −
1) + (x − 1) × (x − 1) + −𝑥2 (polynomial hypotheses are printed in bold). By construction, this expression belongs to
Cone(−𝑥2, 𝑥 − 1). Moreover, by running ring we obtain −1. By Theorem Psatz, the goal is valid.

8.6.8 zify: pre-processing of arithmetic goals

zify
This tactic is internally called by lia to support additional types e.g., nat, positive and N. By requiring the
module ZifyBool, the boolean type bool and some comparison operators are also supported. zify can also
be extended by rebinding the tactic Zify.zify_post_hook that is run immediately after zify.

• To support Z.div and Z.modulo: Ltac Zify.zify_post_hook ::= Z.
div_mod_to_equations.

• To support Z.quot and Z.rem: Ltac Zify.zify_post_hook ::= Z.
quot_rem_to_equations.

• To support Z.div, Z.modulo, Z.quot, and Z.rem: Ltac Zify.zify_post_hook ::= Z.
to_euclidean_division_equations.

Command: Show Zify InjTyp
This command shows the list of types that can be injected into Z.

Command: Show Zify BinOp
This command shows the list of binary operators processed by zify.

Command: Show Zify BinRel
This command shows the list of binary relations processed by zify.

Command: Show Zify UnOp
This command shows the list of unary operators processed by zify.

Command: Show Zify CstOp
This command shows the list of constants processed by zify.

Command: Show Zify Spec
This command shows the list of operators over Z that are compiled using their specification e.g., Z.min.
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8.7 Extraction of programs in OCaml and Haskell

Authors Jean-Christophe Filliâtre and Pierre Letouzey
We present here the Coq extraction commands, used to build certified and relatively efficient functional programs, ex-
tracting them from either Coq functions or Coq proofs of specifications. The functional languages available as output are
currently OCaml, Haskell and Scheme. In the following, ”ML” will be used (abusively) to refer to any of the three.
Before using any of the commands or options described in this chapter, the extraction framework should first be loaded
explicitly via Require Extraction, or via the more robust From Coq Require Extraction. Note that in
earlier versions of Coq, these commands and options were directly available without any preliminary Require.

Require Extraction.

8.7.1 Generating ML Code

Note: In the following, a qualified identifier qualid can be used to refer to any kind of Coq global ”object” : constant,
inductive type, inductive constructor or module name.

The next two commands are meant to be used for rapid preview of extraction. They both display extracted term(s) inside
Coq.
Command: Extraction qualid

Extraction of the mentioned object in the Coq toplevel.

Command: Recursive Extraction qualid
+

Recursive extraction of all the mentioned objects and all their dependencies in the Coq toplevel.
All the following commands produce real ML files. User can choose to produce one monolithic file or one file per Coq
library.

Command: Extraction string qualid
+

Recursive extraction of all the mentioned objects and all their dependencies in one monolithic file string. Global
and local identifiers are renamed according to the chosen ML language to fulfill its syntactic conventions, keeping
original names as much as possible.

Command: Extraction Library ident
Extraction of the whole Coq library ident.v to an ML module ident.ml. In case of name clash, identifiers
are here renamed using prefixes coq_ or Coq_ to ensure a session-independent renaming.

Command: Recursive Extraction Library ident
Extraction of the Coq library ident.v and all other modules ident.v depends on.

Command: Separate Extraction qualid
+

Recursive extraction of all the mentioned objects and all their dependencies, just as Extraction string

qualid
+ , but instead of producing one monolithic file, this command splits the produced code in separate ML

files, one per corresponding Coq .v file. This command is hence quite similar to Recursive Extraction
Library, except that only the needed parts of Coq libraries are extracted instead of the whole. The naming
convention in case of name clash is the same one as Extraction Library: identifiers are here renamed
using prefixes coq_ or Coq_.

The following command is meant to help automatic testing of the extraction, see for instance the test-suite directory
in the Coq sources.
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Command: Extraction TestCompile qualid
+

All the mentioned objects and all their dependencies are extracted to a temporary OCaml file, just as in
Extraction "file". Then this temporary file and its signature are compiled with the same OCaml com-
piler used to built Coq. This command succeeds only if the extraction and the OCaml compilation succeed. It fails
if the current target language of the extraction is not OCaml.

8.7.2 Extraction Options

Setting the target language

Command: Extraction Language OCaml Haskell Scheme
The ability to fix target language is the first and more important of the extraction options. Default is OCaml.

Inlining and optimizations

Since OCaml is a strict language, the extracted code has to be optimized in order to be efficient (for instance, when
using induction principles we do not want to compute all the recursive calls but only the needed ones). So the extraction
mechanism provides an automatic optimization routine that will be called each time the user wants to generate an OCaml
program. The optimizations can be split in two groups: the type-preserving ones (essentially constant inlining and re-
ductions) and the non type-preserving ones (some function abstractions of dummy types are removed when it is deemed
safe in order to have more elegant types). Therefore some constants may not appear in the resulting monolithic OCaml
program. In the case of modular extraction, even if some inlining is done, the inlined constants are nevertheless printed,
to ensure session-independent programs.
Concerning Haskell, type-preserving optimizations are less useful because of laziness. We still make some optimizations,
for example in order to produce more readable code.
The type-preserving optimizations are controlled by the following Coq flags and commands:
Flag: Extraction Optimize

Default is on. This controls all type-preserving optimizations made on the ML terms (mostly reduction of dummy
beta/iota redexes, but also simplifications on Cases, etc). Turn this flag off if you want a ML term as close as
possible to the Coq term.

Flag: Extraction Conservative Types
Default is off. This controls the non type-preserving optimizations made on ML terms (which try to avoid function
abstraction of dummy types). Turn this flag on to make sure that e:t implies that e':t' where e' and t' are
the extracted code of e and t respectively.

Flag: Extraction KeepSingleton
Default is off. Normally, when the extraction of an inductive type produces a singleton type (i.e. a type with only
one constructor, and only one argument to this constructor), the inductive structure is removed and this type is seen
as an alias to the inner type. The typical example is sig. This flag allows disabling this optimization when one
wishes to preserve the inductive structure of types.

Flag: Extraction AutoInline
Default is on. The extraction mechanism inlines the bodies of some defined constants, according to some heuristics
like size of bodies, uselessness of some arguments, etc. Those heuristics are not always perfect; if you want to
disable this feature, turn this flag off.

Command: Extraction Inline qualid
+

In addition to the automatic inline feature, the constants mentioned by this command will always be inlined during
extraction.
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Command: Extraction NoInline qualid
+

Conversely, the constants mentioned by this command will never be inlined during extraction.
Command: Print Extraction Inline

Prints the current state of the table recording the custom inlinings declared by the two previous commands.
Command: Reset Extraction Inline

Empties the table recording the custom inlinings (see the previous commands).
Inlining and printing of a constant declaration:
The user can explicitly ask for a constant to be extracted by two means:

• by mentioning it on the extraction command line
• by extracting the whole Coq module of this constant.

In both cases, the declaration of this constant will be present in the produced file. But this same constant may or may not
be inlined in the following terms, depending on the automatic/custom inlining mechanism.
For the constants non-explicitly required but needed for dependency reasons, there are two cases:

• If an inlining decision is taken, whether automatically or not, all occurrences of this constant are replaced by its
extracted body, and this constant is not declared in the generated file.

• If no inlining decision is taken, the constant is normally declared in the produced file.

Extra elimination of useless arguments

The following command provides some extra manual control on the code elimination performed during extraction, in a
way which is independent but complementary to the main elimination principles of extraction (logical parts and types).

Command: Extraction Implicit qualid [ ident
+

]
This experimental command allows declaring some arguments of qualid as implicit, i.e. useless in extracted
code and hence to be removed by extraction. Here qualid can be any function or inductive constructor, and the
given ident are the names of the concerned arguments. In fact, an argument can also be referred by a number
indicating its position, starting from 1.

When an actual extraction takes place, an error is normally raised if the Extraction Implicit declarations cannot
be honored, that is if any of the implicit arguments still occurs in the final code. This behavior can be relaxed via the
following flag:
Flag: Extraction SafeImplicits

Default is on. When this flag is off, a warning is emitted instead of an error if some implicit arguments still occur in
the final code of an extraction. This way, the extracted code may be obtained nonetheless and reviewed manually to
locate the source of the issue (in the code, some comments mark the location of these remaining implicit arguments).
Note that this extracted code might not compile or run properly, depending of the use of these remaining implicit
arguments.

Realizing axioms

Extraction will fail if it encounters an informative axiom not realized. A warning will be issued if it encounters a logical
axiom, to remind the user that inconsistent logical axioms may lead to incorrect or non-terminating extracted terms.
It is possible to assume some axioms while developing a proof. Since these axioms can be any kind of proposition or
object or type, they may perfectly well have some computational content. But a program must be a closed term, and of
course the system cannot guess the program which realizes an axiom. Therefore, it is possible to tell the system what ML
term corresponds to a given axiom.
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Command: Extract Constant qualid => string
Give an ML extraction for the given constant. The string may be an identifier or a quoted string.

Command: Extract Inlined Constant qualid => string
Same as the previous one, except that the given ML terms will be inlined everywhere instead of being declared via
a let.

Note: This command is sugar for an Extract Constant followed by a Extraction Inline. Hence a
Reset Extraction Inline will have an effect on the realized and inlined axiom.

Caution: It is the responsibility of the user to ensure that the ML terms given to realize the axioms do have the
expected types. In fact, the strings containing realizing code are just copied to the extracted files. The extraction
recognizes whether the realized axiom should become a ML type constant or a ML object declaration. For example:

Axiom X:Set.
Axiom x:X.
Extract Constant X => "int".
Extract Constant x => "0".

Notice that in the case of type scheme axiom (i.e. whose type is an arity, that is a sequence of product finished by a sort),
then some type variables have to be given (as quoted strings). The syntax is then:
Variant: Extract Constant qualid string ... string => string

The number of type variables is checked by the system. For example:

Axiom Y : Set -> Set -> Set.
Extract Constant Y "'a" "'b" => " 'a * 'b ".

Realizing an axiom via Extract Constant is only useful in the case of an informative axiom (of sort Type or Set).
A logical axiom has no computational content and hence will not appear in extracted terms. But a warning is nonetheless
issued if extraction encounters a logical axiom. This warning reminds user that inconsistent logical axioms may lead to
incorrect or non-terminating extracted terms.
If an informative axiom has not been realized before an extraction, a warning is also issued and the definition of the axiom
is filled with an exception labeled AXIOM TO BE REALIZED. The user must then search these exceptions inside the
extracted file and replace them by real code.

Realizing inductive types

The system also provides a mechanism to specify ML terms for inductive types and constructors. For instance, the user
may want to use the ML native boolean type instead of the Coq one. The syntax is the following:

Command: Extract Inductive qualid => string [ string
+

]
Give an ML extraction for the given inductive type. You must specify extractions for the type itself (first string)
and all its constructors (all the string between square brackets). In this form, the ML extraction must be an ML
inductive datatype, and the native pattern matching of the language will be used.

Variant: Extract Inductive qualid => string [ string
+

] string
Same as before, with a final extra string that indicates how to perform pattern matching over this inductive
type. In this form, the ML extraction could be an arbitrary type. For an inductive type with 𝑘 constructors,
the function used to emulate the pattern matching should expect 𝑘 + 1 arguments, first the 𝑘 branches in func-
tional form, and then the inductive element to destruct. For instance, the match branch | S n => foo gives
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the functional form (fun n -> foo). Note that a constructor with no arguments is considered to have one
unit argument, in order to block early evaluation of the branch: | O => bar leads to the functional form
(fun () -> bar). For instance, when extracting nat into OCaml int, the code to be provided has type:
(unit->'a)->(int->'a)->int->'a.

Caution: As for Extract Constant, this command should be used with care:
• The ML code provided by the user is currently not checked at all by extraction, even for syntax errors.
• Extracting an inductive type to a pre-existing ML inductive type is quite sound. But extracting to a general
type (by providing an ad-hoc pattern matching) will often not be fully rigorously correct. For instance, when
extracting nat to OCaml int, it is theoretically possible to build nat values that are larger than OCaml
max_int. It is the user’s responsibility to be sure that no overflow or other bad events occur in practice.

• Translating an inductive type to an arbitrary ML type does notmagically improve the asymptotic complexity of
functions, even if the ML type is an efficient representation. For instance, when extracting nat to OCaml int,
the function Nat.mul stays quadratic. It might be interesting to associate this translation with some specific
Extract Constant when primitive counterparts exist.

Typical examples are the following:

Extract Inductive unit => "unit" [ "()" ].
Extract Inductive bool => "bool" [ "true" "false" ].
Extract Inductive sumbool => "bool" [ "true" "false" ].

Note: When extracting to OCaml, if an inductive constructor or type has arity 2 and the corresponding string is enclosed
by parentheses, and the string meets OCaml’s lexical criteria for an infix symbol, then the rest of the string is used as an
infix constructor or type.

Extract Inductive list => "list" [ "[]" "(::)" ].
Extract Inductive prod => "(*)" [ "(,)" ].

As an example of translation to a non-inductive datatype, let’s turn nat into OCaml int (see caveat above):

Extract Inductive nat => int [ "0" "succ" ] "(fun fO fS n -> if n=0 then fO () else␣
↪fS (n-1))".

Avoiding conflicts with existing filenames

When using Extraction Library, the names of the extracted files directly depend on the names of the Coq files.
It may happen that these filenames are in conflict with already existing files, either in the standard library of the target
language or in other code that is meant to be linked with the extracted code. For instance the module List exists both
in Coq and in OCaml. It is possible to instruct the extraction not to use particular filenames.

Command: Extraction Blacklist ident
+

Instruct the extraction to avoid using these names as filenames for extracted code.
Command: Print Extraction Blacklist

Show the current list of filenames the extraction should avoid.
Command: Reset Extraction Blacklist

Allow the extraction to use any filename.
For OCaml, a typical use of these commands is Extraction Blacklist String List.
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Additional settings

Option: Extraction File Comment string
Provides a comment that is included at the beginning of the output files.

Option: Extraction Flag num
Controls which optimizations are used during extraction, providing a finer-grained control than Extraction
Optimize. The bits of num are used as a bit mask. Keeping an option off keeps the extracted ML more similar
to the Coq term. Values are:

Bit Value Optimization (default is on unless noted otherwise)
0 1 Remove local dummy variables
1 2 Use special treatment for fixpoints
2 4 Simplify case with iota-redux
3 8 Factor case branches as functions
4 16 (not available, default false)
5 32 Simplify case as function of one argument
6 64 Simplify case by swapping case and lambda
7 128 Some case optimization
8 256 Push arguments inside a letin
9 512 Use linear let reduction (default false)
10 1024 Use linear beta reduction (default false)

Flag: Extraction TypeExpand
If set, fully expand Coq types in ML. See the Coq source code to learn more.

8.7.3 Differences between Coq and ML type systems

Due to differences between Coq and ML type systems, some extracted programs are not directly typable in ML. We now
solve this problem (at least in OCaml) by adding when needed some unsafe casting Obj.magic, which give a generic
type 'a to any term.
First, if some part of the program is very polymorphic, there may be no ML type for it. In that case the extraction to
ML works alright but the generated code may be refused by the ML type checker. A very well known example is the
distr-pair function:

Definition dp {A B:Type}(x:A)(y:B)(f:forall C:Type, C->C) := (f A x, f B y).

In OCaml, for instance, the direct extracted term would be:

let dp x y f = Pair((f () x),(f () y))

and would have type:

dp : 'a -> 'a -> (unit -> 'a -> 'b) -> ('b,'b) prod

which is not its original type, but a restriction.
We now produce the following correct version:

let dp x y f = Pair ((Obj.magic f () x), (Obj.magic f () y))

Secondly, some Coq definitions may have no counterpart in ML. This happens when there is a quantification over types
inside the type of a constructor; for example:
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Inductive anything : Type := dummy : forall A:Set, A -> anything.

which corresponds to the definition of an ML dynamic type. In OCaml, we must cast any argument of the constructor
dummy (no GADT are produced yet by the extraction).
Even with those unsafe castings, you should never get error like segmentation fault. In fact even if your program
may seem ill-typed to the OCaml type checker, it can’t go wrong : it comes from a Coq well-typed terms, so for exam-
ple inductive types will always have the correct number of arguments, etc. Of course, when launching manually some
extracted function, you should apply it to arguments of the right shape (from the Coq point-of-view).
More details about the correctness of the extracted programs can be found in [Let02].
We have to say, though, that in most ”realistic” programs, these problems do not occur. For example all the programs of
Coq library are accepted by the OCaml type checker without any Obj.magic (see examples below).

8.7.4 Some examples

We present here two examples of extraction, taken from the Coq Standard Library. We choose OCaml as the target
language, but everything, with slight modifications, can also be done in the other languages supported by extraction. We
then indicate where to find other examples and tests of extraction.

A detailed example: Euclidean division

The file Euclid contains the proof of Euclidean division. The natural numbers used here are unary, represented by the
type nat, which is defined by two constructors O and S. This module contains a theorem eucl_dev, whose type is:

forall b:nat, b > 0 -> forall a:nat, diveucl a b

where diveucl is a type for the pair of the quotient and the modulo, plus some logical assertions that disappear during
extraction. We can now extract this program to OCaml:

Require Extraction.
Require Import Euclid Wf_nat.
Extraction Inline gt_wf_rec lt_wf_rec induction_ltof2.
Recursive Extraction eucl_dev.

type nat =
| O
| S of nat

type sumbool =
| Left
| Right

(** val sub : nat -> nat -> nat **)

let rec sub n m =
match n with
| O -> n
| S k -> (match m with

| O -> n
| S l -> sub k l)

(** val le_lt_dec : nat -> nat -> sumbool **)

let rec le_lt_dec n m =

(continues on next page)
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(continued from previous page)
match n with
| O -> Left
| S n0 -> (match m with

| O -> Right
| S m0 -> le_lt_dec n0 m0)

(** val le_gt_dec : nat -> nat -> sumbool **)

let le_gt_dec =
le_lt_dec

type diveucl =
| Divex of nat * nat

(** val eucl_dev : nat -> nat -> diveucl **)

let rec eucl_dev n m =
let s = le_gt_dec n m in
(match s with
| Left ->
let d = let y = sub m n in eucl_dev n y in
let Divex (q, r) = d in Divex ((S q), r)

| Right -> Divex (O, m))

The inlining of gt_wf_rec and others is not mandatory. It only enhances readability of extracted code. You can then
copy-paste the output to a file euclid.ml or let Coq do it for you with the following command:

Extraction "euclid" eucl_dev.

Let us play the resulting program (in an OCaml toplevel):

#use "euclid.ml";;
type nat = O | S of nat
type sumbool = Left | Right
val sub : nat -> nat -> nat = <fun>
val le_lt_dec : nat -> nat -> sumbool = <fun>
val le_gt_dec : nat -> nat -> sumbool = <fun>
type diveucl = Divex of nat * nat
val eucl_dev : nat -> nat -> diveucl = <fun>

# eucl_dev (S (S O)) (S (S (S (S (S O)))));;
- : diveucl = Divex (S (S O), S O)

It is easier to test on OCaml integers:

# let rec nat_of_int = function 0 -> O | n -> S (nat_of_int (n-1));;
val nat_of_int : int -> nat = <fun>

# let rec int_of_nat = function O -> 0 | S p -> 1+(int_of_nat p);;
val int_of_nat : nat -> int = <fun>

# let div a b =
let Divex (q,r) = eucl_dev (nat_of_int b) (nat_of_int a)
in (int_of_nat q, int_of_nat r);;

val div : int -> int -> int * int = <fun>

# div 173 15;;
(continues on next page)
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(continued from previous page)
- : int * int = (11, 8)

Note that these nat_of_int and int_of_nat are now available via a mere Require Import
ExtrOcamlIntConv and then adding these functions to the list of functions to extract. This file
ExtrOcamlIntConv.v and some others in plugins/extraction/ are meant to help building concrete
program via extraction.

Extraction’s horror museum

Some pathological examples of extraction are grouped in the file test-suite/success/extraction.v of the
sources of Coq.

Users’ Contributions

Several of the Coq Users’ Contributions use extraction to produce certified programs. In particular the following ones
have an automatic extraction test:

• additions : https://github.com/coq-contribs/additions
• bdds : https://github.com/coq-contribs/bdds
• canon-bdds : https://github.com/coq-contribs/canon-bdds
• chinese : https://github.com/coq-contribs/chinese
• continuations : https://github.com/coq-contribs/continuations
• coq-in-coq : https://github.com/coq-contribs/coq-in-coq
• exceptions : https://github.com/coq-contribs/exceptions
• firing-squad : https://github.com/coq-contribs/firing-squad
• founify : https://github.com/coq-contribs/founify
• graphs : https://github.com/coq-contribs/graphs
• higman-cf : https://github.com/coq-contribs/higman-cf
• higman-nw : https://github.com/coq-contribs/higman-nw
• hardware : https://github.com/coq-contribs/hardware
• multiplier : https://github.com/coq-contribs/multiplier
• search-trees : https://github.com/coq-contribs/search-trees
• stalmarck : https://github.com/coq-contribs/stalmarck

Note that continuations and multiplier are a bit particular. They are examples of developments where Obj.
magic is needed. This is probably due to a heavy use of impredicativity. After compilation, those two examples run
nonetheless, thanks to the correction of the extraction [Let02].
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Author Matthieu Sozeau
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We present here the Program tactic commands, used to build certified Coq programs, elaborating them from their algo-
rithmic skeleton and a rich specification [Soz07]. It can be thought of as a dual of Extraction. The goal of Program is to
program as in a regular functional programming language whilst using as rich a specification as desired and proving that
the code meets the specification using the whole Coq proof apparatus. This is done using a technique originating from
the “Predicate subtyping” mechanism of PVS [ROS98], which generates type checking conditions while typing a term
constrained to a particular type. Here we insert existential variables in the term, which must be filled with proofs to get
a complete Coq term. Program replaces the Program tactic by Catherine Parent [Par95] which had a similar goal but
is no longer maintained.
The languages available as input are currently restricted to Coq’s term language, but may be extended to OCaml, Haskell
and others in the future. We use the same syntax as Coq and permit to use implicit arguments and the existing coercion
mechanism. Input terms and types are typed in an extended system (Russell) and interpreted into Coq terms. The
interpretation process may produce some proof obligations which need to be resolved to create the final term.

8.8.1 Elaborating programs

The main difference from Coq is that an object in a type T : Set can be considered as an object of type {x : T |
P} for any well-formed P : Prop. If we go from T to the subset of T verifying property P, we must prove that the
object under consideration verifies it. Russell will generate an obligation for every such coercion. In the other direction,
Russell will automatically insert a projection.
Another distinction is the treatment of pattern matching. Apart from the following differences, it is equivalent to the
standard match operation (see Extended pattern matching).

• Generation of equalities. A match expression is always generalized by the corresponding equality. As an example,
the expression:

match x with
| 0 => t
| S n => u
end.

will be first rewritten to:

(match x as y return (x = y -> _) with
| 0 => fun H : x = 0 -> t
| S n => fun H : x = S n -> u
end) (eq_refl x).

This permits to get the proper equalities in the context of proof obligations inside clauses, without which reasoning
is very limited.

• Generation of disequalities. If a pattern intersects with a previous one, a disequality is added in the context of the
second branch. See for example the definition of div2 below, where the second branch is typed in a context where
∀ p, _ <> S (S p).

• Coercion. If the object being matched is coercible to an inductive type, the corresponding coercion will be auto-
matically inserted. This also works with the previous mechanism.

There are flags to control the generation of equalities and coercions.
Flag: Program Cases

This controls the special treatment of pattern matching generating equalities and disequalities when using Program
(it is on by default). All pattern-matches and let-patterns are handled using the standard algorithm of Coq (see
Extended pattern matching) when this flag is deactivated.
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Flag: Program Generalized Coercion
This controls the coercion of general inductive types when using Program (the flag is on by default). Coercion of
subset types and pairs is still active in this case.

Flag: Program Mode
Enables the program mode, in which 1) typechecking allows subset coercions and 2) the elaboration of pat-
tern matching of Fixpoint and Definition act respectively like Program Fixpoint and Program
Definition, generating obligations if there are unresolved holes after typechecking.

