The Coq Reference Manual
Release 8.11.2

The Coq Development Team

Jun 15, 2020

Introduction

1.1 How to read this book
1.2 List of additional documentation
1.3 License o v i i

Early history of Coq
2.1 Historical roots
2.2 Versions 1 to 5

23 Versions6. e
24 VersionS7 e

Recent changes

3.1 Version8.11
32 Version8.10
33 Version89,
34 Version88
35 Version87
36 Version86,
37 Version85,
38 Version84
39 Version83
310 Version82
3.11 Version8.1
312 Version80,

The language

4.1 The Gallina specification language
4.2 Extensions of Gallina
4.3 The Coq library
4.4 Calculus of Inductive Constructions
4.5 The Module System

The proof engine

5.1 Vernacular commands

5.2 Proof handling

53 Tactics
54 Ltac.
55 Ltac2 o
5.6 Detailed examples of tactics

5.7 The SSReflect proof language

CONTENTS

6 User extensions
6.1 Syntax extensions and interpretation SCOPES . . .« v v v v vt et e e e e e e e e e e e
6.2 Proof schemes e
7 Practical tools
7.1 TheCogcommandst i i v i i vttt et e e e e e e e e e e e
7.2 UtHHES o o o e e e e e e e e
7.3 Coq Integrated Development Environment L Lo
8 Addendum
8.1 Extended pattern matching
8.2 Implicit COBICIONS o i i i i et e e e e e e e e e e e e e e e
8.3 Canonical StruCtures o ittt e e e e e e e e e e e e e e e
8.4 Typeclasses e e e e e e e e
8.5 Omega: a solver for quantifier-free problems in Presburger Arithmetic
8.6 Micromega: tactics for solving arithmetic goals over ordered rings
8.7 Extraction of programs in OCamland Haskell
8.8 Program L e e e
8.9 Thering and field tactic families L. L e
8.10 Nsatz: tactics for proving equalities in integral domains
8.11 Generalized rewriting i e e e e e e e e e e e e e e e e e
8.12 Asynchronous and Parallel Proof Processing
8.13 Miscellaneous eXtensionso i e et e e e e e e e e e e e e e e e e e
8.14 Polymorphic UNiVerses o v v vt ittt e e e e e e e e e e e
8.15 SProp (proof irrelevant propositions)« v v v i i e e e e e e e e e e e e e
Bibliography

Command Index

Tactic Index

Flags, options and Tables Index

Errors and Warnings Index

Index

478
478
501

511
511
517
532

538
538
547
555
564
572
575
579
587
592
603
604
615
618
619
628

633

637

641

645

647

652

CHAPTER
ONE

INTRODUCTION

This document is the Reference Manual of the Coq proof assistant. To start using Coq, it is advised to first read a
tutorial. Links to several tutorials can be found at https://coq.inria.fr/documentation and https://github.com/coqg/coq/
wiki#coq-tutorials

The Coq system is designed to develop mathematical proofs, and especially to write formal specifications, programs and
to verify that programs are correct with respect to their specifications. It provides a specification language named Gallina.
Terms of Gallina can represent programs as well as properties of these programs and proofs of these properties. Using
the so-called Curry-Howard isomorphism, programs, properties and proofs are formalized in the same language called
Calculus of Inductive Constructions, that is a A-calculus with a rich type system. All logical judgments in Coq are typing
judgments. The very heart of the Coq system is the type checking algorithm that checks the correctness of proofs, in
other words that checks that a program complies to its specification. Coq also provides an interactive proof assistant to
build proofs using specific programs called factics.

All services of the Coq proof assistant are accessible by interpretation of a command language called the vernacular.

Coq has an interactive mode in which commands are interpreted as the user types them in from the keyboard and a
compiled mode where commands are processed from a file.

* In interactive mode, users can develop their theories and proofs step by step, and query the system for available the-
orems and definitions. The interactive mode is generally run with the help of an IDE, such as CoqIDE, documented
in Coq Integrated Development Environment, Emacs with Proof-General [Asp00]*, or jsCoq to run Coq in your
browser (see https://github.com/ejgallego/jscoq). The cogt op read-eval-print-loop can also be used directly, for
debugging purposes.

» The compiled mode acts as a proof checker taking a file containing a whole development in order to ensure its
correctness. Moreover, Coq’s compiler provides an output file containing a compact representation of its input.
The compiled mode is run with the cogc command.

See also:

The Cog commands.

1.1 How to read this book

This is a Reference Manual, so it is not intended for continuous reading. We recommend using the various indexes to
quickly locate the documentation you are looking for. There is a global index, and a number of specific indexes for tactics,
vernacular commands, and error messages and warnings. Nonetheless, the manual has some structure that is explained
below.

» The first part describes the specification language, Gallina. Chapters The Gallina specification language
and Extensions of Gallina describe the concrete syntax as well as the meaning of programs, theorems and proofs

4 Proof-General is available at https://proofgeneral.github.io/. Optionally, you can enhance it with the minor mode Company-Coq [PCC16] (see
https://github.com/cpitclaudel/company-coq).

https://coq.inria.fr/documentation
https://github.com/coq/coq/wiki#coq-tutorials
https://github.com/coq/coq/wiki#coq-tutorials
https://github.com/ejgallego/jscoq
https://proofgeneral.github.io/
https://github.com/cpitclaudel/company-coq

The Coq Reference Manual, Release 8.11.2

in the Calculus of Inductive Constructions. Chapter 7he Coq library describes the standard library of Coq. Chap-
ter Calculus of Inductive Constructions is a mathematical description of the formalism. Chapter 7he Module System
describes the module system.

e The second part describes the proof engine. It is divided into several chapters. Chapter Vernacular commands
presents all commands (we call them vernacular commands) that are not directly related to interactive proving:
requests to the environment, complete or partial evaluation, loading and compiling files. How to start and stop
proofs, do multiple proofs in parallel is explained in Chapter Proof handling. In Chapter Tactics, all commands
that realize one or more steps of the proof are presented: we call them zactics. The legacy language to combine
these tactics into complex proof strategies is given in Chapter Ltac. The currently experimental language that
will eventually replace Ltac is presented in Chapter Lfac2. Examples of tactics are described in Chapter Detailed
examples of tactics. Finally, the SSReflect proof language is presented in Chapter The SSReflect proof language.

 The third part describes how to extend the syntax of Coq in Chapter Syntax extensions and interpretation scopes
and how to define new induction principles in Chapter Proof schemes.

* In the fourth part more practical tools are documented. First in Chapter The Cog commands, the usage of coqc
(batch mode) and cogtop (interactive mode) with their options is described. Then, in Chapter Utilities, various
utilities that come with the Coq distribution are presented. Finally, Chapter Coq Integrated Development Environ-
ment describes CogIDE.

* The fifth part documents a number of advanced features, including coercions, canonical structures, typeclasses,
program extraction, and specialized solvers and tactics. See the table of contents for a complete list.

1.2 List of additional documentation

This manual does not contain all the documentation the user may need about Coq. Various informations can be found in
the following documents:

Installation A text file INSTALL that comes with the sources explains how to install Coq.

The Coq standard library A commented version of sources of the Coq standard library (including only the specifica-
tions, the proofs are removed) is available at https://coq.inria.fr/stdlib/.

1.3 License

This material (the Coq Reference Manual) may be distributed only subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub).
Options A and B are not elected.

2 Chapter 1. Introduction

https://coq.inria.fr/stdlib/
http://www.opencontent.org/openpub

CHAPTER
TWO

EARLY HISTORY OF COQ

2.1 Historical roots

Coq is a proof assistant for higher-order logic, allowing the development of computer programs consistent with their
formal specification. It is the result of about ten years® of research of the Coq project. We shall briefly survey here three
main aspects: the logical language in which we write our axiomatizations and specifications, the proof assistant which
allows the development of verified mathematical proofs, and the program extractor which synthesizes computer programs
obeying their formal specifications, written as logical assertions in the language.

The logical language used by Coq is a variety of type theory, called the Calculus of Inductive Constructions. Without
going back to Leibniz and Boole, we can date the creation of what is now called mathematical logic to the work of Frege
and Peano at the turn of the century. The discovery of antinomies in the free use of predicates or comprehension prin-
ciples prompted Russell to restrict predicate calculus with a stratification of #ypes. This effort culminated with Principia
Mathematica, the first systematic attempt at a formal foundation of mathematics. A simplification of this system along
the lines of simply typed A-calculus occurred with Church’s Simple Theory of Types. The A-calculus notation, originally
used for expressing functionality, could also be used as an encoding of natural deduction proofs. This Curry-Howard
isomorphism was used by N. de Bruijn in the Automath project, the first full-scale attempt to develop and mechanically
verify mathematical proofs. This effort culminated with Jutting’s verification of Landau’s Grundlagen in the 1970’s. Ex-
ploiting this Curry-Howard isomorphism, notable achievements in proof theory saw the emergence of two type-theoretic
frameworks; the first one, Martin-Lof’s Intuitionistic Theory of Types, attempts a new foundation of mathematics on con-
structive principles. The second one, Girard’s polymorphic A-calculus F,, is a very strong functional system in which we
may represent higher-order logic proof structures. Combining both systems in a higher-order extension of the Automath
language, T. Coquand presented in 1985 the first version of the Calculus of Constructions, CoC. This strong logical sys-
tem allowed powerful axiomatizations, but direct inductive definitions were not possible, and inductive notions had to be
defined indirectly through functional encodings, which introduced inefficiencies and awkwardness. The formalism was
extended in 1989 by T. Coquand and C. Paulin with primitive inductive definitions, leading to the current Calculus of
Inductive Constructions. This extended formalism is not rigorously defined here. Rather, numerous concrete examples
are discussed. We refer the interested reader to relevant research papers for more information about the formalism, its
meta-theoretic properties, and semantics. However, it should not be necessary to understand this theoretical material
in order to write specifications. It is possible to understand the Calculus of Inductive Constructions at a higher level,
as a mixture of predicate calculus, inductive predicate definitions presented as typed PROLOG, and recursive function
definitions close to the language ML.

Automated theorem-proving was pioneered in the 1960’s by Davis and Putnam in propositional calculus. A complete
mechanization (in the sense of a semidecision procedure) of classical first-order logic was proposed in 1965 by J.A.
Robinson, with a single uniform inference rule called resolution. Resolution relies on solving equations in free algebras
(i.e. term structures), using the unification algorithm. Many refinements of resolution were studied in the 1970’s, but
few convincing implementations were realized, except of course that PROLOG is in some sense issued from this effort.
A less ambitious approach to proof development is computer-aided proof-checking. The most notable proof-checkers
developed in the 1970’s were LCF, designed by R. Milner and his colleagues at U. Edinburgh, specialized in proving
properties about denotational semantics recursion equations, and the Boyer and Moore theorem-prover, an automation

5 At the time of writing, i.e. 1995.

The Coq Reference Manual, Release 8.11.2

of primitive recursion over inductive data types. While the Boyer-Moore theorem-prover attempted to synthesize proofs
by a combination of automated methods, LCF constructed its proofs through the programming of factics, written in a
high-level functional meta-language, ML.

The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer and Moore’s, is its possibility
to extract programs from the constructive contents of proofs. This computational interpretation of proof objects, in the
tradition of Bishop’s constructive mathematics, is based on a realizability interpretation, in the sense of Kleene, due to C.
Paulin. The user must just mark his intention by separating in the logical statements the assertions stating the existence
of a computational object from the logical assertions which specify its properties, but which may be considered as just
comments in the corresponding program. Given this information, the system automatically extracts a functional term
from a consistency proof of its specifications. This functional term may be in turn compiled into an actual computer
program. This methodology of extracting programs from proofs is a revolutionary paradigm for software engineering.
Program synthesis has long been a theme of research in artificial intelligence, pioneered by R. Waldinger. The Tablog
system of Z. Manna and R. Waldinger allows the deductive synthesis of functional programs from proofs in tableau form
of their specifications, written in a variety of first-order logic. Development of a systematic programming logic, based on
extensions of Martin-Lof’s type theory, was undertaken at Cornell U. by the Nuprl team, headed by R. Constable. The
first actual program extractor, PX, was designed and implemented around 1985 by S. Hayashi from Kyoto University.
It allows the extraction of a LISP program from a proof in a logical system inspired by the logical formalisms of S.
Feferman. Interest in this methodology is growing in the theoretical computer science community. We can foresee the
day when actual computer systems used in applications will contain certified modules, automatically generated from a
consistency proof of their formal specifications. We are however still far from being able to use this methodology in a
smooth interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time systems taking
advantage of special hardware, debuggers, and the like. We hope that Coq can be of use to researchers interested in
experimenting with this new methodology.

2.2 Versions1to5

Note: This summary was written in 1995 together with the previous section and formed the initial version of the Credits
chapter.

A more comprehensive description of these early versions is available in the following subsections, which come from a
document written in September 2015 by Gérard Huet, Thierry Coquand and Christine Paulin.

A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its implementation language was CAML,
a functional programming language from the ML family designed at INRIA in Rocquencourt. The core of this system was
a proof-checker for CoC seen as a typed A-calculus, called the Constructive Engine. This engine was operated through a
high-level notation permitting the declaration of axioms and parameters, the definition of mathematical types and objects,
and the explicit construction of proof objects encoded as A-terms. A section mechanism, designed and implemented
by G. Dowek, allowed hierarchical developments of mathematical theories. This high-level language was called the
Mathematical Vernacular. Furthermore, an interactive Theorem Prover permitted the incremental construction of proof
trees in a top-down manner, subgoaling recursively and backtracking from dead-ends. The theorem prover executed
tactics written in CAML, in the LCF fashion. A basic set of tactics was predefined, which the user could extend by his
own specific tactics. This system (Version 4.10) was released in 1989. Then, the system was extended to deal with the new
calculus with inductive types by C. Paulin, with corresponding new tactics for proofs by induction. A new standard set
of tactics was streamlined, and the vernacular extended for tactics execution. A package to compile programs extracted
from proofs to actual computer programs in CAML or some other functional language was designed and implemented by
B. Werner. A new user-interface, relying on a CAML-X interface by D. de Rauglaudre, was designed and implemented
by A. Felty. It allowed operation of the theorem-prover through the manipulation of windows, menus, mouse-sensitive
buttons, and other widgets. This system (Version 5.6) was released in 1991.

Coq was ported to the new implementation Caml-light of X. Leroy and D. Doligez by D. de Rauglaudre (Version 5.7) in
1992. A new version of Coq was then coordinated by C. Murthy, with new tools designed by C. Parent to prove properties

4 Chapter 2. Early history of Coq

The Coq Reference Manual, Release 8.11.2

of ML programs (this methodology is dual to program extraction) and a new user-interaction loop. This system (Version
5.8) was released in May 1993. A Centaur interface CTCoq was then developed by Y. Bertot from the Croap project
from INRIA-Sophia-Antipolis.

In parallel, G. Dowek and H. Herbelin developed a new proof engine, allowing the general manipulation of existential
variables consistently with dependent types in an experimental version of Coq (V5.9).

The version V5.10 of Coq is based on a generic system for manipulating terms with binding operators due to Chet Murthy.
A new proof engine allows the parallel development of partial proofs for independent subgoals. The structure of these
proof trees is a mixed representation of derivation trees for the Calculus of Inductive Constructions with abstract syntax
trees for the tactics scripts, allowing the navigation in a proof at various levels of details. The proof engine allows generic
environment items managed in an object-oriented way. This new architecture, due to C. Murthy, supports several new
facilities which make the system easier to extend and to scale up:

o User-programmable tactics are allowed

* It is possible to separately verify development modules, and to load their compiled images without verifying them
again - a quick relocation process allows their fast loading

* A generic parsing scheme allows user-definable notations, with a symmetric table-driven pretty-printer
* Syntactic definitions allow convenient abbreviations

¢ A limited facility of meta-variables allows the automatic synthesis of certain type expressions, allowing generic
notations for e.g. equality, pairing, and existential quantification.

In the Fall of 1994, C. Paulin-Mohring replaced the structure of inductively defined types and families by a new structure,
allowing the mutually recursive definitions. P. Manoury implemented a translation of recursive definitions into the primi-
tive recursive style imposed by the internal recursion operators, in the style of the ProPre system. C. Mufioz implemented
a decision procedure for intuitionistic propositional logic, based on results of R. Dyckhoff. J.C. Filliatre implemented a
decision procedure for first-order logic without contraction, based on results of J. Ketonen and R. Weyhrauch. Finally C.
Murthy implemented a library of inversion tactics, relieving the user from tedious definitions of “inversion predicates”.

Rocquencourt, Feb. 1st 1995
Gérard Huet

2.2.1 Version 1

This software is a prototype type-checker for a higher-order logical formalism known as the Theory of Constructions,
presented in his PhD thesis by Thierry Coquand, with influences from Girard’s system F and de Bruijn’s Automath. The
metamathematical analysis of the system is the PhD work of Thierry Coquand. The software is mostly the work of Gérard
Huet. Most of the mathematical examples verified with the software are due to Thierry Coquand.

The programming language of the CONSTR software (as it was called at the time) was a version of ML adapted from the
Edinburgh LCF system and running on a LISP backend. The main improvements from the original LCF ML were that
ML was compiled rather than interpreted (Gérard Huet building on the original translator by Lockwood Morris), and that
it was enriched by recursively defined types (work of Guy Cousineau). This ancestor of CAML was used and improved
by Larry Paulson for his implementation of Cambridge LCF.

Software developments of this prototype occurred from late 1983 to early 1985.

Version 1.10 was frozen on December 22nd 1984. It is the version used for the examples in Thierry Coquand’s thesis,
defended on January 31st 1985. There was a unique binding operator, used both for universal quantification (dependent
product) at the level of types and functional abstraction () at the level of terms/proofs, in the manner of Automath.
Substitution (A-reduction) was implemented using de Bruijn’s indexes.

2.2. Versions 1to 5 5

The Coq Reference Manual, Release 8.11.2

Version 1.11 was frozen on February 19th, 1985. It is the version used for the examples in the paper: T. Coquand, G.
Huet. Constructions: A Higher Order Proof System for Mechanizing Mathematics [CH85].

Christine Paulin joined the team at this point, for her DEA research internship. In her DEA memoir (August 1985) she
presents developments for the lambo function — lambo(f)(n) computes the minimal m such that f(m) is greater than
n, for f an increasing integer function, a challenge for constructive mathematics. She also encoded the majority voting
algorithm of Boyer and Moore.

2.2.2 Version 2

The formal system, now renamed as the Calculus of Constructions, was presented with a proof of consistency and compar-
isons with proof systems of Per Martin Lof, Girard, and the Automath family of N. de Bruijn, in the paper: T. Coquand
and G. Huet. The Calculus of Constructions [CH86b].

An abstraction of the software design, in the form of an abstract machine for proof checking, and a fuller sequence of
mathematical developments was presented in: T. Coquand, G. Huet. Concepts Mathématiques et Informatiques Formalisés
dans le Calcul des Constructions [CH86a].

Version 2.8 was frozen on December 16th, 1985, and served for developing the examples in the above papers.

This calculus was then enriched in version 2.9 with a cumulative hierarchy of universes. Universe levels were initially
explicit natural numbers. Another improvement was the possibility of automatic synthesis of implicit type arguments,
relieving the user of tedious redundant declarations.

Christine Paulin wrote an article Algorithm development in the Calculus of Constructions [Moh86]. Besides lambo and
majority, she presents quicksort and a text formatting algorithm.

Version 2.13 of the Calculus of Constructions with universes was frozen on June 25th, 1986.

A synthetic presentation of type theory along constructive lines with ML algorithms was given by Gérard Huet in his May
1986 CMU course notes Formal Structures for Computation and Deduction. Its chapter Induction and Recursion in the
Theory of Constructions was presented as an invited paper at the Joint Conference on Theory and Practice of Software
Development TAPSOFT’87 at Pise in March 1987, and published as Induction Principles Formalized in the Calculus of
Constructions [Hue88].

2.2.3 Version 3

This version saw the beginning of proof automation, with a search algorithm inspired from PROLOG and the applicative
logic programming programs of the course notes Formal structures for computation and deduction. The search algorithm
was implemented in ML by Thierry Coquand. The proof system could thus be used in two modes: proof verification and
proof synthesis, with tactics such as AUTO.

The implementation language was now called CAML, for Categorical Abstract Machine Language. It used as backend the
LLM3 virtual machine of Le Lisp by Jérdbme Chailloux. The main developers of CAML were Michel Mauny, Ascander
Suarez and Pierre Weis.

V3.1 was started in the summer of 1986, V3.2 was frozen at the end of November 1986. V3.4 was developed in the first
half of 1987.

Thierry Coquand held a post-doctoral position in Cambridge University in 1986-87, where he developed a variant imple-
mentation in SML, with which he wrote some developments on fixpoints in Scott’s domains.