Syntactic control over equalities

To give more control over the generation of equalities, the type checker will fall back directly to Coq’s usual typing of
dependent pattern matching if a return or in clause is specified. Likewise, the if construct is not treated specially by
Program so boolean tests in the code are not automatically reflected in the obligations. One can use the dec combinator
to get the correct hypotheses as in:

Require Import Program Arith.

Program Definition id (n : nat) : { x : nat | x = n } :=
if dec (leb n 0) then 0
else S (pred n).
id has type-checked, generating 2 obligations
Solving obligations automatically...
2 obligations remaining
Obligation 1 of id:
(forall n : nat, (n <=? 0) = true -> (fun x : nat => x = n) 0).

Obligation 2 of id:
(forall n : nat,
(n <=? 0) = false -> (fun x : nat => x = n) (S (Init.Nat.pred n))).

The let tupling construct let (x1, ..., xn) := t in b does not produce an equality, contrary to the let
pattern construct let '(x1,..., xn) := t in b. Also, term :> explicitly asks the system to coerce term to
its support type. It can be useful in notations, for example:

Notation " x `= y " := (@eq _ (x :>) (y :>)) (only parsing).

This notation denotes equality on subset types using equality on their support types, avoiding uses of proof-irrelevance
that would come up when reasoning with equality on the subset types themselves.
The next two commands are similar to their standard counterparts Definition and Fixpoint in that they define
constants. However, they may require the user to prove some goals to construct the final definitions.

Program Definition

Command: Program Definition ident := term
This command types the value term in Russell and generates proof obligations. Once solved using the commands
shown below, it binds the final Coq term to the name ident in the environment.
Error: ident already exists.

Variant: Program Definition ident : type := term
It interprets the type type, potentially generating proof obligations to be resolved. Once done with them, we
have a Coq type type0. It then elaborates the preterm term into a Coq term term0, checking that the type
of term0 is coercible to type0, and registers ident as being of type type0 once the set of obligations
generated during the interpretation of term0 and the aforementioned coercion derivation are solved.
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Error: In environment … the term: term does not have type type. Actually, it has type ...

Variant: Program Definition ident binders : type := term
This is equivalent to:
Program Definition ident : forall binders, type := fun binders => term.

See also:
Sections Controlling the reduction strategies and the conversion algorithm, unfold

Program Fixpoint

Command: Program Fixpoint ident binders {order}
?

: type := term
The optional order annotation follows the grammar:

order ::= measure term [ term ] | wf term ident

• measure f R where f is a value of type X computed on any subset of the arguments and the optional term
R is a relation on X. X defaults to nat and R to lt.

• wf R x which is equivalent to measure x R.

The structural fixpoint operator behaves just like the one of Coq (see Fixpoint), except it may also generate
obligations. It works with mutually recursive definitions too.

Require Import Program Arith.

Program Fixpoint div2 (n : nat) : { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
match n with
| S (S p) => S (div2 p)
| _ => O
end.
Solving obligations automatically...
4 obligations remaining

Here we have one obligation for each branch (branches for 0 and (S 0) are automatically generated by the pattern
matching compilation algorithm).

Obligation 1.
1 subgoal

p, x : nat
o : p = x + (x + 0) \/ p = x + (x + 0) + 1
============================
S (S p) = S (x + S (x + 0)) \/ S (S p) = S (x + S (x + 0) + 1)

One can use a well-founded order or a measure as termination orders using the syntax:

Program Fixpoint div2 (n : nat) {measure n} : { x : nat | n = 2 * x \/ n = 2 * x + 1 }
↪ :=
match n with
| S (S p) => S (div2 p)
| _ => O
end.

590 Chapter 8. Addendum



The Coq Reference Manual, Release 8.11.2

Caution: When defining structurally recursive functions, the generated obligations should have the prototype of
the currently defined functional in their context. In this case, the obligations should be transparent (e.g. defined using
Defined) so that the guardedness condition on recursive calls can be checked by the kernel’s type- checker. There is
an optimization in the generation of obligations which gets rid of the hypothesis corresponding to the functional when
it is not necessary, so that the obligation can be declared opaque (e.g. using Qed). However, as soon as it appears in
the context, the proof of the obligation is required to be declared transparent.
No such problems arise when using measures or well-founded recursion.

Program Lemma

Command: Program Lemma ident : type
The Russell language can also be used to type statements of logical properties. It will generate obligations, try to
solve them automatically and fail if some unsolved obligations remain. In this case, one can first define the lemma’s
statement using Program Definition and use it as the goal afterwards. Otherwise the proof will be started
with the elaborated version as a goal. The Program prefix can similarly be used as a prefix for Variable,
Hypothesis, Axiom etc.

8.8.2 Solving obligations

The following commands are available to manipulate obligations. The optional identifier is used when multiple functions
have unsolved obligations (e.g. when defining mutually recursive blocks). The optional tactic is replaced by the default
one if not specified.

Command: Local Global
?

Obligation Tactic := tactic
Sets the default obligation solving tactic applied to all obligations automatically, whether to solve them or when
starting to prove one, e.g. using Next. Local makes the setting last only for the current module. Inside sections,
local is the default.

Command: Show Obligation Tactic
Displays the current default tactic.

Command: Obligations of ident
?

Displays all remaining obligations.

Command: Obligation num of ident
?

Start the proof of obligation num.

Command: Next Obligation of ident
?

Start the proof of the next unsolved obligation.

Command: Solve Obligations of ident
?

with tactic

?

Tries to solve each obligation of ident using the given tactic or the default one.

Command: Solve All Obligations with tactic
?

Tries to solve each obligation of every program using the given tactic or the default one (useful for mutually recursive
definitions).

Command: Admit Obligations of ident
?

Admits all obligations (of ident).
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Note: Does not work with structurally recursive programs.

Command: Preterm of ident
?

Shows the term that will be fed to the kernel once the obligations are solved. Useful for debugging.
Flag: Transparent Obligations

Controls whether all obligations should be declared as transparent (the default), or if the system should infer which
obligations can be declared opaque.

Flag: Hide Obligations
Controls whether obligations appearing in the term should be hidden as implicit arguments of the special constant-
Program.Tactics.obligation.

Flag: Shrink Obligations
Deprecated since version 8.7.
This flag (on by default) controls whether obligations should have their context minimized to the set of variables
used in the proof of the obligation, to avoid unnecessary dependencies.

The module Coq.Program.Tactics defines the default tactic for solving obligations called program_simpl.
Importing Coq.Program.Program also adds some useful notations, as documented in the file itself.

8.8.3 Frequently Asked Questions

Error: Ill-formed recursive definition.
This error can happen when one tries to define a function by structural recursion on a subset object, which means
the Coq function looks like:

Program Fixpoint f (x : A | P) := match x with A b => f b end.

Supposing b : A, the argument at the recursive call to f is not a direct subterm of x as b is wrapped inside an
exist constructor to build an object of type {x : A | P}. Hence the definition is rejected by the guardedness
condition checker. However one can use wellfounded recursion on subset objects like this:

Program Fixpoint f (x : A | P) { measure (size x) } :=
match x with A b => f b end.

One will then just have to prove that the measure decreases at each recursive call. There are three drawbacks
though:
1. A measure function has to be defined;
2. The reduction is a little more involved, although it works well using lazy evaluation;
3. Mutual recursion on the underlying inductive type isn’t possible anymore, but nested mutual recursion is

always possible.

8.9 The ring and field tactic families

Author Bruno Barras, Benjamin Grégoire, Assia Mahboubi, Laurent Théry317

This chapter presents the tactics dedicated to dealing with ring and field equations.
317 based on previous work from Patrick Loiseleur and Samuel Boutin
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8.9.1 What does this tactic do?

ring does associative-commutative rewriting in ring and semiring structures. Assume you have two binary functions ⊕
and ⊗ that are associative and commutative, with ⊕ distributive on ⊗, and two constants 0 and 1 that are unities for ⊕
and ⊗. A polynomial is an expression built on variables 𝑉0, 𝑉1, … and constants by application of ⊕ and ⊗.
Let an ordered product be a product of variables 𝑉𝑖1

⊗ ⋯ ⊗ 𝑉𝑖𝑛
verifying 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑛 . Let a monomial be the

product of a constant and an ordered product. We can order the monomials by the lexicographic order on products of
variables. Let a canonical sum be an ordered sum of monomials that are all different, i.e. each monomial in the sum is
strictly less than the following monomial according to the lexicographic order. It is an easy theorem to show that every
polynomial is equivalent (modulo the ring properties) to exactly one canonical sum. This canonical sum is called the
normal form of the polynomial. In fact, the actual representation shares monomials with same prefixes. So what does the
ring tactic do? It normalizes polynomials over any ring or semiring structure. The basic use of ring is to simplify ring
expressions, so that the user does not have to deal manually with the theorems of associativity and commutativity.

Example
In the ring of integers, the normal form of 𝑥(3 + 𝑦𝑥 + 25(1 − 𝑧)) + 𝑧𝑥
is 28𝑥 + (−24)𝑥𝑧 + 𝑥𝑥𝑦.

ring is also able to compute a normal form modulo monomial equalities. For example, under the hypothesis that
2𝑥2 = 𝑦𝑧 + 1, the normal form of 2(𝑥 + 1)𝑥 − 𝑥 − 𝑧𝑦 is 𝑥 + 1.

8.9.2 The variables map

It is frequent to have an expression built with + and ×, but rarely on variables only. Let us associate a number to each
subterm of a ring expression in the Gallina language. For example, consider this expression in the semiring nat:

(plus (mult (plus (f (5)) x) x)
(mult (if b then (4) else (f (3))) (2)))

As a ring expression, it has 3 subterms. Give each subterm a number in an arbitrary order:

0 ↦ if b then (4) else (f (3))
1 ↦ (f (5))
2 ↦ x

Then normalize the “abstract” polynomial ((𝑉1 ⊕ 𝑉2) ⊗ 𝑉2) ⊕ (𝑉0 ⊗ 2) In our example the normal form is: (2 ⊗ 𝑉0) ⊕
(𝑉1 ⊗ 𝑉2) ⊕ (𝑉2 ⊗ 𝑉2). Then substitute the variables by their values in the variables map to get the concrete normal
polynomial:

(plus (mult (2) (if b then (4) else (f (3))))
(plus (mult (f (5)) x) (mult x x)))

8.9.3 Is it automatic?

Yes, building the variables map and doing the substitution after normalizing is automatically done by the tactic. So you
can just forget this paragraph and use the tactic according to your intuition.
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8.9.4 Concrete usage in Coq

ring
This tactic solves equations upon polynomial expressions of a ring (or semiring) structure. It proceeds by normaliz-
ing both sides of the equation (w.r.t. associativity, commutativity and distributivity, constant propagation, rewriting
of monomials) and comparing syntactically the results.

ring_simplify
This tactic applies the normalization procedure described above to the given terms. The tactic then replaces all
occurrences of the terms given in the conclusion of the goal by their normal forms. If no term is given, then the
conclusion should be an equation and both sides are normalized. The tactic can also be applied in a hypothesis.
The tactic must be loaded by Require Import Ring. The ring structures must be declared with the Add
Ring command (see below). The ring of booleans is predefined; if one wants to use the tactic on nat one must
first require the module ArithRing exported by Arith); for Z, do Require Import ZArithRing or
simply Require Import ZArith; for N, do Require Import NArithRing or Require Import
NArith.

Example

Require Import ZArith.
[Loading ML file newring_plugin.cmxs ... done]
[Loading ML file zify_plugin.cmxs ... done]
[Loading ML file omega_plugin.cmxs ... done]

Open Scope Z_scope.
Goal forall a b c:Z,

(a + b + c) ^ 2 =
a * a + b ^ 2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c.

1 subgoal

============================
forall a b c : Z,
(a + b + c) ^ 2 = a * a + b ^ 2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c

intros; ring.
No more subgoals.

Abort.
Goal forall a b:Z,

2 * a * b = 30 -> (a + b) ^ 2 = a ^ 2 + b ^ 2 + 30.
1 subgoal

============================
forall a b : Z, 2 * a * b = 30 -> (a + b) ^ 2 = a ^ 2 + b ^ 2 + 30

intros a b H; ring [H].
No more subgoals.

Abort.

Variant: ring [ term
*
]

This tactic decides the equality of two terms modulo ring operations and the equalities defined by the terms. Each
term has to be a proof of some equality m = p, where m is a monomial (after “abstraction”), p a polynomial and
= the corresponding equality of the ring structure.
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Variant: ring_simplify [ term
*
] term

*
in ident

This tactic performs the simplification in the hypothesis named ident.

Note: ring_simplify term1; ring_simplify term2 is not equivalent to ring_simplify term1
term2.
In the latter case the variables map is shared between the two terms, and common subterm t of term1 and term2 will
have the same associated variable number. So the first alternative should be avoided for terms belonging to the same ring
theory.

Error messages:
Error: Not a valid ring equation.

The conclusion of the goal is not provable in the corresponding ring theory.
Error: Arguments of ring_simplify do not have all the same type.

ring_simplify cannot simplify terms of several rings at the same time. Invoke the tactic once per ring struc-
ture.

Error: Cannot find a declared ring structure over term.
No ring has been declared for the type of the terms to be simplified. Use Add Ring first.

Error: Cannot find a declared ring structure for equality term.
Same as above in the case of the ring tactic.

8.9.5 Adding a ring structure

Declaring a new ring consists in proving that a ring signature (a carrier set, an equality, and ring operations:
Ring_theory.ring_theory andRing_theory.semi_ring_theory) satisfies the ring axioms. Semi- rings
(rings without + inverse) are also supported. The equality can be either Leibniz equality, or any relation declared as a se-
toid (see Tactics enabled on user provided relations). The definitions of ring and semiring (see module Ring_theory)
are:

Record ring_theory : Prop := mk_rt {
Radd_0_l : forall x, 0 + x == x;
Radd_sym : forall x y, x + y == y + x;
Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
Rmul_1_l : forall x, 1 * x == x;
Rmul_sym : forall x y, x * y == y * x;
Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
Rsub_def : forall x y, x - y == x + -y;
Ropp_def : forall x, x + (- x) == 0

}.

Record semi_ring_theory : Prop := mk_srt {
SRadd_0_l : forall n, 0 + n == n;
SRadd_sym : forall n m, n + m == m + n ;
SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
SRmul_1_l : forall n, 1*n == n;
SRmul_0_l : forall n, 0*n == 0;
SRmul_sym : forall n m, n*m == m*n;
SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
SRdistr_l : forall n m p, (n + m)*p == n*p + m*p

}.
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This implementation of ring also features a notion of constant that can be parameterized. This can be used to improve
the handling of closed expressions when operations are effective. It consists in introducing a type of coefficients and an
implementation of the ring operations, and a morphism from the coefficient type to the ring carrier type. The morphism
needs not be injective, nor surjective.
As an example, one can consider the real numbers. The set of coefficients could be the rational numbers, upon which the
ring operations can be implemented. The fact that there exists a morphism is defined by the following properties:

Record ring_morph : Prop := mkmorph {
morph0 : [cO] == 0;
morph1 : [cI] == 1;
morph_add : forall x y, [x +! y] == [x]+[y];
morph_sub : forall x y, [x -! y] == [x]-[y];
morph_mul : forall x y, [x *! y] == [x]*[y];
morph_opp : forall x, [-!x] == -[x];
morph_eq : forall x y, x?=!y = true -> [x] == [y]

}.

Record semi_morph : Prop := mkRmorph {
Smorph0 : [cO] == 0;
Smorph1 : [cI] == 1;
Smorph_add : forall x y, [x +! y] == [x]+[y];
Smorph_mul : forall x y, [x *! y] == [x]*[y];
Smorph_eq : forall x y, x?=!y = true -> [x] == [y]

}.

where c0 and cI denote the 0 and 1 of the coefficient set, +!, *!, -! are the implementations of the ring operations,
== is the equality of the coefficients, ?+! is an implementation of this equality, and [x] is a notation for the image of
x by the ring morphism.
Since Z is an initial ring (and N is an initial semiring), it can always be considered as a set of coefficients. There are
basically three kinds of (semi-)rings:
abstract rings to be used when operations are not effective. The set of coefficients is Z (or N for semirings).
computational rings to be used when operations are effective. The set of coefficients is the ring itself. The user only

has to provide an implementation for the equality.
customized ring for other cases. The user has to provide the coefficient set and the morphism.
This implementation of ring can also recognize simple power expressions as ring expressions. A power function is specified
by the following property:

Require Import Reals.
Section POWER.
Variable Cpow : Set.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Record power_theory : Prop := mkpow_th {

rpow_pow_N : forall r n, rpow r (Cp_phi n) = pow_N 1%R Rmult r n
}.

End POWER.

The syntax for adding a new ring is

Command: Add Ring ident : term ( ring_mod , ring_mod
*

)

?

The ident is not relevant. It is used just for error messages. The term is a proof that the ring signature satisfies
the (semi-)ring axioms. The optional list of modifiers is used to tailor the behavior of the tactic. The following list
describes their syntax and effects:
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ring_mod ::= abstract | decidable term | morphism term
setoid term term
constants [ tactic ]
preprocess [ tactic ]
postprocess [ tactic ]
power_tac term [ tactic ]
sign term
div term

abstract declares the ring as abstract. This is the default.
decidable term declares the ring as computational. The expression term is the correctness proof of an equality

test ?=! (which should be evaluable). Its type should be of the form forall x y, x ?=! y = true
→ x == y.

morphism term declares the ring as a customized one. The expression term is a proof that there exists
a morphism between a set of coefficient and the ring carrier (see Ring_theory.ring_morph and
Ring_theory.semi_morph).

setoid term term forces the use of given setoid. The first term is a proof that the equality is indeed a setoid
(see Setoid.Setoid_Theory), and the second term a proof that the ring operations are morphisms
(see Ring_theory.ring_eq_ext and Ring_theory.sring_eq_ext). This modifier needs not
be used if the setoid and morphisms have been declared.

constants [ tactic ] specifies a tactic expression tactic that, given a term, returns either an object of the co-
efficient set that is mapped to the expression via the morphism, or returns InitialRing.NotConstant.
The default behavior is to map only 0 and 1 to their counterpart in the coefficient set. This is generally not
desirable for non trivial computational rings.

preprocess [ tactic ] specifies a tactic tactic that is applied as a preliminary step for ring and
ring_simplify. It can be used to transform a goal so that it is better recognized. For instance, S n
can be changed to plus 1 n.

postprocess [ tactic ] specifies a tactic tactic that is applied as a final step for ring_simplify. For
instance, it can be used to undo modifications of the preprocessor.

power_tac term [ tactic ] allows ring and ring_simplify to recognize power expressions with a con-
stant positive integer exponent (example: 𝑥2 ). The term term is a proof that a given power function sat-
isfies the specification of a power function (term has to be a proof of Ring_theory.power_theory)
and tactic specifies a tactic expression that, given a term, “abstracts” it into an object of type N whose
interpretation via Cp_phi (the evaluation function of power coefficient) is the original term, or returns
InitialRing.NotConstant if not a constant coefficient (i.e. Ltac is the inverse function of Cp_phi).
See files plugins/setoid_ring/ZArithRing.v and plugins/setoid_ring/RealField.
v for examples. By default the tactic does not recognize power expressions as ring expressions.

sign term allows ring_simplify to use a minus operation when outputting its normal form, i.e writing x −
y instead of x + (− y). The term term is a proof that a given sign function indicates expressions that
are signed (term has to be a proof of Ring_theory.get_sign). See plugins/setoid_ring/
InitialRing.v for examples of sign function.

div term allows ring and ring_simplify to use monomials with coefficients other than 1 in the rewriting.
The term term is a proof that a given division function satisfies the specification of an euclidean division func-
tion (term has to be a proof of Ring_theory.div_theory). For example, this function is called when
trying to rewrite 7𝑥 by 2𝑥 = 𝑧 to tell that 7 = 3×2+1. See plugins/setoid_ring/InitialRing.
v for examples of div function.
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Error messages:
Error: Bad ring structure.

The proof of the ring structure provided is not of the expected type.
Error: Bad lemma for decidability of equality.

The equality function provided in the case of a computational ring has not the expected type.
Error: Ring operation should be declared as a morphism.

A setoid associated to the carrier of the ring structure has been found, but the ring operation should be declared as
morphism. See Tactics enabled on user provided relations.

8.9.6 How does it work?

The code of ring is a good example of a tactic written using reflection. What is reflection? Basically, using it means
that a part of a tactic is written in Gallina, Coq’s language of terms, rather than Ltac or OCaml. From the philosophical
point of view, reflection is using the ability of the Calculus of Constructions to speak and reason about itself. For the
ring tactic we used Coq as a programming language and also as a proof environment to build a tactic and to prove its
correctness.
The interested reader is strongly advised to have a look at the file Ring_polynom.v. Here a type for polynomials is
defined:

Inductive PExpr : Type :=
| PEc : C -> PExpr
| PEX : positive -> PExpr
| PEadd : PExpr -> PExpr -> PExpr
| PEsub : PExpr -> PExpr -> PExpr
| PEmul : PExpr -> PExpr -> PExpr
| PEopp : PExpr -> PExpr
| PEpow : PExpr -> N -> PExpr.

Polynomials in normal form are defined as:

Inductive Pol : Type :=
| Pc : C -> Pol
| Pinj : positive -> Pol -> Pol
| PX : Pol -> positive -> Pol -> Pol.

where Pinj n P denotes P in which 𝑉𝑖 is replaced by 𝑉𝑖+𝑛 , and PX P n Q denotes 𝑃 ⊗𝑉 𝑛
1 ⊕𝑄′, Q' being Q where

𝑉𝑖 is replaced by 𝑉𝑖+1.
Variable maps are represented by lists of ring elements, and two interpretation functions, one that maps a variables map
and a polynomial to an element of the concrete ring, and the second one that does the same for normal forms:

Definition PEeval : list R -> PExpr -> R := [...].
Definition Pphi_dev : list R -> Pol -> R := [...].

A function to normalize polynomials is defined, and the big theorem is its correctness w.r.t interpretation, that is:

Definition norm : PExpr -> Pol := [...].
Lemma Pphi_dev_ok :

forall l pe npe, norm pe = npe -> PEeval l pe == Pphi_dev l npe.

So now, what is the scheme for a normalization proof? Let p be the polynomial expression that the user wants to normalize.
First a little piece of ML code guesses the type of p, the ring theory T to use, an abstract polynomial ap and a variables
map v such that p is 𝛽𝛿𝜄- equivalent to (PEeval v ap). Then we replace it by (Pphi_dev v (norm ap)),
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using the main correctness theorem and we reduce it to a concrete expression p’, which is the concrete normal form of
p. This is summarized in this diagram:

p →𝛽𝛿𝜄 (PEeval v ap)

=(by the main correctness theorem)
p’ ←𝛽𝛿𝜄 (Pphi_dev v (norm ap))

The user does not see the right part of the diagram. From outside, the tactic behaves like a 𝛽𝛿𝜄 simplification extended
with rewriting rules for associativity and commutativity. Basically, the proof is only the application of themain correctness
theorem to well-chosen arguments.

8.9.7 Dealing with fields

field
This tactic is an extension of the ring tactic that deals with rational expressions. Given a rational expression𝐹 = 0.
It first reduces the expression F to a common denominator 𝑁/𝐷 = 0 where N and D are two ring expressions. For
example, if we take 𝐹 = (1 − 1/𝑥)𝑥 − 𝑥 + 1, this gives 𝑁 = (𝑥 − 1)𝑥 − 𝑥2 + 𝑥 and 𝐷 = 𝑥. It then calls ring to
solve 𝑁 = 0.
Note that field also generates nonzero conditions for all the denominators it encounters in the reduction. In our
example, it generates the condition 𝑥 ≠ 0. These conditions appear as one subgoal which is a conjunction if there
are several denominators. Nonzero conditions are always polynomial expressions. For example when reducing the
expression 1/(1 + 1/𝑥), two side conditions are generated: 𝑥 ≠ 0 and 𝑥 + 1 ≠ 0. Factorized expressions are
broken since a field is an integral domain, and when the equality test on coefficients is complete w.r.t. the equality
of the target field, constants can be proven different from zero automatically.
The tactic must be loaded by Require Import Field. New field structures can be declared to the system
with the Add Field command (see below). The field of real numbers is defined in module RealField (in
plugins/setoid_ring). It is exported by module Rbase, so that requiring Rbase or Reals is enough to
use the field tactics on real numbers. Rational numbers in canonical form are also declared as a field in the module
Qcanon.

Example

Require Import Reals.
Open Scope R_scope.
Goal forall x,

x <> 0 -> (1 - 1 / x) * x - x + 1 = 0.
1 subgoal

============================
forall x : R, x <> 0 -> (1 - 1 / x) * x - x + 1 = 0

intros; field; auto.
No more subgoals.

Abort.
Goal forall x y,

y <> 0 -> y = x -> x / y = 1.
1 subgoal

============================
forall x y : R, y <> 0 -> y = x -> x / y = 1

(continues on next page)
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(continued from previous page)
intros x y H H1; field [H1]; auto.

No more subgoals.

Abort.

Variant: field [ term
*
]

This tactic decides the equality of two terms modulo field operations and the equalities defined by the terms. Each
term has to be a proof of some equality m = p, where m is a monomial (after “abstraction”), p a polynomial and
= the corresponding equality of the field structure.

Note: Rewriting works with the equality m = p only if p is a polynomial since rewriting is handled by the underlying
ring tactic.

Variant: field_simplify
performs the simplification in the conclusion of the goal, 𝐹1 = 𝐹2 becomes 𝑁1/𝐷1 = 𝑁2/𝐷2. A normalization
step (the same as the one for rings) is then applied to 𝑁1, 𝐷1, 𝑁2 and 𝐷2. This way, polynomials remain in factor-
ized form during fraction simplification. This yields smaller expressions when reducing to the same denominator
since common factors can be canceled.

Variant: field_simplify [ term
*
]

This variant performs the simplification in the conclusion of the goal using the equalities defined by the terms.

Variant: field_simplify [ term
*
] term

*

This variant performs the simplification in the terms terms of the conclusion of the goal using the equalities defined
by terms inside the brackets.

Variant: field_simplify in ident
This variant performs the simplification in the assumption ident.

Variant: field_simplify [ term
*
] in ident

This variant performs the simplification in the assumption ident using the equalities defined by the terms.

Variant: field_simplify [ term
*
] term

*
in ident

This variant performs the simplification in the terms of the assumption ident using the equalities defined by the
terms inside the brackets.

Variant: field_simplify_eq
performs the simplification in the conclusion of the goal removing the denominator. 𝐹1 = 𝐹2 becomes 𝑁1𝐷2 =
𝑁2𝐷1.

Variant: field_simplify_eq [ term
*
]

This variant performs the simplification in the conclusion of the goal using the equalities defined by terms.
Variant: field_simplify_eq in ident

This variant performs the simplification in the assumption ident.

Variant: field_simplify_eq [ term
*
] in ident

This variant performs the simplification in the assumption ident using the equalities defined by terms and re-
moving the denominator.
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8.9.8 Adding a new field structure

Declaring a new field consists in proving that a field signature (a carrier set, an equality, and field operations:
Field_theory.field_theory and Field_theory.semi_field_theory) satisfies the field axioms.
Semi-fields (fields without + inverse) are also supported. The equality can be either Leibniz equality, or any relation
declared as a setoid (see Tactics enabled on user provided relations). The definition of fields and semifields is:

Record field_theory : Prop := mk_field {
F_R : ring_theory rO rI radd rmul rsub ropp req;
F_1_neq_0 : ~ 1 == 0;
Fdiv_def : forall p q, p / q == p * / q;
Finv_l : forall p, ~ p == 0 -> / p * p == 1

}.

Record semi_field_theory : Prop := mk_sfield {
SF_SR : semi_ring_theory rO rI radd rmul req;
SF_1_neq_0 : ~ 1 == 0;
SFdiv_def : forall p q, p / q == p * / q;
SFinv_l : forall p, ~ p == 0 -> / p * p == 1

}.

The result of the normalization process is a fraction represented by the following type:

Record linear : Type := mk_linear {
num : PExpr C;
denum : PExpr C;
condition : list (PExpr C)

}.

where num and denum are the numerator and denominator; condition is a list of expressions that have appeared as a
denominator during the normalization process. These expressions must be proven different from zero for the correctness
of the algorithm.
The syntax for adding a new field is

Command: Add Field ident : term ( field_mod , field_mod
*

)

?

The ident is not relevant. It is used just for error messages. term is a proof that the field signature satisfies the
(semi-)field axioms. The optional list of modifiers is used to tailor the behavior of the tactic.

field_mod ::= ring_mod | completeness term

Since field tactics are built upon ring tactics, all modifiers of the Add Ring apply. There is only one specific
modifier:
completeness term allows the field tactic to prove automatically that the image of nonzero coefficients aremapped

to nonzero elements of the field. term is a proof of forall x y, [x] == [y] -> x ?=! y =
true, which is the completeness of equality on coefficients w.r.t. the field equality.

8.9.9 History of ring

First Samuel Boutin designed the tactic ACDSimpl. This tactic did lot of rewriting. But the proofs terms generated by
rewriting were too big for Coq’s type checker. Let us see why:
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Require Import ZArith.
Open Scope Z_scope.
Goal forall x y z : Z,

x + 3 + y + y * z = x + 3 + y + z * y.
1 subgoal

============================
forall x y z : Z, x + 3 + y + y * z = x + 3 + y + z * y

intros; rewrite (Zmult_comm y z); reflexivity.
No more subgoals.

Save foo.
Print foo.

foo =
fun x y z : Z =>
eq_ind_r (fun z0 : Z => x + 3 + y + z0 = x + 3 + y + z * y) eq_refl

(Z.mul_comm y z)
: forall x y z : Z, x + 3 + y + y * z = x + 3 + y + z * y

Arguments foo (_ _ _)%Z_scope

At each step of rewriting, the whole context is duplicated in the proof term. Then, a tactic that does hundreds of rewriting
generates huge proof terms. Since ACDSimpl was too slow, Samuel Boutin rewrote it using reflection (see [Bou97]).
Later, it was rewritten by Patrick Loiseleur: the new tactic does not any more require ACDSimpl to compile and it
makes use of 𝛽𝛿𝜄-reduction not only to replace the rewriting steps, but also to achieve the interleaving of computation
and reasoning (see Discussion). He also wrote some ML code for the Add Ring command that allows registering new
rings dynamically.
Proofs terms generated by ring are quite small, they are linear in the number of ⊕ and ⊗ operations in the normalized
terms. Type checking those terms requires some time because it makes a large use of the conversion rule, but memory
requirements are much smaller.

8.9.10 Discussion

Efficiency is not the only motivation to use reflection here. ring also deals with constants, it rewrites for example the
expression 34 + 2 * x − x + 12 to the expected result x + 46. For the tactic ACDSimpl, the only constants
were 0 and 1. So the expression 34 + 2 * (x − 1) + 12 is interpreted as 𝑉0 ⊕ 𝑉1 ⊗ (𝑉2 ⊖ 1) ⊕ 𝑉3, with the
variables mapping {𝑉0 ↦ 34; 𝑉1 ↦ 2; 𝑉2 ↦ 𝑥; 𝑉3 ↦ 12}. Then it is rewritten to 34 − x + 2 * x + 12, very
far from the expected result. Here rewriting is not sufficient: you have to do some kind of reduction (some kind of
computation) to achieve the normalization.
The tactic ring is not only faster than the old one: by using reflection, we get for free the integration of computation and
reasoning that would be very difficult to implement without it.
Is it the ultimate way to write tactics? The answer is: yes and no. The ring tactic intensively uses the conversion rules of
the Calculus of Inductive Constructions, i.e. it replaces proofs by computations as much as possible. It can be useful in all
situations where a classical tactic generates huge proof terms, like symbolic processing and tautologies. But there are also
tactics like auto or linear that do many complex computations, using side-effects and backtracking, and generate a
small proof term. Clearly, it would be significantly less efficient to replace them by tactics using reflection.
Another idea suggested by Benjamin Werner: reflection could be used to couple an external tool (a rewriting program or
a model checker) with Coq. We define (in Coq) a type of terms, a type of traces, and prove a correctness theorem that
states that replaying traces is safe with respect to some interpretation. Then we let the external tool do every computation
(using side-effects, backtracking, exception, or others features that are not available in pure lambda calculus) to produce
the trace. Now we can check in Coq that the trace has the expected semantics by applying the correctness theorem.
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8.10 Nsatz: tactics for proving equalities in integral domains

Author Loïc Pottier
nsatz

This tactic is for solving goals of the form
∀𝑋1, … , 𝑋𝑛 ∈ 𝐴,
𝑃1(𝑋1, … , 𝑋𝑛) = 𝑄1(𝑋1, … , 𝑋𝑛), … , 𝑃𝑠(𝑋1, … , 𝑋𝑛) = 𝑄𝑠(𝑋1, … , 𝑋𝑛)
⊢ 𝑃(𝑋1, … , 𝑋𝑛) = 𝑄(𝑋1, … , 𝑋𝑛)
where 𝑃 , 𝑄, 𝑃1, 𝑄1, … , 𝑃𝑠, 𝑄𝑠 are polynomials and 𝐴 is an integral domain, i.e. a commutative ring with no zero
divisors. For example, 𝐴 can be ℝ, ℤ, or ℚ. Note that the equality = used in these goals can be any setoid equality
(see Tactics enabled on user provided relations) , not only Leibniz equality.
It also proves formulas
∀𝑋1, … , 𝑋𝑛 ∈ 𝐴,
𝑃1(𝑋1, … , 𝑋𝑛) = 𝑄1(𝑋1, … , 𝑋𝑛) ∧ … ∧ 𝑃𝑠(𝑋1, … , 𝑋𝑛) = 𝑄𝑠(𝑋1, … , 𝑋𝑛)
→ 𝑃 (𝑋1, … , 𝑋𝑛) = 𝑄(𝑋1, … , 𝑋𝑛)
doing automatic introductions.
You can load the Nsatz module with the command Require Import Nsatz.

8.10.1 More about nsatz

Hilbert’s Nullstellensatz theorem shows how to reduce proofs of equalities on polynomials on a commutative ring 𝐴 with
no zero divisors to algebraic computations: it is easy to see that if a polynomial 𝑃 in 𝐴[𝑋1, … , 𝑋𝑛] verifies 𝑐𝑃 𝑟 =
∑𝑠

𝑖=1 𝑆𝑖𝑃𝑖, with 𝑐 ∈ 𝐴, 𝑐 ≠ 0, 𝑟 a positive integer, and the 𝑆𝑖 s in 𝐴[𝑋1, … , 𝑋𝑛], then 𝑃 is zero whenever polynomials
𝑃1, … , 𝑃𝑠 are zero (the converse is also true when 𝐴 is an algebraically closed field: the method is complete).
So, solving our initial problem reduces to finding 𝑆1, … , 𝑆𝑠, 𝑐 and 𝑟 such that 𝑐(𝑃 − 𝑄)𝑟 = ∑𝑖 𝑆𝑖(𝑃𝑖 − 𝑄𝑖), which will
be proved by the tactic ring.
This is achieved by the computation of a Gröbner basis of the ideal generated by 𝑃1 − 𝑄1, ..., 𝑃𝑠 − 𝑄𝑠, with an adapted
version of the Buchberger algorithm.
This computation is done after a step of reification, which is performed using Typeclasses.

Variant: nsatz with radicalmax:=num%N strategy:=num%Z parameters:=[ ident
*
, ] variables:=[ ident

*
, ]

Most complete syntax for nsatz.
• radicalmax is a bound when searching for r such that 𝑐(𝑃 − 𝑄)𝑟 = ∑𝑖=1..𝑠 𝑆𝑖(𝑃 𝑖 − 𝑄𝑖)
• strategy gives the order on variables 𝑋1, … , 𝑋𝑛 and the strategy used in Buchberger algorithm (see
[GMN+91] for details):
– strategy = 0: reverse lexicographic order and newest s-polynomial.
– strategy = 1: reverse lexicographic order and sugar strategy.
– strategy = 2: pure lexicographic order and newest s-polynomial.
– strategy = 3: pure lexicographic order and sugar strategy.

• parameters is the list of variables 𝑋𝑖1
, … , 𝑋𝑖𝑘

among 𝑋1, … , 𝑋𝑛 which are considered as parameters:
computation will be performed with rational fractions in these variables, i.e. polynomials are considered
with coefficients in 𝑅(𝑋𝑖1

, … , 𝑋𝑖𝑘
). In this case, the coefficient 𝑐 can be a non constant polynomial in

𝑋𝑖1
, … , 𝑋𝑖𝑘

, and the tactic produces a goal which states that 𝑐 is not zero.
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• variables is the list of the variables in the decreasing order in which they will be used in the Buch-
berger algorithm. If variables = (@nil R), then lvar is replaced by all the variables which are not
in parameters.

See the file Nsatz.v for many examples, especially in geometry.

8.11 Generalized rewriting

Author Matthieu Sozeau
This chapter presents the extension of several equality related tactics to work over user-defined structures (called setoids)
that are equipped with ad-hoc equivalence relations meant to behave as equalities. Actually, the tactics have also been gen-
eralized to relations weaker than equivalences (e.g. rewriting systems). The toolbox also extends the automatic rewriting
capabilities of the system, allowing the specification of custom strategies for rewriting.
This documentation is adapted from the previous setoid documentation by Claudio Sacerdoti Coen (based on previous
work by Clément Renard). The new implementation is a drop-in replacement for the old one318, hence most of the
documentation still applies.
The work is a complete rewrite of the previous implementation, based on the typeclass infrastructure. It also improves
on and generalizes the previous implementation in several ways:

• User-extensible algorithm. The algorithm is separated into two parts: generation of the rewriting constraints (writ-
ten in ML) and solving these constraints using typeclass resolution. As typeclass resolution is extensible using
tactics, this allows users to define general ways to solve morphism constraints.

• Subrelations. An example extension to the base algorithm is the ability to define one relation as a subrelation of
another so that morphism declarations on one relation can be used automatically for the other. This is done purely
using tactics and typeclass search.

• Rewriting under binders. It is possible to rewrite under binders in the new implementation, if one provides the
proper morphisms. Again, most of the work is handled in the tactics.

• First-class morphisms and signatures. Signatures and morphisms are ordinary Coq terms, hence they can be ma-
nipulated inside Coq, put inside structures and lemmas about them can be proved inside the system. Higher-order
morphisms are also allowed.

• Performance. The implementation is based on a depth-first search for the first solution to a set of constraints which
can be as fast as linear in the size of the term, and the size of the proof term is linear in the size of the original term.
Besides, the extensibility allows the user to customize the proof search if necessary.

8.11.1 Introduction to generalized rewriting

Relations and morphisms

A parametric relation R is any term of type forall (x1 : T1) ... (xn : Tn), relation A. The expres-
sion A, which depends on x1 ... xn , is called the carrier of the relation and R is said to be a relation over A; the list
x1,...,xn is the (possibly empty) list of parameters of the relation.

Example: Parametric relation
It is possible to implement finite sets of elements of type A as unordered lists of elements of type A. The function set_eq:
forall (A : Type), relation (list A) satisfied by two lists with the same elements is a parametric rela-
318 Nicolas Tabareau helped with the gluing.
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tion over (list A)with one parameter A. The type of set_eq is convertible with forall (A : Type), list
A -> list A -> Prop.

An instance of a parametric relation R with n parameters is any term (R t1 ... tn).
Let R be a relation over Awith n parameters. A term is a parametric proof of reflexivity for R if it has type forall (x1
: T1) ... (xn : Tn), reflexive (R x1 ... xn). Similar definitions are given for parametric proofs
of symmetry and transitivity.

Example: Parametric relation (continued)
The set_eq relation of the previous example can be proved to be reflexive, symmetric and transitive. A parametric
unary function f of type forall (x1 : T1) ... (xn : Tn), A1 -> A2 covariantly respects two paramet-
ric relation instances R1 and R2 if, whenever x, y satisfy R1 x y, their images (f x) and (f y) satisfy R2 (f x)
(f y). An f that respects its input and output relations will be called a unary covariant morphism. We can also say
that f is a monotone function with respect to R1 and R2 . The sequence x1 ... xn represents the parameters of the
morphism.

LetR1 andR2 be two parametric relations. The signature of a parametric morphism of typeforall (x1 : T1) ...
(xn : Tn), A1 -> A2 that covariantly respects two instances 𝐼𝑅1

and 𝐼𝑅2
of R1 and R2 is written 𝐼𝑅1

++ > 𝐼𝑅2
.

Notice that the special arrow ++>, which reminds the reader of covariance, is placed between the two relation instances,
not between the two carriers. The signature relation instances and morphism will be typed in a context introducing
variables for the parameters.
The previous definitions are extended straightforwardly to n-ary morphisms, that are required to be simultaneously mono-
tone on every argument.
Morphisms can also be contravariant in one or more of their arguments. A morphism is contravariant on an argument
associated to the relation instance 𝑅 if it is covariant on the same argument when the inverse relation 𝑅−1 (inverse R
in Coq) is considered. The special arrow --> is used in signatures for contravariant morphisms.
Functions having arguments related by symmetric relations instances are both covariant and contravariant in those argu-
ments. The special arrow ==> is used in signatures for morphisms that are both covariant and contravariant.
An instance of a parametric morphism 𝑓 with 𝑛 parameters is any term 𝑓 𝑡1 … 𝑡𝑛.

Example: Morphisms
Continuing the previous example, let union: forall (A : Type), list A -> list A -> list A
perform the union of two sets by appending one list to the other. union is a binary morphism parametric over A
that respects the relation instance (set_eq A). The latter condition is proved by showing:

forall (A: Type) (S1 S1' S2 S2': list A),
set_eq A S1 S1' ->
set_eq A S2 S2' ->
set_eq A (union A S1 S2) (union A S1' S2').

The signature of the function union A is set_eq A ==> set_eq A ==> set_eq A for all A.

Example: Contravariant morphisms
The division function Rdiv : R -> R -> R is a morphism of signature le ++> le --> le where le is the
usual order relation over real numbers. Notice that division is covariant in its first argument and contravariant in its second
argument.
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Leibniz equality is a relation and every function is a morphism that respects Leibniz equality. Unfortunately, Leibniz
equality is not always the intended equality for a given structure.
In the next section we will describe the commands to register terms as parametric relations and morphisms. Several tactics
that deal with equality in Coq can also work with the registered relations. The exact list of tactics will be given in this
section. For instance, the tactic reflexivity can be used to solve a goal R n n whenever R is an instance of a registered
reflexive relation. However, the tactics that replace in a context C[] one term with another one related by R must verify
that C[] is a morphism that respects the intended relation. Currently the verification consists of checking whether C[]
is a syntactic composition of morphism instances that respects some obvious compatibility constraints.

Example: Rewriting
Continuing the previous examples, suppose that the user must prove set_eq int (union int (union int
S1 S2) S2) (f S1 S2) under the hypothesis H : set_eq int S2 (@nil int). It is possible to use the
rewrite tactic to replace the first two occurrences of S2 with @nil int in the goal since the context set_eq
int (union int (union int S1 nil) nil) (f S1 S2), being a composition of morphisms instances,
is a morphism. However the tactic will fail replacing the third occurrence of S2 unless f has also been declared as a
morphism.

Adding new relations and morphisms

Command: Add Parametric Relation binders : (A t1 ... tn) (Aeq t′1 ... t′m) reflexivity proved by term
?

symmetry proved by term
?

transitivity proved by term
?

as ident
This command declares a parametric relation Aeq: forall (y1 : β1 ... ym : βm), relation (A
t1 ... tn) over (A : αi -> ... αn -> Type).
The final ident gives a unique name to the morphism and it is used by the command to generate fresh names for
automatically provided lemmas used internally.
Notice that the carrier and relation parameters may refer to the context of variables introduced at the beginning of
the declaration, but the instances need not be made only of variables. Also notice that A is not required to be a
term having the same parameters as Aeq, although that is often the case in practice (this departs from the previous
implementation).
To use this command, you need to first import the module Setoid using the command Require Import
Setoid.

Command: Add Relation
In case the carrier and relations are not parametric, one can use this command instead, whose syntax is the same
except there is no local context.
The proofs of reflexivity, symmetry and transitivity can be omitted if the relation is not an equivalence relation.
The proofs must be instances of the corresponding relation definitions: e.g. the proof of reflexivity must have
a type convertible to reflexive (A t1 ... tn) (Aeq t′ 1 …t′ n). Each proof may refer to the
introduced variables as well.

Example: Parametric relation
For Leibniz equality, we may declare:

Add Parametric Relation (A : Type) : A (@eq A)
[reflexivity proved by @refl_equal A]

...
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Some tactics (reflexivity, symmetry, transitivity) work only on relations that respect the expected prop-
erties. The remaining tactics (replace, rewrite and derived tactics such as autorewrite) do not require any
properties over the relation. However, they are able to replace terms with related ones only in contexts that are syntactic
compositions of parametric morphism instances declared with the following command.

Command: Add Parametric Morphism binders : (ident term1
+
) with signature term2 as ident

This command declares a parametric morphism ident term1
+ of signature term2. The final identifier

ident gives a unique name to the morphism and it is used as the base name of the typeclass instance definition
and as the name of the lemma that proves the well-definedness of the morphism. The parameters of the morphism
as well as the signature may refer to the context of variables. The command asks the user to prove interactively that
the function denoted by the first ident respects the relations identified from the signature.

Example
We start the example by assuming a small theory over homogeneous sets and we declare set equality as a parametric
equivalence relation and union of two sets as a parametric morphism.

Require Export Setoid.
Require Export Relation_Definitions.
Set Implicit Arguments.
Parameter set : Type -> Type.
Parameter empty : forall A, set A.
Parameter eq_set : forall A, set A -> set A -> Prop.
Parameter union : forall A, set A -> set A -> set A.
Axiom eq_set_refl : forall A, reflexive _ (eq_set (A:=A)).
Axiom eq_set_sym : forall A, symmetric _ (eq_set (A:=A)).
Axiom eq_set_trans : forall A, transitive _ (eq_set (A:=A)).
Axiom empty_neutral : forall A (S : set A), eq_set (union S (empty A)) S.
Axiom union_compat :

forall (A : Type),
forall x x' : set A, eq_set x x' ->
forall y y' : set A, eq_set y y' ->

eq_set (union x y) (union x' y').
Add Parametric Relation A : (set A) (@eq_set A)

reflexivity proved by (eq_set_refl (A:=A))
symmetry proved by (eq_set_sym (A:=A))
transitivity proved by (eq_set_trans (A:=A))
as eq_set_rel.

Add Parametric Morphism A : (@union A)
with signature (@eq_set A) ==> (@eq_set A) ==> (@eq_set A) as union_mor.

Proof.
exact (@union_compat A).
Qed.

It is possible to reduce the burden of specifying parameters using (maximally inserted) implicit arguments. If A is always
set as maximally implicit in the previous example, one can write:

Add Parametric Relation A : (set A) eq_set
reflexivity proved by eq_set_refl
symmetry proved by eq_set_sym
transitivity proved by eq_set_trans
as eq_set_rel.

Add Parametric Morphism A : (@union A) with
signature eq_set ==> eq_set ==> eq_set as union_mor.

Proof. exact (@union_compat A). Qed.
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We proceed now by proving a simple lemma performing a rewrite step and then applying reflexivity, as we would do
working with Leibniz equality. Both tactic applications are accepted since the required properties over eq_set and
union can be established from the two declarations above.

Goal forall (S : set nat),
eq_set (union (union S (empty nat)) S) (union S S).

Proof.
intros.
rewrite empty_neutral.
reflexivity.
Qed.

The tables of relations and morphisms are managed by the typeclass instance mechanism. The behavior on section close
is to generalize the instances by the variables of the section (and possibly hypotheses used in the proofs of instance
declarations) but not to export them in the rest of the development for proof search. One can use the cmd:Existing
Instance command to do so outside the section, using the name of the declared morphism suffixed by _Morphism,
or use the Global modifier for the corresponding class instance declaration (see First Class Setoids and Morphisms) at
definition time. When loading a compiled file or importing a module, all the declarations of this module will be loaded.

Rewriting and non reflexive relations

To replace only one argument of an n-ary morphism it is necessary to prove that all the other arguments are related to
themselves by the respective relation instances.