2.2.4 Version 4

This version saw the beginning of program extraction from proofs, with two varieties of the type Prop of propositions,
indicating constructive intent. The proof extraction algorithms were implemented by Christine Paulin-Mohring.

6 Chapter 2. Early history of Coq

The Coq Reference Manual, Release 8.11.2

V4.1 was frozen on July 24th, 1987. It had a first identified library of mathematical developments (directory exemples),
with libraries Logic (containing impredicative encodings of intuitionistic logic and algebraic primitives for booleans,
natural numbers and list), Peano developing second-order Peano arithmetic, Arith defining addition, multiplication,
euclidean division and factorial. Typical developments were the Knaster-Tarski theorem and Newman’s lemma from
rewriting theory.

V4.2 was a joint development of a team consisting of Thierry Coquand, Gérard Huet and Christine Paulin-Mohring. A
file V4.2.log records the log of changes. It was frozen on September 1987 as the last version implemented in CAML 2.3,
and V4.3 followed on CAML 2.5, a more stable development system.

V4.3 saw the first top-level of the system. Instead of evaluating explicit quotations, the user could develop his mathematics
in a high-level language called the mathematical vernacular (following Automath terminology). The user could develop
files in the vernacular notation (with . v extension) which were now separate from the m1 sources of the implementation.
Gilles Dowek joined the team to develop the vernacular language as his DEA internship research.

A notion of sticky constant was introduced, in order to keep names of lemmas when local hypotheses of proofs were
discharged. This gave a notion of global mathematical environment with local sections.

Another significant practical change was that the system, originally developed on the VAX central computer of our lab,
was transferred on SUN personal workstations, allowing a level of distributed development. The extraction algorithm was
modified, with three annotations Pos, Nul1l and Typ decorating the sorts Prop and Type.

Version 4.3 was frozen at the end of November 1987, and was distributed to an early community of users (among those
were Hugo Herbelin and Loic Colson).

V4.4 saw the first version of (encoded) inductive types. Now natural numbers could be defined as:

[source, coq]
Inductive NAT : Prop = O : NAT | Succ : NAT->NAT.

These inductive types were encoded impredicatively in the calculus, using a subsystem rec due to Christine Paulin. V4.4
was frozen on March 6th 1988.

Version 4.5 was the first one to support inductive types and program extraction. Its banner was Calcul des Constructions
avec Réalisations et Synthése. The vernacular language was enriched to accommodate extraction commands.

The verification engine design was presented as: G. Huet. The Constructive Engine. Version 4.5. Invited Conference,
2nd European Symposium on Programming, Nancy, March 88. The final paper, describing the V4.9 implementation,
appeared in: A perspective in Theoretical Computer Science, Commemorative Volume in memory of Gift Siromoney,
Ed. R. Narasimhan, World Scientific Publishing, 1989.

Version 4.5 was demonstrated in June 1988 at the YoP Institute on Logical Foundations of Functional Programming
organized by Gérard Huet at Austin, Texas.

Version 4.6 was started during the summer of 1988. Its main improvement was the complete rehaul of the proof synthesis
engine by Thierry Coquand, with a tree structure of goals.

Its source code was communicated to Randy Pollack on September 2nd 1988. It evolved progressively into LEGO, proof
system for Luo’s formalism of Extended Calculus of Constructions.

The discharge tactic was modified by Gérard Huet to allow for inter-dependencies in discharged lemmas. Christine Paulin
improved the inductive definition scheme in order to accommodate predicates of any arity.

Version 4.7 was started on September 6th, 1988.

This version starts exploiting the CAML notion of module in order to improve the modularity of the implementation.
Now the term verifier is identified as a proper module Machine, which the structure of its internal data structures being
hidden and thus accessible only through the legitimate operations. This machine (the constructive engine) was the trusted
core of the implementation. The proof synthesis mechanism was a separate proof term generator. Once a complete proof
term was synthesized with the help of tactics, it was entirely re-checked by the engine. Thus there was no need to certify
the tactics, and the system took advantage of this fact by having tactics ignore the universe levels, universe consistency

2.2. Versions 1to 5 7

The Coq Reference Manual, Release 8.11.2

check being relegated to the final type-checking pass. This induced a certain puzzlement in early users who saw, after a
successful proof search, their QED followed by silence, followed by a failure message due to a universe inconsistency. ..

The set of examples comprise set theory experiments by Hugo Herbelin, and notably the Schroeder-Bernstein theorem.

Version 4.8, started on October 8th, 1988, saw a major re-implementation of the abstract syntax type constr, separating
variables of the formalism and metavariables denoting incomplete terms managed by the search mechanism. A notion of
level (with three values TYPE, OBJECT and PROOF) is made explicit and a type judgement clarifies the constructions,
whose implementation is now fully explicit. Structural equality is speeded up by using pointer equality, yielding spectacular
improvements. Thierry Coquand adapts the proof synthesis to the new representation, and simplifies pattern matching to
first-order predicate calculus matching, with important performance gain.

A new representation of the universe hierarchy is then defined by Gérard Huet. Universe levels are now implemented
implicitly, through a hidden graph of abstract levels constrained with an order relation. Checking acyclicity of the graph
insures well-foundedness of the ordering, and thus consistency. This was documented in a memo Adding Type:Type to
the Calculus of Constructions which was never published.

The development version is released as a stable 4.8 at the end of 1988.
Version 4.9 is released on March 1st 1989, with the new “elastic” universe hierarchy.

The spring of 1989 saw the first attempt at documenting the system usage, with a number of papers describing the
formalism:

* Metamathematical Investigations of a Calculus of Constructions, by Thierry Coquand [Coq89],
¢ Inductive definitions in the Calculus of Constructions, by Christine Paulin-Mohrin,
 Extracting Fw's programs from proofs in the Calculus of Constructions, by Christine Paulin-Mohring* [PM89],
* The Constructive Engine, by Gérard Huet [Hue89],
as well as a number of user guides:
* A short user’s guide for the Constructions, Version 4.10, by Gérard Huet
* A Vernacular Syllabus, by Gilles Dowek.
* The Tactics Theorem Prover, User’s guide, Version 4.10, by Thierry Coquand.
Stable V4.10, released on May 1st, 1989, was then a mature system, distributed with CAML V2.6.

In the mean time, Thierry Coquand and Christine Paulin-Mohring had been investigating how to add native inductive
types to the Calculus of Constructions, in the manner of Per Martin-Lof’s Intuitionistic Type Theory. The impredicative
encoding had already been presented in: F. Pfenning and C. Paulin-Mohring. Inductively defined types in the Calculus
of Constructions [PPM89]. An extension of the calculus with primitive inductive types appeared in: T. Coquand and C.
Paulin-Mohring. Inductively defined types [CP90].

This led to the Calculus of Inductive Constructions, logical formalism implemented in Versions 5 upward of the system,
and documented in: C. Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Properties [PM93b].

The last version of CONSTR is Version 4.11, which was last distributed in the spring of 1990. It was demonstrated at
the first workshop of the European Basic Research Action Logical Frameworks In Sophia Antipolis in May 1990.

2.2.5 Version 5

At the end of 1989, Version 5.1 was started, and renamed as the system Coq for the Calculus of Inductive Constructions.
It was then ported to the new stand-alone implementation of ML called Caml-light.

In 1990 many changes occurred. Thierry Coquand left for Chalmers University in Goteborg. Christine Paulin-Mohring
took a CNRS researcher position at the LIP laboratory of Ecole Normale Supérieure de Lyon. Project Formel was termi-
nated, and gave rise to two teams: Cristal at INRIA-Roquencourt, that continued developments in functional programming

8 Chapter 2. Early history of Coq

The Coq Reference Manual, Release 8.11.2

with Caml-light then OCaml, and Coq, continuing the type theory research, with a joint team headed by Gérard Huet at
INRIA-Rocquencourt and Christine Paulin-Mohring at the LIP laboratory of CNRS-ENS Lyon.

Chetan Murthy joined the team in 1991 and became the main software architect of Version 5. He completely rehauled
the implementation for efficiency. Versions 5.6 and 5.8 were major distributed versions, with complete documentation
and a library of users’ developments. The use of the RCS revision control system, and systematic ChangeLog files, allow
a more precise tracking of the software developments.

September 2015 +
Thierry Coquand, Gérard Huet and Christine Paulin-Mohring.

2.3 Versions 6

2.3.1 Version 6.1

The present version 6.1 of Coq is based on the V5.10 architecture. It was ported to the new language Objective Caml by
Bruno Barras. The underlying framework has slightly changed and allows more conversions between sorts.

The new version provides powerful tools for easier developments.

Cristina Cornes designed an extension of the Coq syntax to allow definition of terms using a powerful pattern matching
analysis in the style of ML programs.

Amokrane Saibi wrote a mechanism to simulate inheritance between types families extending a proposal by Peter Aczel.
He also developed a mechanism to automatically compute which arguments of a constant may be inferred by the system
and consequently do not need to be explicitly written.

Yann Coscoy designed a command which explains a proof term using natural language. Pierre Crégut built a new tactic
which solves problems in quantifier-free Presburger Arithmetic. Both functionalities have been integrated to the Coq
system by Hugo Herbelin.

Samuel Boutin designed a tactic for simplification of commutative rings using a canonical set of rewriting rules and equality
modulo associativity and commutativity.

Finally the organisation of the Coq distribution has been supervised by Jean-Christophe Fillidtre with the help of Judicaél
Courant and Bruno Barras.

Lyon, Nov. 18th 1996
Christine Paulin

2.3.2 Version 6.2

In version 6.2 of Coq, the parsing is done using camlp4, a preprocessor and pretty-printer for CAML designed by Daniel
de Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptation of Coq for camlp4, this work was continued by
Bruno Barras who also changed the structure of Coq abstract syntax trees and the primitives to manipulate them. The
result of these changes is a faster parsing procedure with greatly improved syntax-error messages. The user-interface to
introduce grammar or pretty-printing rules has also changed.

Eduardo Giménez redesigned the internal tactic libraries, giving uniform names to Caml functions corresponding to Coq
tactic names.

2.3. Versions 6 9

The Coq Reference Manual, Release 8.11.2

Bruno Barras wrote new, more efficient reduction functions.

Hugo Herbelin introduced more uniform notations in the Coq specification language: the definitions by fixpoints and
pattern matching have a more readable syntax. Patrick Loiseleur introduced user-friendly notations for arithmetic expres-
sions.

New tactics were introduced: Eduardo Giménez improved the mechanism to introduce macros for tactics, and designed
special tactics for (co)inductive definitions; Patrick Loiseleur designed a tactic to simplify polynomial expressions in
an arbitrary commutative ring which generalizes the previous tactic implemented by Samuel Boutin. Jean-Christophe
Filliatre introduced a tactic for refining a goal, using a proof term with holes as a proof scheme.

David Delahaye designed the tool to search an object in the library given its type (up to isomorphism).
Henri Laulhere produced the Coq distribution for the Windows environment.

Finally, Hugo Herbelin was the main coordinator of the Coq documentation with principal contributions by Bruno Barras,
David Delahaye, Jean-Christophe Fillidtre, Eduardo Giménez, Hugo Herbelin and Patrick Loiseleur.

Orsay, May 4th 1998
Christine Paulin

2.3.3 Version 6.3

The main changes in version V6.3 were the introduction of a few new tactics and the extension of the guard condition for
fixpoint definitions.

B. Barras extended the unification algorithm to complete partial terms and fixed various tricky bugs related to universes.

D. Delahaye developed the AutoRewrite tactic. He also designed the new behavior of Intro and provided the
tacticals First and Solve.

J.-C. Filliatre developed the Correctness tactic.
E. Giménez extended the guard condition in fixpoints.
H. Herbelin designed the new syntax for definitions and extended the Induct ion tactic.

P. Loiseleur developed the Quote tactic and the new design of the Aut o tactic, he also introduced the index of errors
in the documentation.

C. Paulin wrote the Focus command and introduced the reduction functions in definitions, this last feature was proposed
by J.-F. Monin from CNET Lannion.

Orsay, Dec. 1999
Christine Paulin

2.4 Versions 7

2.4.1 Summary of changes

The version V7 is a new implementation started in September 1999 by Jean-Christophe Fillidtre. This is a major revision
with respect to the internal architecture of the system. The Coq version 7.0 was distributed in March 2001, version 7.1

10 Chapter 2. Early history of Coq

The Coq Reference Manual, Release 8.11.2

in September 2001, version 7.2 in January 2002, version 7.3 in May 2002 and version 7.4 in February 2003.

Jean-Christophe Fillidtre designed the architecture of the new system. He introduced a new representation for environ-
ments and wrote a new kernel for type checking terms. His approach was to use functional data-structures in order to get
more sharing, to prepare the addition of modules and also to get closer to a certified kernel.

Hugo Herbelin introduced a new structure of terms with local definitions. He introduced “qualified” names, wrote a new
pattern matching compilation algorithm and designed a more compact algorithm for checking the logical consistency of
universes. He contributed to the simplification of Coq internal structures and the optimisation of the system. He added
basic tactics for forward reasoning and coercions in patterns.

David Delahaye introduced a new language for tactics. General tactics using pattern matching on goals and context can
directly be written from the Coq toplevel. He also provided primitives for the design of user-defined tactics in Caml.

Micaela Mayero contributed the library on real numbers. Olivier Desmettre extended this library with axiomatic trigono-
metric functions, square, square roots, finite sums, Chasles property and basic plane geometry.

Jean-Christophe Filliatre and Pierre Letouzey redesigned a new extraction procedure from Coq terms to Caml or Haskell
programs. This new extraction procedure, unlike the one implemented in previous version of Coq is able to handle all
terms in the Calculus of Inductive Constructions, even involving universes and strong elimination. P. Letouzey adapted
user contributions to extract ML programs when it was sensible. Jean-Christophe Fillitre wrote cogdoc, a documenta-
tion tool for Coq libraries usable from version 7.2.

Bruno Barras improved the efficiency of the reduction algorithm and the confidence level in the correctness of Coq critical
type checking algorithm.

Yves Bertot designed the SearchPattern and SearchRewrite tools and the support for the pcoq interface (http:
/lwww-sop.inria.fr/lemme/pcoq/).

Micaela Mayero and David Delahaye introduced Field, a decision tactic for commutative fields.
Christine Paulin changed the elimination rules for empty and singleton propositional inductive types.
Loic Pottier developed Fourier, a tactic solving linear inequalities on real numbers.

Pierre Crégut developed a new, reflection-based version of the Omega decision procedure.

Claudio Sacerdoti Coen designed an XML output for the Coq modules to be used in the Hypertextual Electronic Library
of Mathematics (HELM cf http://www.cs.unibo.it/helm).

A library for efficient representation of finite maps using binary trees contributed by Jean Goubault was integrated in the
basic theories.

Pierre Courtieu developed a command and a tactic to reason on the inductive structure of recursively defined functions.

Jacek Chrzaszcz designed and implemented the module system of Coq whose foundations are in Judica€l Courant’s PhD
thesis.

The development was coordinated by C. Paulin.

Many discussions within the Démons team and the LogiCal project influenced significantly the design of Coq especially
with J. Courant, J. Duprat, J. Goubault, A. Miquel, C. Marché, B. Monate and B. Werner.

Intensive users suggested improvements of the system : Y. Bertot, L. Pottier, L. Théry, P. Zimmerman from INRIA, C.
Alvarado, P. Crégut, J.-F. Monin from France Telecom R & D.

Orsay, May. 2002
Hugo Herbelin & Christine Paulin

2.4. Versions 7 11

http://www-sop.inria.fr/lemme/pcoq/
http://www-sop.inria.fr/lemme/pcoq/
http://www.cs.unibo.it/helm

The Coq Reference Manual, Release 8.11.2

2.4.2 Details of changes in 7.0 and 7.1

Notes:
* items followed by (**) are important sources of incompatibilities
« items followed by (*) may exceptionally be sources of incompatibilities

* items followed by (+) have been introduced in version 7.0

Main novelties

References are to Coq 7.1 reference manual
e New primitive let-in construct (see sections 1.2.8 and)
* Long names (see sections 2.6 and 2.7)
» New high-level tactic language (see chapter 10)
» Improved search facilities (see section 5.2)
* New extraction algorithm managing the Type level (see chapter 17)
» New rewriting tactic for arbitrary equalities (see chapter 19)
» New tactic Field to decide equalities on commutative fields (see 7.11)
* New tactic Fourier to solve linear inequalities on reals numbers (see 7.11)
» New tactics for induction/case analysis in “natural” style (see 7.7)
¢ Deep restructuration of the code (safer, simpler and more efficient)

» Export of theories to XML for publishing and rendering purposes (see http://www.cs.unibo.it/helm)

Details of changes

Language: new ”let-in” construction

» New construction for local definitions (let-in) with syntax [x:=u]t (*)(+)

* Local definitions allowed in Record (a.k.a. record a la Randy Pollack)

Language: long nhames

» Each construction has a unique absolute names built from a base name, the name of the module in which they are
defined (Top if in coqtop), and possibly an arbitrary long sequence of directory (e.g. ”Coq.Lists.PolyList.flat_map”
where ”"Coq” means that “flat_map” is part of Coq standard library, ”Lists” means it is defined in the Lists library
and "PolyList” means it is in the file Polylist) (+)

* Constructions can be referred by their base name, or, in case of conflict, by a “qualified” name, where the base
name is prefixed by the module name (and possibly by a directory name, and so on). A fully qualified name is an
absolute name which always refer to the construction it denotes (to preserve the visibility of all constructions, no
conflict is allowed for an absolute name) (+)

* Long names are available for modules with the possibility of using the directory name as a component of the module
full name (with option -R to coqtop and coqc, or command Add LoadPath) (+)

12 Chapter 2. Early history of Coq

http://www.cs.unibo.it/helm

The Coq Reference Manual, Release 8.11.2

* Improved conflict resolution strategy (the Unix PATH model), allowing more constructions to be referred just by
their base name

Language: miscellaneous

* The names of variables for Record projections _and_ for induction principles (e.g. sum_ind) is now based on the
first letter of their type (main source of incompatibility) (**)(+)

* Most typing errors have now a precise location in the source (+)

* Slightly different mechanism to solve ”?” (*)(+)

* More arguments may be considered implicit at section closing (*)(+)
* Bug with identifiers ended by a number greater than 230 fixed (+)

* New visibility discipline for Remark, Fact and Local: Remark’s and Fact’s now survive at the end of section, but
are only accessible using a qualified names as soon as their strength expires; Local’s disappear and are moved into
local definitions for each construction persistent at section closing

Language: Cases

* Cases no longer considers aliases inferable from dependencies in types (*)(+)

* A redundant clause in Cases is now an error (*)

Reduction

» New reduction flags ”Zeta” and “Evar” in Eval Compute, for inlining of local definitions and instantiation of exis-
tential variables

¢ Delta reduction flag does not perform Zeta and Evar reduction any more (*)

» Constants declared as opaque (using Qed) can no longer become transparent (a constant intended to be alternatively
opaque and transparent must be declared as transparent (using Defined)); a risk exists (until next Coq version) that
Simpl and Hnf reduces opaque constants (*)

New tactics

» New set of tactics to deal with types equipped with specific equalities (a.k.a. Setoids, e.g. nat equipped with eq_nat)
[by C. Renard]

» New tactic Assert, similar to Cut but expected to be more user-friendly

¢ New tactic NewDestruct and NewInduction intended to replace Elim and Induction, Case and Destruct in a more
user-friendly way (see restrictions in the reference manual)

¢ New tactic ROmega: an experimental alternative (based on reflexion) to Omega [by P. Crégut]
» New tactic language Ltac (see reference manual) (+)

¢ New versions of Tauto and Intuition, fully rewritten in the new Ltac language; they run faster and produce more
compact proofs; Tauto is fully compatible but, in exchange of a better uniformity, Intuition is slightly weaker (then
use Tauto instead) (*¥*)(+)

» New tactic Field to decide equalities on commutative fields (as a special case, it works on real numbers) (+)

2.4. Versions 7 13

The Coq Reference Manual, Release 8.11.2

New tactic Fourier to solve linear inequalities on reals numbers [by L. Pottier] (+)

New tactics dedicated to real numbers: DiscrR, SplitRmult, SplitAbsolu (+)

Changes in existing tactics

Reduction tactics in local definitions apply only to the body

New syntax of the form "Compute in Type of H.” to require a reduction on the types of local definitions
Inversion, Injection, Discriminate, ... apply also on the quantified premises of a goal (using the “Intros until” syntax)
Decompose has been fixed but hypotheses may get different names (*)(+)

Tauto now manages uniformly hypotheses and conclusions of the form t=t which all are considered equivalent to
True. Especially, Tauto now solves goals of the formH : ~ t = t |- A.

The "Let” tactic has been renamed “LetTac” and is now based on the primitive “let-in” (+)

Elim can no longer be used with an elimination schema different from the one defined at definition time of the
inductive type. To overload an elimination schema, use "Elim <hyp> using <name of the new schema>" (*)(+)

Simpl no longer unfolds the recursive calls of a mutually defined fixpoint (*)(+)
Intro now fails if the hypothesis name already exists (*)(+)

”Require Prolog” is no longer needed (i.e. it is available by default) (*)(+)
Unfold now fails on a non unfoldable identifier (*)(+)

Unfold also applies on definitions of the local context

AutoRewrite now deals only with the main goal and it is the purpose of Hint Rewrite to deal with generated subgoals

G

Redundant or incompatible instantiations in Apply ... with ... are now correctly managed (+)

Efficiency

Excessive memory uses specific to V7.0 fixed
Sizes of .vo files vary a lot compared to V6.3 (from -30% to +300% depending on the developments)
An improved reduction strategy for lazy evaluation

A more economical mechanism to ensure logical consistency at the Type level; warning: this is experimental and
may produce “universes” anomalies (please report)

Concrete syntax of constructions

L) 99399

Only identifiers starting with ”_" or a letter, and followed by letters, digits, ”_" or ™ are allowed (e.g. ”$” and ”@”
are no longer allowed) (*)

A multiple binder like (a:A)(a,b:(P a))(Q a) is no longer parsed as (a:A)(a0:(P a))(b:(P a))(Q a0) but as (a:A)(a0:(P
a))(b:(P a0))(Q a0) (*)(+)

A dedicated syntax has been introduced for Reals (e.g 3+1/x) (+)

Pretty-printing of Infix notations fixed. (+)

14

Chapter 2. Early history of Coq

The Coq Reference Manual, Release 8.11.2

Parsing and grammar extension

¢ More constraints when writing ast

— ”{...}” and the macros $LIST, $VAR, etc. now expect a metavariable (an identifier starting with $) (*)

99393

— identifiers should starts with a letter or ”’_"" and be followed by letters, digits, ”_” or
are still supported but it is not advised to use them) (*)(+)

(other characters

¢ Entry "command” in "Grammar” and quotations (<<...>> stuff) is renamed “constr” as in "Syntax” (+)

* New syntax ”[” sentence_1 ... sentence_n”].” to group sentences (useful for Time and to write grammar rules
abbreviating several commands) (+)

* The default parser for actions in the grammar rules (and for patterns in the pretty-printing rules) is now the one
associated to the grammar (i.e. vernac, tactic or constr); no need then for quotations as in <:vernac:<...>>; to return
an “ast”, the grammar must be explicitly typed with tag ”: ast” or ”: ast list”, or if a syntax rule, by using <<...>>
in the patterns (expression inside these angle brackets are parsed as “ast”); for grammars other than vernac, tactic

9 9,

or constr, you may explicitly type the action with tags ”: constr”, ”: tactic”, or :vernac” (**)(+)

* Interpretation of names in Grammar rule is now based on long names, which allows to avoid problems (or sometimes
tricks;) related to overloaded names (+)

New commands

e New commands “Print XML All”, "Show XML Proof”, ... to show or export theories to XML to be used with
Helm’s publishing and rendering tools (see http://www.cs.unibo.it/helm) (by Claudio Sacerdoti Coen) (+)

* New commands to manually set implicit arguments (+)

— "Implicits ident.” to activate the implicit arguments mode just for ident

— ”Implicits ident [num1 num?2 ...].”” to explicitly give which arguments have to be considered as implicit
* New SearchPattern/SearchRewrite (by Yves Bertot) (+)
¢ New commands "Debug on”/”Debug off” to activate/deactivate the tactic language debugger (+)

¢ New commands to map physical paths to logical paths (+) - Add LoadPath physical_dir as logical_dir - Add Rec
LoadPath physical_dir as logical_dir

Changes in existing commands

* Generalization of the usage of qualified identifiers in tactics and commands about globals, e.g. Decompose, Eval
Delta; Hints Unfold, Transparent, Require

* Require synchronous with Reset; Require’s scope stops at Section ending (*)

 For a module indirectly loaded by a "Require” but not exported, the command “"Import module” turns the construc-
tions defined in the module accessible by their short name, and activates the Grammar, Syntax, Hint, ... declared
in the module (+)

* The scope of the "Search” command can be restricted to some modules (+)
¢ Final dot in command (full stop/period) must be followed by a blank (newline, tabulation or whitespace) (+)

» Slight restriction of the syntax for Cbv Delta: if present, option [-myconst] must immediately follow the Delta
keyword (¥)(+)

* Searchlsos currently not supported

2.4. Versions 7 15

http://www.cs.unibo.it/helm

The Coq Reference Manual, Release 8.11.2

Add ML Path is now implied by Add LoadPath (+)
New names for the following commands (+)

AddPath -> Add LoadPath Print LoadPath -> Print LoadPath DelPath -> Remove LoadPath AddRecPath -> Add
Rec LoadPath Print Path -> Print Coercion Paths

Implicit Arguments On -> Set Implicit Arguments Implicit Arguments Off -> Unset Implicit Arguments

Begin Silent -> Set Silent End Silent -> Unset Silent.

Tools

coqtop (+)
— Two executables: coqtop.byte and coqtop.opt (if supported by the platform)
— coqtop is a link to the more efficient executable (coqtop.opt if present)
— option -full is obsolete (+)
do_Makefile renamed into coq_makefile (+)
New option -R to coqtop and coqc to map a physical directory to a logical one (+)
coqc no longer needs to create a temporary file

No more warning if no initialization file .coqrc exists

Extraction

New algorithm for extraction able to deal with "Type” (+) (by J.-C. Filliatre and P. Letouzey)

Standard library

New library on maps on integers (IntMap, contributed by Jean Goubault)
New lemmas about integer numbers [ZArith]
New lemmas and a “natural” syntax for reals [Reals] (+)

Exc/Error/Value renamed into Option/Some/None (*)

New user contributions

Constructive complex analysis and the Fundamental Theorem of Algebra [FTA] (Herman Geuvers, Freek Wiedijk,
Jan Zwanenburg, Randy Pollack, Henk Barendregt, Nijmegen)

A new axiomatization of ZFC set theory [Functions_in_ZFC] (C. Simpson, Sophia-Antipolis)
Basic notions of graph theory [GRAPHS-BASICS] (Jean Duprat, Lyon)

A library for floating-point numbers [Float] (Laurent Théry, Sylvie Boldo, Sophia-Antipolis)
Formalisation of CTL and TCTL temporal logic [CtlTctl] (Carlos Daniel Luna,Montevideo)

Specification and verification of the Railroad Crossing Problem in CTL and TCTL [RailroadCrossing] (Carlos
Daniel Luna,Montevideo)

P-automaton and the ABR algorithm [PAutomata] (Christine Paulin, Emmanuel Freund, Orsay)

16

Chapter 2. Early history of Coq

The Coq Reference Manual, Release 8.11.2

» Semantics of a subset of the C language [MiniC] (Eduardo Giménez, Emmanuel Ledinot, Suresnes)

» Correctness proofs of the following imperative algorithms: Bresenham line drawing algorithm [Bresenham],
Marché’s minimal edition distance algorithm [Diff] (Jean-Christophe Filliatre, Orsay)

¢ Correctness proofs of Buchberger’s algorithm [Buchberger] and RSA cryptographic algorithm [Rsa] (Laurent
Théry, Sophia-Antipolis)

¢ Correctness proof of Stalmarck tautology checker algorithm [Stalmarck] (Laurent Théry, Pierre Letouzey, Sophia-
Antipolis)

2.4.3 Details of changes in 7.2

Language

* Automatic insertion of patterns for local definitions in the type of the constructors of an inductive types (for com-
patibility with V6.3 let-in style)

¢ Coercions allowed in Cases patterns

» New declaration ”Canonical Structure id =t : I” to help resolution of equations of the form (proj ?)=a; if proj(e)=a
then a is canonically equipped with the remaining fields in e, i.e. ? is instantiated by e

Tactics

¢ New tactic "ClearBody H” to clear the body of definitions in local context

* New tactic "Assert H := c¢” for forward reasoning

« Slight improvement in naming strategy for NewInduction/NewDestruct

* Intuition/Tauto do not perform useless unfolding and work up to conversion
Extraction (details in plugins/extraction/CHANGES or documentation)

» Syntax changes: there are no more options inside the extraction commands. New commands for customization and
options have been introduced instead.

* More optimizations on extracted code.

¢ Extraction tests are now embedded in 14 user contributions.
Standard library

¢ In [Relations], Rstar.v and Newman.v now axiom-free.

* In [Sets], Integers.v now based on nat

¢ In [Arith], more lemmas in Min.v, new file Max.v, tail-recursive plus and mult added to Plus.v and Mult.v respec-
tively

» New directory [Sorting] with a proof of heapsort (dragged from 6.3.1 lib)

¢ In [Reals], more lemmas in Rbase.v, new lemmas on square, square root and trigonometric functions (R_sqr.v
- Rtrigo.v); a complementary approach and new theorems about continuity and derivability in Ranalysis.v; some
properties in plane geometry such as translation, rotation or similarity in Rgeom.v; finite sums and Chasles property
in Rsigma.v

Bugs
 Confusion between implicit args of locals and globals of same base name fixed
 Various incompatibilities wrt inference of ”?” in V6.3.1 fixed

* Implicits in infix section variables bug fixed

2.4. Versions 7 17

The Coq Reference Manual, Release 8.11.2

Known coercions bugs fixed

Apply “universe anomaly” bug fixed

NatRing now working

“Discriminate 17, "Injection 17, ”Simplify_eq 1” now working
NewInduction bugs with let-in and recursively dependent hypotheses fixed
Syntax [x:=t:T]u now allowed as mentioned in documentation

Bug with recursive inductive types involving let-in fixed

Known pattern-matching bugs fixed

Known Cases elimination predicate bugs fixed

Improved errors messages for pattern-matching and projections

Better error messages for ill-typed Cases expressions

Incompatibilities

New naming strategy for NewInduction/NewDestruct may affect 7.1 compatibility
Extra parentheses may exceptionally be needed in tactic definitions.

Coq extensions written in Ocaml need to be updated (see dev/changements.txt for a description of the main changes
in the interface files of V7.2)

New behaviour of Intuition/Tauto may exceptionally lead to incompatibilities

2.4.4 Details of changes in 7.3

Language

Slightly improved compilation of pattern-matching (slight source of incompatibilities)

9 9

Record’s now accept anonymous fields which does not build projections

Changes in the allowed elimination sorts for certain class of inductive definitions : an inductive definition without
constructors of Sort Prop can be eliminated on sorts Set and Type A “singleton” inductive definition (one constructor
with arguments in the sort Prop like conjunction of two propositions or equality) can be eliminated directly on sort
Type (In V7.2, only the sorts Prop and Set were allowed)

Tactics

New tactic "Rename x into y” for renaming hypotheses
New tactics "Pose x:=u” and "Pose u” to add definitions to local context
Pattern now working on partially applied subterms

Ring no longer applies irreversible congruence laws of mult but better applies congruence laws of plus (slight source
of incompatibilities).

Field now accepts terms to be simplified as arguments (as for Ring). This extension has been also implemented
using the toplevel tactic language.

Intuition does no longer unfold constants except ”"<->” and ”~”. It can be parameterized by a tactic. It also can
introduce dependent product if needed (source of incompatibilities)

”Match Context” now matching more recent hypotheses first and failing only on user errors and Fail tactic (possible
source of incompatibilities)

18

Chapter 2. Early history of Coq

The Coq Reference Manual, Release 8.11.2

¢ Tactic Definition’s without arguments now allowed in Coq states

 Better simplification and discrimination made by Inversion (source of incompatibilities)

* “Intros H” now working like ”Intro H” trying first to reduce if not a product
» Forward dependencies in Cases now taken into account
* Known bugs related to Inversion and let-in’s fixed
¢ Bug unexpected Delta with let-in now fixed
Extraction (details in plugins/extraction/CHANGES or documentation)
* Signatures of extracted terms are now mostly expunged from dummy arguments.
» Haskell extraction is now operational (tested & debugged).
Standard library

» Some additions in [ZArith]: three files (Zcomplements.v, Zpower.v and Zlogarithms.v) moved from plugins/omega
in order to be more visible, one Zsgn function, more induction principles (Wf_Z.v and tail of Zcomplements.v),
one more general Euclid theorem

¢ Peano_dec.v and Compare_dec.v now part of Arith.v
Tools

* new option -dump-glob to coqtop to dump globalizations (to be used by the new documentation tool cogdoc; see
http://www.Iri.fr/~filliatr/coqdoc)

User Contributions
* CongruenceClosure (congruence closure decision procedure) [Pierre Corbineau, ENS Cachan]

* MapleMode (an interface to embed Maple simplification procedures over rational fractions in Coq) [David Dela-
haye, Micaela Mayero, Chalmers University]

¢ Presburger: A formalization of Presburger’s algorithm [Laurent Thery, INRIA Sophia Antipolis]

* Chinese has been rewritten using Z from ZArith as datatype ZChinese is the new version, Chinese the obsolete one
[Pierre Letouzey, LRI Orsay]

Incompatibilities
¢ Ring: exceptional incompatibilities (1 above 650 in submitted user contribs, leading to a simplification)

¢ Intuition: does not unfold any definition except ”<->" and ”~”

» Cases: removal of some extra Cases in configurations of the form ”Cases ... of C _=>... | _D =>...” (effects on 2
definitions of submitted user contributions necessitating the removal of now superfluous proof steps in 3 different
proofs)

* Match Context, in case of incompatibilities because of a now non trapped error (e.g. Not_found or Failure), use
instead tactic Fail to force Match Context trying the next clause

* Inversion: better simplification and discrimination may occasionally lead to less subgoals and/or hypotheses and
different naming of hypotheses

* Unification done by Apply/Elim has been changed and may exceptionally lead to incompatible instantiations

¢ Peano_dec.v and Compare_dec.v parts of Arith.v make Auto more powerful if these files were not already required
(1 occurrence of this in submitted user contribs)

2.4. Versions 7 19

http://www.lri.fr/~filliatr/coqdoc

The Coq Reference Manual, Release 8.11.2

Changes in 7.3.1

Bug fixes

Corrupted Field tactic and Match Context tactic construction fixed
Checking of names already existing in Assert added (#1386)

Invalid argument bug in Exact tactic solved (#1387)

Colliding bound names bug fixed (#1412)

Wrong non-recursivity test for Record fixed (#1394)

Out of memory/seg fault bug related to parametric inductive fixed (#1404)

Setoid_replace/Setoid_rewrite bug wrt "==" fixed

Ocaml version >= 3.06 is needed to compile Coq from sources

Simplification of fresh names creation strategy for Assert, Pose and LetTac (#1402)

2.4.5 Details of changes in 7.4

Symbolic notations

Introduction of a notion of scope gathering notations in a consistent set; a notation sets has been developed for nat,
Z and R (undocumented)

New command "Notation” for declaring notations simultaneously for parsing and printing (see chap 10 of the
reference manual)

Declarations with only implicit arguments now handled (e.g. the argument of nil can be set implicit; use !nil to
refer to nil without arguments)

“Print Scope sc” and “Locate ntn” allows to know to what expression a notation is bound
New defensive strategy for printing or not implicit arguments to ensure re-type-checkability of the printed term

In Grammar command, the only predefined non-terminal entries are ident, global, constr and pattern (e.g. nvar,
numarg disappears); the only allowed grammar types are constr and pattern; ast and ast list are no longer supported;
some incompatibilities in Grammar: when a syntax is a initial segment of an other one, Grammar does not work,
use Notation

Library

Lemmas in Set from Compare_dec.v (le_lt_dec, ...) and Wf_nat.v (It_wf_rec, ...) are now transparent. This may
be source of incompatibilities.

Syntactic Definitions Fst, Snd, Ex, All, Ex2, AllT, ExT, ExT2, ProjS1, ProjS2, Error, Value and Except are turned
to notations. They now must be applied (incompatibilities only in unrealistic cases).

More efficient versions of Zmult and times (30% faster)

Reals: the library is now divided in 6 parts (Rbase, Rfunctions, SeqSeries, Rtrigo, Ranalysis, Integration). New
tactics: Sup and RCompute. See Reals.v for details.

Modules

Beta version, see doc chap 2.5 for commands and chap 5 for theory

Language

20

Chapter 2. Early history of Coq

The Coq Reference Manual, Release 8.11.2

¢ Inductive definitions now accept ”>" in constructor types to declare the corresponding constructor as a coercion.
* Idem for assumptions declarations and constants when the type is mentioned.

* The "Coercion” and ”Canonical Structure” keywords now accept the same syntax as "Definition”, i.e. “hyps :=c
(:t)?” or "hyps :t”.

* Theorem-like declaration now accepts the syntax “Theorem thm [x:t;...] : u”.

* Remark’s and Fact’s now definitively behave as Theorem and Lemma: when sections are closed, the full name of a
Remark or a Fact has no longer a section part (source of incompatibilities)

¢ Opaque Local’s (i.e. built by tactics and ended by Qed), do not survive section closing any longer; as a side-effect,
Opaque Local’s now appear in the local context of proofs; their body is hidden though (source of incompatibilities);
use one of Remark/Fact/Lemma/Theorem instead to simulate the old behaviour of Local (the section part of the
name is not kept though)

ML tactic and vernacular commands

e "Grammar tactic” and "Grammar vernac” of type “ast” are no longer supported (only "Grammar tactic sim-
ple_tactic” of type “tactic” remains available).

* Concrete syntax for ML written vernacular commands and tactics is now declared at ML level using camlp4 macros
TACTIC EXTEND et VERNAC COMMAND EXTEND.

¢ ”Check n ¢” now "n:Check ¢”, ”’Eval n ...” now "n:Eval ...”
e Proof with T (no documentation)

* SearchAbout id - prints all theorems which contain id in their type

Tactic definitions

« Static globalisation of identifiers and global references (source of incompatibilities, especially, Recursive keyword
is required for mutually recursive definitions).

* New evaluation semantics: no more partial evaluation at definition time; evaluation of all Tactic/Meta Definition,
even producing terms, expect a proof context to be evaluated (especially ”()” is no longer needed).

* Debugger now shows the nesting level and the reasons of failure

Tactics

Equality tactics (Rewrite, Reflexivity, Symmetry, Transitivity) now understand JM equality

Simpl and Change now apply to subterms also

”Simpl f” reduces subterms whose head constant is f

Double Induction now referring to hypotheses like “Intros until”

“Inversion” now applies also on quantified hypotheses (naming as for Intros until)

NewDestruct now accepts terms with missing hypotheses

NewDestruct and NewInduction now accept user-provided elimination scheme

NewDestruct and NewInduction now accept user-provided introduction names

Omega could solve goals such as ~x<y |- x>=y but failed when the hypothesis was unfolded to x < y —>
False. This is fixed. In addition, it can also recognize 'False’ in the hypothesis and use it to solve the goal.

Coercions now handled in ”with” bindings

”Subst x” replaces all occurrences of x by t in the goal and hypotheses when an hypothesis x=t or x:=t or t=x exists

Fresh names for Assert and Pose now based on collision-avoiding Intro naming strategy (exceptional source of
incompatibilities)

24.

Versions 7 21

The Coq Reference Manual, Release 8.11.2

¢ LinearIntuition (no documentation)
» Unfold expects a correct evaluable argument
* Clear expects existing hypotheses
Extraction (See details in plugins/extraction/CHANGES and README):
* An experimental Scheme extraction is provided.
» Concerning Ocaml, extracted code is now ensured to always type-check, thanks to automatic inserting of Obj.magic.
¢ Experimental extraction of Coq new modules to Ocaml modules.
Proof rendering in natural language

* Export of theories to XML for publishing and rendering purposes now includes proof-trees (see http://www.cs.
unibo.it/helm)

Miscellaneous
¢ Printing Coercion now used through the standard keywords Set/Add, Test, Print
 ”Print Term id” is an alias for "Print id”
» New switch "Unset/Set Printing Symbols” to control printing of symbolic notations
* Two new variants of implicit arguments are available

— Unset/Set Contextual Implicits tells to consider implicit also the arguments inferable from the
context (e.g. for nil or refl_eq)

— Unset/Set Strict Implicits tells to consider implicit only the arguments that are inferable in any
case (i.e. arguments that occurs as argument of rigid constants in the type of the remaining arguments; e.g.
the witness of an existential is not strict since it can vanish when applied to a predicate which does not use its

argument)
Incompatibilities
e ”Grammar tactic ... : ast” and "Grammar vernac ... : ast” are no longer supported, use TACTIC EXTEND and

VERNAC COMMAND EXTEND on the ML-side instead

¢ Transparency of le_It_dec and co (leads to some simplification in proofs; in some cases, incompatibilites is solved
by declaring locally opaque the relevant constant)

* Opaque Local do not now survive section closing (rename them into Remark/Lemma/... to get them still surviving
the sections; this renaming allows also to solve incompatibilites related to now forbidden calls to the tactic Clear)

* Remark and Fact have no longer (very) long names (use Local instead in case of name conflict)

¢ Improved localisation of errors in Syntactic Definitions

¢ Induction principle creation failure in presence of let-in fixed (#1459)

* Inversion bugs fixed (#1427 and #1437)

* Omega bug related to Set fixed (#1384)

¢ Type-checking inefficiency of nested destructuring let-in fixed (#1435)

* Improved handling of let-in during holes resolution phase (#1460)
Efficiency

* Implementation of a memory sharing strategy reducing memory requirements by an average ratio of 3.