Example
To replace (union S empty) with S in (union (union S empty) S) (union S S) the rewrite tactic
must exploit the monotony of union (axiom union_compat in the previous example). Applying union_compat
by hand we are left with the goal eq_set (union S S) (union S S).

When the relations associated to some arguments are not reflexive, the tactic cannot automatically prove the reflexivity
goals, that are left to the user.
Setoids whose relations are partial equivalence relations (PER) are useful for dealing with partial functions. Let R be a
PER. We say that an element x is defined if R x x. A partial function whose domain comprises all the defined elements
is declared as a morphism that respects R. Every time a rewriting step is performed the user must prove that the argument
of the morphism is defined.

Example
Let eqO be fun x y => x = y /\ x <> 0 (the smallest PER over nonzero elements). Division can be declared
as a morphism of signature eq ==> eq0 ==> eq. Replacing x with y in div x n = div y n opens an addi-
tional goal eq0 n n which is equivalent to n = n /\ n <> 0.

Rewriting and non symmetric relations

When the user works up to relations that are not symmetric, it is no longer the case that any covariant morphism argument
is also contravariant. As a result it is no longer possible to replace a term with a related one in every context, since the
obtained goal implies the previous one if and only if the replacement has been performed in a contravariant position. In
a similar way, replacement in an hypothesis can be performed only if the replaced term occurs in a covariant position.

608 Chapter 8. Addendum



The Coq Reference Manual, Release 8.11.2

Example: Covariance and contravariance
Suppose that division over real numbers has been defined as a morphism of signature Z.div : Z.lt ++> Z.lt
--> Z.lt (i.e. Z.div is increasing in its first argument, but decreasing on the second one). Let < denote Z.lt.
Under the hypothesis H : x < ywe have k < x / y -> k < x / x, but not k < y / x -> k < x / x.
Dually, under the same hypothesis k < x / y -> k < y / y holds, but k < y / x -> k < y / y does
not. Thus, if the current goal is k < x / x, it is possible to replace only the second occurrence of x (in contravariant
position) with y since the obtained goal must imply the current one. On the contrary, if k < x / x is an hypothesis, it
is possible to replace only the first occurrence of x (in covariant position) with y since the current hypothesis must imply
the obtained one.
Contrary to the previous implementation, no specific error message will be raised when trying to replace a term that
occurs in the wrong position. It will only fail because the rewriting constraints are not satisfiable. However it is possible
to use the at modifier to specify which occurrences should be rewritten.
As expected, composing morphisms together propagates the variance annotations by switching the variance every time a
contravariant position is traversed.

Example
Let us continue the previous example and let us consider the goal x / (x / x) < k. The first and third occurrences
of x are in a contravariant position, while the second one is in covariant position. More in detail, the second occurrence of
x occurs covariantly in (x / x) (since division is covariant in its first argument), and thus contravariantly in x / (x
/ x) (since division is contravariant in its second argument), and finally covariantly in x / (x / x) < k (since <,
as every transitive relation, is contravariant in its first argument with respect to the relation itself).

Rewriting in ambiguous setoid contexts

One function can respect several different relations and thus it can be declared as a morphism having multiple signatures.

Example
Union over homogeneous lists can be given all the following signatures: eq ==> eq ==> eq (eq being the equality
over ordered lists) set_eq ==> set_eq ==> set_eq (set_eq being the equality over unordered lists up to
duplicates), multiset_eq ==> multiset_eq ==> multiset_eq (multiset_eq being the equality over
unordered lists).

To declare multiple signatures for a morphism, repeat the Add Morphism command.
When morphisms have multiple signatures it can be the case that a rewrite request is ambiguous, since it is unclear what
relations should be used to perform the rewriting. Contrary to the previous implementation, the tactic will always choose
the first possible solution to the set of constraints generated by a rewrite and will not try to find all the possible solutions
to warn the user about them.

8.11.2 Commands and tactics

First class setoids and morphisms

The implementation is based on a first-class representation of properties of relations and morphisms as typeclasses. That
is, the various combinations of properties on relations and morphisms are represented as records and instances of these
classes are put in a hint database. For example, the declaration:
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Add Parametric Relation (x1 : T1) ... (xn : Tn) : (A t1 ... tn) (Aeq t′1 ... t′m)
[reflexivity proved by refl]
[symmetry proved by sym]
[transitivity proved by trans]
as id.

is equivalent to an instance declaration:

Instance (x1 : T1) ... (xn : Tn) => id : @Equivalence (A t1 ... tn) (Aeq t′1 ... t′m)␣
↪:=
[Equivalence_Reflexive := refl]
[Equivalence_Symmetric := sym]
[Equivalence_Transitive := trans].

The declaration itself amounts to the definition of an object of the record type Coq.Classes.RelationClasses.
Equivalence and a hint added to the typeclass_instances hint database. Morphism declarations are also
instances of a typeclass defined in Classes.Morphisms. See the documentation on Typeclasses and the theories files
in Classes for further explanations.
One can inform the rewrite tactic about morphisms and relations just by using the typeclass mechanism to declare them
using Instance and Context vernacular commands. Any object of type Proper (the type of morphism declarations) in the
local context will also be automatically used by the rewriting tactic to solve constraints.
Other representations of first class setoids and morphisms can also be handled by encoding them as records. In the
following example, the projections of the setoid relation and of the morphism function can be registered as parametric
relations and morphisms.

Example: First class setoids

Require Import Relation_Definitions Setoid.
Record Setoid : Type :=
{ car: Type;

eq: car -> car -> Prop;
refl: reflexive _ eq;
sym: symmetric _ eq;
trans: transitive _ eq

}.
Add Parametric Relation (s : Setoid) : (@car s) (@eq s)

reflexivity proved by (refl s)
symmetry proved by (sym s)
transitivity proved by (trans s) as eq_rel.

Record Morphism (S1 S2 : Setoid) : Type :=
{ f: car S1 -> car S2;

compat: forall (x1 x2 : car S1), eq S1 x1 x2 -> eq S2 (f x1) (f x2)
}.
Add Parametric Morphism (S1 S2 : Setoid) (M : Morphism S1 S2) :

(@f S1 S2 M) with signature (@eq S1 ==> @eq S2) as apply_mor.
Proof.
apply (compat S1 S2 M).
Qed.
Lemma test : forall (S1 S2 : Setoid) (m : Morphism S1 S2)

(x y : car S1), eq S1 x y -> eq S2 (f _ _ m x) (f _ _ m y).
Proof.
intros.
rewrite H.
reflexivity.
Qed.
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Tactics enabled on user provided relations

The following tactics, all prefixed by setoid_, deal with arbitrary registered relations and morphisms. Moreover, all
the corresponding unprefixed tactics (i.e. reflexivity, symmetry, transitivity, replace, rewrite)
have been extended to fall back to their prefixed counterparts when the relation involved is not Leibniz equality. Notice,
however, that using the prefixed tactics it is possible to pass additional arguments such as using relation.
Variant: setoid_reflexivity
Variant: setoid_symmetry in ident

?

Variant: setoid_transitivity
Variant: setoid_rewrite orientation

?
term at occurrences

?
in ident

?

Variant: setoid_replace term with term using relation term
?

in ident
?

by tactic
?

The using relation arguments cannot be passed to the unprefixed form. The latter argument tells the tactic
what parametric relation should be used to replace the first tactic argument with the second one. If omitted, it
defaults to the DefaultRelation instance on the type of the objects. By default, it means the most recent
Equivalence instance in the environment, but it can be customized by declaring new DefaultRelation
instances. As Leibniz equality is a declared equivalence, it will fall back to it if no other relation is declared on a
given type.

Every derived tactic that is based on the unprefixed forms of the tactics considered above will also work up to user defined
relations. For instance, it is possible to register hints for autorewrite that are not proofs of Leibniz equalities. In
particular it is possible to exploit autorewrite to simulate normalization in a term rewriting system up to user defined
equalities.

Printing relations and morphisms

Command: Print Instances
This command can be used to show the list of currently registered Reflexive (using Print Instances
Reflexive), Symmetric or Transitive relations, Equivalences, PreOrders, PERs, and Morphisms (im-
plemented as Proper instances). When the rewriting tactics refuse to replace a term in a context because the
latter is not a composition of morphisms, the Print Instances command can be useful to understand what
additional morphisms should be registered.

Deprecated syntax and backward incompatibilities

Command: Add Setoid qualid1 qualid2 qualid3 as ident
This command for declaring setoids and morphisms is also accepted due to backward compatibility reasons.
Here qualid2 is a congruence relation without parameters, qualid1 is its carrier and qualid3 is an object
of type (Setoid_Theory qualid1 qualid2) (i.e. a record packing together the reflexivity, symmetry and
transitivity lemmas). Notice that the syntax is not completely backward compatible since the identifier was not
required.

Command: Add Morphism ident : ident
This command is restricted to the declaration of morphisms without parameters. It is not fully backward compatible
since the property the user is asked to prove is slightly different: for n-ary morphisms the hypotheses of the property
are permuted; moreover, when the morphism returns a proposition, the property is now stated using a bi-implication
in place of a simple implication. In practice, porting an old development to the new semantics is usually quite simple.

Command: Declare Morphism ident : ident
This commands is to be used in a module type to declare a parameter that is a morphism.
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Notice that several limitations of the old implementation have been lifted. In particular, it is now possible to declare
several relations with the same carrier and several signatures for the same morphism. Moreover, it is now also possible
to declare several morphisms having the same signature. Finally, the replace and rewrite tactics can be used to
replace terms in contexts that were refused by the old implementation. As discussed in the next section, the semantics of
the new setoid_rewrite tactic differs slightly from the old one and rewrite.

8.11.3 Extensions

Rewriting under binders

Warning: Due to compatibility issues, this feature is enabled only when calling the setoid_rewrite tactic
directly and not rewrite.

To be able to rewrite under binding constructs, one must declare morphisms with respect to pointwise (setoid) equivalence
of functions. Example of such morphisms are the standard all and ex combinators for universal and existential quan-
tification respectively. They are declared as morphisms in the Classes.Morphisms_Prop module. For example,
to declare that universal quantification is a morphism for logical equivalence:

Instance all_iff_morphism (A : Type) :
Proper (pointwise_relation A iff ==> iff) (@all A).

Proof.
simpl_relation.

1 subgoal

A : Type
x, y : A -> Prop
H : pointwise_relation A iff x y
============================
all x <-> all y

One then has to show that if two predicates are equivalent at every point, their universal quantifications are equivalent.
Once we have declared such a morphism, it will be used by the setoid rewriting tactic each time we try to rewrite under
an all application (products in Prop are implicitly translated to such applications).
Indeed, when rewriting under a lambda, binding variable x, say from P x to Q x using the relation iff, the tactic will
generate a proof of pointwise_relation A iff (fun x => P x) (fun x => Q x) from the proof of
iff (P x) (Q x) and a constraint of the form Proper (pointwise_relation A iff ==> ?) m will
be generated for the surrounding morphism m.
Hence, one can add higher-order combinators as morphisms by providing signatures using pointwise extension for the
relations on the functional arguments (or whatever subrelation of the pointwise extension). For example, one could declare
the map combinator on lists as a morphism:

Instance map_morphism `{Equivalence A eqA, Equivalence B eqB} :
Proper ((eqA ==> eqB) ==> list_equiv eqA ==> list_equiv eqB) (@map A B).

where list_equiv implements an equivalence on lists parameterized by an equivalence on the elements.
Note that when one does rewriting with a lemma under a binder using setoid_rewrite, the application of the lemma
may capture the bound variable, as the semantics are different from rewrite where the lemma is first matched on the whole
term. With the new setoid_rewrite, matching is done on each subterm separately and in its local environment, and
all matches are rewritten simultaneously by default. The semantics of the previous setoid_rewrite implementation
can almost be recovered using the at 1 modifier.

612 Chapter 8. Addendum



The Coq Reference Manual, Release 8.11.2

Subrelations

Subrelations can be used to specify that one relation is included in another, so that morphism signatures for one can
be used for the other. If a signature mentions a relation R on the left of an arrow ==>, then the signature also applies
for any relation S that is smaller than R, and the inverse applies on the right of an arrow. One can then declare only
a few morphisms instances that generate the complete set of signatures for a particular constant. By default, the only
declared subrelation is iff, which is a subrelation of impl and inverse impl (the dual of implication). That’s why
we can declare only two morphisms for conjunction: Proper (impl ==> impl ==> impl) and and Proper
(iff ==> iff ==> iff) and. This is sufficient to satisfy any rewriting constraints arising from a rewrite using
iff, impl or inverse impl through and.
Subrelations are implemented in Classes.Morphisms and are a prime example of a mostly user-space extension of
the algorithm.

Constant unfolding

The resolution tactic is based on typeclasses and hence regards user- defined constants as transparent by default. This
may slow down the resolution due to a lot of unifications (all the declared Proper instances are tried at each node of
the search tree). To speed it up, declare your constant as rigid for proof search using the command Typeclasses
Opaque.

8.11.4 Strategies for rewriting

Definitions

The generalized rewriting tactic is based on a set of strategies that can be combined to obtain custom rewriting procedures.
Its set of strategies is based on the programmable rewriting strategies with generic traversals by Visser et al. [LV97]
[VBT98], which formed the core of the Stratego transformation language [Vis01]. Rewriting strategies are applied using
the tactic rewrite_strat strategy where strategy is a strategy expression. Strategies are defined inductively
as described by the following grammar:

strategy ::= qualid (lemma, left to right)
<- qualid (lemma, right to left)
fail (failure)
id (identity)
refl (reflexivity)
progress strategy (progress)
try strategy (try catch)
strategy ; strategy (composition)
choice strategy strategy (left_biased_choice)
repeat strategy (one or more)
any strategy (zero or more)
subterm strategy (one subterm)
subterms strategy (all subterms)
innermost strategy (innermost first)
outermost strategy (outermost first)
bottomup strategy (bottom-up)
topdown strategy (top-down)
hints ident (apply hints from hint database)
terms term ... term (any of the terms)
eval redexpr (apply reduction)
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fold term (unify)
( strategy )

Actually a few of these are defined in term of the others using a primitive fixpoint operator:
• try strategy := choice strategy id

• any strategy := fix ident. try (strategy ; ident)

• repeat strategy := strategy; any strategy

• bottomup strategy := fix ident. (choice (progress (subterms ident))
strategy) ; try ident

• topdown strategy := fix ident. (choice strategy (progress (subterms
ident))) ; try ident

• innermost strategy := fix ident. (choice (subterm ident) strategy)

• outermost strategy := fix ident. (choice strategy (subterm ident))

The basic control strategy semantics are straightforward: strategies are applied to subterms of the term to rewrite, starting
from the root of the term. The lemma strategies unify the left-hand-side of the lemma with the current subterm and on
success rewrite it to the right- hand-side. Composition can be used to continue rewriting on the current subterm. The
fail strategy always fails while the identity strategy succeeds without making progress. The reflexivity strategy succeeds,
making progress using a reflexivity proof of rewriting. progress tests progress of the argument strategy and fails
if no progress was made, while try always succeeds, catching failures. choice is left-biased: it will launch the first
strategy and fall back on the second one in case of failure. One can iterate a strategy at least 1 time using repeat and
at least 0 times using any.
The subterm and subterms strategies apply their argument strategy to respectively one or all subterms of the
current term under consideration, left-to-right. subterm stops at the first subterm for which strategy made progress.
The composite strategies innermost and outermost perform a single innermost or outermost rewrite using their
argument strategy. Their counterparts bottomup and topdown perform as many rewritings as possible, starting
from the bottom or the top of the term.
Hint databases created for autorewrite can also be used by rewrite_strat using the hints strategy that applies
any of the lemmas at the current subterm. The terms strategy takes the lemma names directly as arguments. The
eval strategy expects a reduction expression (see Performing computations) and succeeds if it reduces the subterm under
consideration. The fold strategy takes a term and tries to unify it to the current subterm, converting it to term on
success. It is stronger than the tactic fold.

Usage

rewrite_strat strategy in ident
?

Rewrite using the strategy s in hypothesis ident or the conclusion.
Error: Nothing to rewrite.

If the strategy failed.
Error: No progress made.

If the strategy succeeded but made no progress.
Error: Unable to satisfy the rewriting constraints.

If the strategy succeeded and made progress but the corresponding rewriting constraints are not satisfied.
The setoid_rewrite c tactic is basically equivalent to rewrite_strat (outermost c).
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8.12 Asynchronous and Parallel Proof Processing

Author Enrico Tassi
This chapter explains how proofs can be asynchronously processed by Coq. This feature improves the reactivity of the
system when used in interactive mode via CoqIDE. In addition, it allows Coq to take advantage of parallel hardware when
used as a batch compiler by decoupling the checking of statements and definitions from the construction and checking of
proofs objects.
This feature is designed to help dealing with huge libraries of theorems characterized by long proofs. In the current state,
it may not be beneficial on small sets of short files.
This feature has some technical limitations that may make it unsuitable for some use cases.
For example, in interactive mode, some errors coming from the kernel of Coq are signaled late. The type of errors
belonging to this category are universe inconsistencies.
At the time of writing, only opaque proofs (ending with Qed or Admitted) can be processed asynchronously.
Finally, asynchronous processing is disabled when running CoqIDE in Windows. The current implementation of the
feature is not stable on Windows. It can be enabled, as described below at Interactive mode, though doing so is not
recommended.

8.12.1 Proof annotations

To process a proof asynchronously Coq needs to know the precise statement of the theorem without looking at the proof.
This requires some annotations if the theorem is proved inside a Section (see Section Section mechanism).
When a section ends, Coq looks at the proof object to decide which section variables are actually used and hence have
to be quantified in the statement of the theorem. To avoid making the construction of proofs mandatory when ending a
section, one can start each proof with the Proof using command (Section Switching on/off the proof editing mode)
that declares which section variables the theorem uses.
The presence of Proof using is needed to process proofs asynchronously in interactive mode.
It is not strictly mandatory in batch mode if it is not the first time the file is compiled and if the file itself did not change.
When the proof does not begin with Proof using, the system records in an auxiliary file, produced along with the .vo file,
the list of section variables used.

Automatic suggestion of proof annotations

The Suggest Proof Using flag makes Coq suggest, when a Qed command is processed, a correct proof annotation.
It is up to the user to modify the proof script accordingly.

8.12.2 Proof blocks and error resilience

Coq 8.6 introduced a mechanism for error resilience: in interactive mode Coq is able to completely check a document
containing errors instead of bailing out at the first failure.
Two kind of errors are supported: errors occurring in vernacular commands and errors occurring in proofs.
To properly recover from a failing tactic, Coq needs to recognize the structure of the proof in order to confine the error
to a sub proof. Proof block detection is performed by looking at the syntax of the proof script (i.e. also looking at
indentation). Coq comes with four kind of proof blocks, and an ML API to add new ones.

curly blocks are delimited by { and }, see Chapter Proof handling
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par blocks are atomic, i.e. just one tactic introduced by the par: goal selector
indent blocks end with a tactic indented less than the previous one
bullet blocks are delimited by two equal bullet signs at the same indentation level

Caveats

When a vernacular command fails the subsequent error messages may be bogus, i.e. caused
by the first error. Error resilience for vernacular commands can be switched off by passing
-async-proofs-command-error-resilience off to CoqIDE.
An incorrect proof block detection can result into an incorrect error recovery and hence in bogus errors. Proof block
detection cannot be precise for bullets or any other non well parenthesized proof structure. Error resilience can be turned
off or selectively activated for any set of block kind passing to CoqIDE one of the following options:

• -async-proofs-tactic-error-resilience off

• -async-proofs-tactic-error-resilience all

• -async-proofs-tactic-error-resilience blocktype
*
,

Valid proof block types are: “curly”, “par”, “indent”, and “bullet”.

8.12.3 Interactive mode

At the time of writing the only user interface supporting asynchronous proof processing is CoqIDE.
When CoqIDE is started, two Coq processes are created. The master one follows the user, giving feedback as soon as
possible by skipping proofs, which are delegated to the worker process. The worker process, whose state can be seen by
clicking on the button in the lower right corner of the main CoqIDE window, asynchronously processes the proofs. If a
proof contains an error, it is reported in red in the label of the very same button, that can also be used to see the list of
errors and jump to the corresponding line.
If a proof is processed asynchronously the corresponding Qed command is colored using a lighter color than usual. This
signals that the proof has been delegated to a worker process (or will be processed lazily if the -async-proofs lazy
option is used). Once finished, the worker process will provide the proof object, but this will not be automatically checked
by the kernel of the main process. To force the kernel to check all the proof objects, one has to click the button with the
gears (Fully check the document) on the top bar. Only then all the universe constraints are checked.

Caveats

The number of worker processes can be increased by passing CoqIDE the -async-proofs-j n flag. Note that the
memory consumption increases too, since each worker requires the same amount of memory as the master process. Also
note that increasing the number of workers may reduce the reactivity of the master process to user commands.
To disable this feature, one can pass the -async-proofs off flag to CoqIDE. Conversely, on Windows, where the
feature is disabled by default, pass the -async-proofs on flag to enable it.
Proofs that are known to take little time to process are not delegated to a worker process. The threshold can be configured
with -async-proofs-delegation-threshold. Default is 0.03 seconds.
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8.12.4 Batch mode

Warning: The -vio flag is subsumed, for most practical usage, by the the more recent -vos flag. See
Compiled interfaces (produced using -vos).

Warning: When working with .vio files, do not use the -vos option at the same time, otherwise
stale files might get loaded when executing a Require. Indeed, the loading of a nonempty .vos file
is assigned higher priority than the loading of a .vio file.

When Coq is used as a batch compiler by running coqc, it produces a .vo file for each .v file. A .vo file contains,
among other things, theorem statements and proofs. Hence to produce a .vo Coq need to process all the proofs of the .v
file.
The asynchronous processing of proofs can decouple the generation of a compiled file (like the .vo one) that can be
loaded by Require from the generation and checking of the proof objects. The -vio flag can be passed to coqc to
produce, quickly, .vio files. Alternatively, when using a Makefile produced by coq_makefile, the vio target can
be used to compile all files using the -vio flag.
A .vio file can be loaded using Require exactly as a .vo file but proofs will not be available (the Print command
produces an error). Moreover, some universe constraints might be missing, so universes inconsistencies might go unno-
ticed. A .vio file does not contain proof objects, but proof tasks, i.e. what a worker process can transform into a proof
object.
Compiling a set of files with the -vio flag allows one to work, interactively, on any file without waiting for all the proofs
to be checked.
When working interactively, one can fully check all the .v files by running coqc as usual.
Alternatively one can turn each .vio into the corresponding .vo. All .vio files can be processed in parallel, hence
this alternative might be faster. The command coqc -schedule-vio2vo 2 a b c can be used to obtain a good
scheduling for two workers to produce a.vo, b.vo, and c.vo. When using a Makefile produced by coq_makefile,
the vio2vo target can be used for that purpose. Variable J should be set to the number of workers, e.g. make vio2vo
J=2. The only caveat is that, while the .vo files obtained from .vio files are complete (they contain all proof terms and
universe constraints), the satisfiability of all universe constraints has not been checked globally (they are checked to
be consistent for every single proof). Constraints will be checked when these .vo files are (recursively) loaded with
Require.
There is an extra, possibly even faster, alternative: just check the proof tasks stored in .vio files without producing the
.vo files. This is possibly faster because all the proof tasks are independent, hence one can further partition the job to
be done between workers. The coqc -schedule-vio-checking 6 a b c command can be used to obtain a
good scheduling for 6 workers to check all the proof tasks of a.vio, b.vio, and c.vio. Auxiliary files are used to
predict how long a proof task will take, assuming it will take the same amount of time it took last time. When using a
Makefile produced by coq_makefile, the checkproofs target can be used to check all .vio files. Variable J should be
set to the number of workers, e.g. make checkproofs J=6. As when converting .vio files to .vo files, universe
constraints are not checked to be globally consistent. Hence this compilation mode is only useful for quick regression
testing and on developments not making heavy use of the Type hierarchy.