22 Chapter 2. Early history of Coq

http://www.cs.unibo.it/helm
http://www.cs.unibo.it/helm

CHAPTER
THREE

3.1

RECENT CHANGES

Version 8.11

3.1.1 Summary of changes

The main changes brought by Coq version 8.11 are:

Ltac2, a new tactic language for writing more robust larger scale tactics, with built-in support for datatypes and the
multi-goal tactic monad.

Primitive floats are integrated in terms and follow the binary64 format of the IEEE 754 standard, as specified in
the Cog.Float.Floats library.

Cleanups of the section mechanism, delayed proofs and further restrictions of template polymorphism to fix sound-
ness issues related to universes.

New unsafe flags to disable locally guard, positivity and universe checking. Reliance on these flags is always printed
by Print Assumptions.

Fixed bugs of Export and Import that can have a significant impact on user developments (common source of
incompatibility!).

New interactive development method based on vos inferface files, allowing to work on a file without recompiling
the proof parts of their dependencies.

New Argument s annotation for bidirectional type inference configuration for reference (e.g. constants, inductive)
applications.

New refine attribute for Tnstance can be used instead of the removed Refine Instance Mode.
Generalization of the under and over tactics of SSReflect to arbitrary relations.

Revision of the Coq . Reals library, its axiomatisation and instances of the constructive and classical real numbers.

Additionally, while the omega tactic is not yet deprecated in this version of Cog, it should soon be the case and we already
recommend users to switch to 11 a in new proof scripts (see also the warning message in the corresponding chapter).

The dev/doc/critical-bugs file documents the known critical bugs of Coq and affected releases. See the Changes
in 8.11+betal section and following sections for the detailed list of changes, including potentially breaking changes marked
with Changed.

Coq’s documentation is available at https://coq.github.io/doc/v8.11/api (documentation of the ML API), https://coq.
github.io/doc/v8.11/refman (reference manual), and https://coq.github.io/doc/v8.11/stdlib (documentation of the stan-
dard library).

Maxime Dénes, Emilio Jests Gallego Arias, Gaétan Gilbert, Michael Soegtrop and Théo Zimmermann worked on main-
taining and improving the continuous integration system and package building infrastructure.

23

https://coq.github.io/doc/v8.11/api
https://coq.github.io/doc/v8.11/refman
https://coq.github.io/doc/v8.11/refman
https://coq.github.io/doc/v8.11/stdlib

The Coq Reference Manual, Release 8.11.2

The OPAM repository for Coq packages has been maintained by Guillaume Claret, Karl Palmskog, Matthieu Sozeau and
Enrico Tassi with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.

The 61 contributors to this version are Michael D. Adams, Guillaume Allais, Helge Bahmann, Langston Barrett, Guil-
laume Bertholon, Frédéric Besson, Simon Boulier, Michele Caci, Tej Chajed, Arthur Charguéraud, Cyril Cohen, Frédéric
Dabrowski, Arthur Azevedo de Amorim, Maxime Dénes, Nikita Eshkeev, Jim Fehrle, Emilio Jestus Gallego Arias, Paolo
G. Giarrusso, Gaétan Gilbert, Georges Gonthier, Jason Gross, Samuel Gruetter, Armaél Guéneau, Hugo Herbelin, Florent
Hivert, Jasper Hugunin, Shachar Itzhaky, Jan-Oliver Kaiser, Robbert Krebbers, Vincent Laporte, Olivier Laurent, Samuel
Lelievre, Nicholas Lewycky, Yishuai Li, Jose Fernando Lopez Fernandez, Andreas Lynge, Kenji Maillard, Erik Martin-
Dorel, Guillaume Melquiond, Alexandre Moine, Oliver Nash, Wojciech Nawrocki, Antonio Nikishaev, Pierre-Marie
Pédrot, Clément Pit-Claudel, Lars Rasmusson, Robert Rand, Talia Ringer, JP Rodi, Pierre Roux, Kazuhiko Sakaguchi,
Vincent Semeria, Michael Soegtrop, Matthieu Sozeau, spanjel, Claude Stolze, Enrico Tassi, Laurent Théry, James R.
Wilcox, Xia Li-yao, Théo Zimmermann

Many power users helped to improve the design of the new features via the issue and pull request system, the Coq
development mailing list, the cog-club@inria.fr mailing list or the Discourse forum®. It would be impossible to mention
exhaustively the names of everybody who to some extent influenced the development.

Version 8.11 is the sixth release of Coq developed on a time-based development cycle. Its development spanned 3 months
from the release of Coq 8.10. Pierre-Marie Pédrot is the release manager and maintainer of this release, assisted by
Matthieu Sozeau. This release is the result of 2000+ commits and 300+ PRs merged, closing 75+ issues.

Paris, November 2019,
Matthieu Sozeau for the Coq development team

3.1.2 Changes in 8.11+beta1

Kernel

e Added: A built-in support of floating-point arithmetic, allowing one to devise efficient reflection tactics involving
numerical computation. Primitive floats are added in the language of terms, following the binary64 format of
the IEEE 754 standard, and the related operations are implemented for the different reduction engines of Coq by
using the corresponding processor operators in rounding-to-nearest-even. The properties of these operators are
axiomatized in the theory Cog.Floats.FloatAxioms which is part of the library Cog.Floats.Floats.
See Section Primitive Floats (#9867, closes #82768, by Guillaume Bertholon, Erik Martin-Dorel, Pierre Roux).

e Changed: Internal definitions generated by abstract-like tactics are now inlined inside universe Oed-
terminated polymorphic definitions, similarly to what happens for their monomorphic counterparts, (#10439°,
by Pierre-Marie Pédrot).

* Fixed: Section data is now part of the kernel. Solves a soundness issue in interactive mode where global monomor-
phic universe constraints would be dropped when forcing a delayed opaque proof inside a polymorphic section.
Also relaxes the nesting criterion for sections, as polymorphic sections can now appear inside a monomorphic one
(#10664,'0 by Pierre-Marie Pédrot).

¢ Changed: Using SProp is now allowed by default, without needing to pass —allow—sprop or use Allow
StrictProp (#10811", by Gaétan Gilbert).

6 https://coq.discourse.group/

7 https://github.com/cog/coq/pull/9867

8 https://github.com/cog/coq/issues/8276
9 https://github.com/cog/coq/pull/10439

10 https://github.com/cog/cog/pull/ 10664

' https://github.com/coqg/cog/pull/10811

24 Chapter 3. Recent changes

https://coq.inria.fr/opam/www/
mailto:coq-club@inria.fr
https://coq.discourse.group/
https://github.com/coq/coq/pull/9867
https://github.com/coq/coq/issues/8276
https://github.com/coq/coq/pull/10439
https://github.com/coq/coq/pull/10664
https://github.com/coq/coq/pull/10811

The Coq Reference Manual, Release 8.11.2

Specification language, type inference

e Added: Annotation in Argument s for bidirectionality hints: it is now possible to tell type inference to use type
information from the context once the n first arguments of an application are known. The syntax is: Arguments
foo x y & z. See Arguments (bidirectionality hints) (#10049'2, by Maxime Dénés with
help from Enrico Tassi).

¢ Added: Record fields can be annotated to prevent them from being used as canonical projections; see Canonical
Structures for details (#10076', by Vincent Laporte).

¢ Changed: Require parentheses around nested disjunctive patterns, so that pattern and term syntax are consistent;
match branch patterns no longer require parentheses for notation at level 100 or more.

Warning: Incompatibilities
— Inmatch p with (_, (0|1)) => ... parentheses may no longer be omitted around O | 1.

— Notation (p | g) now potentially clashes with core pattern syntax, and should be avoided. -w
disj-pattern-notation flags such Notation.

See Extended pattern matching for details (#10167'*, by Georges Gonthier).

e Changed: Funct ion always opens a proof when used with ameasure or wf annotation, see Advanced recursive
functions for the updated documentation (#10215'°, by Enrico Tassi).

* Changed: The legacy command Add Morphismalways opens a proof and cannot be used inside a module type.
In order to declare a module type parameter that happens to be a morphism, use Declare Morphism. See
Deprecated syntax and backward incompatibilities for the updated documentation (#10215'®, by Enrico Tassi).

* Changed: The universe polymorphism setting now applies from the opening of a section. In particular, it is not
possible anymore to mix polymorphic and monomorphic definitions in a section when there are no variables nor
universe constraints defined in this section. This makes the behaviour consistent with the documentation. (#10441'7,
by Pierre-Marie Pédrot)

* Added: The Section vernacular command now accepts the “universes” attribute. In addition to setting the
section universe polymorphism, it also locally sets the universe polymorphic option inside the section. (#10441'¢,
by Pierre-Marie Pédrot)

* Fixed: Program Fixpoint now uses ex and sig to make telescopes involving Prop types (#10758'%, by
Gaétan Gilbert, fixing #10757%" reported by Xavier Leroy).

¢ Changed: Output of the Print and About commands. Arguments meta-data is now displayed as the corre-
sponding Argument s command instead of the human-targeted prose used in previous Coq versions. (#109852!,
by Gaétan Gilbert).

* Added: #[refine] attribute for Tnstance, a more predictable version of the old Refine Instance
Mode which unconditionally opens a proof (#10996%2, by Gaétan Gilbert).

12 https://github.com/cog/coq/pull/ 10049
13 hitps://github.com/coq/cog/pull/ 10076
14 https://github.com/cog/cog/pull/ 10167
15 https://github.com/coq/cog/pull/10215
16 https://github.com/coq/cog/pull/10215
17 https://github.com/coq/coq/pull/ 10441
18 https://github.com/coq/coq/pull/ 10441
19 hitps://github.com/cog/coq/pull/ 10758
20 https://github.com/cog/cog/issues/10757
21 https://github.com/cog/coq/pull/10985
22 https://github.com/cog/coq/pull/10996

3.1. Version 8.11 25

https://github.com/coq/coq/pull/10049
https://github.com/coq/coq/pull/10076
https://github.com/coq/coq/pull/10167
https://github.com/coq/coq/pull/10215
https://github.com/coq/coq/pull/10215
https://github.com/coq/coq/pull/10441
https://github.com/coq/coq/pull/10441
https://github.com/coq/coq/pull/10758
https://github.com/coq/coq/issues/10757
https://github.com/coq/coq/pull/10985
https://github.com/coq/coq/pull/10996

The Coq Reference Manual, Release 8.11.2

e Changed: The unsupported attribute error is now an error-by-default warning, meaning it can be disabled
(#10997%, by Gagtan Gilbert).

* Fixed: Bugs sometimes preventing to define valid (co)fixpoints with implicit arguments in the presence of local
definitions, see #3282%* (#11132%, by Hugo Herbelin).

Example

The following features an implicit argument after a local definition. It was wrongly rejected.

Definition f := fix f (o := true) {n : nat} m {struct m} :=
match m with 0 => 0 | S m' => £ (n:=n+1) m' end.
Notations

¢ Added: Numeral Notations now support sorts in the input to printing functions (e.g., numeral notations can be
defined for terms containing things like @cons Set nat nil). (#9883°, by Jason Gross).

+ Added: The Notationand Infixcommands now support the deprecated attribute (#10180%7, by Maxime
Dénes).

¢ Deprecated: The former compat annotation for notations is deprecated, and its semantics changed. It is now
made equivalent to using a deprecated attribute, and is no longer connected with the —~compat command-line
flag (#10180°%, by Maxime Dénes).

¢ Changed: A simplification of parsing rules could cause a slight change of parsing precedences for the very rare
users who defined notations with constr at level strictly between 100 and 200 and used these notations on the
right-hand side of a cast operator (:, :>, :>>) (#10963°, by Théo Zimmermann, simplification initially noticed

by Jim Fehrle).
Tactics
. . . . +
e Added: Syntax injection term as [= |intropattern] as an alternative to injection

+
term as |simple_intropattern using the standard injection_intropattern syntax
(#9288, by Hugo Herbelin).

* Changed: Reimplementation of the z i £y tactic. The tactic is more efficient and copes with dependent hypotheses.
It can also be extended by redefining the tactic zify_post_hook. (#9856, fixes #88983%, #7886, #9848
and #5155, by Frédéric Besson).

* Changed: The goal selector tactical only now checks that the goal range it is given is valid instead of ignoring
goals out of the focus range (#10318%°, by Gaétan Gilbert).

o Added: Flags Lia Cache, Nia Cacheand Nra Cache. (#10765%, by Frédéric Besson, see #10772% for

23 https://github.com/cog/cog/pull/10997
24 https://github.com/cog/cog/issues/3282
25 https://github.com/cog/cog/pull/11132
26 https://github.com/cog/coq/pull/9883
27 https://github.com/cog/cogq/pull/10180
28 https://github.com/cog/coq/pull/10180
29 https://github.com/cog/coq/pull/10963
30 https://github.com/cog/coq/pull/9288
31 https://github.com/cog/coq/pull/9856
32 https://github.com/cog/cog/issues/8898
33 https://github.com/cog/cog/issues/7886
34 https://github.com/cog/coq/issues/9848
35 https://github.com/cog/cog/issues/5155
36 https://github.com/cog/cogq/pull/10318
37 https://github.com/cog/coq/pull/ 10765
38 https://github.com/cog/coqg/issues/10772

26 Chapter 3. Recent changes

https://github.com/coq/coq/pull/10997
https://github.com/coq/coq/issues/3282
https://github.com/coq/coq/pull/11132
https://github.com/coq/coq/pull/9883
https://github.com/coq/coq/pull/10180
https://github.com/coq/coq/pull/10180
https://github.com/coq/coq/pull/10963
https://github.com/coq/coq/pull/9288
https://github.com/coq/coq/pull/9856
https://github.com/coq/coq/issues/8898
https://github.com/coq/coq/issues/7886
https://github.com/coq/coq/issues/9848
https://github.com/coq/coq/issues/5155
https://github.com/coq/coq/pull/10318
https://github.com/coq/coq/pull/10765
https://github.com/coq/coq/issues/10772

The Coq Reference Manual, Release 8.11.2

use case).
» Added: The zi £y tactic is now aware of Z .to_N. (#10774%, grants #9162*°, by Kazuhiko Sakaguchi).

* Changed: The assert succeeds and assert_fails tactics now only run their tactic argument once,
even if it has multiple successes. This prevents blow-up and looping from using multisuccess tactics with
assert_succeeds. (#10966%! fixes #10965%?, by Jason Gross).

* Fixed: The assert_succeeds and assert_fails tactics now behave correctly when their tactic fully
solves the goal. (#10966™ fixes #9114*, by Jason Gross).

Tactic language

e Added: Ltac2, a new version of the tactic language Ltac, that doesn’t preserve backward compatibility, has been
integrated in the main Coq distribution. It is still experimental, but we already recommend users of advanced Ltac
to start using it and report bugs or request enhancements. See its documentation in the dedicated chapter (#10002%,
plugin authored by Pierre-Marie Pédrot, with contributions by various users, integration by Maxime Dénes, help
on integrating / improving the documentation by Théo Zimmermann and Jim Fehrle).

e Added: Ltac2 tactic notations with “constr” arguments can specify the interpretation scope for these arguments;
see Notations for details (#10289*°, by Vincent Laporte).

¢ Changed: White spaces are forbidden in the & i dent syntax for Itac2 references that are described in Built-in
quotations (#10324%, fixes #10088*, authored by Pierre-Marie Pédrot).

SSReflect

¢ Added: Generalize tactics under and over for any registered relation. More precisely, assume the given context
lemma has type forall f1 f2, .. -> (forall i, R1 (f1 i) (f2 1)) -> R2 f1 f£2.The
first step performed by under (since Coq 8.10) amounts to calling the tactic rewrite, which itself relies on
setoid_rewrite if need be. So this step was already compatible with a double implication or setoid equality
for the conclusion head symbol R2. But a further step consists in tagging the generated subgoal R1 (£1 i) (?
£2 1) to protect it from unwanted evar instantiation, and get Under_rel _ R1 (£f1 i) (2£f2 1) thatis
displayed as 'Under[f£1 i].In Coq 8.10, this second (convenience) step was only performed when R1 was
Leibniz’ eq or 1 ££. Now, it is also performed for any relation R1 which has a RewriteRelation instance
(aRelationClasses.Reflexive instance being also needed so over can discharge the 'Under [_]
goal by instantiating the hidden evar.) This feature generalizing support for setoid-like relations is enabled as soon
as we do both Require Import ssreflect. and Require Setoid. Finally, a rewrite rule UnderE
has been added if one wants to “unprotect” the evar, and instantiate it manually with another rule than reflexivity
(i.e., without using the o ve r tactic nor the ove r rewrite rule). See also Section Rewriting under binders (#1 00224,
by Erik Martin-Dorel, with suggestions and review by Enrico Tassi and Cyril Cohen).

» Added: A void notation for the standard library empty type (Empty_set) (#10932°Y, by Arthur Azevedo de
Amorim).

39 https://github.com/cog/coq/pull/10774
40 https://github.com/cog/coq/issues/9162
41 https://github.com/cog/cog/pull/ 10966
42 https://github.com/cog/cog/issues/10965
43 https://github.com/coq/cog/pull/ 10966
4 https://github.com/cog/coq/issues/9114
45 https://github.com/cog/cog/pull/ 10002
46 https://github.com/cog/cog/pull/10289
47 https://github.com/coq/cog/pull/10324
48 https://github.com/coq/cog/issues/10088
49 hitps://github.com/coq/cog/pull/10022
50 https://github.com/cog/cog/pull/10932

3.1. Version 8.11 27

https://github.com/coq/coq/pull/10774
https://github.com/coq/coq/issues/9162
https://github.com/coq/coq/pull/10966
https://github.com/coq/coq/issues/10965
https://github.com/coq/coq/pull/10966
https://github.com/coq/coq/issues/9114
https://github.com/coq/coq/pull/10002
https://github.com/coq/coq/pull/10289
https://github.com/coq/coq/pull/10324
https://github.com/coq/coq/issues/10088
https://github.com/coq/coq/pull/10022
https://github.com/coq/coq/pull/10932

The Coq Reference Manual, Release 8.11.2

Added: Lemma in7j_compr to ssr.ssrfun (#11136°, by Cyril Cohen).

Commands and options

Tools

Removed: Deprecated flag Refine Instance Mode (#9530%, fixes #3632°%, #3800°* and #4638% by
Maxime Dénes, review by Gaétan Gilbert).

Changed: 721 1 does not catch critical errors (including “stack overflow”) anymore (#10173°°, by Gaétan Gilbert).
Removed: Undocumented Instance : !type syntax (#10185°7, by Gaétan Gilbert).
Removed: Deprecated Show Script command (#10277°%, by Gaétan Gilbert).

Added: Unsafe commands to enable/disable guard checking, positivity checking and universes checking (providing
alocal ~type-in-type). See Controlling Typing Flags (#10291°° by Simon Boulier).

Fixed: Two bugs in Export. This can have an impact on the behavior of the Tmport command on libraries.
Import A when A imports B which exports C was importing C, whereas Import is not transitive. Also, after
Import A B, the import of B was sometimes incomplete (#10476%, by Maxime Déngs).

Warning: This is a common source of incompatibilities in projects migrating to Coq 8.11.

Changed: Output generated by Printing Dependent Evars Line flag used by the Prooftree tool in
Proof General. (#10489°!, closes #4504%?, #10399% and #10400%, by Jim Fehrle).

Added: Optionally highlight the differences between successive proof steps in the Show Proof command. Ex-
perimental; only available in coqtop and Proof General for now, may be supported in other IDEs in the future.
(#10494% | by Jim Fehrle).

Removed: Legacy commands AddPath, AddRecPath, and DelPath which were undocumented, broken
variants of Add LoadPath, Add Rec LoadPath,and Remove LoadPath (#11187%, by Maxime Dénés
and Théo Zimmermann).

Added: cogc now provides the ability to generate compiled interfaces. Use cogc -vos foo.v to skip all
opaque proofs during the compilation of foo . v, and output a file called foo . vos. This feature is experimental.
It enables working on a Coq file without the need to first compile the proofs contained in its dependencies (#8642°7
by Arthur Charguéraud, review by Maxime Dénes and Emilio Gallego).

31 https://github.com/cog/cogq/pull/11136
32 https://github.com/cog/cogq/pull/9530

33 https://github.com/cog/coq/issues/3632
34 https://github.com/cog/coq/issues/3890
33 https://github.com/cog/coq/issues/4638
36 https://github.com/cog/coq/pull/10173
57 https://github.com/cog/cog/pull/10185
38 https://github.com/cog/coq/pull/10277
39 https://github.com/coqg/cog/pull/10291
60 https://github.com/cog/coq/pull/10476
o1 https://github.com/cog/coq/pull/10489
62 https://github.com/cog/coq/issues/4504
63 https://github.com/cog/coqg/issues/10399
64 https://github.com/cog/coqg/issues/10400
65 https://github.com/cog/cog/pull/10494
66 https://github.com/cog/coq/pull/11187
67 https://github.com/cog/coq/pull/8642

28

Chapter 3. Recent changes

https://github.com/coq/coq/pull/11136
https://github.com/coq/coq/pull/9530
https://github.com/coq/coq/issues/3632
https://github.com/coq/coq/issues/3890
https://github.com/coq/coq/issues/4638
https://github.com/coq/coq/pull/10173
https://github.com/coq/coq/pull/10185
https://github.com/coq/coq/pull/10277
https://github.com/coq/coq/pull/10291
https://github.com/coq/coq/pull/10476
https://github.com/coq/coq/pull/10489
https://github.com/coq/coq/issues/4504
https://github.com/coq/coq/issues/10399
https://github.com/coq/coq/issues/10400
https://github.com/coq/coq/pull/10494
https://github.com/coq/coq/pull/11187
https://github.com/coq/coq/pull/8642

The Coq Reference Manual, Release 8.11.2

¢ Added: Command-line options ~require—import, ~-require-export, —require—import-from
and —-require—export—-from, as well as their shorthand, -ri, —-re, —refrom and -rifrom. Deprecate
confusing command line option ~require (#10245 by Hugo Herbelin, review by Emilio Gallego).

¢ Changed: Renamed VDFILE from .cogdeps.d to .<CogMakefile>.d in the cogq_makefile utility,
where <CogMakefile> is the name of the output file given by the —o option. In this way two generated makefiles
can coexist in the same directory. (#10947%, by Kazuhiko Sakaguchi).

* Fixed: coq_makefile now supports environment variable COQBIN with no ending / character (#110687°, by

Gaétan Gilbert).
Standard library

+ Changed: Moved the aut o hints of the Orde redType module into anew ordered_t ype database (#97727',

by Vincent Laporte).

Removed: Deprecated modules Cog.ZArith.Zlogarithm and Cog.ZArith.Zsqgrt_compat
(#98817%, by Vincent Laporte).

Added: Module Reals.ConstructiveCauchyReals defines constructive real numbers by Cauchy se-
quences of rational numbers (#1044573, by Vincent Semeria, with the help and review of Guillaume Melquiond
and Bas Spitters).

Added: New module Reals.ClassicalDedekindReals defines Dedekind real numbers as boolean-valued
functions along with 3 logical axioms: limited principle of omniscience, excluded middle of negations, and
functional extensionality. The exposed type R in module Reals.Rdefinitions now corresponds to these
Dedekind reals, hidden behind an opaque module, which significantly reduces the number of axioms needed
(see Reals.Rdefinitions and Reals.Raxioms), while preserving backward compatibility. Classical
Dedekind reals are a quotient of constructive reals, which allows to transport many constructive proofs to the clas-
sical case (#108277#, by Vincent Semeria, based on discussions with Guillaume Melquiond, Bas Spitters and Hugo
Herbelin, code review by Hugo Herbelin).

Added: New lemmas on combine, filter, nodup, nth, and nth_error functions on lists (#106517°, and
#107317°, by Oliver Nash).

Changed: The lemma filter_app was moved to the List module (#1065177, by Oliver Nash).

Added: Standard equivalence between weak excluded-middle and the classical instance of De Morgan’s law, in
module ClassicalFacts (#108957%, by Hugo Herbelin).

Infrastructure and dependencies

+ Changed: Coq now officially supports OCaml 4.08. See INSTALL file for details (#104717°, by Emilio Jesds

Gallego Arias).

3.1.3 Changes in 8.11.0

Kernel

68 https://github.com/cog/coq/pull/10245
%9 https://github.com/cog/coq/pull/10947
70 https://github.com/coq/cog/pull/11068
71 https://github.com/cog/cogq/pull/9772

72 https://github.com/coq/cog/pull/9811

73 https://github.com/coq/cog/pull/10445
74 https://github.com/coq/coq/pull/10827
75 https://github.com/coq/cog/pull/10651
76 https://github.com/coq/cog/pull/10731
77 https://github.com/coq/cog/pull/10651
78 https://github.com/coq/cog/pull/10895
79 https://github.com/cog/coq/pull/10471

3.1. Version 8.11

29

https://github.com/coq/coq/pull/10245
https://github.com/coq/coq/pull/10947
https://github.com/coq/coq/pull/11068
https://github.com/coq/coq/pull/9772
https://github.com/coq/coq/pull/9811
https://github.com/coq/coq/pull/10445
https://github.com/coq/coq/pull/10827
https://github.com/coq/coq/pull/10651
https://github.com/coq/coq/pull/10731
https://github.com/coq/coq/pull/10651
https://github.com/coq/coq/pull/10895
https://github.com/coq/coq/pull/10471

The Coq Reference Manual, Release 8.11.2

¢ Changed: the native compilation (nat ive_compute) now creates a directory to contain temporary files instead
of putting them in the root of the system temporary directory (#11081%°, by Gagtan Gilbert).

* Fixed: #11360%". Broken section closing when a template polymorphic inductive type depends on a section variable
through its parameters (#11361%?, by Gaétan Gilbert).

* Fixed: The type of Set+1 would be computed to be itself, leading to a proof of False (#11422%, by Gaétan
Gilbert).

Specification language, type inference
 Changed: Heuristics for universe minimization to Set: only minimize flexible universes (#10657%
Gilbert with help from Maxime Dénes and Matthieu Sozeau).

, by Gaétan

» Fixed: A dependency was missing when looking for default clauses in the algorithm for printing pattern matching
clauses (#11233% by Hugo Herbelin, fixing #11231%, reported by Barry Jay).

Notations

* Fixed: Print Visibility wasfailinginthe presence of only-printing notations (#11276%, by Hugo Herbelin,
fixing #10750%%).

¢ Fixed: Recursive notations with custom entries were incorrectly parsing constr instead of custom grammars
(#11311% by Maxime Déngs, fixes #9532%°, #9490°1).

Tactics

¢ Changed: The tactics eapply, refine and variants no longer allow shelved goals to be solved by typeclass
resolution (#10762°2, by Matthieu Sozeau).

+ Fixed: The optional string argument to t ime is now properly quoted under Print Ltac (#11203%, fixes
#10971%4, by Jason Gross)

» Fixed: Efficiency regression of 1 ia introduced in 8.10 by PR #9725 (#11263%°, fixes #11063%7, and #11242%,
and #11270°, by Frédéric Besson).

* Deprecated: The undocumented omega with tactic variant has been deprecated. Using 1ia is the recom-
mended replacement, though the old semantics of omega with * can be recovered with zify; omega
(#11337' by Emilio Jesus Gallego Arias).

80 https://github.com/coq/cog/pull/11081
81 https://github.com/issues/11360

82 https://github.com/cog/coq/pull/11361
83 https://github.com/cog/coq/pull/11422
84 https://github.com/cog/coq/pull/10657
85 https://github.com/cog/cog/pull/11233
86 https://github.com/coq/cog/pull/11231
87 https://github.com/cog/coq/pull/11276
88 https://github.com/cog/cog/pull/10750
89 https://github.com/coq/cog/pull/11311
90 https://github.com/coq/cog/pull/9532

91 https://github.com/coq/cog/pull/9490

92 https://github.com/cog/coq/pull/10762
93 https://github.com/cog/coq/pull/11203
94 https://github.com/coq/coqg/issues/10971
95 https://github.com/coq/cog/pull/9725

96 https://github.com/coq/coq/pull/11263
o7 https://github.com/coq/coq/issues/11063
98 https://github.com/cog/coq/issues/11242
99 https://github.com/coq/cog/issues/11270
100 https://github.com/cog/cog/pull/11337

30 Chapter 3. Recent changes

https://github.com/coq/coq/pull/11081
https://github.com/issues/11360
https://github.com/coq/coq/pull/11361
https://github.com/coq/coq/pull/11422
https://github.com/coq/coq/pull/10657
https://github.com/coq/coq/pull/11233
https://github.com/coq/coq/pull/11231
https://github.com/coq/coq/pull/11276
https://github.com/coq/coq/pull/10750
https://github.com/coq/coq/pull/11311
https://github.com/coq/coq/pull/9532
https://github.com/coq/coq/pull/9490
https://github.com/coq/coq/pull/10762
https://github.com/coq/coq/pull/11203
https://github.com/coq/coq/issues/10971
https://github.com/coq/coq/pull/9725
https://github.com/coq/coq/pull/11263
https://github.com/coq/coq/issues/11063
https://github.com/coq/coq/issues/11242
https://github.com/coq/coq/issues/11270
https://github.com/coq/coq/pull/11337

The Coq Reference Manual, Release 8.11.2

* Fixed For compatibility reasons, in 8.11, zi £y does not support Z . pow_pos by default. It can be enabled by
explicitly loading the module 7 i fyPow (#11430'" by Frédéric Besson fixes #1119110%).,

Tactic language
+ Fixed: Syntax of tactic cofix ... with ... was broken since Coq 8.10 (#11241'%%, by Hugo Herbelin).
Commands and options

e Deprecated: The -1oad-ml-source and -load-ml-object command line options have been deprecated;
their use was very limited, you can achieve the same by adding object files in the linking step or by using a plugin
(#11428'% by Emilio Jesus Gallego Arias).

Tools

* Fixed: cogtop —-version was broken when called in the middle of an installation process (#11255'%, by
Hugo Herbelin, fixing #11254'%),

* Deprecated: The ~quick command is renamed to —vio, for consistency with the new —vos and —vok flags.
Usage of —quick is now deprecated (#11280'", by Arthur Charguéraud).

* Fixed: cog_makefile doesnot break when using the CAMLPKGS variable together with an unpacked (m11ib)
plugin (#11357'%, by Gagtan Gilbert).

+ Fixed: cogdoc with option —g (Gallina only) now correctly prints commands with attributes (#11394'%, fixes
#11353'19, by Karl Palmskog).

CoqIDE

* Changed: CoqIDE now uses the GtkSourceView native implementation of the autocomplete mechanism
(#11400'"", by Pierre-Marie Pédrot).

Standard library

¢ Removed: Export of module RList in Ranalysis and Ranalysis_reg. Module RList is still there but
must be imported explicitly where required (#11396''2, by Michael Soegtrop).

Infrastructure and dependencies

¢ Added: Build date can now be overridden by setting the SOURCE_DATE_EPOCH environment variable
(#11227'3, by Bernhard M. Wiedemann).

3.1.4 Changes in 8.11.1

Kernel
+ Fixed: Allow more inductive types in Unset Positivity Checking mode (#11811'"%, by SimonBoulier).

Notations

101 https://github.com/cog/cog/pull/11430
102 hitps://github.com/cog/cog/issues/11191
103 https://github.com/cog/coq/pull/11241
104 https://github.com/cog/coq/pull/11428
105 https://github.com/cog/coq/pull/11255
106 https://github.com/coq/coq/pull/11254
107 https://github.com/coq/coq/pull/11280
108 https://github.com/cog/coq/pull/11357
109 https://github.com/coq/coq/pull/11394
110 https://github.com/cog/coq/issues/11353
T hitps://github.com/cog/coq/pull/11400
112 https://github.com/cog/coq/pull/11396
113 https://github.com/cog/coq/pull/11227
114 hitps://github.com/cog/coq/pull/11811

3.1. Version 8.11 31

https://github.com/coq/coq/pull/11430
https://github.com/coq/coq/issues/11191
https://github.com/coq/coq/pull/11241
https://github.com/coq/coq/pull/11428
https://github.com/coq/coq/pull/11255
https://github.com/coq/coq/pull/11254
https://github.com/coq/coq/pull/11280
https://github.com/coq/coq/pull/11357
https://github.com/coq/coq/pull/11394
https://github.com/coq/coq/issues/11353
https://github.com/coq/coq/pull/11400
https://github.com/coq/coq/pull/11396
https://github.com/coq/coq/pull/11227
https://github.com/coq/coq/pull/11811

The Coq Reference Manual, Release 8.11.2

+ Fixed: Bugs in dealing with precedences of notations in custom entries (#11530''%, by Hugo Herbelin, fixing in
particular #9517'16, #9519"17 #9521"18 #11331'19),

e Added: In primitive floats, print a warning when parsing a decimal value that is not exactly a binary64 floating-
point number. For instance, parsing 0.1 will print a warning whereas parsing 0.5 won’t. (#11859'?°, by Pierre
Roux).

CoqIDE
* Fixed: Compiling file paths containing spaces (#10008'2!, by snyke7, fixing #11595'%?).
Infrastructure and dependencies

+ Added: Bump official OCaml support and CI testing to 4.10.0 (#11131'23, #11123'%4, #11102'?°, by Emilio Jesus
Gallego Arias, Jacques-Henri Jourdan, Guillaume Melquiond, and Guillaume Munch-Maccagnoni).

Miscellaneous

* Fixed: Extraction Implicit on the constructor of a record was leading to an anomaly (#11329'%%, by
Hugo Herbelin, fixes #11114'%7).

3.1.5 Changes in 8.11.2

Kernel

* Fixed: Using Require inside a section caused an anomaly when closing the section. (#11972'?%, by Gaétan
Gilbert, fixing #11783'??, reported by Attila Boros).

Tactics

¢ Fixed: Anomaly with induction schemes whose conclusion is not normalized (#121 1630, by Hugo Herbelin; fixes
#120453

+ Fixed: Loss of location of some tactic errors (#12223'3?, by Hugo Herbelin; fixes #12152'3% and #12255'%).
Commands and options

» Changed: Ignore -native-compiler option when built without native compute support. (#12070'%, by Pierre
Roux).

CoqIDE

115 https://github.com/cog/coq/pull/11530
116 https://github.com/cog/coq/pull/9517
17 https://github.com/coq/coq/pull/9519
118 hitps://github.com/cog/coq/pull/9521
119 https://github.com/cog/coq/pull/11331
120 https://github.com/cog/coq/pull/11859
121 https://github.com/cog/coq/pull/ 10008
122 https://github.com/cog/cog/pull/11595
123 https://github.com/cog/coq/pull/11131
124 https://github.com/cog/cog/pull/11123
125 https://github.com/cog/cog/pull/11123
126 https://github.com/cog/coq/pull/11329
127 https://github.com/cog/coq/pull/11114
128 https://github.com/cog/coq/pull/11972
129 https://github.com/cog/coq/issues/11783
130 https://github.com/coq/coq/pull/12116
131 https://github.com/cog/coq/pull/12045
132 https://github.com/cog/coq/pull/12223
133 https://github.com/cog/coq/pull/12152
134 https://github.com/cog/cog/pull/ 12255
135 https://github.com/cog/coq/pull/12070

32 Chapter 3. Recent changes

https://github.com/coq/coq/pull/11530
https://github.com/coq/coq/pull/9517
https://github.com/coq/coq/pull/9519
https://github.com/coq/coq/pull/9521
https://github.com/coq/coq/pull/11331
https://github.com/coq/coq/pull/11859
https://github.com/coq/coq/pull/10008
https://github.com/coq/coq/pull/11595
https://github.com/coq/coq/pull/11131
https://github.com/coq/coq/pull/11123
https://github.com/coq/coq/pull/11123
https://github.com/coq/coq/pull/11329
https://github.com/coq/coq/pull/11114
https://github.com/coq/coq/pull/11972
https://github.com/coq/coq/issues/11783
https://github.com/coq/coq/pull/12116
https://github.com/coq/coq/pull/12045
https://github.com/coq/coq/pull/12223
https://github.com/coq/coq/pull/12152
https://github.com/coq/coq/pull/12255
https://github.com/coq/coq/pull/12070

The Coq Reference Manual, Release 8.11.2

¢ Changed: CoqIDE now uses native window frames by default on Windows. The GTK window frames can be
restored by setting the GTK_CSD environment variable to 1 (#12060'%, fixes #11080'37, by Attila Gaspar).

* Fixed: New patch presumably fixing the random Coq 8.11 segfault issue with CogIDE completion (#12068'%%, by
Hugo Herbelin, presumably fixing #11943'3%).

+ Fixed: Highlighting style consistently applied to all three buffers of CogIDE (#12106'“°, by Hugo Herbelin; fixes
#11506'4).

3.2 Version 8.10

3.2.1 Summary of changes

Coq version 8.10 contains two major new features: support for a native fixed-precision integer type and a new sort SProp
of strict propositions. It is also the result of refinements and stabilization of previous features, deprecations or removals
of deprecated features, cleanups of the internals of the system and API, and many documentation improvements. This
release includes many user-visible changes, including deprecations that are documented in the next subsection, and new
features that are documented in the reference manual. Here are the most important user-visible changes:

e Kernel:

— A notion of primitive object was added to the calculus. Its first instance is primitive cyclic unsigned integers,
axiomatized in module UInt 63. See Section Primifive Integers. The Coq.Numbers.Cyclic.Int31
library is deprecated (#6914'*?, by Maxime Dénes, Benjamin Grégoire and Vincent Laporte, with help and
reviews from many others).

— The SProp sort of definitionally proof-irrelevant propositions was introduced. SProp allows to mark
proof terms as irrelevant for conversion, and is treated like Prop during extraction. It is enabled using the
—allow-sprop command-line flag or the Allow StrictProp flag. See Chapter SProp (proof irrele-
vant propositions) (#3817'%, by Gaétan Gilbert).

— The unfolding heuristic in termination checking was made more complete, allowing more constants to be
unfolded to discover valid recursive calls. Performance regression may occur in Fixpoint declarations with-
out an explicit { struct } annotation, since guessing the decreasing argument can now be more expensive
(#9602'**, by Enrico Tassi).

¢ Universes:

— Added Print Universes Subgraph variant of Print Universes. Try for instance Print
Universes Subgraph (sigT2.ul sigT_of_sigT2.ul projT3_eq.ul). (#3451'%, by
Gaétan Gilbert).

— Added private universes for opaque polymorphic constants, see the documentation for the Private
Polymorphic Universes flag, and unset it to get the previous behaviour (#8850'*°, by Gaétan Gilbert).

¢ Notations:

136 https://github.com/cog/coq/pull/ 12060
137 https://github.com/cog/coqg/issues/11080
138 https://github.com/cog/cog/pull/12068
139 https://github.com/cog/coq/pull/11943
140 https://github.com/cog/coq/pull/ 12106
141 https://github.com/cog/coq/pull/11506
142 https://github.com/cog/coq/pull/6914
143 https://github.com/cog/coq/pull/8817
144 https://github.com/cog/coq/pull/9602
145 https://github.com/cog/coq/pull/8451
146 https://github.com/cog/coq/pull/8850

3.2. Version 8.10 33

https://github.com/coq/coq/pull/12060
https://github.com/coq/coq/issues/11080
https://github.com/coq/coq/pull/12068
https://github.com/coq/coq/pull/11943
https://github.com/coq/coq/pull/12106
https://github.com/coq/coq/pull/11506
https://github.com/coq/coq/pull/6914
https://github.com/coq/coq/pull/8817
https://github.com/coq/coq/pull/9602
https://github.com/coq/coq/pull/8451
https://github.com/coq/coq/pull/8850

The Coq Reference Manual, Release 8.11.2

— Newcommand St ring Notat ion toregister string syntax for custom inductive types (#8965'*7, by Jason
Gross).

— Experimental: Numeral Notations now parse decimal constants suchas 1.02e+01 or 10. 2. Parsers added
for Q and R. In the rare case when such numeral notations were used in a development along with Q or R, they
may have to be removed or disambiguated through explicit scope annotations (#8764'“%, by Pierre Roux).

* Ltac backtraces can be turned on using the I.tac Backt race flag, which is off by default (#9142'%, fixes
#7769'" and #7385'>!, by Pierre-Marie Pédrot).

» The tactics 1ia, nia, 1ra, nra are now using a novel Simplex-based proof engine. In case of regression, unset
Simplex to get the venerable Fourier-based engine (#8457'?, by Fréderic Besson).

» SSReflect:
— New intro patterns:
* temporary introduction: => +
x block introduction: => [~ prefix] [~ suffix]
« fast introduction: => >

tactics as views: => /ltac:mytac

*

replace hypothesis: => {}H

See Section Introduction in the context (#6705, by Enrico Tassi, with help from Maxime Dénés, ideas
coming from various users).