8.12.5 Limiting the number of parallel workers

Many Coq processes may run on the same computer, and each of them may start many additional worker processes. The
coqworkmgr utility lets one limit the number of workers, globally.
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The utility accepts the -j argument to specify the maximum number of workers (defaults to 2).
coqworkmgr automatically starts in the background and prints an environment variable assignment like
COQWORKMGR_SOCKET=localhost:45634. The user must set this variable in all the shells from which
Coq processes will be started. If one uses just one terminal running the bash shell, then export ‘coqworkmgr -j
4‘ will do the job.
After that, all Coq processes, e.g. coqide and coqc, will respect the limit, globally.

8.13 Miscellaneous extensions

8.13.1 Program derivation

Coq comes with an extension called Derive, which supports program derivation. Typically in the style of Bird and
Meertens or derivations of program refinements. To use the Derive extension it must first be required with Require
Coq.derive.Derive. When the extension is loaded, it provides the following command:
Command: Derive ident1 SuchThat type As ident2

ident1 can appear in type. This command opens a new proof presenting the user with a goal for type in which
the name ident1 is bound to an existential variable ?x (formally, there are other goals standing for the existential
variables but they are shelved, as described in shelve).
When the proof ends two constants are defined:

• The first one is named ident1 and is defined as the proof of the shelved goal (which is also the value of ?x).
It is always transparent.

• The second one is named ident2. It has type type, and its body is the proof of the initially visible goal. It
is opaque if the proof ends with Qed, and transparent if the proof ends with Defined.

Example

Require Coq.derive.Derive.
[Loading ML file derive_plugin.cmxs ... done]

Require Import Coq.Numbers.Natural.Peano.NPeano.
Section P.
Variables (n m k:nat).

n is declared
m is declared
k is declared

Derive p SuchThat ((k*n)+(k*m) = p) As h.
1 focused subgoal
(shelved: 1)

n, m, k : nat
p := ?Goal : nat
============================
k * n + k * m = p

Proof.
rewrite <- Nat.mul_add_distr_l.

1 focused subgoal
(shelved: 1)

(continues on next page)
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(continued from previous page)
n, m, k : nat
p := ?Goal : nat
============================
k * (n + m) = p

subst p.
1 focused subgoal
(shelved: 1)

n, m, k : nat
============================
k * (n + m) = ?Goal

reflexivity.
No more subgoals.

Qed.
End P.
Print p.

p = fun n m k : nat => k * (n + m)
: nat -> nat -> nat -> nat

Arguments p (_ _ _)%nat_scope

Check h.
h

: forall n m k : nat, k * n + k * m = p n m k

Any property can be used as term, not only an equation. In particular, it could be an order relation specifying some form
of program refinement or a non-executable property from which deriving a program is convenient.

8.14 Polymorphic Universes

Author Matthieu Sozeau

8.14.1 General Presentation

Warning: The status of Universe Polymorphism is experimental.

This section describes the universe polymorphic extension of Coq. Universe polymorphism makes it possible to write
generic definitions making use of universes and reuse them at different and sometimes incompatible universe levels.
A standard example of the difference between universe polymorphic and monomorphic definitions is given by the identity
function:

Definition identity {A : Type} (a : A) := a.

By default, constant declarations are monomorphic, hence the identity function declares a global universe (say Top.1)
for its domain. Subsequently, if we try to self-apply the identity, we will get an error:
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Fail Definition selfid := identity (@identity).
The command has indeed failed with message:
The term "@identity" has type "forall A : Type, A -> A"
while it is expected to have type "?A"
(unable to find a well-typed instantiation for "?A": cannot ensure that
"Type@{identity.u0+1}" is a subtype of "Type@{identity.u0}").

Indeed, the global level Top.1 would have to be strictly smaller than itself for this self-application to type check, as the
type of (@identity) is forall (A : Type@{Top.1}), A -> A whose type is itself Type@{Top.1+1}.
A universe polymorphic identity function binds its domain universe level at the definition level instead of making it global.

Polymorphic Definition pidentity {A : Type} (a : A) := a.

About pidentity.
pidentity@{Top.2} : forall A : Type, A -> A

pidentity is universe polymorphic
Arguments pidentity {A}%type_scope
pidentity is transparent
Expands to: Constant Top.pidentity

It is then possible to reuse the constant at different levels, like so:

Definition selfpid := pidentity (@pidentity).

Of course, the two instances of pidentity in this definition are different. This can be seen when the Printing
Universes flag is on:

Print selfpid.
selfpid =
pidentity@{selfpid.u0} (@pidentity@{selfpid.u1})

: forall A : Type@{selfpid.u1}, A -> A
(* {selfpid.u1 selfpid.u0} |= selfpid.u1 < selfpid.u0 *)

Arguments selfpid _%type_scope

Now pidentity is used at two different levels: at the head of the application it is instantiated at Top.3 while in
the argument position it is instantiated at Top.4. This definition is only valid as long as Top.4 is strictly smaller than
Top.3, as shown by the constraints. Note that this definition is monomorphic (not universe polymorphic), so the two
universes (in this case Top.3 and Top.4) are actually global levels.
When printing pidentity, we can see the universes it binds in the annotation @{Top.2}. Additionally, when
Printing Universes is on we print the ”universe context” of pidentity consisting of the bound universes
and the constraints they must verify (for pidentity there are no constraints).
Inductive types can also be declared universes polymorphic on universes appearing in their parameters or fields. A typical
example is given by monoids:

Polymorphic Record Monoid := { mon_car :> Type; mon_unit : mon_car;
mon_op : mon_car -> mon_car -> mon_car }.

Print Monoid.

The Monoid’s carrier universe is polymorphic, hence it is possible to instantiate it for example with Monoid itself. First
we build the trivial unit monoid in Set:

620 Chapter 8. Addendum



The Coq Reference Manual, Release 8.11.2

Definition unit_monoid : Monoid :=
{| mon_car := unit; mon_unit := tt; mon_op x y := tt |}.

From this we can build a definition for the monoid of Set-monoids (where multiplication would be given by the product
of monoids).

Polymorphic Definition monoid_monoid : Monoid.
refine (@Build_Monoid Monoid unit_monoid (fun x y => x)).
Defined.

Print monoid_monoid.
monoid_monoid@{Top.9} =
{|
mon_car := Monoid@{Set};
mon_unit := unit_monoid;
mon_op := fun x _ : Monoid@{Set} => x |}

: Monoid@{Top.9}
(* Top.9 |= Set < Top.9 *)

As one can see from the constraints, this monoid is “large”, it lives in a universe strictly higher than Set.

8.14.2 Polymorphic, Monomorphic

Command: Polymorphic definition
As shown in the examples, polymorphic definitions and inductives can be declared using the Polymorphic prefix.

Flag: Universe Polymorphism
Once enabled, this flag will implicitly prepend Polymorphic to any definition of the user.

Command: Monomorphic definition
When the Universe Polymorphism flag is set, to make a definition producing global universe constraints,
one can use the Monomorphic prefix.

Many other commands support the Polymorphic flag, including:
• Lemma, Axiom, and all the other “definition” keywords support polymorphism.
• Section will locally set the polymorphism flag inside the section.
• Variables, Context, Universe and Constraint in a section support polymorphism. See Universe poly-
morphism and sections for more details.

• Hint Resolve and Hint Rewrite will use the auto/rewrite hint polymorphically, not at a single instance.

8.14.3 Cumulative, NonCumulative

Polymorphic inductive types, coinductive types, variants and records can be declared cumulative using the Cumulative
prefix.
Command: Cumulative inductive

Declares the inductive as cumulative
Alternatively, there is a Polymorphic Inductive Cumulativity flag which when set, makes all subsequent
polymorphic inductive definitions cumulative. When set, inductive types and the like can be enforced to be non-cumulative
using the NonCumulative prefix.
Command: NonCumulative inductive

Declares the inductive as non-cumulative
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Flag: Polymorphic Inductive Cumulativity
When this flag is on, it sets all following polymorphic inductive types as cumulative (it is off by default).

Consider the examples below.

Polymorphic Cumulative Inductive list {A : Type} :=
| nil : list
| cons : A -> list -> list.

Print list.
Inductive list@{Top.12} (A : Type@{Top.12}) : Type@{max(Set,Top.12)} :=

nil : list@{Top.12} | cons : A -> list@{Top.12} -> list@{Top.12}
(* *Top.12 |= *)

Arguments list {A}%type_scope
Arguments nil {A}%type_scope
Arguments cons {A}%type_scope

When printing list, the universe context indicates the subtyping constraints by prefixing the level names with symbols.
Because inductive subtypings are only produced by comparing inductives to themselves with universes changed, they
amount to variance information: each universe is either invariant, covariant or irrelevant (there are no contravariant
subtypings in Coq), respectively represented by the symbols =, + and *.
Here we see that list binds an irrelevant universe, so any two instances of list are convertible: 𝐸[Γ] ⊢
list@{𝑖} 𝐴 =𝛽𝛿𝜄𝜁𝜂 list@{𝑗} 𝐵 whenever 𝐸[Γ] ⊢ 𝐴 =𝛽𝛿𝜄𝜁𝜂 𝐵 and this applies also to their corresponding construc-
tors, when they are comparable at the same type.
See Conversion rules for more details on convertibility and subtyping. The following is an example of a record with
non-trivial subtyping relation:

Polymorphic Cumulative Record packType := {pk : Type}.
packType is defined
pk is defined

packType binds a covariant universe, i.e.

𝐸[Γ] ⊢ packType@{𝑖} =𝛽𝛿𝜄𝜁𝜂 packType@{𝑗} whenever 𝑖 ≤ 𝑗

Cumulative inductive types, coinductive types, variants and records only make sense when they are universe polymorphic.
Therefore, an error is issued whenever the user uses the Cumulative or NonCumulative prefix in a monomorphic
context. Notice that this is not the case for the Polymorphic Inductive Cumulativity flag. That is, this flag,
when set, makes all subsequent polymorphic inductive declarations cumulative (unless, of course the NonCumulative
prefix is used) but has no effect on monomorphic inductive declarations.
Consider the following examples.

Fail Monomorphic Cumulative Inductive Unit := unit.
The command has indeed failed with message:
The Cumulative prefix can only be used in a polymorphic context.

Fail Monomorphic NonCumulative Inductive Unit := unit.
The command has indeed failed with message:
The NonCumulative prefix can only be used in a polymorphic context.

Set Polymorphic Inductive Cumulativity.
Inductive Unit := unit.

Unit is defined

(continues on next page)
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(continued from previous page)
Unit_rect is defined
Unit_ind is defined
Unit_rec is defined
Unit_sind is defined

An example of a proof using cumulativity

Set Universe Polymorphism.
Set Polymorphic Inductive Cumulativity.
Inductive eq@{i} {A : Type@{i}} (x : A) : A -> Type@{i} := eq_refl : eq x x.
Definition funext_type@{a b e} (A : Type@{a}) (B : A -> Type@{b})
:= forall f g : (forall a, B a),

(forall x, eq@{e} (f x) (g x))
-> eq@{e} f g.

Section down.
Universes a b e e'.
Constraint e' < e.
Lemma funext_down {A B}

(H : @funext_type@{a b e} A B) : @funext_type@{a b e'} A B.
Proof.
exact H.
Defined.
End down.

8.14.4 Cumulativity Weak Constraints

Flag: Cumulativity Weak Constraints
When set, which is the default, causes ”weak” constraints to be produced when comparing universes in an irrelevant
position. Processing weak constraints is delayed until minimization time. A weak constraint between u and vwhen
neither is smaller than the other and one is flexible causes them to be unified. Otherwise the constraint is silently
discarded.
This heuristic is experimental and may change in future versions. Disabling weak constraints is more predictable
but may produce arbitrary numbers of universes.

8.14.5 Global and local universes

Each universe is declared in a global or local environment before it can be used. To ensure compatibility, every global
universe is set to be strictly greater than Set when it is introduced, while every local (i.e. polymorphically quantified)
universe is introduced as greater or equal to Set.

8.14.6 Conversion and unification

The semantics of conversion and unification have to be modified a little to account for the new universe instance arguments
to polymorphic references. The semantics respect the fact that definitions are transparent, so indistinguishable from their
bodies during conversion.
This is accomplished by changing one rule of unification, the first- order approximation rule, which applies when two
applicative terms with the same head are compared. It tries to short-cut unfolding by comparing the arguments directly. In
case the constant is universe polymorphic, we allow this rule to fire only when unifying the universes results in instantiating
a so-called flexible universe variables (not given by the user). Similarly for conversion, if such an equation of applicative
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terms fail due to a universe comparison not being satisfied, the terms are unfolded. This change implies that conversion
and unification can have different unfolding behaviors on the same development with universe polymorphism switched on
or off.

8.14.7 Minimization

Universe polymorphism with cumulativity tends to generate many useless inclusion constraints in general. Typically at
each application of a polymorphic constant f, if an argument has expected type Type@{i} and is given a term of type
Type@{j}, a 𝑗 ≤ 𝑖 constraint will be generated. It is however often the case that an equation 𝑗 = 𝑖 would be more
appropriate, when f’s universes are fresh for example. Consider the following example:

Definition id0 := @pidentity nat 0.

Print id0.
id0@{} = pidentity@{Set} 0

: nat

This definition is elaborated by minimizing the universe of id0 to level Set while the more general definition would
keep the fresh level i generated at the application of id and a constraint that Set ≤ 𝑖. This minimization process is
applied only to fresh universe variables. It simply adds an equation between the variable and its lower bound if it is an
atomic universe (i.e. not an algebraic max() universe).
Flag: Universe Minimization ToSet

Turning this flag off (it is on by default) disallows minimization to the sort Set and only collapses floating universes
between themselves.

8.14.8 Explicit Universes

The syntax has been extended to allow users to explicitly bind names to universes and explicitly instantiate polymorphic
definitions.
Command: Universe ident
Command: Polymorphic Universe ident

In the monorphic case, this command declares a new global universe named ident, which can be referred to
using its qualified name as well. Global universe names live in a separate namespace. The command supports
the Polymorphic flag only in sections, meaning the universe quantification will be discharged on each section
definition independently.

Command: Constraint universe_constraint
Command: Polymorphic Constraint universe_constraint

This command declares a new constraint between named universes.

universe_constraint ::= qualid < qualid
qualid <= qualid
qualid = qualid

If consistent, the constraint is then enforced in the global environment. Like Universe, it can be used with
the Polymorphic prefix in sections only to declare constraints discharged at section closing time. One cannot
declare a global constraint on polymorphic universes.
Error: Undeclared universe ident.

Error: Universe inconsistency.
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Polymorphic definitions

For polymorphic definitions, the declaration of (all) universe levels introduced by a definition uses the following syntax:

Polymorphic Definition le@{i j} (A : Type@{i}) : Type@{j} := A.

Print le.
le@{i j} =
fun A : Type@{i} => A

: Type@{i} -> Type@{j}
(* i j |= i <= j *)

Arguments le _%type_scope

During refinement we find that j must be larger or equal than i, as we are using A : Type@{i} <= Type@{j},
hence the generated constraint. At the end of a definition or proof, we check that the only remaining universes are the
ones declared. In the term and in general in proof mode, introduced universe names can be referred to in terms. Note
that local universe names shadow global universe names. During a proof, one can use Show Universes to display the
current context of universes.
It is possible to provide only some universe levels and let Coq infer the others by adding a + in the list of bound universe
levels:

Fail Definition foobar@{u} : Type@{u} := Type.
The command has indeed failed with message:
Universe {Top.50} is unbound.

Definition foobar@{u +} : Type@{u} := Type.
foobar is defined

Set Printing Universes.
Print foobar.

foobar@{u Top.52} = Type@{Top.52}
: Type@{u}

(* u Top.52 |= Top.52 < u *)

This can be used to find which universes need to be explicitly bound in a given definition.
Definitions can also be instantiated explicitly, giving their full instance:

Check (pidentity@{Set}).
pidentity@{Set}

: ?A -> ?A
where
?A : [ |- Set]

Monomorphic Universes k l.
Check (le@{k l}).

le@{k l}
: Type@{k} -> Type@{l}

(* {} |= k <= l *)

User-named universes and the anonymous universe implicitly attached to an explicit Type are considered rigid for uni-
fication and are never minimized. Flexible anonymous universes can be produced with an underscore or by omitting the
annotation to a polymorphic definition.

Check (fun x => x) : Type -> Type.
(fun x : Type@{Top.55} => x) : Type@{Top.55} -> Type@{Top.56}

(continues on next page)
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(continued from previous page)
: Type@{Top.55} -> Type@{Top.56}

(* {Top.56 Top.55} |= Top.55 <= Top.56 *)

Check (fun x => x) : Type -> Type@{_}.
(fun x : Type@{Top.57} => x) : Type@{Top.57} -> Type@{Top.57}

: Type@{Top.57} -> Type@{Top.57}
(* {Top.57} |= *)

Check le@{k _}.
le@{k k}

: Type@{k} -> Type@{k}

Check le.
le@{Top.60 Top.60}

: Type@{Top.60} -> Type@{Top.60}
(* {Top.60} |= *)

Flag: Strict Universe Declaration
Turning this flag off allows one to freely use identifiers for universes without declaring them first, with the semantics
that the first use declares it. In this mode, the universe names are not associated with the definition or proof once
it has been defined. This is meant mainly for debugging purposes.

Flag: Private Polymorphic Universes
This flag, on by default, removes universes which appear only in the body of an opaque polymorphic definition from
the definition’s universe arguments. As such, no value needs to be provided for these universes when instantiating
the definition. Universe constraints are automatically adjusted.
Consider the following definition:

Lemma foo@{i} : Type@{i}.
1 subgoal

============================
Type@{i}

Proof.
exact Type.

No more subgoals.

Qed.
Print foo.

foo@{i} =
Type@{Top.63}

: Type@{i}
(* Public universes:
i |= Set < i
Private universes:
{Top.63} |= Top.63 < i *)

The universe Top.xxx for the Type in the body cannot be accessed, we only care that one exists for any instan-
tiation of the universes appearing in the type of foo. This is guaranteed when the transitive constraint Set <=
Top.xxx < i is verified. Then when using the constant we don’t need to put a value for the inner universe:

Check foo@{_}.
foo@{Top.64}

: Type@{Top.64}
(* {Top.64} |= Set < Top.64 *)
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and when not looking at the body we don’t mention the private universe:

About foo.
foo@{i} : Type@{i}
(* i |= Set < i *)

foo is universe polymorphic
foo is opaque
Expands to: Constant Top.foo

To recover the same behaviour with regard to universes as Defined, the Private Polymorphic
Universes flag may be unset:

Unset Private Polymorphic Universes.
Lemma bar : Type.

1 subgoal

============================
Type@{Top.65}

Proof.
exact Type.

No more subgoals.

Qed.
About bar.

bar@{Top.65 Top.66} : Type@{Top.65}
(* Top.65 Top.66 |= Top.66 < Top.65 *)

bar is universe polymorphic
bar is opaque
Expands to: Constant Top.bar

Fail Check bar@{_}.
The command has indeed failed with message:
Universe instance should have length 2.

Check bar@{_ _}.
bar@{Top.68
Top.69}

: Type@{Top.68}
(* {Top.69 Top.68} |= Top.69 < Top.68 *)

Note that named universes are always public.

Set Private Polymorphic Universes.
Unset Strict Universe Declaration.
Lemma baz : Type@{outer}.

1 subgoal

============================
Type@{outer}

Proof.
exact Type@{inner}.

No more subgoals.

Qed.

(continues on next page)
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(continued from previous page)
About baz.

baz@{outer inner} : Type@{outer}
(* outer inner |= inner < outer *)

baz is universe polymorphic
baz is opaque
Expands to: Constant Top.baz

8.14.9 Universe polymorphism and sections

Variables, Context, Universe and Constraint in a section support polymorphism. This means that the
universe variables and their associated constraints are discharged polymorphically over definitions that use them. In other
words, two definitions in the section sharing a common variable will both get parameterized by the universes produced by
the variable declaration. This is in contrast to a “mononorphic” variable which introduces global universes and constraints,
making the two definitions depend on the same global universes associated to the variable.
It is possible to mix universe polymorphism and monomorphism in sections, except in the following ways:

• no monomorphic constraint may refer to a polymorphic universe:

Section Foo.
Polymorphic Universe i.
Fail Constraint i = i.

The command has indeed failed with message:
Cannot add monomorphic constraints which refer to section polymorphic␣

↪universes.

This includes constraints implicitly declared by commands such as Variable, which may need to be used with
universe polymorphism activated (locally by attribute or globally by option):

Fail Variable A : (Type@{i} : Type).
The command has indeed failed with message:
Cannot add monomorphic constraints which refer to section polymorphic␣

↪universes.

Polymorphic Variable A : (Type@{i} : Type).
A is declared

(in the above example the anonymous Type constrains polymorphic universe i to be strictly smaller.)
• no monomorphic constant or inductive may be declared if polymorphic universes or universe constraints are present.

These restrictions are required in order to produce a sensible result when closing the section (the requirement on constants
and inductives is stricter than the one on constraints, because constants and inductives are abstracted by all the section’s
polymorphic universes and constraints).

8.15 SProp (proof irrelevant propositions)

Warning: The status of strict propositions is experimental.

This section describes the extension of Coq with definitionally proof irrelevant propositions (types in the sort SProp, also
known as strict propositions) as described in [GCST19].
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Using SPropmay be prevented by passing -disallow-sprop to the Coq program or using Allow StrictProp.

Flag: Allow StrictProp
Allows using SProp when set and forbids it when unset. The initial value depends on whether you used the com-
mand line -disallow-sprop and -allow-sprop.

Error: SProp not allowed, you need to Set Allow StrictProp or to use the -allow-sprop command-line-flag.

Some of the definitions described in this document are available through Coq.Logic.StrictProp, which see.

8.15.1 Basic constructs

The purpose of SProp is to provide types where all elements are convertible:
Definition irrelevance (A:SProp) (P:A -> Prop) (x:A) (v:P x) (y:A) : P y := v.

Since we have definitional η-expansion for functions, the property of being a type of definitionally irrelevant values is
impredicative, and so is SProp:
Check fun (A:Type) (B:A -> SProp) => (forall x:A, B x) : SProp.

Warning: Conversion checking through bytecode or native code compilation currently does not understand proof
irrelevance.

In order to keep conversion tractable, cumulativity for SProp is forbidden:
Fail Check (fun (A:SProp) => A : Type).

The command has indeed failed with message:
In environment
A : SProp
The term "A" has type "SProp" while it is expected to have type "Type".

We can explicitly lift strict propositions into the relevant world by using a wrapping inductive type. The inductive stops
definitional proof irrelevance from escaping.

Inductive Box (A:SProp) : Prop := box : A -> Box A.
Arguments box {_} _.

Fail Check fun (A:SProp) (x y : Box A) => eq_refl : x = y.
The command has indeed failed with message:
In environment
A : SProp
x : Box A
y : Box A
The term "eq_refl" has type "x = x" while it is expected to have type
"x = y" (cannot unify "x" and "y").

Definition box_irrelevant (A:SProp) (x y : Box A) : x = y
:= match x, y with box x, box y => eq_refl end.

In the other direction, we can use impredicativity to ”squash” a relevant type, making an irrelevant approximation.
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Definition iSquash (A:Type) : SProp
:= forall P : SProp, (A -> P) -> P.

Definition isquash A : A -> iSquash A
:= fun a P f => f a.

Definition iSquash_sind A (P : iSquash A -> SProp) (H : forall x : A, P (isquash A x))
: forall x : iSquash A, P x
:= fun x => x (P x) (H : A -> P x).

Or more conveniently (but equivalently)

Inductive Squash (A:Type) : SProp := squash : A -> Squash A.

Most inductives types defined in SProp are squashed types, i.e. they can only be eliminated to construct proofs of other
strict propositions. Empty types are the only exception.

Inductive sEmpty : SProp := .

Check sEmpty_rect.
sEmpty_rect

: forall (P : sEmpty -> Type) (s : sEmpty), P s

Note: Eliminators to strict propositions are called foo_sind, in the same way that eliminators to propositions are
called foo_ind.

Primitive records in SProp are allowed when fields are strict propositions, for instance:
Set Primitive Projections.
Record sProd (A B : SProp) : SProp := { sfst : A; ssnd : B }.

On the other hand, to avoid having definitionally irrelevant types in non-SProp sorts (through record η-extensionality),
primitive records in relevant sorts must have at least one relevant field.

Set Warnings "+non-primitive-record".
Fail Record rBox (A:SProp) : Prop := rbox { runbox : A }.