— New tactic under to rewrite under binders, given an extensionality lemma:
+ interactive mode: under term, associated terminator: over
x one-liner mode: under term do [tactic | ...]

It can take occurrence switches, contextual patterns, and intro patterns: under {2} [in RHS]eqg _big
=> [i|i 2] (#9651'% by Erik Martin-Dorel and Enrico Tassi).

e Combined Scheme now works when inductive schemes are generated in sort Type. It used to be limited to sort
Prop (#7634'5%, by Théo Winterhalter).

* A new registration mechanism for reference from ML code to Coq constructs has been added (#186'3°, by Emilio
Jesus Gallego Arias, Maxime Dénes and Vincent Laporte).

e CoqIDE:

— CoqIDE now depends on gtk+3 and lablgtk3 instead of gtk+2 and lablgtk2. The INSTALL file available in
the Coq sources has been updated to list the new dependencies (#9279'7, by Hugo Herbelin, with help from
Jacques Garrigue, Emilio Jestis Gallego Arias, Michael Sogetrop and Vincent Laporte).

— Smart input for Unicode characters. For example, typing \alpha then Shift+Space will insert the
greek letter alpha. A larger number of default bindings are provided, following the latex naming convention.

147 https://github.com/cog/coq/pull/8965
148 https://github.com/cog/coq/pull/8764
149 https://github.com/cog/cog/pull/9142
150 https://github.com/cog/coq/issues/7769
15T https://github.com/cog/coq/issues/7385
152 https://github.com/cog/coq/pull/8457
153 https://github.com/cog/coq/pull/6705
154 https://github.com/cog/coq/pull/9651
155 https://github.com/cog/coq/pull/7634
156 https://github.com/cog/coq/pull/ 186
157 https://github.com/cog/coq/pull/9279

34 Chapter 3. Recent changes

https://github.com/coq/coq/pull/8965
https://github.com/coq/coq/pull/8764
https://github.com/coq/coq/pull/9142
https://github.com/coq/coq/issues/7769
https://github.com/coq/coq/issues/7385
https://github.com/coq/coq/pull/8457
https://github.com/coq/coq/pull/6705
https://github.com/coq/coq/pull/9651
https://github.com/coq/coq/pull/7634
https://github.com/coq/coq/pull/186
https://github.com/coq/coq/pull/9279

The Coq Reference Manual, Release 8.11.2

Bindings can be customized, either globally, or on a per-project basis. See Section Bindings for input of
Unicode symbols for details (#8560'%, by Arthur Charguéraud).

* Infrastructure and dependencies:

— Coq 8.10 requires OCaml >= 4.05.0, bumped from 4.02.3 See the INSTALL file for more information on
dependencies (#7522'%, by Emilio Jests Gallego Arias).

— Coq 8.10 doesn’t need Camlp5 to build anymore. It now includes a fork of the core parsing library that Coq
uses, which is a small subset of the whole Camlp5 distribution. In particular, this subset doesn’t depend on the
OCaml AST, allowing easier compilation and testing on experimental OCaml versions. Coq also ships a new
parser cogpp that plugin authors must switch to (#7902'°0, #7979'01 #8161'9?, #8667'%3, and #8945'%4,
by Pierre-Marie Pédrot and Emilio Jesus Gallego Arias).

The Coq developers would like to thank Daniel de Rauglaudre for many years of continued support.

— Coq now supports building with Dune, in addition to the traditional Makefile which is scheduled for depreca-
tion (#6857'%, by Emilio Jests Gallego Arias, with help from Rudi Grinberg).

Experimental support for building Coq projects has been integrated in Dune at the same time, providing an
improved experience'% for plugin developers. We thank the Dune team for their work supporting Coq.

Version 8.10 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system, including many additions to the standard library (see the next subsection for details).

On the implementation side, the dev/doc/changes .md file documents the numerous changes to the implementation
and improvements of interfaces. The file provides guidelines on porting a plugin to the new version and a plugin develop-
ment tutorial originally made by Yves Bertotisnowindoc/plugin_tutorial. Thedev/doc/critical-bugs
file documents the known critical bugs of Coq and affected releases.

The efficiency of the whole system has seen improvements thanks to contributions from Gaétan Gilbert, Pierre-Marie
Pédrot, and Maxime Dénes.

Maxime Dénes, Emilio Jesus Gallego Arias, Gaétan Gilbert, Michael Soegtrop, Théo Zimmermann worked on maintain-
ing and improving the continuous integration system and package building infrastructure. Coq is now continuously tested
against OCaml trunk, in addition to the oldest supported and latest OCaml releases.

Coq’s documentation for the development branch is now deployed continuously at https://coq.github.io/doc/master/api
(documentation of the ML API), https://coq.github.io/doc/master/refman (reference manual), and https://coq.github.io/
doc/master/stdlib (documentation of the standard library). Similar links exist for the v8. 10 branch.

The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
(who migrated it to opam 2) with contributions from many users. A list of packages is available at https://coq.inria.fr/
opam/www/.

The 61 contributors to this version are Tanaka Akira, Benjamin Barenblat, Yves Bertot, Frédéric Besson, Lasse Blaauw-
broek, Martin Bodin, Joachim Breitner, Tej Chajed, Frédéric Chapoton, Arthur Charguéraud, Cyril Cohen, Lukasz Cza-
jka, David A. Dalrymple, Christian Doczkal, Maxime Dénes, Andres Erbsen, Jim Fehrle, Emilio Jesus Gallego Arias,
Gaétan Gilbert, Matéj Grabovsky, Simon Gregersen, Jason Gross, Samuel Gruetter, Hugo Herbelin, Jasper Hugunin,
Mirai Ikebuchi, Chantal Keller, Matej Kosik, Sam Pablo Kuper, Vincent Laporte, Olivier Laurent, Larry Darryl Lee Jr,
Nick Lewycky, Yao Li, Yishuai Li, Assia Mahboubi, Simon Marechal, Erik Martin-Dorel, Thierry Martinez, Guillaume
Melquiond, Kayla Ngan, Karl Palmskog, Pierre-Marie Pédrot, Clément Pit-Claudel, Pierre Roux, Kazuhiko Sakaguchi,

158 https://github.com/cog/coq/pull/8560
159 https://github.com/cog/coq/pull/7522
160 https://github.com/cog/coq/pull/7902
161 https://github.com/cog/coq/pull/7979
162 https://github.com/cog/coq/pull/8161
163 https://github.com/cog/coq/pull/8667
164 https://github.com/cog/coq/pull/8945
165 https://github.com/cog/coq/pull/6857
166 https://coq.discourse.group/t/a-guide- to-building- your-cog- libraries-and- plugins- with-dune/

3.2. Version 8.10 35

https://github.com/coq/coq/pull/8560
https://github.com/coq/coq/pull/7522
https://github.com/coq/coq/pull/7902
https://github.com/coq/coq/pull/7979
https://github.com/coq/coq/pull/8161
https://github.com/coq/coq/pull/8667
https://github.com/coq/coq/pull/8945
https://github.com/coq/coq/pull/6857
https://coq.discourse.group/t/a-guide-to-building-your-coq-libraries-and-plugins-with-dune/
https://coq.github.io/doc/master/api
https://coq.github.io/doc/master/refman
https://coq.github.io/doc/master/stdlib
https://coq.github.io/doc/master/stdlib
https://coq.inria.fr/opam/www/
https://coq.inria.fr/opam/www/

The Coq Reference Manual, Release 8.11.2

Ryan Scott, Vincent Semeria, Gan Shen, Michael Soegtrop, Matthieu Sozeau, Enrico Tassi, Laurent Théry, Kamil Trz-
ciniski, whitequark, Théo Winterhalter, Xia Li-yao, Beta Ziliani and Théo Zimmermann.

Many power users helped to improve the design of the new features via the issue and pull request system, the Coq
development mailing list, the coq-club@inria.fr mailing list or the new Discourse forum. It would be impossible to
mention exhaustively the names of everybody who to some extent influenced the development.

Version 8.10 is the fifth release of Coq developed on a time-based development cycle. Its development spanned 6 months
from the release of Coq 8.9. Vincent Laporte is the release manager and maintainer of this release. This release is the
result of ~2500 commits and ~650 PRs merged, closing 150+ issues.

Santiago de Chile, April 2019,
Matthieu Sozeau for the Coq development team

3.2.2 Other changes in 8.10+betal

¢ Command-line tools and options:

— The use of cogtop as a compiler has been deprecated, in favor of cogc. Consequently option —compile
will stop to be accepted in the next release. coqt op is now reserved to interactive use (#9095'°, by Emilio
Jesus Gallego Arias).

— New option ~topfile filename, which will set the current module name (& la —top) based on the
filename passed, taking into account the proper —R/-Q options. For example, given —-R Foo foolib
using ~topfile foolib/bar.v will set the module name to Foo.Bar. CoqIDE now properly sets
the module name for a given file based on its path (#8991, closes #8989'%?, by Gaétan Gilbert).

— Experimental: Coq flags and options can now be set on the command-line, e.g. —-set "Universe
Polymorphism=true" (#9876'", by Gaétan Gilbert).

— The -native—compiler flag of cogc and cogtop now takes an argument which can have three values:
* no disables native_compute
* yes enables native_compute and precompiles . v files to native code
» ondemand enables native_compute but compiles code only when native_compute is called
The default value is ondemand. Note that this flag now has priority over the configure flag of the same name.

A new -bytecode-compiler flag for cogc and cogt op controls whether conversion can use the VM.
The default value is yes.

(#8870'"", by Maxime Dénés)

— The pretty timing diff scripts (flag TIMING=1 to a cogq_makefile-made Makefile, also tools/
make-both-single-timing-files.py, tools/make-both-time-files.py, and
tools/make-one-time-file.py) now correctly support non-UTF-8 characters in the output of
cogc / make as well as printing to stdout, on both python2 and python3 (#9872'7, closes #9767'7* and
#9705'#, by Jason Gross)

167 https://github.com/cog/coq/pull/9095
168 https://github.com/cog/coq/pull/8991
169 https://github.com/cog/coq/issues/8989
170 https://github.com/cog/coq/pull/9876
171 https://github.com/coq/coq/pull/8870
172 https://github.com/cog/coq/pull/9872
173 https://github.com/cog/coq/issues/9767
174 https://github.com/cog/coq/issues/9705

36 Chapter 3. Recent changes

mailto:coq-club@inria.fr
https://github.com/coq/coq/pull/9095
https://github.com/coq/coq/pull/8991
https://github.com/coq/coq/issues/8989
https://github.com/coq/coq/pull/9876
https://github.com/coq/coq/pull/8870
https://github.com/coq/coq/pull/9872
https://github.com/coq/coq/issues/9767
https://github.com/coq/coq/issues/9705

The Coq Reference Manual, Release 8.11.2

coq_makefile’s install target now errors if any file to install is missing (#9906'7, by Gaétan Gilbert).

Preferences from cogide.keys are no longer overridden by modifiers preferences in cogiderc
(#10014'7°, by Hugo Herbelin).

 Specification language, type inference:

Fixing a missing check in interpreting instances of existential variables that are bound to local definitions.
Might exceptionally induce an overhead if the cost of checking the conversion of the corresponding definitions
is additionally high (#8217'77, closes #8215'7%, by Hugo Herbelin).

A few improvements in inference of the return clause of match that can exceptionally introduce incompati-
bilities. This can be solved by writing an explicit ret urn clause, sometimes even simply an explicit return
_ clause (#262'7°, by Hugo Herbelin).

Using non-projection values with the projection syntax is not allowed. For instance 0. (S) is not a valid way
to write S 0. Projections from non-primitive (emulated) records are allowed with warning “nonprimitive-
projection-syntax” (#8829'%", by Gaétan Gilbert).

An option and attributes to control the automatic decision to declare an inductive type as template polymorphic
were added. Warning “auto-template” (off by default) can trigger when an inductive is automatically declared
template polymorphic without the attribute.

Inductive types declared by Funind will never be template polymorphic.

(#8488'8! by Gagtan Gilbert)

¢ Notations:

New command Declare Scope to explicitly declare a scope name before any use of it. Implicit declara-
tion of a scope at the time of Bind Scope, Delimit Scope, Undelimit Scope,or Notationis
deprecated (#7135'%?, by Hugo Herbelin).

Various bugs have been fixed (e.g. #9214'%3 on removing spurious parentheses on abbreviations shortening a
strict prefix of an application, by Hugo Herbelin).

Numeral Notationnow supportinductive types in the input to printing functions (e.g., numeral notations
can be defined for terms containing things like @cons nat O 0),and parsing functions now fully normalize
terms including parameters of constructors (so that, e.g., a numeral notation whose parsing function outputs
aproof of Nat.gcd x y = 1 will no longer fail to parse due to containing the constant Nat . gcd in the
parameter-argument of eq_ref1) (#9874'84, closes #9840'%> and #9844 '8¢, by Jason Gross).

Deprecated compatibility notations have actually been removed. Uses of these notations are generally easy
to fix thanks to the hint contained in the deprecation warning emitted by Coq 8.8 and 8.9. For projects that
require more than a handful of such fixes, there is a script'®’ that will do it automatically, using the output of
coqgc (#8638'%8, by Jason Gross).

175 https://github.com/cog/coq/pull/9906
176 https://github.com/cog/coq/pull/10014
177 https://github.com/cog/coq/pull/8217
178 https://github.com/cog/coq/issues/8215
179 https://github.com/cog/coq/pull/262
180 https://github.com/cog/coq/pull/8829
181 https://github.com/cog/coq/pull/8488
182 https://github.com/cog/coq/pull/7135
183 https://github.com/cog/coq/pull/9214
184 https://github.com/cog/coq/pull/9840
185 https://github.com/cog/coq/issues/9840
186 https://github.com/cog/coq/issues/9844
187 https://gist.github.com/JasonGross/9770653967de3679d13 1¢59d42de6d 1 7#file-replace-notations-py
188 https://github.com/cog/coq/pull/8638

3.2. Version 8.10 37

https://github.com/coq/coq/pull/9906
https://github.com/coq/coq/pull/10014
https://github.com/coq/coq/pull/8217
https://github.com/coq/coq/issues/8215
https://github.com/coq/coq/pull/262
https://github.com/coq/coq/pull/8829
https://github.com/coq/coq/pull/8488
https://github.com/coq/coq/pull/7135
https://github.com/coq/coq/pull/9214
https://github.com/coq/coq/pull/9840
https://github.com/coq/coq/issues/9840
https://github.com/coq/coq/issues/9844
https://gist.github.com/JasonGross/9770653967de3679d131c59d42de6d17#file-replace-notations-py
https://github.com/coq/coq/pull/8638

The Coq Reference Manual, Release 8.11.2

— Allow inspecting custom grammar entries by Print Custom Grammar (#10061'%, fixes #9681'°Y, by

Jasper Hugunin, review by Pierre-Marie Pédrot and Hugo Herbelin).

 The quote plugin'®!

was removed. If some users are interested in maintaining this plugin externally, the Coq

development team can provide assistance for extracting the plugin and setting up a new repository (#7894'°%, by

Maxime Déngs).

e Ltac:

— Tactic names are no longer allowed to clash, even if they are not defined in the same section. For example,

the following is no longer accepted: Ltac foo := idtac. Section S. Ltac foo := fail.
End S. (#8555'%, by Maxime Dénes).

— Names of existential variables occurring in Ltac functions (e.g. ? [n] or ?n in terms - not in patterns) are now

interpreted the same way as other variable names occurring in Ltac functions (#7309'%*, by Hugo Herbelin).

e Tactics:

— Removed the deprecated romega tactic (#8419'%, by Maxime Dénés and Vincent Laporte).

— Hint declaration and removal should now specify a database (e.g. Hint Resolve foo : database).

When the database name is omitted, the hint is added to the core database (as previously), but a deprecation
warning is emitted (#3987'%°, by Maxime Dénés).

There are now tactics in PreOmega.v called Z.div_mod_to_equations, Z.
quot_rem_to_equations, and Z.to_euclidean_division_equations (which combines
the div_mod and quot_rem variants) which allow 1ia, nia, etc to support Z.div and 7z .modulo
(Z.quot and Z . rem, respectively), by posing the specifying equation for Z . div and Z .modulo before
replacing them with atoms (#8062'77, by Jason Gross).

The syntax of the autoapply tactic was fixed to conform with preexisting documentation: it now takes a
with clause instead of a using clause (#9524'%, closes #7632'%°, by Théo Zimmermann).

Modes are now taken into account by typeclasses eauto for local hypotheses (#9996°%, fixes
#5752%°1 by Maxime Déngs, review by Pierre-Marie Pédrot).

New variant change_no_check of change, wusable as a documented replacement of
convert_concl_no_check (#100127°%2, #10017°%, #10053°%*, and #10059%%, by Hugo Herbe-
lin and Paolo G. Giarrusso).

The simplified value returned by field simplify is not always a fraction anymore. When the denom-
inator is 1, it returns x while previously it was returning x/1. This change could break codes that were
post-processing application of field simplify to get rid of these x/1 (#9854°%, by Laurent Théry,
with help from Michael Soegtrop, Maxime Dénes, and Vincent Laporte).

189 https://github.com/cog/coq/pull/10061
190 http://github.com/coq/coq/pull/9681

191 https://coq.inria.fr/distrib/V8.9.0/refman/proof-engine/detailed- tactic-examples.html#quote

192 https://github.com/cog/coq/pull/7894
193 https://github.com/cog/coq/pull/8555
194 https://github.com/cog/coq/pull/7309
195 https://github.com/cog/coq/pull/8419
196 https://github.com/cog/coq/pull/8987
197 https://github.com/coq/coq/pull/8062
198 hitps://github.com/cog/coq/pull/9524

199 https://github.com/cog/coq/issues/7632

200 hetps://github.com/cog/cog/pull/9996

201 hitps://github.com/coq/cog/issues/5752

202 https://github.com/cog/coq/pull/ 10012
203 https://github.com/cog/coq/pull/10017
204 hitps://github.com/cog/cog/pull/ 10053
205 hitps://github.com/cog/cog/pull/10059
206 https://github.com/cog/coq/pull/9854

38

Chapter 3. Recent changes

https://github.com/coq/coq/pull/10061
http://github.com/coq/coq/pull/9681
https://coq.inria.fr/distrib/V8.9.0/refman/proof-engine/detailed-tactic-examples.html#quote
https://github.com/coq/coq/pull/7894
https://github.com/coq/coq/pull/8555
https://github.com/coq/coq/pull/7309
https://github.com/coq/coq/pull/8419
https://github.com/coq/coq/pull/8987
https://github.com/coq/coq/pull/8062
https://github.com/coq/coq/pull/9524
https://github.com/coq/coq/issues/7632
https://github.com/coq/coq/pull/9996
https://github.com/coq/coq/issues/5752
https://github.com/coq/coq/pull/10012
https://github.com/coq/coq/pull/10017
https://github.com/coq/coq/pull/10053
https://github.com/coq/coq/pull/10059
https://github.com/coq/coq/pull/9854

The Coq Reference Manual, Release 8.11.2

¢ SSReflect:

— Clear discipline made consistent across the entire proof language. Whenever a clear switch {x. .} comes
immediately before an existing proof context entry (used as a view, as a rewrite rule or as name for a new
context entry) then such entry is cleared too.

E.g. The following sentences are elaborated as follows (when H is an existing proof context entry):
* => {x..} H->=> {x..H} H
* => {x..} /H->=> /v {x..H}
* rewrite {x..} H->rewrite E {x..H}

(#9341?7, by Enrico Tassi).

— inEnowexpands y in r x when r isa simpl_rel. New {pred T} notation for a pred T alias
in the pred_sort coercion class, simplified predType interface: pred_class and mkPredType
deprecated, {pred T} and PredType should be used instead. i1f ¢ return t then ... now
expects c to be a variable bound in t. New nonPropType interface matching types that do _not_ have
sort Prop. New relpre R f definition for the preimage of a relation R under f (#9995%%¢, by Georges
Gonthier).

¢ Vernacular commands:

— Binders for an Tnstance now act more like binders for a The o rem. Names may not be repeated, and may
not overlap with section variable names (#8820%%, closes #8791%!°, by Jasper Hugunin).

— Removed the deprecated Implicit Tactic family of commands (#8779%'!, by Pierre-Marie Pédrot).

— The Automatic Introduction option has been removed and is now the default (#90017!2, by Emilio
Jests Gallego Arias).

213

— Arguments now accepts names for arguments provided with extra_scopes (#9117-"°, by Maxime

Dénes).

— The naming scheme for anonymous binders in a Theorem has changed to avoid conflicts with explicitly
named binders (#9160°'*, closes #8819°!3, by Jasper Hugunin).

— Computation of implicit arguments now properly handles local definitions in the binders for an Instance,
and can be mixed with implicit binders {x : T} (#9307°'°, closes #9300°!7, by Jasper Hugunin).