The command has indeed failed with message:
The record rBox could not be defined as a primitive record

Record ssig (A:Type) (P:A -> SProp) : Type := { spr1 : A; spr2 : P spr1 }.

Note that rBox works as an emulated record, which is equivalent to the Box inductive.

8.15.2 Encodings for strict propositions

The elimination for unit types can be encoded by a trivial function thanks to proof irrelevance:

Inductive sUnit : SProp := stt.
Definition sUnit_rect (P:sUnit->Type) (v:P stt) (x:sUnit) : P x := v.

By using empty and unit types as base values, we can encode other strict propositions. For instance:

Definition is_true (b:bool) : SProp := if b then sUnit else sEmpty.

Definition is_true_eq_true b : is_true b -> true = b

(continues on next page)
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:= match b with

| true => fun _ => eq_refl
| false => sEmpty_ind _
end.

Definition eq_true_is_true b (H:true=b) : is_true b
:= match H in _ = x return is_true x with eq_refl => stt end.

8.15.3 Issues with non-cumulativity

During normal term elaboration, we don’t always know that a type is a strict proposition early enough. For instance:

Definition constant_0 : ?[T] -> nat := fun _ : sUnit => 0.

While checking the type of the constant, we only know that ?[T] must inhabit some sort. Putting it in some floating
universe u would disallow instantiating it by sUnit : SProp.
In order to make the system usable without having to annotate every instance of SProp, we consider SProp to be a
subtype of every universe during elaboration (i.e. outside the kernel). Then once we have a fully elaborated term it is
sent to the kernel which will check that we didn’t actually need cumulativity of SProp (in the example above, u doesn’t
appear in the final term).
This means that some errors will be delayed until Qed:

Lemma foo : Prop.
Proof.
pose (fun A : SProp => A : Type); exact True.

Fail Qed.
The command has indeed failed with message:
In environment
A : SProp
The term "A" has type "SProp" while it is expected to have type "Type".

Abort.

Flag: Elaboration StrictProp Cumulativity
Unset this flag (it is on by default) to be strict with regard to SProp cumulativity during elaboration.

The implementation of proof irrelevance uses inferred ”relevance” marks on binders to determine which variables are
irrelevant. Together with non-cumulativity this allows us to avoid retyping during conversion. However during elaboration
cumulativity is allowed and so the algorithm may miss some irrelevance:

Fail Definition late_mark := fun (A:SProp) (P:A -> Prop) x y (v:P x) => v : P y.
The command has indeed failed with message:
In environment
A : SProp
P : A -> Prop
x : A
y : A
v : P x
The term "v" has type "P x" while it is expected to have type "P y".

The binders for x and y are created before their type is known to be A, so they’re not marked irrelevant. This can be
avoided with sufficient annotation of binders (see irrelevance at the beginning of this chapter) or by bypassing the
conversion check in tactics.

8.15. SProp (proof irrelevant propositions) 631
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Definition late_mark := fun (A:SProp) (P:A -> Prop) x y (v:P x) =>
ltac:(exact_no_check v) : P y.

The kernel will re-infer the marks on the fully elaborated term, and so correctly converts x and y.
Warning: Bad relevance

This is a developer warning, disabled by default. It is emitted by the kernel when it is passed a term with incorrect
relevance marks. To avoid conversion issues as in late_mark you may wish to use it to find when your tactics
are producing incorrect marks.

632 Chapter 8. Addendum
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a
Abort, 245
About, 228
Add @table, 229
Add Field, 601
Add LoadPath, 237
Add ML Path, 238
Add Morphism, 611
Add Parametric Morphism, 607
Add Parametric Relation, 606
Add Rec LoadPath, 237
Add Rec ML Path, 238
Add Relation, 606
Add Ring, 596
Add Setoid, 611
Admit Obligations, 591
Admitted, 245
Arguments (assert), 170
Arguments (bidirectionality hints), 179
Arguments (clear implicits), 165
Arguments (default implicits), 167
Arguments (implicits), 165
Arguments (rename), 170
Arguments (scopes), 492
Axiom, 126
Axioms, 126

b
Back, 238
BackTo, 238
Bind Scope, 494

c
Canonical, 171
Cd, 237
Check, 230
Class, 568
Close Scope, 492
Coercion, 549
CoFixpoint, 136
CoInductive, 133
Collection, 247

Combined Scheme, 504
Compute, 230
Conjecture, 126
Conjectures, 126
Constraint, 624
Context, 153
Corollary, 138
Create HintDb, 314
Cumulative, 621

d
Declare Custom Entry, 487
Declare Instance, 569
Declare Left Step, 303
Declare ML Module, 237
Declare Module, 156
Declare Morphism, 611
Declare Reduction, 242
Declare Right Step, 303
Declare Scope, 491
Defined, 245
Definition, 127
Delimit Scope, 492
Derive, 618
Derive Inversion, 509
Drop, 239

e
End, 152
Eval, 230
Example, 127
Existential, 247
Existing Instance, 569
Export, 160
Extract Constant, 581
Extract Inductive, 582
Extract Inlined Constant, 582
Extraction, 579
Extraction Blacklist, 583
Extraction Implicit, 581
Extraction Inline, 580
Extraction Language, 580
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Extraction Library, 579
Extraction NoInline, 580
Extraction TestCompile, 579

f
Fact, 138
Fail, 239
Fixpoint, 134
Focus, 248
From ... Require ..., 236
Function, 149
Functional Scheme, 505

g
Generalizable, 175
Generalizable All Variables, 175
Generalizable No Variables, 175
Global, 242
Global Close Scope, 492
Global Generalizable, 175
Global Instance, 569
Global Opaque, 241
Global Open Scope, 492
Global Transparent, 241
Goal, 245
Grab Existential Variables, 247
Guarded, 257

h
Hint, 314
Hint Constants, 316
Hint Constructors, 315
Hint Cut, 316
Hint Extern, 316
Hint Immediate, 315
Hint Mode, 317
Hint Opaque, 316
Hint Resolve, 315
Hint Rewrite, 318
Hint Transparent, 316
Hint Unfold, 315
Hint Variables, 316
Hint View for, 476
Hint View for apply, 470
Hint View for move, 470
Hypotheses, 153
Hypotheses (outside a section), 126
Hypothesis, 153
Hypothesis (outside a section), 126

i
Identity Coercion, 550
Implicit Types, 173
Import, 159

Include, 154
Inductive, 127
Infix, 482
Info, 359
Inline, 155
Inspect, 228
Instance, 568

l
Lemma, 138
Let, 153
Let (outside a section), 127
Let CoFixpoint, 153
Let Fixpoint, 153
Load, 235
Local, 242
Local Close Scope, 492
Local Declare Custom Entry, 491
Local Definition, 127
Local Notation, 491
Local Open Scope, 492
Local Parameter, 126
Locate, 234
Locate File, 238
Locate Library, 238
Ltac, 352
Ltac2, 366
Ltac2 Eval, 374
Ltac2 Notation, 374
Ltac2 Set, 366
Ltac2 Type, 364

m
Module, 154
Module Type, 155
Monomorphic, 621

n
Next Obligation, 591
NonCumulative, 621
Notation, 478
Numeral Notation, 497

o
Obligation, 591
Obligation Tactic, 591
Obligations, 591
Opaque, 240
Open Scope, 492
Optimize Heap, 259
Optimize Proof, 258

p
Parameter, 125
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Parameters, 126
Polymorphic, 621
Polymorphic Constraint, 624
Polymorphic Universe, 624
Prenex Implicits, 390
Preterm, 592
Primitive, 244
Print, 228
Print All, 228
Print All Dependencies, 230
Print Assumptions, 230
Print Canonical Projections, 172
Print Classes, 550
Print Coercion Paths, 550
Print Coercions, 550
Print Custom Grammar, 489
Print Extraction Blacklist, 583
Print Extraction Inline, 581
Print Firstorder Solver, 321
Print Grammar constr, 480
Print Grammar pattern, 480
Print Grammar tactic, 501
Print Graph, 550
Print Hint, 314
Print HintDb, 318
Print Implicit, 170
Print Instances, 611
Print Libraries, 237
Print LoadPath, 238
Print Ltac, 352
Print Ltac Signatures, 352
Print ML Modules, 237
Print ML Path, 238
Print Module, 160
Print Module Type, 160
Print Opaque Dependencies, 230
Print Options, 229
Print Rewrite HintDb, 319
Print Scope, 496
Print Scopes, 496
Print Strategy, 241
Print Table @table, 229
Print Tables, 229
Print Term, 228
Print Transparent Dependencies, 230
Print Typing Flags, 243
Print Universes, 176
Print Universes Subgraph, 176
Print Visibility, 496
Program Definition, 589
Program Fixpoint, 590
Program Instance, 569
Program Lemma, 591
Proof, 246

Proof `term`, 246
Proof using, 246
Proof with, 319
Proposition, 138
Pwd, 237

q
Qed, 245
Quit, 239

r
Record, 141
Recursive Extraction, 579
Recursive Extraction Library, 579
Redirect, 239
Register, 244
Register Inline, 244
Remark, 138
Remove @table, 229
Remove Hints, 318
Remove LoadPath, 237
Require, 236
Require Export, 236
Require Import, 236
Reserved Notation, 482
Reset, 238
Reset Extraction Blacklist, 583
Reset Extraction Inline, 581
Reset Ltac Profile, 360
Restart, 248

s
Save, 245
Scheme, 501
Scheme Equality, 502
Search, 230
Search (ssreflect), 472
SearchAbout, 231
SearchHead, 231
SearchPattern, 232
SearchRewrite, 233
Section, 152
Separate Extraction, 579
Set, 229
Set @option, 229
Show, 255
Show Conjectures, 256
Show Existentials, 256
Show Goal, 256
Show Intro, 256
Show Intros, 256
Show Ltac Profile, 360
Show Obligation Tactic, 591
Show Proof, 256
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Show Universes, 256
Show Zify BinOp, 578
Show Zify BinRel, 578
Show Zify CstOp, 578
Show Zify InjTyp, 578
Show Zify Spec, 578
Show Zify UnOp, 578
Solve All Obligations, 591
Solve Obligations, 591
Strategy, 241
String Notation, 499
Structure, 551
SubClass, 550

t
Tactic Notation, 500
Test, 229
Test @table for, 229
Theorem, 137
Time, 239
Timeout, 239
Transparent, 241
Typeclasses eauto, 571
Typeclasses Opaque, 570
Typeclasses Transparent, 570

u
Undelimit Scope, 492
Undo, 248
Unfocus, 248
Unfocused, 248
Universe, 624
Unset, 229
Unset @option, 229
Unshelve, 331

v
Variable, 153
Variable (outside a section), 126
Variables, 153
Variables (outside a section), 126
Variant, 131
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+
+ (backtracking branching), 340

.

... : ... (goal selector), 338

... : ... (ssreflect), 404

=
=>, 407

[
[> ... | ... | ... ] (dispatch), 338

a
abstract, 351
abstract (ssreflect), 406
absurd, 283
admit, 283
all: ..., 339
apply, 269
apply (ssreflect), 403
apply ... in, 272
apply ... in ... as, 272
assert, 280
assert_fails, 341
assert_succeeds, 342
assumption, 267
auto, 311
autoapply, 570
autorewrite, 313
autounfold, 313

b
btauto, 326
by, 416

c
case, 285
case (ssreflect), 402
cbn, 306
cbv, 304
change, 303

change_no_check, 332
classical_left, 326
classical_right, 326
clear, 275
clearbody, 275
cofix, 300
compare, 325
compute, 305
congr, 450
congruence, 322
congruence with, 323
constr_eq, 324
constr_eq_strict, 324
constructor, 273
contradict, 283
contradiction, 283
convert_concl_no_check, 333
cut, 281
cutrewrite, 302
cycle, 328

d
debug auto, 312
debug trivial, 312
decide equality, 325
decompose, 279
dependent destruction, 290
dependent induction, 288
dependent inversion, 295
dependent inversion ... with ..., 296
dependent rewrite ->, 325
dependent rewrite <-, 325
destruct, 283
destruct ... eqn:, 284
dintuition, 321
discriminate, 291
discrR, 191
do, 339
do (ssreflect), 418
done, 416
double induction, 288
dtauto, 320
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e
eapply, 269
eassert, 280
eassumption, 267
easy, 314
eauto, 312
ecase, 285
econstructor, 273
edestruct, 284
ediscriminate, 291
eelim, 288
eenough, 281
eexact, 267
eexists, 273
einduction, 286
einjection, 293
eintros, 275
eleft, 273
elim, 287
elim (ssreflect), 402
elim ... with, 288
elimtype, 288
enough, 281
epose, 279
epose proof, 281
eremember, 279
erewrite, 302
eright, 273
eset, 278
esimplify_eq, 325
esplit, 273
evar, 282
exact, 267
exact_no_check, 333
exactly_once, 341
exfalso, 283
exists, 273

f
f_equal, 324
fail, 342
field, 327
field_simplify, 327
field_simplify_eq, 327
finish_timing, 346
first, 340
first (ssreflect), 417
first last, 417
firstorder, 321
fix, 300
fold, 309
function induction, 290
functional inversion, 326

g
generalize, 281
generally have, 475
gfail, 342
give_up, 331
guard, 351

h
has_evar, 324
have, 420
hnf, 306

i
idtac, 342
in, 419
induction, 285
induction ... using ..., 287
info_trivial, 312
injection, 292
instantiate, 282
intro, 274
intros, 274
intros ..., 275
intuition, 321
inversion, 294
inversion ... using ..., 296
inversion_clear, 294
inversion_sigma, 296
is_evar, 324
is_var, 324

l
lapply, 270
last, 417
last first, 417
lazy, 304
left, 273
let ... := ..., 346
lia, 576
lra, 576
ltac-seq, 338

m
match goal, 348
move, 401
move ... after ..., 276
move ... at bottom, 276
move ... at top, 276
move ... before ..., 276

n
native_cast_no_check, 334
native_compute, 305
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nia, 578
notypeclasses refine, 268
now, 314
nra, 577
nsatz, 603

o
omega, 327
once, 341
only ... : ..., 338
optimize_heap, 362
over, 446

p
par: ..., 339
pattern, 310
pose, 279
pose (ssreflect), 391
pose proof, 280
progress, 340
psatz, 578

r
red, 306
refine, 267
reflexivity, 324
remember, 279
rename, 278
repeat, 339
replace, 302
reset ltac profile, 362
restart_timer, 345
revert, 276
revert dependent, 276
revgoals, 330
rewrite, 301
rewrite (ssreflect), 431
rewrite_strat, 614
right, 273
ring, 327
ring_simplify, 327
rtauto, 321

s
set, 278
set (ssreflect), 392
setoid_reflexivity, 611
setoid_replace, 611
setoid_rewrite, 611
setoid_symmetry, 611
setoid_transitivity, 611
shelve, 331
shelve_unifiable, 331
show ltac profile, 362

simpl, 306
simple apply, 270
simple destruct, 285
simple eapply, 270
simple induction, 288
simple inversion, 296
simple notypeclasses refine, 268
simple refine, 268
simplify_eq, 325
solve, 342
solve_constraints, 332
specialize, 281
split, 273
split_Rabs, 191
split_Rmult, 191
start ltac profiling, 362
stepl, 303
stepr, 303
stop ltac profiling, 362
subst, 302
suff, 475
suffices, 475
swap, 329
symmetry, 324

t
tauto, 320
time, 345
time_constr, 345
timeout, 345
transitivity, 325
transparent_abstract, 351
trivial, 312
try, 339
tryif, 341
typeclasses eauto, 569

u
under, 444
unfold, 308
unify, 324
unlock, 449
unshelve, 331

v
vm_cast_no_check, 334
vm_compute, 305

w
without loss, 428
wlog, 428

z
zify, 578
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|
|| (left-biased branching), 340
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a
Allow StrictProp, 629
Asymmetric Patterns, 542
Auto Template Polymorphism, 210

b
Boolean Equality Schemes, 503
Bracketing Last Introduction Pattern,

262
Bullet Behavior, 255

c
Case Analysis Schemes, 503
Congruence Verbose, 323
Contextual Implicit, 169
Coqtop Exit On Error, 511
Cumulativity Weak Constraints, 623

d
Debug Auto, 312
Debug Cbv, 306
Debug Eauto, 313
Debug RAKAM, 308
Debug Ssreflect, 476
Debug SsrMatching, 476
Debug Tactic Unification, 274
Debug Trivial, 312
Debug Unification, 268
Decidable Equality Schemes, 503
Default Goal Selector, 259
Default Proof Mode, 248
Default Proof Using, 247
Default Timeout, 239
Diffs, 257

e
Elaboration StrictProp Cumulativity, 631
Elimination Schemes, 503
Extraction AutoInline, 580
Extraction Conservative Types, 580
Extraction File Comment, 584

Extraction Flag, 584
Extraction KeepSingleton, 580
Extraction Optimize, 580
Extraction SafeImplicits, 581
Extraction TypeExpand, 584

f
Fast Name Printing, 235
Firstorder Depth, 322
Firstorder Solver, 321

g
Guard Checking, 242

h
Hide Obligations, 592
Hyps Limit, 258

i
Implicit Arguments, 168
Info Auto, 312
Info Eauto, 313
Info Level, 360
Info Trivial, 312
Intuition Negation Unfolding, 321

k
Keep Proof Equalities, 294
Keyed Unification, 302

l
Lia Cache, 575
Loose Hint Behavior, 319
Ltac Backtrace, 359
Ltac Batch Debug, 360
Ltac Debug, 360
Ltac Profiling, 360
Ltac2 Backtrace, 375

m
Mangle Names, 332
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Mangle Names Prefix, 332
Maximal Implicit Insertion, 169

n
NativeCompute Profile Filename, 306
NativeCompute Profiling, 305
Nested Proofs Allowed, 258
Nia Cache, 575
Nonrecursive Elimination Schemes, 503
Nra Cache, 575

o
Omega Action, 574
Omega System, 574
Omega UseLocalDefs, 574

p
Parsing Explicit, 171
Polymorphic Inductive Cumulativity, 621
Positivity Checking, 243
Primitive Projections, 144
Printing All, 175
Printing Allow Match Default Clause, 148
Printing Coercion, 550
Printing Coercions, 550
Printing Compact Contexts, 240
Printing Constructor, 142
Printing Dependent Evars Line, 240
Printing Depth, 240
Printing Existential Instances, 177
Printing Factorizable Match Patterns,

147
Printing If, 148
Printing Implicit, 170
Printing Implicit Defensive, 170
Printing Let, 148
Printing Matching, 147
Printing Notations, 483
Printing Primitive Projection

Parameters, 144
Printing Projections, 143
Printing Record, 142
Printing Records, 142
Printing Synth, 148
Printing Unfocused, 240
Printing Universes, 176
Printing Width, 240
Printing Wildcard, 148
Private Polymorphic Universes, 626
Program Cases, 588
Program Generalized Coercion, 588
Program Mode, 589

r
Regular Subst Tactic, 303
Reversible Pattern Implicit, 169
Rewriting Schemes, 503

s
Search Blacklist, 234
Search Output Name Only, 240
Short Module Printing, 160
Shrink Obligations, 592
Silent, 240
Simplex, 575
Solve Unification Constraints, 332
SsrHave NoTCResolution, 427
SsrIdents, 387
SsrOldRewriteGoalsOrder, 433
SsrRewrite, 387
Stable Omega, 574
Strict Implicit, 168
Strict Universe Declaration, 626
Strongly Strict Implicit, 168
Structural Injection, 294
Suggest Proof Using, 247

t
Template Check, 210
Transparent Obligations, 592
Typeclass Resolution For Conversion, 571
Typeclasses Axioms Are Instances, 571
Typeclasses Debug, 571
Typeclasses Debug Verbosity, 571
Typeclasses Dependency Order, 570
Typeclasses Depth, 571
Typeclasses Filtered Unification, 570
Typeclasses Iterative Deepening, 571
Typeclasses Limit Intros, 570
Typeclasses Strict Resolution, 571
Typeclasses Unique Instances, 571
Typeclasses Unique Solutions, 571

u
Uniform Inductive Parameters, 130
Universal Lemma Under Conjunction, 272
Universe Checking, 243
Universe Minimization ToSet, 624
Universe Polymorphism, 621

w
Warnings, 240
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@
@ident already exists. (Axiom), 126
@ident already exists. (Definition), 127
@ident already exists. (Let), 153
@ident already exists. (Program

Definition), 589
@ident already exists. (Theorem), 138
@ident already exists. (Variable), 153

a
Argument number ‘num’ is a trailing

implicit so must be maximal, 166
Argument of match does not evaluate to

a term, 347
Arguments of ring_simplify do not have

all the same type, 595
Attempt to save an incomplete proof, 245
Automatically declaring ‘ident’ as

template polymorphic, 210

b
Bad lemma for decidability of equality,

598
Bad magic number, 236
Bad occurrence number of ‘qualid’, 309
Bad relevance, 632
Bad ring structure, 598
Brackets do not support multi-goal

selectors, 251

c
Cannot build functional inversion

principle, 151
Cannot coerce ‘qualid’ to an evaluable

reference, 308
Cannot define graph for ‘ident’, 150
Cannot define principle(s) for ‘ident’,

151
Cannot find a declared ring structure

for equality ‘term’, 595
Cannot find a declared ring structure

over ‘term’, 595

Cannot find induction information on
‘qualid’, 291

Cannot find inversion information for
hypothesis ‘ident’, 326

Cannot find library foo in loadpath, 236
Cannot find the source class of

‘qualid’, 549
Cannot handle mutually (co)inductive

records, 144
Cannot infer a term for this

placeholder. (Casual use of
implicit arguments), 164

Cannot infer a term for this
placeholder. (refine), 268

Cannot interpret in ‘scope’ because
‘ident’ could not be found in
the current environment, 498

Cannot interpret this number as a
value of type ‘type’, 498

Cannot interpret this string as a
value of type ‘type’, 499

Cannot load qualid: no physical path
bound to dirpath, 236

Cannot move ‘ident’ after ‘ident’: it
depends on ‘ident’, 276

Cannot move ‘ident’ after ‘ident’: it
occurs in the type of ‘ident’,
276

Cannot recognize a boolean equality, 327
Cannot recognize ‘class’ as a source

class of ‘qualid’, 549
Cannot solve the goal, 342
Cannot use mutual definition with

well-founded recursion or
measure, 150

Can’t find file ‘ident’ on loadpath, 235
Compiled library ‘ident’.vo makes

inconsistent assumptions over
library qualid, 236

Condition not satisfied, 351
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d
Debug mode not available in the IDE, 360

e
Either there is a type incompatibility

or the problem involves
dependencies, 547

f
Failed to progress, 340
File not found on loadpath: ‘string’,

237
Files processed by Load cannot leave

open proofs, 235
Found target class ... instead of ...,

549
Funclass cannot be a source class, 549

g
goal does not satisfy the expected

preconditions, 293
Goal is solvable by congruence but

some arguments are missing. Try
congruence with ‘term’…‘term’,
replacing metavariables by
arbitrary terms, 323

h
Hypothesis ‘ident’ must contain at

least one Function, 326

i
I don’t know how to handle dependent

equality, 323
Ignored instance declaration for

“‘ident’”: “‘term’” is not a
class, 568

Ill-formed recursive definition, 592
In environment … the term: ‘term’ does

not have type ‘type’. Actually,
it has type ..., 589

Incorrect number of tactics (expected
N tactics, was given M), 444

Inductive ‘ident’ cannot be made
template polymorphic, 210

Invalid argument, 268
Invalid backtrack, 238

l
Load is not supported inside proofs, 235
Loading of ML object file forbidden in

a native Coq, 237

m
Module/section ‘qualid’ not found, 232

n
Nested proofs are not allowed unless

you turn the Nested Proofs
Allowed flag on, 138

New coercion path ... is ambiguous
with existing ..., 549

No applicable tactic, 340
No argument name ‘ident’, 150
No discriminable equalities, 292
No evars, 324
No focused proof, 245
No focused proof (No proof-editing in

progress), 245
No focused proof to restart, 248
No head constant to reduce, 306
No matching clauses for match, 347
No matching clauses for match goal, 349
No primitive equality found, 291
No product even after head-reduction,

274
No progress made, 614
No such assumption, 267
No such binder, 260
No such goal, 255
No such goal (‘ident’), 251
No such goal (‘num’), 251
No such goal. (fail), 343
No such goal. (Goal selector), 339
No such goal. Focus next goal with

bullet ‘bullet’, 255
No such hypothesis, 275
No such hypothesis in current goal, 274
No such hypothesis: ‘ident’, 275
No such label ‘ident’, 155
Non exhaustive pattern matching, 547
Non strictly positive occurrence of

‘ident’ in ‘type’, 128
Not a context variable, 349
Not a discriminable equality, 291
Not a primitive equality, 293
Not a projectable equality but a

discriminable one, 293
Not a proposition or a type, 280
Not a valid ring equation, 595
Not a variable or hypothesis, 324
Not an evar, 324
Not an exact proof, 267
Not an inductive goal with 1

constructor, 273
Not an inductive goal with 2

constructors, 273
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Not an inductive product, 273
Not convertible, 303
Not enough constructors, 273
Not equal, 324
Not equal (due to universes), 324
Not reducible, 306
Not the right number of induction

arguments, 291
Not the right number of missing

arguments, 260
Notation ‘string’ is deprecated since

‘string’. ‘string’, 139
Nothing to do, it is an equality

between convertible terms, 293
Nothing to inject, 293
Nothing to rewrite, 614

o
omega can't solve this system, 573
omega: Can't solve a goal with

equality on type ..., 573
omega: Can't solve a goal with

non-linear products, 573
omega: Can't solve a goal with

proposition variables, 573
omega: Not a quantifier-free goal, 573
omega: Unrecognized atomic

proposition: ..., 573
omega: Unrecognized predicate or

connective: ‘ident’, 573
omega: Unrecognized proposition, 573

p
Proof is not complete. (abstract), 352
Proof is not complete. (assert), 280

r
Records declared with the keyword

Record or Structure cannot be
recursive, 144

Refine passed ill-formed term, 268
Require is not allowed inside a module

or a module type, 236
Ring operation should be declared as a

morphism, 598

s
Signature components for label ‘ident’

do not match, 155
SProp not allowed, you need to Set

Allow StrictProp or to use the
-allow-sprop command-line-flag,
629

Stack overflow or segmentation fault
happens when working with large
numbers in ‘type’ (threshold
may vary depending on your
system limits and on the
command executed), 498

Statement without assumptions, 272
Syntax error: [prim:reference]

expected after 'Notation' (in
[vernac:command]), 498

Syntax error: [prim:reference]
expected after [prim:reference]
(in [vernac:command]), 498

t
Tactic Failure message (level ‘num’),

343
Tactic generated a subgoal identical

to the original goal. This
happens if ‘term’ does not
occur in the goal, 301

Tactic Notation ‘qualid’ is deprecated
since ‘string’. ‘string’, 139

Tactic ‘qualid’ is deprecated since
‘string’. ‘string’, 139

Terms do not have convertible types, 302
The 'abstract after' directive has

no effect when the parsing
function (‘ident’) targets an
option type, 499

The command has not failed!, 239
The conclusion is not a substitutive

equation, 324
The conclusion of ‘type’ is not valid;

it must be built from ‘ident’,
128

The constant ‘numeral’ is not a
binary64 floating-point
value. A closest value will
be used and unambiguously
printed ‘numeral’.
[inexact-float,parsing], 194

The constructor ‘ident’ expects ‘num’
arguments, 546

The elimination predicate term should
be of arity ‘num’ (for non
dependent case) or ‘num’ (for
dependent case), 547

The file :n:`‘ident’.vo` contains
library dirpath and not library
dirpath’, 236

The recursive argument must be
specified, 150

The reference is not unfoldable, 242
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The reference X was not found in the
current environment, 378

The reference ‘ident’ was not found in
the current environment, 498

The reference ‘qualid’ was not found
in the current environment, 230

The term ‘term’ has type ‘type’ which
should be Set, Prop or Type, 138

The term ‘term’ has type ‘type’ while
it is expected to have type
‘type’', 127

The variable ‘ident’ is already
defined, 278

The ‘num’ th argument of ‘ident’ must
be ‘ident’ in ‘type’, 131

The ‘term’ provided does not end with
an equation, 301

This is not the last opened module, 155
This is not the last opened module

type, 155
This is not the last opened section, 153
This object does not support universe

names, 228
This proof is focused, but cannot be

unfocused this way, 251
This tactic has more than one success,

341
To avoid stack overflow, large numbers

in ‘type’ are interpreted as
applications of ‘ident’, 499

Too few occurrences, 304
Trying to mask the absolute name

‘qualid’!, 160

u
Unable to apply, 272
Unable to find an instance for the

variables ‘ident’…‘ident’, 269
Unable to infer a match predicate, 547
Unable to satisfy the rewriting

constraints, 614
Unable to unify ... with ..., 324
Unable to unify ‘term’ with ‘term’, 269
Unbound [value|constructor] X, 378
Unbound context identifier ‘ident’, 349
Undeclared universe ‘ident’, 624
Unexpected non-option term ‘term’

while parsing a numeral
notation, 498

Unexpected non-option term ‘term’
while parsing a string notation,
500

Unexpected term ‘term’ while parsing a
numeral notation, 498

Unexpected term ‘term’ while parsing a
string notation, 500

Universe inconsistency, 624
Universe instance should have length

‘num’, 228
Unknown inductive type, 256
Unsupported attribute, 140
Use of ‘string’ Notation is deprecated

as it is inconsistent with
pattern syntax, 491

v
Variable ‘ident’ is already declared,

280

w
When ‘term’ contains more than one non

dependent product the tactic
lapply only takes into account
the first product, 270

Wrong bullet ‘bullet’: Bullet ‘bullet’
is mandatory here, 254

Wrong bullet ‘bullet’: Current bullet
‘bullet’ is not finished, 254

y
You should use the “Proof using

[...].” syntax instead of
“Proof.” to enable skipping
this proof which is located
inside a section. Give as
argument to “Proof using” the
list of section variables that
are not needed to typecheck the
statement but that are required
by the proof, 516

‘
‘class’ must be a transparent constant,

550
‘ident’ cannot be defined, 143
‘ident’ is already declared as a

typeclass, 568
‘ident’ is already used, 274
‘ident’ is bound to a notation that

does not denote a reference, 498
‘ident’ is declared as a local axiom

[local-declaration,scope], 126
‘ident’ is declared as a

local definition
[local-declaration,scope], 127

‘ident’ is not a local definition, 276
‘ident’ is used in conclusion, 281
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‘ident’ is used in hypothesis ‘ident’,
281

‘ident’ is used in the conclusion, 275
‘ident’ is used in the hypothesis

‘ident’, 275
‘ident’ should go from Byte.byte or

(list Byte.byte) to ‘type’ or
(option ‘type’), 499

‘ident’ should go from Decimal.int
to ‘type’ or (option ‘type’).
Instead of Decimal.int, the
types Decimal.uint or Z or
Int63.int or Decimal.decimal
could be used (you may need to
require BinNums or Decimal or
Int63 first), 498

‘ident’ should go from ‘type’ to
Byte.byte or (option Byte.byte)
or (list Byte.byte) or (option
(list Byte.byte)), 499

‘ident’ should go from ‘type’ to
Decimal.int or (option
Decimal.int). Instead of
Decimal.int, the types
Decimal.uint or Z or Int63.int
or Decimal.decimal could be
used (you may need to require
BinNums or Decimal or Int63
first), 498

‘ident’: no such entry, 238
‘qualid’ does not occur, 309
‘qualid’ does not respect the uniform

inheritance condition, 549
‘qualid’ is already a coercion, 549
‘qualid’ is not a function, 549
‘qualid’ is not a module, 160
‘qualid’ is not an inductive type, 315
‘qualid’ not a defined object, 228
‘qualid’ not declared, 549
‘term’ cannot be used as a hint, 315
‘type’ is not an inductive type, 498
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Non-alphabetical
- (term), 189
... : ... (goal selector) (tacn), 338
... : ... (ssreflect) (tacn), 404
... : ... (type cast), 122
... <: ..., 122
... <<: ..., 122
* (term), 184, 189
+ (backtracking branching) (tacn), 340
+ (term), 184, 189
:> (coercion), 550
:> (substructure), 567
< (term), 189
<= (term), 189
?= (term), 189
=> (tacn), 407
> (term), 189
>= (term), 189
@ident already exists. (Axiom) (err), 126
@ident already exists. (Definition)

(err), 127
@ident already exists. (Let) (err), 153
@ident already exists. (Program

Definition) (err), 589
@ident already exists. (Theorem) (err),

138
@ident already exists. (Variable) (err),

153
[> ... | ... | ... ] (dispatch) (tacn),

338
_, 122
`{ }, 173
`{! }, 173
`( ), 173
`(! ), 173
{, 248
|| (left-biased branching) (tacn), 340
}, 248
‘class’ must be a transparent constant

(err), 550
‘ident’ cannot be defined (warn), 143
‘ident’ is already declared as a

typeclass (warn), 568
‘ident’ is already used (err), 274, 278
‘ident’ is bound to a notation that

does not denote a reference (err),
498, 500

‘ident’ is declared as a local axiom
[local-declaration,scope] (warn),
126

‘ident’ is declared as a
local definition
[local-declaration,scope] (warn),
127

‘ident’ is not a local definition (err),
276

‘ident’ is used in conclusion (err), 281
‘ident’ is used in hypothesis ‘ident’

(err), 281
‘ident’ is used in the conclusion (err),

275
‘ident’ is used in the hypothesis

‘ident’ (err), 275, 276
‘ident’ should go from Byte.byte or

(list Byte.byte) to ‘type’ or
(option ‘type’) (err), 499

‘ident’ should go from Decimal.int
to ‘type’ or (option ‘type’).
Instead of Decimal.int, the
types Decimal.uint or Z or
Int63.int or Decimal.decimal
could be used (you may need to
require BinNums or Decimal or
Int63 first) (err), 498

‘ident’ should go from ‘type’ to
Byte.byte or (option Byte.byte)
or (list Byte.byte) or (option
(list Byte.byte)) (err), 499

‘ident’ should go from ‘type’ to
Decimal.int or (option
Decimal.int). Instead of
Decimal.int, the types
Decimal.uint or Z or Int63.int
or Decimal.decimal could be
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used (you may need to require
BinNums or Decimal or Int63
first) (err), 498

‘ident’: no such entry (err), 238
‘qualid’ does not occur (err), 309
‘qualid’ does not respect the uniform

inheritance condition (warn), 549
‘qualid’ is already a coercion (err), 549
‘qualid’ is not a function (err), 549
‘qualid’ is not a module (err), 160
‘qualid’ is not an inductive type (err),

315
‘qualid’ not a defined object (err), 228
‘qualid’ not declared (err), 549
‘term’ cannot be used as a hint (err), 315
‘type’ is not an inductive type (err), 498,

500

A
A*B (term), 184
A+B (term), 184
A+{B} (term), 185
{A}+{B} (term), 185
Abort (cmd), 245
About (cmd), 228
abstract (ssreflect) (tacn), 406
abstract (tacn), 351
absurd (tacn), 283
absurd (term), 183
absurd_set (term), 185
Acc (term), 187
Acc_inv (term), 187
Acc_rect (term), 187
Add @table (cmd), 229
Add Field (cmd), 601
Add LoadPath (cmd), 237
Add ML Path (cmd), 238
Add Morphism (cmd), 611
Add Parametric Morphism (cmd), 607
Add Parametric Relation (cmd), 606
Add Rec LoadPath (cmd), 237
Add Rec ML Path (cmd), 238
Add Relation (cmd), 606
Add Ring (cmd), 596
Add Setoid (cmd), 611
admit (tacn), 283
Admit Obligations (cmd), 591
Admitted (cmd), 245
all (term), 182
all: ... (tacnv), 339
Allow StrictProp (flag), 629
and (term), 182
and_rect (term), 185
app (term), 192

apply ... in ... as (tacnv), 272
apply ... in (tacn), 272
apply (ssreflect) (tacn), 403
apply (tacn), 269
Argument number ‘num’ is a trailing

implicit so must be maximal
(warn), 166

Argument of match does not evaluate to
a term (err), 347

Arguments (assert) (cmd), 170
Arguments (bidirectionality hints) (cmd),

179
Arguments (clear implicits) (cmd), 165
Arguments (default implicits) (cmd), 167
Arguments (implicits) (cmd), 165
Arguments (rename) (cmd), 170
Arguments (scopes) (cmd), 492
Arguments of ring_simplify do not have

all the same type (err), 595
Arithmetical notations, 189
assert (tacn), 280
assert_fails (tacn), 341
assert_succeeds (tacn), 342
assumption (tacn), 267
Asymmetric Patterns (flag), 542
Attempt to save an incomplete proof

(err), 245
auto (tacn), 311
Auto Template Polymorphism (flag), 210
autoapply (tacn), 570
Automatically declaring ‘ident’ as

template polymorphic (warn), 210
autorewrite (tacn), 313
autounfold (tacn), 313
Axiom (cmdv), 126
Axioms (cmdv), 126

B
Back (cmd), 238
BackTo (cmd), 238
Bad lemma for decidability of equality

(err), 598
Bad magic number (err), 236
Bad occurrence number of ‘qualid’ (err),

309
Bad relevance (warn), 632
Bad ring structure (err), 598
Bind Scope (cmd), 494
bool (term), 183
bool_choice (term), 185
Boolean Equality Schemes (flag), 503
Bracketing Last Introduction Pattern

(flag), 262
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Brackets do not support multi-goal
selectors (err), 251

btauto (tacn), 326
Bullet Behavior (opt), 255
by (tacn), 416

C
Cannot build functional inversion

principle (warn), 151
Cannot coerce ‘qualid’ to an evaluable

reference (err), 308
Cannot define graph for ‘ident’ (warn),

150
Cannot define principle(s) for ‘ident’

(warn), 151
Cannot find a declared ring structure

for equality ‘term’ (err), 595
Cannot find a declared ring structure

over ‘term’ (err), 595
Cannot find induction information on

‘qualid’ (err), 291
Cannot find inversion information for

hypothesis ‘ident’ (err), 326
Cannot find library foo in loadpath

(err), 236
Cannot find the source class of

‘qualid’ (err), 549
Cannot handle mutually (co)inductive

records (err), 144
Cannot infer a term for this

placeholder. (Casual use of
implicit arguments) (err), 164

Cannot infer a term for this
placeholder. (refine) (err), 268

Cannot interpret in ‘scope’ because
‘ident’ could not be found in
the current environment (err), 498,
500

Cannot interpret this number as a
value of type ‘type’ (err), 498

Cannot interpret this string as a
value of type ‘type’ (err), 499

Cannot load qualid: no physical path
bound to dirpath (err), 236

Cannot move ‘ident’ after ‘ident’: it
depends on ‘ident’ (err), 276

Cannot move ‘ident’ after ‘ident’: it
occurs in the type of ‘ident’
(err), 276

Cannot recognize a boolean equality
(err), 327

Cannot recognize ‘class’ as a source
class of ‘qualid’ (err), 549

Cannot solve the goal (err), 342

Cannot use mutual definition with
well-founded recursion or
measure (err), 150

Canonical (cmd), 171
Can’t find file ‘ident’ on loadpath

(err), 235
case (ssreflect) (tacn), 402
case (tacn), 285
Case Analysis Schemes (flag), 503
cbn (tacn), 306
cbv (tacn), 304
Cd (cmd), 237
change (tacn), 303
change_no_check (tacn), 332
Check (cmd), 230
Choice (term), 185
Choice2 (term), 185
Class (cmd), 568
classical_left (tacn), 326
classical_right (tacn), 326
clear (tacn), 275
clearbody (tacnv), 275
Close Scope (cmd), 492
Coercion (cmd), 549
cofix, 124
cofix (tacn), 300
CoFixpoint (cmd), 136
CoInductive (cmd), 133
Collection (cmd), 247
Combined Scheme (cmd), 504
compare (tacn), 325
Compiled library ‘ident’.vo makes

inconsistent assumptions over
library qualid (err), 236

Compute (cmd), 230
compute (tacnv), 305
Condition not satisfied (err), 351
congr (tacn), 450
congruence (tacn), 322
Congruence Verbose (flag), 323
congruence with (tacnv), 323
conj (term), 182
Conjecture (cmdv), 126
Conjectures (cmdv), 126
Connectives, 182
constr_eq (tacn), 324
constr_eq_strict (tacn), 324
Constraint (cmd), 624
constructor (tacn), 273
Context (cmd), 153
Contextual Implicit (flag), 169
contradict (tacn), 283
contradiction (tacn), 283
convert_concl_no_check (tacnv), 333
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Coqtop Exit On Error (flag), 511
Corollary (cmdv), 138
Create HintDb (cmd), 314
Cumulative (cmd), 621
Cumulativity Weak Constraints (flag), 623
cut (tacnv), 281
cutrewrite (tacnv), 302
cycle (tacn), 328

D
Datatypes, 183
Debug Auto (flag), 312
debug auto (tacnv), 312
Debug Cbv (flag), 306
Debug Eauto (flag), 313
Debug mode not available in the IDE

(err), 360
Debug RAKAM (flag), 308
Debug Ssreflect (flag), 476
Debug SsrMatching (flag), 476
Debug Tactic Unification (flag), 274
Debug Trivial (flag), 312
debug trivial (tacnv), 312
Debug Unification (flag), 268
Decidable Equality Schemes (flag), 503
decide equality (tacn), 325
Declare Custom Entry (cmd), 487
Declare Instance (cmdv), 569
Declare Left Step (cmd), 303
Declare ML Module (cmd), 237
Declare Module (cmd), 156
Declare Morphism (cmd), 611
Declare Reduction (cmd), 242
Declare Right Step (cmd), 303
Declare Scope (cmd), 491
decompose (tacn), 279
Default Goal Selector (opt), 259
Default Proof Mode (opt), 248
Default Proof Using (opt), 247
Default Timeout (opt), 239
Defined (cmdv), 245
Definition (cmd), 127
Delimit Scope (cmd), 492
dependent destruction (tacnv), 290
dependent induction (tacn), 288
dependent inversion ... with ... (tacnv),

296
dependent inversion (tacnv), 295
dependent rewrite <- (tacnv), 325
dependent rewrite -> (tacn), 325
Derive (cmd), 618
Derive Inversion (cmd), 509
destruct ... eqn: (tacnv), 284
destruct (tacn), 283

Diffs (opt), 257
dintuition (tacnv), 321
discriminate (tacn), 291
discrR (tacn), 191
do (ssreflect) (tacn), 418
do (tacn), 339
done (tacn), 416
double induction (tacn), 288
Drop (cmd), 239
dtauto (tacnv), 320

E
eapply (tacnv), 269
eassert (tacnv), 280
eassumption (tacnv), 267
easy (tacn), 314
eauto (tacn), 312
ecase (tacnv), 285
econstructor (tacnv), 273
edestruct (tacnv), 284
ediscriminate (tacnv), 291
eelim (tacnv), 288
eenough (tacnv), 281
eexact (tacnv), 267
eexists (tacnv), 273
einduction (tacnv), 286
einjection (tacnv), 293
eintros (tacn), 275
Either there is a type incompatibility

or the problem involves
dependencies (err), 547

Elaboration StrictProp Cumulativity
(flag), 631

eleft (tacnv), 273
elim ... with (tacnv), 288
elim (ssreflect) (tacn), 402
elim (tacnv), 287
Elimination Schemes (flag), 503
elimtype (tacnv), 288
End (cmd), 152, 155
enough (tacnv), 281
epose (tacnv), 279
epose proof (tacnv), 281
eq (term), 182
eq_add_S (term), 186
eq_ind_r (term), 183
eq_rec_r (term), 183
eq_rect (term), 183, 185
eq_rect_r (term), 183
eq_refl (term), 182
eq_S (term), 186
eq_sym (term), 183
eq_trans (term), 183
Equality, 182
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eremember (tacnv), 279
erewrite (tacnv), 302
eright (tacnv), 273
error (term), 185
eset (tacnv), 278
esimplify_eq (tacnv), 325
esplit (tacnv), 273
Eval (cmd), 230
evar (tacn), 282
ex (term), 182
ex2 (term), 182
ex_intro (term), 182
ex_intro2 (term), 182
exact (tacn), 267
exact_no_check (tacn), 333
exactly_once (tacn), 341
Example (cmdv), 127
Exc (term), 185
exfalso (tacn), 283
exist (term), 184
exist2 (term), 184
Existential (cmd), 247
Existing Instance (cmd), 569
exists (tacnv), 273
exists (term), 182
exists2 (term), 182
existT (term), 184
existT2 (term), 184
Export (cmdv), 160
Extract Constant (cmd), 581
Extract Inductive (cmd), 582
Extract Inlined Constant (cmd), 582
Extraction (cmd), 579
Extraction AutoInline (flag), 580
Extraction Blacklist (cmd), 583
Extraction Conservative Types (flag), 580
Extraction File Comment (opt), 584
Extraction Flag (opt), 584
Extraction Implicit (cmd), 581
Extraction Inline (cmd), 580
Extraction KeepSingleton (flag), 580
Extraction Language (cmd), 580
Extraction Library (cmd), 579
Extraction NoInline (cmd), 580
Extraction Optimize (flag), 580
Extraction SafeImplicits (flag), 581
Extraction TestCompile (cmd), 579
Extraction TypeExpand (flag), 584

F
f_equal (tacn), 324
f_equal (term), 183
f_equal2 ... f_equal5 (term), 183
Fact (cmdv), 138

Fail (cmd), 239
fail (tacn), 342
Failed to progress (err), 340
False (term), 182
false (term), 183
False_rec (term), 185
False_rect (term), 185
Fast Name Printing (flag), 235
field (tacn), 327
field_simplify (tacn), 327
field_simplify_eq (tacn), 327
File not found on loadpath: ‘string’

(err), 237
Files processed by Load cannot leave

open proofs (err), 235
finish_timing (tacn), 346
first (ssreflect) (tacn), 417
first (tacn), 340
first last (tacnv), 417
firstorder (tacn), 321
Firstorder Depth (opt), 322
Firstorder Solver (opt), 321
fix, 124
fix (tacn), 300
fix_eq (term), 187
Fix_F (term), 187
Fix_F_eq (term), 187
Fix_F_inv (term), 187
Fixpoint (cmd), 134
flat_map (term), 192
Focus (cmd), 248
fold (tacn), 309
fold_left (term), 192
fold_right (term), 192
forall, 122
Found target class ... instead of ...