— Declare Instance now requires an instance name.

The flag Refine Instance Mode has been turned off by default, meaning that Tnstance no longer
opens a proof when a body is provided. The flag has been deprecated and will be removed in the next version.

(#9270°'8, and #9825%!9, by Maxime Dénés)

— Command Instance, when no body is provided, now always opens a proof. This is a breaking
change, as instance of Instance ident, : ident,. where ident, is a trivial class will have

207 https://github.com/cog/cog/pull/9341
208 https://github.com/cog/coq/pull/9995
209 https://github.com/cog/coq/pull/8820
210 https://github.com/coq/coq/issues/8791
211 hitps://github.com/cog/cog/pull/8779
212 hitps://github.com/coq/cog/pull/9001
213 https://github.com/cog/coq/pull/9117
214 https://github.com/cog/coq/pull/9160
215 https://github.com/cog/coq/issues/8819
216 hitps://github.com/cog/cog/pull/9307
217 hitps://github.com/coq/cog/issues/9300
218 https://github.com/cog/coq/pull/9270
219 https://github.com/cog/coq/pull/9825

3.2. Version 8.10 39

https://github.com/coq/coq/pull/9341
https://github.com/coq/coq/pull/9995
https://github.com/coq/coq/pull/8820
https://github.com/coq/coq/issues/8791
https://github.com/coq/coq/pull/8779
https://github.com/coq/coq/pull/9001
https://github.com/coq/coq/pull/9117
https://github.com/coq/coq/pull/9160
https://github.com/coq/coq/issues/8819
https://github.com/coq/coq/pull/9307
https://github.com/coq/coq/issues/9300
https://github.com/coq/coq/pull/9270
https://github.com/coq/coq/pull/9825

The Coq Reference Manual, Release 8.11.2

to be changed into Instance ident, : ident, := {}. or Instance ident, : ident,.
Proof. Qed. (#9274°%, by Maxime Déngs).

— The flag Program Mode now means that the Program attribute is enabled for all commands that support
it. In particular, it does not have any effect on tactics anymore. May cause some incompatibilities (#94107?!,
by Maxime Dénes).

— The algorithm computing implicit arguments now behaves uniformly for primitive projection and application
nodes (#95097?2, closes #95082%3, by Pierre-Marie Pédrot).

— Hypotheses and Variables can now take implicit binders inside sections (#9364%%*, closes #9363%%,
by Jasper Hugunin).

— Removed deprecated option Automatic Coercions Import (#8094°%°, by Maxime Dénés).
— The Show Script command has been deprecated (#98297%7, by Vincent Laporte).

— Coercion does not warn ambiguous paths which are obviously convertible with existing ones. The ambigu-
ous paths messages have been turned to warnings, thus now they could appear in the output of cogc. The
convertibility checking procedure for coercion paths is complete for paths consisting of coercions satisfying
the uniform inheritance condition, but some coercion paths could be reported as ambiguous even if they are
convertible with existing ones when they have coercions that don’t satisfy the uniform inheritance condition
(#9743%%%, closes #3219%%, by Kazuhiko Sakaguchi).

— A new flag Fast Name Printing has been introduced. It changes the algorithm used for allocating
bound variable names for a faster but less clever one (#9078%%°, by Pierre-Marie Pédrot).

— Option Typeclasses Axioms Are Instances (compatibility option introduced in the previous ver-
sion) is deprecated. Use Declare Instance for axioms which should be instances (#8920%°!, by Gaétan
Gilbert).

— Removed option Printing Primitive Projection Compatibility (#9306%%?, by Gaétan
Gilbert).

* Standard Library:

— Added Bvector.BVeq that decides whether two Bvectors are equal. Added notations for BVxor,
BVand, BVor, BVeq and BVneg (#8171%%, by Yishuai Li).

— Added ByteVector type that can convert to and from st ring (#8365, by Yishuai Li).

— Added lemmas about monotonicity of N.double and N. succ_double, and about the upper bound of
number represented by a vector. Allowed implicit vector length argument in Ndigits.Bv2N (#8815%%,
by Yishuai Li).

220 https://github.com/cog/coq/pull/9274
221 https://github.com/cog/coq/pull/9410
222 https://github.com/cog/coq/pull/9509
223 https://github.com/cog/coq/issues/9508
224 https://github.com/cog/coq/pull/9364
225 https://github.com/cog/cog/issues/9363
226 https://github.com/cog/coq/pull/8094
227 https://github.com/cog/coq/pull/9829
228 hitps://github.com/cog/cog/pull/9743
229 https://github.com/cog/cog/issues/3219
230 https://github.com/cog/coq/pull/9078
231 https://github.com/cog/coq/pull/8920
232 https://github.com/cog/coq/pull/9306
233 https://github.com/cog/coq/pull/8171
234 https://github.com/cog/coq/pull/8365
235 https://github.com/cog/coq/pull/8815

40 Chapter 3. Recent changes

https://github.com/coq/coq/pull/9274
https://github.com/coq/coq/pull/9410
https://github.com/coq/coq/pull/9509
https://github.com/coq/coq/issues/9508
https://github.com/coq/coq/pull/9364
https://github.com/coq/coq/issues/9363
https://github.com/coq/coq/pull/8094
https://github.com/coq/coq/pull/9829
https://github.com/coq/coq/pull/9743
https://github.com/coq/coq/issues/3219
https://github.com/coq/coq/pull/9078
https://github.com/coq/coq/pull/8920
https://github.com/coq/coq/pull/9306
https://github.com/coq/coq/pull/8171
https://github.com/coq/coq/pull/8365
https://github.com/coq/coq/pull/8815

The Coq Reference Manual, Release 8.11.2

— The prelude used to be automatically Exported and is now only Imported. This should be relevant only when
importing files which don’t use —-noinit into files which do (#9013?%°, by Gaétan Gilbert).

— Added Cog.Structures.OrderedTypeEx.String_as_OT to make strings an ordered type, using
lexical order (#7221%%, by Li Yao).

— Added lemmas about Z . testbit, Z.ones, and Z .modulo (#9425, by Andres Erbsen).
— Moved the auto hints of the FSet library into a new fset database (#972523%, by Frédéric Besson).

- Added Cog.Structures.EqualitiesFacts.PairUsualDecidableTypeFull (#9984%%,
by Jean-Christophe Léchenet and Oliver Nash).

* Some error messages that show problems with a pair of non-matching values will now highlight the differences
(#8669%*!, by Jim Fehrle).

* Changelog has been moved from a specific file CHANGES . md to the reference manual; former Credits chapter of
the reference manual has been split in two parts: a History chapter which was enriched with additional historical
information about Coq versions 1 to 5, and a Changes chapter which was enriched with the content formerly
in CHANGES .md and COMPATIBILITY (#9133%42, #9668%, #9939?* #9964% and #10085°*°, by Théo
Zimmermann, with help and ideas from Emilio Jests Gallego Arias, Gaétan Gilbert, Clément Pit-Claudel, Matthieu
Sozeau, and Enrico Tassi).

3.2.3 Changes in 8.10+beta2

Many bug fixes and documentation improvements, in particular:
Tactics

e Make the discriminate tactic work together with Universe Polymorphism and equality in Type.
This, in particular, makes discriminate compatible with the HoTT library https://github.com/HoTT/HoTT
(#10205%*7, by Andreas Lynge, review by Pierre-Marie Pédrot and Matthieu Sozeau).

SSReflect

e Make the case E: t tactic work together with Universe Polymorphism and equality in Type. This
makes case compatible with the HoTT library https:/github.com/HoTT/HoTT (#10302>*%, fixes #10301°*, by
Andreas Lynge, review by Enrico Tassi)

* Make the rewrite /t tactic work together with Universe Polymorphism. This makes rewrite com-
patible with the HoTT library https:/github.com/HoTT/HoTT (#10305>", fixes #9336%°!, by Andreas Lynge,
review by Enrico Tassi)

CoqIDE

236 https://github.com/cog/coq/pull/9013
237 https://github.com/coq/coq/pull/7221
238 https://github.com/coq/coq/pull/9425
239 hitps://github.com/cog/cog/pull/9725
240 https://github.com/cog/coq/pull/9984
241 hitps://github.com/cog/cog/pull/8669
242 https://github.com/cog/cog/pull/9133
243 https://github.com/cog/coq/pull/9668
244 https://github.com/cog/coq/pull/9939
243 https://github.com/cog/coq/pull/9964
246 https://github.com/cog/coq/pull/ 10085
247 https://github.com/cog/cog/pull/ 10205
248 https://github.com/cog/coq/pull/ 10302
249 https://github.com/coq/coq/issues/10301
250 https://github.com/cog/coq/pull/ 10305
251 https://github.com/cog/coq/issues/9336

3.2. Version 8.10 41

https://github.com/coq/coq/pull/9013
https://github.com/coq/coq/pull/7221
https://github.com/coq/coq/pull/9425
https://github.com/coq/coq/pull/9725
https://github.com/coq/coq/pull/9984
https://github.com/coq/coq/pull/8669
https://github.com/coq/coq/pull/9133
https://github.com/coq/coq/pull/9668
https://github.com/coq/coq/pull/9939
https://github.com/coq/coq/pull/9964
https://github.com/coq/coq/pull/10085
https://github.com/HoTT/HoTT
https://github.com/coq/coq/pull/10205
https://github.com/HoTT/HoTT
https://github.com/coq/coq/pull/10302
https://github.com/coq/coq/issues/10301
https://github.com/HoTT/HoTT
https://github.com/coq/coq/pull/10305
https://github.com/coq/coq/issues/9336

The Coq Reference Manual, Release 8.11.2

* Fix CogIDE instability on Windows after the update to gtk3 (#10360%°?, by Michael Soegtrop, closes #98857°%).

Miscellaneous

254

* Proof General can now display Coq-generated diffs between proof steps in color (#10019-"* and (in Proof General)

#4212, by Jim Fehrle).

3.2.4 Changes in 8.10+beta3

Kernel

+ Fix soundness issue with template polymorphism (#929473%),

Declarations of template-polymorphic inductive types ignored the provenance of the universes they were abstract-
ing on and did not detect if they should be greater or equal to Set in general. Previous universes and universes
introduced by the inductive definition could have constraints that prevented their instantiation with e.g. Prop, re-
sulting in unsound instantiations later. The implemented fix only allows abstraction over universes introduced by
the inductive declaration, and properly records all their constraints by making them by default only >= Prop. It
is also checked that a template polymorphic inductive actually is polymorphic on at least one universe.

This prevents inductive declarations in sections to be universe polymorphic over section parameters. For a backward
compatible fix, simply hoist the inductive definition out of the section. An alternative is to declare the inductive
as universe-polymorphic and cumulative in a universe-polymorphic section: all universes and constraints will be
properly gathered in this case. See Template polymorphism for a detailed exposition of the rules governing template-
polymorphic types.

To help users incrementally fix this issue, a command line option —-no-template-check and a global flag
Template Check are available to selectively disable the new check. Use at your own risk.

(#9918%7, by Matthieu Sozeau and Maxime Déngs).

User messages

6258

e Improve the ambiguous paths warning to indicate which path is ambiguous with new one (#10336°, closes

#3219%%, by Kazuhiko Sakaguchi).
Extraction

 Fix extraction to OCaml of primitive machine integers; see Primitive Integers (#10430%%, fixes #10361%°!, by
Vincent Laporte).

 Fix a printing bug of OCaml extraction on dependent record projections, which produced improper assert
false. This change makes the OCaml extractor internally inline record projections by default; thus the mono-
lithic OCaml extraction (Extraction and Recursive Extraction) does not produce record projection
constants anymore except for record projections explicitly instructed to extract, and records declared in opaque
modules (#10577%?, fixes #7348°%, by Kazuhiko Sakaguchi).

Standard library

252 https://github.com/coq/cog/pull/ 10360
253 https://github.com/coq/coq/issues/9885
254 hitps://github.com/cog/cog/pull/10019
255 https://github.com/Proof General/PG/pull/421
256 https://github.com/coq/coq/issues/9294
257 https://github.com/cog/cog/pull/9918
258 https://github.com/coq/cog/pull/10336
259 https://github.com/cog/coq/issues/3219
260 hitps://github.com/coq/cog/pull/ 10430
261 https://github.com/coq/coq/issues/10361
262 https://github.com/cog/coq/pull/ 10577
263 hitps://github.com/cog/cog/issues/7348

42 Chapter 3. Recent changes

https://github.com/coq/coq/pull/10360
https://github.com/coq/coq/issues/9885
https://github.com/coq/coq/pull/10019
https://github.com/ProofGeneral/PG/pull/421
https://github.com/coq/coq/issues/9294
https://github.com/coq/coq/pull/9918
https://github.com/coq/coq/pull/10336
https://github.com/coq/coq/issues/3219
https://github.com/coq/coq/pull/10430
https://github.com/coq/coq/issues/10361
https://github.com/coq/coq/pull/10577
https://github.com/coq/coq/issues/7348

The Coq Reference Manual, Release 8.11.2

+ Added splitat function and lemmas about splitat and uncons (#9379°%, by Yishuai Li, with help of
Konstantinos Kallas, follow-up of #8365%%, which added uncons in 8.10+betal).

3.2.5 Changes in 8.10.0

 Micromega tactics (1 ia, nia, etc) are no longer confused by primitive projections (#10806%°, fixes #9512°%7 by
Vincent Laporte).

3.2.6 Changes in 8.10.1

A few bug fixes and documentation improvements, in particular:
Kernel

* Fix proof of False when using SProp (incorrect De Bruijn handling when inferring the relevance mark of a function)
(#10904°%% by Pierre-Marie Pédrot).

Tactics

+ Fix an anomaly when unsolved evar in Add Ring (#10891%%, fixes #9851°7%, by Gaétan Gilbert).
Tactic language

+ Fix Ltac regression in binding free names in uconstr (#10899%"", fixes #10894%7?, by Hugo Herbelin).
CoqIDE

» Fix handling of unicode input before space (#10852%73, fixes #10842%7*, by Arthur Charguéraud).
Extraction

+ Fix custom extraction of inductives to JSON (#10897°73, fixes #4741%7°, by Helge Bahmann).

3.2.7 Changes in 8.10.2

Kernel

» Fixed a critical bug of template polymorphism and nonlinear universes (#11128%7, fixes #11039%%, by Gaétan
Gilbert).

+ Fixed an anomaly “Uncaught exception Constr.DestKO” on Induct ive (#11052%7, fixes #11048%%°, by Gaétan
Gilbert).

264 https://github.com/cog/coq/pull/9379
265 https://github.com/cog/coq/pull/8365
266 hitps://github.com/coq/cog/pull/ 10806
267 hitps://github.com/coq/cog/issues/9512
268 hitps://github.com/coq/cogq/pull/ 10904
269 https://github.com/cog/coq/pull/ 10891
270 https://github.com/coq/coq/issues/9851
271 hitps://github.com/cog/cog/pull/10899
272 hitps://github.com/cog/coq/issues/ 10894
273 https://github.com/cog/coq/pull/ 10852
274 https://github.com/cog/coq/issues/10842
275 https://github.com/cog/coq/pull/ 10897
276 https://github.com/cog/coq/issues/4741
277 https://github.com/cog/coq/pull/11128
278 https://github.com/cog/cog/issues/11039
279 https://github.com/cog/coq/pull/11052
280 https://github.com/coq/cog/issues/11048

3.2. Version 8.10 43

https://github.com/coq/coq/pull/9379
https://github.com/coq/coq/pull/8365
https://github.com/coq/coq/pull/10806
https://github.com/coq/coq/issues/9512
https://github.com/coq/coq/pull/10904
https://github.com/coq/coq/pull/10891
https://github.com/coq/coq/issues/9851
https://github.com/coq/coq/pull/10899
https://github.com/coq/coq/issues/10894
https://github.com/coq/coq/pull/10852
https://github.com/coq/coq/issues/10842
https://github.com/coq/coq/pull/10897
https://github.com/coq/coq/issues/4741
https://github.com/coq/coq/pull/11128
https://github.com/coq/coq/issues/11039
https://github.com/coq/coq/pull/11052
https://github.com/coq/coq/issues/11048

The Coq Reference Manual, Release 8.11.2

* Fixed an anomaly “not enough abstractions in fix body” (#11014%%', fixes #8459°%?, by Gaétan Gilbert).
Notations

» Fixed an 8.10 regression related to the printing of coercions associated to notations (#11090°%, fixes #110337%,
by Hugo Herbelin).

CoqIDE

* Fixed uneven dimensions of CoqIDE panels when window has been resized (#11070%%, fixes 8.10-regression
#10956%%, by Guillaume Melquiond).

+ Do not include final stops in queries (#11069%%7, fixes 8.10-regression #11058°%%, by Guillaume Melquiond).
Infrastructure and dependencies

* Enable building of executables when they are running (#11000°%, fixes 8.9-regression #10728%"", by Gaétan
Gilbert).

3.3 Version 8.9

3.3.1 Summary of changes

Coq version 8.9 contains the result of refinements and stabilization of features and deprecations or removals of deprecated
features, cleanups of the internals of the system and API along with a few new features. This release includes many user-
visible changes, including deprecations that are documented in the next subsection and new features that are documented
in the reference manual. Here are the most important changes:

» Kernel: mutually recursive records are now supported, by Pierre-Marie Pédrot.
 Notations:

— Support for autonomous grammars of terms called “custom entries”, by Hugo Herbelin (see Section Custom
entries of the reference manual).

— Deprecated notations of the standard library will be removed in the next version of Coq, see the next subsection
for a script to ease porting, by Jason Gross and Jean-Christophe Léchenet.

— Added the Numeral Notationcommand for registering decimal numeral notations for custom types, by
Daniel de Rauglaudre, Pierre Letouzey and Jason Gross.

* Tactics: Introduction tactics intro/intros on a goal that is an existential variable now force a refinement of the
goal into a dependent product rather than failing, by Hugo Herbelin.

 Decision procedures: deprecation of tactic romega in favor of 1ia and removal of fourier, replaced by 1ra
which subsumes it, by Frédéric Besson, Maxime Dénes, Vincent Laporte and Laurent Théry.

* Proof language: focusing bracket { now supports named goals, e.g. [x] : { will focus on a goal (existential variable)
named x, by Théo Zimmermann.

281 hitps://github.com/coq/cog/pull/11014
282 hitps://github.com/cog/cog/issues/8459
283 https://github.com/cog/coq/pull/11090
284 hitps://github.com/coq/cog/issues/11033
285 https://github.com/cog/coq/pull/11070
286 hitps://github.com/coq/cog/issues/10956
287 https://github.com/cog/cog/pull/11069
288 https://github.com/cog/coq/issues/11058
289 https://github.com/cog/coq/pull/11000
290 https://github.com/coq/coq/issues/10728

44 Chapter 3. Recent changes

https://github.com/coq/coq/pull/11014
https://github.com/coq/coq/issues/8459
https://github.com/coq/coq/pull/11090
https://github.com/coq/coq/issues/11033
https://github.com/coq/coq/pull/11070
https://github.com/coq/coq/issues/10956
https://github.com/coq/coq/pull/11069
https://github.com/coq/coq/issues/11058
https://github.com/coq/coq/pull/11000
https://github.com/coq/coq/issues/10728

The Coq Reference Manual, Release 8.11.2

* SSReflect: the implementation of delayed clear was simplified by Enrico Tassi: the variables are always renamed
using inaccessible names when the clear switch is processed and finally cleared at the end of the intro pattern. In
addition to that, the use-and-discard flag { } typical of rewrite rules can now be also applied to views, e.g. =>
{} /v applies v and then clears v. See Section Introduction in the context.

¢ Vernacular:

— Experimental support for artributes on commands, by Vincent Laporte, as in # [Llocal] Lemma foo
bar. Tactics and tactic notations now support the deprecated attribute.

— Removed deprecated commands Arguments Scope and Implicit Arguments in favor of
Arguments (scopes) and Arguments (implicits), with the help of Jasper Hugunin.

— New flag Uniform Inductive Parameters by Jasper Hugunin to avoid repeating uniform parame-
ters in constructor declarations.

— New commands Hint Variables and Hint Constants, by Matthieu Sozeau, for controlling the
opacity status of variables and constants in hint databases. It is recommended to always use these commands
after creating a hint database with Create HintDb.

— Multiple sections with the same name are now allowed, by Jasper Hugunin.

 Library: additions and changes in the VectorDef, Ascii, and String libraries. Syntax notations are now
available only when using Import of libraries and not merely Require, by various contributors (source of
incompatibility, see the next subsection for details).

» Toplevels: cogtop and cogide can now display diffs between proof steps in color, using the D1 f fs option, by
Jim Fehrle.

* Documentation: we integrated a large number of fixes to the new Sphinx documentation by various contributors,
coordinated by Clément Pit-Claudel and Théo Zimmermann.

* Tools: removed the gallina utility and the homebrewed Emacs mode.