(err), 549
From ... Require ... (cmdv), 236
fst (term), 184
fun ... => ..., 122
Funclass cannot be a source class (err),

549
Function (cmd), 149
function induction (tacn), 290
function_scope, 495
functional inversion (tacn), 326
Functional Scheme (cmd), 505

G
ge (term), 186
Generalizable (cmd), 175
Generalizable All Variables (cmd), 175
Generalizable No Variables (cmd), 175
generalize (tacn), 281
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generally have (tacn), 475
gfail (tacnv), 342
give_up (tacn), 331
Global (cmd), 242
Global Close Scope (cmd), 492
Global Generalizable (cmd), 175
Global Instance (cmdv), 569
Global Opaque (cmdv), 241
Global Open Scope (cmd), 492
Global Transparent (cmdv), 241
Goal (cmd), 245
goal does not satisfy the expected

preconditions (err), 293
Goal is solvable by congruence but

some arguments are missing. Try
congruence with ‘term’…‘term’,
replacing metavariables by
arbitrary terms (err), 323

Grab Existential Variables (cmd), 247
gt (term), 186
guard (tacn), 351
Guard Checking (flag), 242
Guarded (cmd), 257

H
has_evar (tacn), 324
have (tacn), 420
head (term), 192
Hide Obligations (flag), 592
Hint (cmd), 314
Hint Constants (cmdv), 316
Hint Constructors (cmdv), 315
Hint Cut (cmdv), 316
Hint Extern (cmdv), 316
Hint Immediate (cmdv), 315
Hint Mode (cmdv), 317
Hint Opaque (cmdv), 316
Hint Resolve (cmdv), 315
Hint Rewrite (cmd), 318
Hint Transparent (cmdv), 316
Hint Unfold (cmdv), 315
Hint Variables (cmdv), 316
Hint View for (cmd), 476
Hint View for apply (cmd), 470, 476
Hint View for move (cmd), 470
hnf (tacn), 306
Hypotheses (cmdv), 153
Hypotheses (outside a section) (cmdv), 126
Hypothesis (cmdv), 153
Hypothesis (outside a section) (cmdv), 126
Hypothesis ‘ident’ must contain at

least one Function (err), 326
Hyps Limit (opt), 258

I
I (term), 182
I don’t know how to handle dependent

equality (err), 323
identity (term), 183, 187
Identity Coercion (cmd), 550
idtac (tacn), 342
IF_then_else (term), 182
iff (term), 182
Ignored instance declaration for

“‘ident’”: “‘term’” is not a
class (warn), 568

Ill-formed recursive definition (err), 592
Implicit Arguments (flag), 168
Implicit Types (cmd), 173
Import (cmd), 159
in (tacn), 419
In environment … the term: ‘term’ does

not have type ‘type’. Actually,
it has type ... (err), 589

Include (cmd), 154, 155
Incorrect number of tactics (expected

N tactics, was given M) (err), 444
induction ... using ... (tacnv), 287
induction (tacn), 285
Inductive (cmd), 127
Inductive ‘ident’ cannot be made

template polymorphic (err), 210
Infix (cmd), 482
Info (cmd), 359
Info Auto (flag), 312
Info Eauto (flag), 313
Info Level (opt), 360
Info Trivial (flag), 312
info_trivial (tacnv), 312
injection (tacn), 292
inl (term), 184
inleft (term), 185
Inline (cmd), 155
inr (term), 184
inright (term), 185
Inspect (cmdv), 228
Instance (cmd), 568
instantiate (tacn), 282
intro (tacn), 274
intros ... (tacn), 275
intros (tacnv), 274
intuition (tacn), 321
Intuition Negation Unfolding (flag), 321
Invalid argument (err), 268
Invalid backtrack (err), 238
inversion ... using ... (tacnv), 296
inversion (tacn), 294
inversion_clear (tacnv), 294
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inversion_sigma (tacnv), 296
is_evar (tacn), 324
is_var (tacn), 324
IsSucc (term), 186

K
Keep Proof Equalities (flag), 294
Keyed Unification (flag), 302

L
lapply (tacnv), 270
last (tacn), 417
last first (tacnv), 417
lazy (tacn), 304
le (term), 186
le_n (term), 186
le_S (term), 186
left (tacnv), 273
left (term), 185
Lemma (cmdv), 138
length (term), 192
let ... := ... (tacn), 346
let ... := ... (term), 123
Let (cmd), 153
Let (outside a section) (cmdv), 127
Let CoFixpoint (cmdv), 153
Let Fixpoint (cmdv), 153
lia (tacn), 576
Lia Cache (flag), 575
Load (cmd), 235
Load is not supported inside proofs

(err), 235
Loading of ML object file forbidden in

a native Coq (err), 237
Local (cmd), 242
Local Close Scope (cmd), 492
Local Declare Custom Entry (cmd), 491
Local Definition (cmdv), 127
Local Notation (cmd), 491
Local Open Scope (cmd), 492
Local Parameter (cmdv), 126
Locate (cmd), 234
Locate File (cmd), 238
Locate Library (cmd), 238
Loose Hint Behavior (opt), 319
lra (tacn), 576
lt (term), 186
Ltac (cmd), 352
Ltac Backtrace (flag), 359
Ltac Batch Debug (flag), 360
Ltac Debug (flag), 360
Ltac Profiling (flag), 360
Ltac2 (cmd), 366
Ltac2 Backtrace (flag), 375

Ltac2 Eval (cmd), 374
Ltac2 Notation (cmd), 374
Ltac2 Set (cmd), 366
Ltac2 Type (cmd), 364
ltac-seq (tacn), 338

M
Mangle Names (flag), 332
Mangle Names Prefix (opt), 332
map (term), 192
match ... with ..., 123
match goal (tacn), 348
Maximal Implicit Insertion (flag), 169
mod (term), 189
Module (cmd), 154, 155
Module Type (cmd), 155
Module/section ‘qualid’ not found (err),

232
Monomorphic (cmd), 621
move ... after ... (tacn), 276
move ... at bottom (tacnv), 276
move ... at top (tacnv), 276
move ... before ... (tacnv), 276
move (tacn), 401
mult (term), 186
mult_n_O (term), 186
mult_n_Sm (term), 186

N
n_Sn (term), 186
nat (term), 183
nat_case (term), 186
nat_double_ind (term), 186
nat_scope, 189
native_cast_no_check (tacnv), 334
native_compute (tacnv), 305
NativeCompute Profile Filename (opt), 306
NativeCompute Profiling (flag), 305
Nested Proofs Allowed (flag), 258
Nested proofs are not allowed unless

you turn the Nested Proofs
Allowed flag on (err), 138

New coercion path ... is ambiguous
with existing ... (warn), 549

Next Obligation (cmd), 591
nia (tacn), 578
Nia Cache (flag), 575
No applicable tactic (err), 340
No argument name ‘ident’ (err), 150
No discriminable equalities (err), 292
No evars (err), 324
No focused proof (err), 245, 255
No focused proof (No proof-editing in

progress) (err), 245
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No focused proof to restart (err), 248
No head constant to reduce (err), 306
No matching clauses for match (err), 347
No matching clauses for match goal (err),

349
No primitive equality found (err), 291
No product even after head-reduction

(err), 274
No progress made (err), 614
No such assumption (err), 267, 283
No such binder (err), 260
No such goal (err), 255
No such goal. (fail) (err), 343
No such goal. (Goal selector) (err), 339
No such goal (‘ident’) (err), 251
No such goal (‘num’) (err), 251
No such goal. Focus next goal with

bullet ‘bullet’ (err), 255
No such hypothesis (err), 275, 276, 278
No such hypothesis in current goal (err),

274, 275
No such hypothesis: ‘ident’ (err), 275, 311
No such label ‘ident’ (err), 155
Non exhaustive pattern matching (err), 547
Non strictly positive occurrence of

‘ident’ in ‘type’ (err), 128
NonCumulative (cmd), 621
None (term), 183
Nonrecursive Elimination Schemes (flag),

503
not (term), 182
Not a context variable (err), 349
Not a discriminable equality (err), 291
Not a primitive equality (err), 293
Not a projectable equality but a

discriminable one (err), 293
Not a proposition or a type (err), 280
Not a valid ring equation (err), 595
Not a variable or hypothesis (err), 324
Not an evar (err), 324
Not an exact proof (err), 267
Not an inductive goal with 1

constructor (err), 273
Not an inductive goal with 2

constructors (err), 273
Not an inductive product (err), 273, 286
Not convertible (err), 303
Not enough constructors (err), 273
Not equal (due to universes) (err), 324
Not equal (err), 324
Not reducible (err), 306
Not the right number of induction

arguments (err), 291

Not the right number of missing
arguments (err), 260, 269

not_eq_S (term), 186
Notation (cmd), 478
Notation ‘string’ is deprecated since

‘string’. ‘string’ (warn), 139
Notations for lists, 192
Nothing to do, it is an equality

between convertible terms (err),
293

Nothing to inject (err), 293
Nothing to rewrite (err), 614
notT (term), 188
notypeclasses refine (tacnv), 268
now (tacnv), 314
nra (tacn), 577
Nra Cache (flag), 575
nsatz (tacn), 603
nth (term), 192
Numeral Notation (cmd), 497

O
O (term), 183
O_S (term), 186
Obligation (cmd), 591
Obligation Tactic (cmd), 591
Obligations (cmd), 591
omega (tacn), 327
Omega Action (flag), 574
omega can't solve this system (err), 573
Omega System (flag), 574
Omega UseLocalDefs (flag), 574
omega: Can't solve a goal with

equality on type ... (err), 573
omega: Can't solve a goal with

non-linear products (err), 573
omega: Can't solve a goal with

proposition variables (err), 573
omega: Not a quantifier-free goal (err),

573
omega: Unrecognized atomic

proposition: ... (err), 573
omega: Unrecognized predicate or

connective: ‘ident’ (err), 573
omega: Unrecognized proposition (err), 573
once (tacn), 341
only ... : ... (tacnv), 338
Opaque (cmd), 240
Open Scope (cmd), 492
Optimize Heap (cmd), 259
Optimize Proof (cmd), 258
optimize_heap (tacn), 362
option (term), 183
or (term), 182
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or_introl (term), 182
or_intror (term), 182
over (tacn), 446

P
pair (term), 184
par: ... (tacnv), 339
Parameter (cmd), 125
Parameters (cmdv), 126
Parsing Explicit (flag), 171
pattern (tacn), 310
Peano's arithmetic, 189
plus (term), 186
plus_n_O (term), 186
plus_n_Sm (term), 186
Polymorphic (cmd), 621
Polymorphic Constraint (cmd), 624
Polymorphic Inductive Cumulativity (flag),

621
Polymorphic Universe (cmd), 624
pose (ssreflect) (tacn), 391
pose (tacn), 279
pose proof (tacnv), 280
Positivity Checking (flag), 243
pred (term), 186
pred_Sn (term), 186
Prenex Implicits (cmd), 390, 476
Preterm (cmd), 592
Primitive (cmd), 244
Primitive Projections (flag), 144
Print (cmd), 228
Print All (cmd), 228
Print All Dependencies (cmdv), 230
Print Assumptions (cmd), 230
Print Canonical Projections (cmd), 172
Print Classes (cmd), 550
Print Coercion Paths (cmd), 550
Print Coercions (cmd), 550
Print Custom Grammar (cmd), 489
Print Extraction Blacklist (cmd), 583
Print Extraction Inline (cmd), 581
Print Firstorder Solver (cmd), 321
Print Grammar constr (cmd), 480
Print Grammar pattern (cmd), 480
Print Grammar tactic (cmd), 501
Print Graph (cmd), 550
Print Hint (cmd), 314, 318
Print HintDb (cmd), 318
Print Implicit (cmd), 170
Print Instances (cmd), 611
Print Libraries (cmd), 237
Print LoadPath (cmd), 238
Print Ltac (cmd), 352
Print Ltac Signatures (cmd), 352

Print ML Modules (cmd), 237
Print ML Path (cmd), 238
Print Module (cmd), 160
Print Module Type (cmd), 160
Print Opaque Dependencies (cmdv), 230
Print Options (cmd), 229
Print Rewrite HintDb (cmd), 319
Print Scope (cmdv), 496
Print Scopes (cmd), 496
Print Strategy (cmd), 241
Print Table @table (cmd), 229
Print Tables (cmd), 229
Print Term (cmdv), 228
Print Transparent Dependencies (cmdv), 230
Print Typing Flags (cmd), 243
Print Universes (cmd), 176
Print Universes Subgraph (cmdv), 176
Print Visibility (cmd), 496
Printing All (flag), 175
Printing Allow Match Default Clause

(flag), 148
Printing Coercion (table), 550
Printing Coercions (flag), 550
Printing Compact Contexts (flag), 240
Printing Constructor (table), 142
Printing Dependent Evars Line (flag), 240
Printing Depth (opt), 240
Printing Existential Instances (flag), 177
Printing Factorizable Match Patterns

(flag), 147
Printing If (table), 148
Printing Implicit (flag), 170
Printing Implicit Defensive (flag), 170
Printing Let (table), 148
Printing Matching (flag), 147
Printing Notations (flag), 483
Printing Primitive Projection

Parameters (flag), 144
Printing Projections (flag), 143
Printing Record (table), 142
Printing Records (flag), 142
Printing Synth (flag), 148
Printing Unfocused (flag), 240
Printing Universes (flag), 176
Printing Width (opt), 240
Printing Wildcard (flag), 148
Private Polymorphic Universes (flag), 626
prod (term), 184
Program Cases (flag), 588
Program Definition (cmd), 589
Program Fixpoint (cmd), 590
Program Generalized Coercion (flag), 588
Program Instance (cmdv), 569
Program Lemma (cmd), 591
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Program Mode (flag), 589
Programming, 183
progress (tacn), 340
proj1 (term), 182
proj2 (term), 182
projT1 (term), 184
projT2 (term), 184
Proof (cmd), 246
Proof `term` (cmd), 246
Proof is not complete. (abstract) (err),

352
Proof is not complete. (assert) (err), 280
Proof using (cmd), 246
Proof with (cmd), 319
Prop, 121
Proposition (cmdv), 138
psatz (tacn), 578
Pwd (cmd), 237

Q
Qed (cmd), 245
Quantifiers, 182
Quit (cmd), 239

R
Record (cmd), 141
Records declared with the keyword

Record or Structure cannot be
recursive (err), 144

Recursion, 187
Recursive Extraction (cmd), 579
Recursive Extraction Library (cmd), 579
red (tacn), 306
Redirect (cmd), 239
refine (tacn), 267
Refine passed ill-formed term (err), 268
refl_identity (term), 183
reflexivity (tacn), 324
Register (cmd), 244
Register Inline (cmd), 244
Regular Subst Tactic (flag), 303
Remark (cmdv), 138
remember (tacn), 279
Remove @table (cmd), 229
Remove Hints (cmd), 318
Remove LoadPath (cmd), 237
rename (tacn), 278
repeat (tacn), 339
replace (tacn), 302
Require (cmd), 236
Require Export (cmdv), 236
Require Import (cmdv), 236
Require is not allowed inside a module

or a module type (err), 236

Reserved Notation (cmd), 482
Reset (cmd), 238
Reset Extraction Blacklist (cmd), 583
Reset Extraction Inline (cmd), 581
Reset Ltac Profile (cmd), 360
reset ltac profile (tacn), 362
Restart (cmdv), 248
restart_timer (tacn), 345
rev (term), 192
Reversible Pattern Implicit (flag), 169
revert (tacn), 276
revert dependent (tacnv), 276
revgoals (tacn), 330
rewrite (ssreflect) (tacn), 431
rewrite (tacn), 301
rewrite_strat (tacn), 614
Rewriting Schemes (flag), 503
right (tacnv), 273
right (term), 185
ring (tacn), 327
Ring operation should be declared as a

morphism (err), 598
ring_simplify (tacn), 327
rtauto (tacn), 321

S
S (term), 183
Save (cmdv), 245
Scheme (cmd), 501
Scheme Equality (cmdv), 502
Search (cmd), 230
Search (ssreflect) (cmd), 472
Search Blacklist (table), 234
Search Output Name Only (flag), 240
SearchAbout (cmdv), 231
SearchHead (cmd), 231
SearchPattern (cmd), 232
SearchRewrite (cmd), 233
Section (cmd), 152
Separate Extraction (cmd), 579
Set (cmd), 229
Set (sort), 121
set (ssreflect) (tacn), 392
set (tacn), 278
Set @option (cmd), 229
setoid_reflexivity (tacnv), 611
setoid_replace (tacnv), 611
setoid_rewrite (tacnv), 611
setoid_symmetry (tacnv), 611
setoid_transitivity (tacnv), 611
shelve (tacn), 331
shelve_unifiable (tacnv), 331
Short Module Printing (flag), 160
Show (cmd), 255
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Show Conjectures (cmdv), 256
Show Existentials (cmdv), 256
Show Goal (cmdv), 256
Show Intro (cmdv), 256
Show Intros (cmdv), 256
Show Ltac Profile (cmd), 360
show ltac profile (tacn), 362
Show Obligation Tactic (cmd), 591
Show Proof (cmdv), 256
Show Universes (cmdv), 256
Show Zify BinOp (cmd), 578
Show Zify BinRel (cmd), 578
Show Zify CstOp (cmd), 578
Show Zify InjTyp (cmd), 578
Show Zify Spec (cmd), 578
Show Zify UnOp (cmd), 578
Shrink Obligations (flag), 592
sig (term), 184
sig2 (term), 184
Signature components for label ‘ident’

do not match (err), 155
sigT (term), 184
sigT2 (term), 184
Silent (flag), 240
simpl (tacn), 306
simple apply (tacnv), 270
simple destruct (tacnv), 285
simple eapply (tacnv), 270
simple induction (tacnv), 288
simple inversion (tacnv), 296
simple notypeclasses refine (tacnv), 268
simple refine (tacnv), 268
Simplex (flag), 575
simplify_eq (tacn), 325
singel: / (term), 189
snd (term), 184
solve (tacn), 342
Solve All Obligations (cmd), 591
Solve Obligations (cmd), 591
Solve Unification Constraints (flag), 332
solve_constraints (tacn), 332
Some (term), 183
specialize (tacnv), 281
split (tacnv), 273
split_Rabs (tacn), 191
split_Rmult (tacn), 191
SProp, 121
SProp not allowed, you need to Set

Allow StrictProp or to use the
-allow-sprop command-line-flag
(err), 629

SsrHave NoTCResolution (flag), 427
SsrIdents (flag), 387
SsrOldRewriteGoalsOrder (flag), 433

SsrRewrite (flag), 387
Stable Omega (flag), 574
Stack overflow or segmentation fault

happens when working with large
numbers in ‘type’ (threshold
may vary depending on your
system limits and on the
command executed) (warn), 498

start ltac profiling (tacn), 362
Statement without assumptions (err), 272
stepl (tacn), 303
stepr (tacnv), 303
stop ltac profiling (tacn), 362
Strategy (cmd), 241
Strict Implicit (flag), 168
Strict Universe Declaration (flag), 626
String Notation (cmd), 499
Strongly Strict Implicit (flag), 168
Structural Injection (flag), 294
Structure (cmdv), 551
SubClass (cmdv), 550
subst (tacn), 302
suff (tacn), 475
suffices (tacn), 475
Suggest Proof Using (flag), 247
sum (term), 184
sumbool (term), 185
sumor (term), 185
swap (tacn), 329
sym_not_eq (term), 183
symmetry (tacn), 324
Syntax error: [prim:reference]

expected after [prim:reference]
(in [vernac:command]) (err), 498, 500

Syntax error: [prim:reference]
expected after 'Notation' (in
[vernac:command]) (err), 498, 500

T
Tactic Failure message (level ‘num’)

(err), 343
Tactic generated a subgoal identical

to the original goal. This
happens if ‘term’ does not
occur in the goal (err), 301

Tactic Notation (cmd), 500
Tactic Notation ‘qualid’ is deprecated

since ‘string’. ‘string’ (warn),
139

Tactic ‘qualid’ is deprecated since
‘string’. ‘string’ (warn), 139

tail (term), 192
tauto (tacn), 320
Template Check (flag), 210
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Terms do not have convertible types
(err), 302

Test (cmd), 229
Test @table for (cmd), 229
The 'abstract after' directive has

no effect when the parsing
function (‘ident’) targets an
option type (warn), 499

The command has not failed! (err), 239
The conclusion is not a substitutive

equation (err), 324
The conclusion of ‘type’ is not valid

it must be built from ‘ident’ (err),
128

The constant ‘numeral’ is not a
binary64 floating-point
value. A closest value will
be used and unambiguously
printed ‘numeral’.
[inexact-float,parsing] (warn),
194

The constructor ‘ident’ expects ‘num’
arguments (err), 546

The elimination predicate term should
be of arity ‘num’ (for non
dependent case) or ‘num’ (for
dependent case) (err), 547

The file :n:`‘ident’.vo` contains
library dirpath and not library
dirpath’ (err), 236

The recursive argument must be
specified (err), 150

The reference is not unfoldable (err), 242
The reference ‘ident’ was not found in

the current environment (err), 498,
500

The reference ‘qualid’ was not found
in the current environment (err),
230, 241

The reference X was not found in the
current environment (err), 378

The term ‘term’ has type ‘type’ which
should be Set, Prop or Type (err),
138

The term ‘term’ has type ‘type’ while
it is expected to have type
‘type’' (err), 127

The ‘num’ th argument of ‘ident’ must
be ‘ident’ in ‘type’ (err), 131

The ‘term’ provided does not end with
an equation (err), 301

The variable ‘ident’ is already
defined (err), 278

Theorem (cmd), 137

Theories, 180
This is not the last opened module (err),

155
This is not the last opened module

type (err), 155
This is not the last opened section

(err), 153
This object does not support universe

names (err), 228
This proof is focused, but cannot be

unfocused this way (err), 251
This tactic has more than one success

(err), 341
Time (cmd), 239
time (tacn), 345
time_constr (tacn), 345
Timeout (cmd), 239
timeout (tacn), 345
To avoid stack overflow, large numbers

in ‘type’ are interpreted as
applications of ‘ident’ (warn), 499

Too few occurrences (err), 304, 308
transitivity (tacn), 325
Transparent (cmd), 241
Transparent Obligations (flag), 592
transparent_abstract (tacnv), 351
trivial (tacnv), 312
True (term), 182
true (term), 183
try (tacn), 339
tryif (tacn), 341
Trying to mask the absolute name

‘qualid’! (warn), 160
tt (term), 183
Type, 121
type_scope, 495
Typeclass Resolution For Conversion

(flag), 571
Typeclasses Axioms Are Instances (flag),

571
Typeclasses Debug (flag), 571
Typeclasses Debug Verbosity (opt), 571
Typeclasses Dependency Order (flag), 570
Typeclasses Depth (opt), 571
Typeclasses eauto (cmd), 571
typeclasses eauto (tacn), 569
Typeclasses Filtered Unification (flag),

570
Typeclasses Iterative Deepening (flag), 571
Typeclasses Limit Intros (flag), 570
Typeclasses Opaque (cmd), 570
Typeclasses Strict Resolution (flag), 571
Typeclasses Transparent (cmd), 570
Typeclasses Unique Instances (flag), 571
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Typeclasses Unique Solutions (flag), 571

U
Unable to apply (err), 272
Unable to find an instance for the

variables ‘ident’ ... ‘ident’
(err), 286

Unable to find an instance for the
variables ‘ident’…‘ident’ (err), 269

Unable to infer a match predicate (err),
547

Unable to satisfy the rewriting
constraints (err), 614

Unable to unify ... with ... (err), 324
Unable to unify ‘term’ with ‘term’ (err),

269, 324
Unbound [value|constructor] X (err), 378
Unbound context identifier ‘ident’ (err),

349
Undeclared universe ‘ident’ (err), 624
Undelimit Scope (cmd), 492
under (tacn), 444
Undo (cmd), 248
Unexpected non-option term ‘term’

while parsing a numeral
notation (err), 498

Unexpected non-option term ‘term’
while parsing a string notation
(err), 500

Unexpected term ‘term’ while parsing a
numeral notation (err), 498

Unexpected term ‘term’ while parsing a
string notation (err), 500

Unfocus (cmd), 248
Unfocused (cmd), 248
unfold (tacn), 308
Uniform Inductive Parameters (flag), 130
unify (tacn), 324
unit (term), 183
Universal Lemma Under Conjunction (flag),

272
Universe (cmd), 624
Universe Checking (flag), 243
Universe inconsistency (err), 624
Universe instance should have length

‘num’ (err), 228
Universe Minimization ToSet (flag), 624
Universe Polymorphism (flag), 621
Unknown inductive type (err), 256
unlock (tacn), 449
Unset (cmd), 229
Unset @option (cmd), 229
Unshelve (cmd), 331
unshelve (tacn), 331

Unsupported attribute (warn), 140
Use of ‘string’ Notation is deprecated

as it is inconsistent with
pattern syntax (warn), 491

V
value (term), 185
Variable (cmd), 153
Variable (outside a section) (cmdv), 126
Variable ‘ident’ is already declared

(err), 280
Variables (cmdv), 153
Variables (outside a section) (cmdv), 126
Variant (cmd), 131
vm_cast_no_check (tacnv), 334
vm_compute (tacnv), 305

W
Warnings (opt), 240
Well founded induction, 187
Well foundedness, 187
well_founded (term), 187
When ‘term’ contains more than one non

dependent product the tactic
lapply only takes into account
the first product (warn), 270

without loss (tacn), 428
wlog (tacn), 428
Wrong bullet ‘bullet’: Bullet ‘bullet’

is mandatory here (err), 254
Wrong bullet ‘bullet’: Current bullet

‘bullet’ is not finished (err), 254

X
{x:A & P x} (term), 184
{x:A | P x} (term), 184

Y
You should use the “Proof using

[...].” syntax instead of
“Proof.” to enable skipping
this proof which is located
inside a section. Give as
argument to “Proof using” the
list of section variables that
are not needed to typecheck the
statement but that are required
by the proof (warn), 516

Z
zify (tacn), 578
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