 Packaging: as in Coq 8.8.2, the Windows installer now includes many more external packages that can be individ-
ually selected for installation, by Michael Soegtrop.

Version 8.9 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system. Most important ones are documented in the next subsection file.

On the implementation side, the dev/doc/changes . md file documents the numerous changes to the implementation
and improvements of interfaces. The file provides guidelines on porting a plugin to the new version and a plugin develop-
ment tutorial kept in sync with Coq was introduced by Yves Bertot http://github.com/ybertot/plugin_tutorials. The new
dev/doc/critical-bugs file documents the known critical bugs of Coq and affected releases.

The efficiency of the whole system has seen improvements thanks to contributions from Gaé&tan Gilbert, Pierre-Marie
Pédrot, and Maxime Dénes.

Maxime Dénes, Emilio Jests Gallego Arias, Gaétan Gilbert, Michael Soegtrop, Théo Zimmermann worked on maintain-
ing and improving the continuous integration system.

The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.

The 54 contributors for this version are Léo Andres, Rin Arakaki, Benjamin Barenblat, Langston Barrett, Siddharth Bhat,
Martin Bodin, Simon Boulier, Timothy Bourke, Joachim Breitner, Tej Chajed, Arthur Charguéraud, Pierre Courtieu,
Maxime Dénes, Andres Erbsen, Jim Fehrle, Julien Forest, Emilio Jesus Gallego Arias, Gaétan Gilbert, Matéj Grabovsky,
Jason Gross, Samuel Gruetter, Armaél Guéneau, Hugo Herbelin, Jasper Hugunin, Ralf Jung, Sam Pablo Kuper, Ambroise
Lafont, Leonidas Lampropoulos, Vincent Laporte, Peter LeFanu Lumsdaine, Pierre Letouzey, Jean-Christophe Léchenet,
Nick Lewycky, Yishuai Li, Sven M. Hallberg, Assia Mahboubi, Cyprien Mangin, Guillaume Melquiond, Perry E. Metzger,
Clément Pit-Claudel, Pierre-Marie Pédrot, Daniel R. Grayson, Kazuhiko Sakaguchi, Michael Soegtrop, Matthieu Sozeau,

3.3. Version 8.9 45

http://github.com/ybertot/plugin_tutorials
https://coq.inria.fr/opam/www/

The Coq Reference Manual, Release 8.11.2

Paul Steckler, Enrico Tassi, Laurent Théry, Anton Trunov, whitequark, Théo Winterhalter, Zeimer, Beta Ziliani, Théo
Zimmermann.

Many power users helped to improve the design of the new features via the issue and pull request system, the Coq
development mailing list or the coq-club@inria.fr mailing list. It would be impossible to mention exhaustively the names
of everybody who to some extent influenced the development.

Version 8.9 is the fourth release of Coq developed on a time-based development cycle. Its development spanned 7 months
from the release of Coq 8.8. The development moved to a decentralized merging process during this cycle. Guillaume
Melquiond was in charge of the release process and is the maintainer of this release. This release is the result of ~2,000
commits and ~500 PRs merged, closing 75+ issues.

The Coq development team welcomed Vincent Laporte, a new Coq engineer working with Maxime Dénes in the Coq
consortium.

Paris, November 2018,
Matthieu Sozeau for the Coq development team

3.3.2 Details of changes in 8.9+betal

Kernel
¢ Mutually defined records are now supported.
Notations

» New support for autonomous grammars of terms, called ”custom entries” (see chapter “Syntax extensions” of the
reference manual).

* Deprecated compatibility notations will actually be removed in the next version of Coq. Uses of these notations
are generally easy to fix thanks to the hint contained in the deprecation warnings. For projects that require more
than a handful of such fixes, there is a script®®! that will do it automatically, using the output of coqc. The script
contains documentation on its usage in a comment at the top.

Tactics

* Added toplevel goal selector ! which expects a single focused goal. Use with Set Default Goal Selector
to force focusing before tactics are called.

* The undocumented "nameless” forms £ix N, cofix that were deprecated in 8.8 have been removed from Ltac’s
syntax; please use fix ident N/cofix ident to explicitly name the (co)fixpoint hypothesis to be intro-
duced.

¢ Introduction tactics intro/intros on a goal that is an existential variable now force a refinement of the goal
into a dependent product rather than failing.

* Support for £ix/cofix added in Ltac match and lazymatch.

* Ltac backtraces now include trace information about tactics called by OCaml-defined tactics.
e Option Ltac Debug now applies also to terms built using Ltac functions.

* Deprecated the Implicit Tactic family of commands.

¢ The default program obligation tactic uses a bounded proof search instead of an unbounded and potentially non-
terminating one now (source of incompatibility).

291 hitps://gist.github.com/JasonGross/9770653967de3679d 13 1¢59d42de6d 1 7#file-replace-notations-py

46 Chapter 3. Recent changes

mailto:coq-club@inria.fr
https://gist.github.com/JasonGross/9770653967de3679d131c59d42de6d17#file-replace-notations-py

The Coq Reference Manual, Release 8.11.2

e The simple apply tactic now respects the Opaque flag when called from Ltac (aut o still does not respect
it).

¢ Tactic constr_eqg now adds universe constraints needed for the identity to the context (it used to ignore them).
New tactic constr_eq_strict checks that the required constraints already hold without adding new ones.
Preexisting tactic constr_eqg_nounivs can still be used if you really want to ignore universe constraints.

¢ Tactics and tactic notations now understand the deprecated attribute.

* The fourier tactic has been removed. Please now use 1ra instead. You may need to add Require Import
Lra to your developments. For compatibility, we now define fourier as a deprecated alias of 1ra.

e The romega tactics have been deprecated; please use 1ia instead.
Focusing

 Focusing bracket { now supports named goal selectors, e.g. [x]: { will focus on a goal (existential variable)
named x. As usual, unfocus with } once the sub-goal is fully solved.

Specification language

* A fix to unification (which was sensitive to the ascii name of variables) may occasionally change type inference in
incompatible ways, especially regarding the inference of the return clause of match.

Standard Library

e Added Ascii.egb and String.egb and the =? notation for them, and proved some lemmas about them.
Note that this might cause incompatibilities if you have, e.g., string_scope and Z_scope both open with
string_scope on top, and expect =2 to refer to Z.egb. Solution: wrap _ =? _in (_ =? _)%Z (or
whichever scope you want).

¢ Added Ndigits.N2Bv_sized, and proved some lemmas about it. Deprecated Ndigits.N2Bv_gen.

* Thescopes int_scope anduint_scope have been renamed to dec_int_scope anddec_uint_scope,
to clash less with ssreflect and other packages. They are still delimited by $int and $uint.

e Syntax notations for string, ascii, Z, positive, N, R, and int31 are no longer available
merely by Requireing the files that define the inductives. You must Import Cog.Strings.
String.StringSyntax (after Require Cog.Strings.String), Coqg.Strings.Ascii.
AsciiSyntax (after Require Coqg.Strings.Ascii), Coqg.ZArith.BinIntDef, Coqg.
PArith.BinPosDef, Cog.NArith.BinNatDef, Cog.Reals.Rdefinitions, and Coqg.
Numbers.Cyclic.Int31.Int31, respectively, to be able to use these notations. Note that pass-
ing -compat 8.8 or issuing Require Import Coqg.Compat.Cog88 will make these nota-
tions available. Users wishing to port their developments automatically may download fix.py from
https://gist.github.com/JasonGross/5d4558edf8f5¢2¢548a3d96¢c17820169 and run a command like while
true; do make -0kj 2>&1 | /path/to/fix.py; done and geta cup of coffee. (This command
must be manually interrupted once the build finishes all the way though. Note also that this method is not
fail-proof; you may have to adjust some scopes if you were relying on string notations not being available even
when string_scope was open.)

* Numeral syntax for nat is no longer available without loading the entire prelude (Require Import Cog.
Init.Prelude). This only impacts users running Coq without the init library (-nois or —-noinit) and also
issuing Require Import Cog.Init.Datatypes.

Tools

¢ Coq_makefile lets one override or extend the following variables from the command line: COQFLAGS,
COQCHKFLAGS, COQDOCFLAGS. COQFLAGS is now entirely separate from COQLIBS, so in custom Makefiles
$ (COQFLAGS) should be replaced by $ (COQFLAGS) $ (COQLIBS).

* Removed the gallina utility (extracts specification from Coq vernacular files). If you would like to maintain
this tool externally, please contact us.

3.3. Version 8.9 47

https://gist.github.com/JasonGross/5d4558edf8f5c2c548a3d96c17820169

The Coq Reference Manual, Release 8.11.2

+ Removed the Emacs modes distributed with Cog. You are advised to use Proof-General>”” (and optionally

Company-Coq>?) instead. If your use case is not covered by these alternative Emacs modes, please open an issue.
We can help set up external maintenance as part of Proof-General, or independently as part of cog-community.

Vernacular Commands

¢ Removed deprecated commands Arguments Scope and Implicit Arguments (not the option). Use the
Arguments command instead.

* Nested proofs may be enabled through the option Nested Proofs Allowed. By default, they are disabled
and produce an error. The deprecation warning which used to occur when using nested proofs has been removed.

¢ Added option Uniform Inductive Parameters which abstracts over parameters before typechecking
constructors, allowing to write for example Inductive list (A : Type) := nil : list | cons
A —> list -> list.

* New Set Hint Variables/Constants Opaque/Transparent commands for setting globally the
opacity flag of variables and constants in hint databases, overwriting the opacity set of the hint database.

* Added generic syntax for “attributes”, as in: # [local] Lemma foo : bar.
¢ Added the Numeral Notation command for registering decimal numeral notations for custom types

* The Set SsrHave NoTCResolutioncommand no longer has special global scope. If you want the previous
behavior, use Global Set SsrHave NoTCResolution.

* Multiple sections with the same name are allowed.
Coq binaries and process model

» Before 8.9, Coq distributed a single cogtop binary and a set of dynamically loadable plugins that used to take
over the main loop for tasks such as IDE language server or parallel proof checking.

These plugins have been turned into full-fledged binaries so each different process has associated a particular binary
now, in particular cogidetop is the CogIDE language server, and cog{proof, tactic, query}worker
are in charge of task-specific and parallel proof checking.

SSReflect
* The implementation of delayed clear switches in intro patterns is now simpler to explain:

1. The immediate effect of a clear switch like {x} is to rename the variable x to _x_ (i.e. a reserved identifier
that cannot be mentioned explicitly)

2. The delayed effect of {x} is that _x__is cleared at the end of the intro pattern
3. A clear switch immediately before a view application like {x } /v is translated to /v{x}.

In particular, the third rule lets one write {x } /v even if v uses the variable x: indeed the view is executed before
the renaming.

¢ An empty clear switch is now accepted in intro patterns before a view application whenever the view is a variable.
One can now write { } /v to mean {v}/v. Remark that { } /x is very similar to the idiom { } e for the rewrite
tactic (the equation e is used for rewriting and then discarded).

Standard Library
¢ There are now conversions between st ring and positive, Z, nat, and N in binary, octal, and hex.

Display diffs between proof steps

292 https://proofgeneral.github.io/
293 https://github.com/cpitclaudel/company-coq

48 Chapter 3. Recent changes

https://proofgeneral.github.io/
https://github.com/cpitclaudel/company-coq

The Coq Reference Manual, Release 8.11.2

cogtop and cogide can now highlight the differences between proof steps in color. This can be enabled from
the command line or the Set Diffs "on"/"off"/"removed" command. Please see the documentation
for details. Showing diffs in Proof General requires small changes to PG (under discussion).

Notations

Added ++ infix for VectorDef.append. Note that this might cause incompatibilities if you have, e.g.,
list_scope and vector_scope both open with vector_scope on top, and expect ++ to refer to app.
Solution: wrap _ ++ _in (_ ++ _)%1ist (or whichever scope you want).

3.3.3 Changes in 8.8.0

Various bug fixes.

3.3.4 Changes in 8.8.1

Some quality-of-life fixes.
Numerous improvements to the documentation.
Fix a critical bug related to primitive projections and native_compute.

Ship several additional Coq libraries with the Windows installer.

3.4 Version 8.8

3.4.1 Summary of changes

Coq version 8.8 contains the result of refinements and stabilization of features and deprecations, cleanups of the internals
of the system along with a few new features. The main user visible changes are:

Kernel: fix a subject reduction failure due to allowing fixpoints on non-recursive values, by Matthieu Sozeau. Han-
dling of evars in the VM (the kernel still does not accept evars) by Pierre-Marie Pédrot.

Notations: many improvements on recursive notations and support for destructuring patterns in the syntax of nota-
tions by Hugo Herbelin.

Proof language: tacticals for profiling, timing and checking success or failure of tactics by Jason Gross. The focusing
bracket { supports single-numbered goal selectors, e.g. 2 : {, by Théo Zimmermann.

Vernacular: deprecation of commands and more uniform handling of the Local flag, by Vincent Laporte and
Maxime Dénes, part of a larger attribute system overhaul. Experimental Show Extraction command by
Pierre Letouzey. Coercion now accepts Prop or Type as a source by Arthur Charguéraud. Export modifier for
options allowing to export the option to modules that Import and not only Require a module, by Pierre-Marie
Pédrot.

Universes: many user-level and API level enhancements: qualified naming and printing, variance annotations for
cumulative inductive types, more general constraints and enhancements of the minimization heuristics, interaction
with modules by Gaétan Gilbert, Pierre-Marie Pédrot and Matthieu Sozeau.

Library: Decimal Numbers library by Pierre Letouzey and various small improvements.

Documentation: a large community effort resulted in the migration of the reference manual to the Sphinx docu-
mentation tool. The result is this manual. The new documentation infrastructure (based on Sphinx) is by Clément
Pit-Claudel. The migration was coordinated by Maxime Dénes and Paul Steckler, with some help of Théo Zim-
mermann during the final integration phase. The 14 people who ported the manual are Calvin Beck, Heiko Becker,

34.

Version 8.8 49

The Coq Reference Manual, Release 8.11.2

Yves Bertot, Maxime Dénes, Richard Ford, Pierre Letouzey, Assia Mahboubi, Clément Pit-Claudel, Laurence
Rideau, Matthieu Sozeau, Paul Steckler, Enrico Tassi, Laurent Théry, Nikita Zyuzin.

* Tools: experimental -mangle-names option to cogt op/cogqc for linting proof scripts, by Jasper Hugunin.

On the implementation side, the dev/doc/changes . md file documents the numerous changes to the implementation
and improvements of interfaces. The file provides guidelines on porting a plugin to the new version.

Version 8.8 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system. Most important ones are documented in the next subsection file.

The efficiency of the whole system has seen improvements thanks to contributions from Gaétan Gilbert, Pierre-Marie
Pédrot, Maxime Dénes and Matthieu Sozeau and performance issue tracking by Jason Gross and Paul Steckler.

The official wiki and the bugtracker of Coq migrated to the GitHub platform, thanks to the work of Pierre Letouzey and
Théo Zimmermann. Gaétan Gilbert, Emilio Jesis Gallego Arias worked on maintaining and improving the continuous
integration system.

The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.

The 44 contributors for this version are Yves Bertot, Joachim Breitner, Tej Chajed, Arthur Charguéraud, Jacques-Pascal
Deplaix, Maxime Dénes, Jim Fehrle, Julien Forest, Yannick Forster, Gaétan Gilbert, Jason Gross, Samuel Gruetter,
Thomas Hebb, Hugo Herbelin, Jasper Hugunin, Emilio Jesus Gallego Arias, Ralf Jung, Johannes Kloos, Matej Kosik,
Robbert Krebbers, Tony Beta Lambda, Vincent Laporte, Peter LeFanu Lumsdaine, Pierre Letouzey, Farzon Lotfi, Cy-
prien Mangin, Guillaume Melquiond, Raphaél Monat, Carl Patenaude Poulin, Pierre-Marie Pédrot, Clément Pit-Claudel,
Matthew Ryan, Matt Quinn, Sigurd Schneider, Bernhard Schommer, Michael Soegtrop, Matthieu Sozeau, Arnaud Spi-
wack, Paul Steckler, Enrico Tassi, Anton Trunov, Martin Vassor, Vadim Zaliva and Théo Zimmermann.

Version 8.8 is the third release of Coq developed on a time-based development cycle. Its development spanned 6 months
from the release of Coq 8.7 and was based on a public roadmap. The development process was coordinated by Matthieu
Sozeau. Maxime Dénes was in charge of the release process. Théo Zimmermann is the maintainer of this release.

Many power users helped to improve the design of the new features via the bug tracker, the pull request system, the Coq
development mailing list or the coq-club@inria.fr mailing list. Special thanks to the users who contributed patches and
intensive brain-storming and code reviews, starting with Jason Gross, Ralf Jung, Robbert Krebbers and Amin Timany.
It would however be impossible to mention exhaustively the names of everybody who to some extent influenced the
development.

The Coq consortium, an organization directed towards users and supporters of the system, is now running and employs
Maxime Dénes. The contacts of the Coq Consortium are Yves Bertot and Maxime Dénes.

Santiago de Chile, March 2018,
Matthieu Sozeau for the Coq development team

3.4.2 Details of changes in 8.8+beta1

Kernel

* Support for template polymorphism for definitions was removed. May trigger more “universe inconsistency” errors
in rare occasions.

* Fixpoints are no longer allowed on non-recursive inductive types.
Notations

» Recursive notations with the recursive pattern repeating on the right (e.g. ’(X ;.. ; y ;2)”) now supported.

50 Chapter 3. Recent changes

https://coq.inria.fr/opam/www/
mailto:coq-club@inria.fr

The Coq Reference Manual, Release 8.11.2

Notations with a specific level for the leftmost nonterminal, when printing-only, are supported.
Notations can now refer to the syntactic category of patterns (as in ’fun ’pat =>” or “match p with pat => ... end”).
Two variants are available, depending on whether a single variable is considered as a pattern or not.

L)

Recursive notations now support ”..” patterns with several occurrences of the recursive term or binder, possibly
mixing terms and binders, possibly in reverse left-to-right order.

”Locate” now working also on notations of the form ”x + y” (rather than ”_ + _”).

Specification language

When printing clauses of a “match”, clauses with same right-hand side are factorized and the last most factorized
clause with no variables, if it exists, is turned into a default clause. Use "Unset Printing Allow Default Clause” do
deactivate printing of a default clause. Use "Unset Printing Factorizable Match Patterns” to deactivate factorization
of clauses with same right-hand side.

Tactics

On Linux, “native_compute” calls can be profiled using the “perf” utility. The command ”Set NativeCompute
Profiling” enables profiling, and ”Set NativeCompute Profile Filename” customizes the profile filename.

The tactic "omega” is now aware of the bodies of context variables such as ”x :=5 : Z” (see #1362). This could be
disabled via Unset Omega UseLocalDefs.

The tactic "romega” is also aware now of the bodies of context variables.

The tactic “zify” resp. “omega with N” is now aware of N.pred.

Tactic ”decide equality” now able to manage constructors which contain proofs.
Added tactics reset ltac profile, show Itac profile (and variants)

Added tactics restart_timer, finish_timing, and time_constr as an experimental way of timing Ltac’s evaluation
phase

Added tactic optimize_heap, analogous to the Vernacular Optimize Heap, which performs a major garbage collec-
tion and heap compaction in the OCaml run-time system.

The tactics ”dtauto”, “dintuition”, “firstorder” now handle inductive types with let bindings in the parameters.

The tactic dtauto now handles some inductives such as @sigT A (fun _ => B) as non-dependent con-
junctions.
A bugfixedin rewrite H in *and rewrite H in * |- may cause a few rare incompatibilities (it was

unintendedly recursively rewriting in the side conditions generated by H).

Added tactics “assert_succeeds tac” and “assert_{fails tac” to ensure properties of the execution of a tactic without
keeping the effect of the execution.

vm_compute now supports existential variables.
Calls to shelve and give_up within calls to tactic re f ine now working.

Deprecated tactic appcontext was removed.

Focusing

Focusing bracket { now supports single-numbered goal selector, e.g. 2: { will focus on the second sub-goal. As
usual, unfocus with } once the sub-goal is fully solved. The Focus and Unfocus commands are now deprecated.

Vernacular Commands

Proofs ending in ”"Qed exporting ident, .., ident” are not supported anymore. Constants generated during
abstract are kept private to the local environment.

3.4. Version 8.8 51

The Coq Reference Manual, Release 8.11.2

The deprecated Coercion Local, Open Local Scope, Notation Local syntax was removed. Use Local as a prefix
instead.

For the Extraction Language command, "OCaml” is spelled correctly. The older "Ocaml” is still accepted, but
deprecated.

Using “Require” inside a section is deprecated.

An experimental command "Show Extraction” allows to extract the content of the current ongoing proof (grant
wish #4129).

Coercion now accepts the type of its argument to be ”"Prop” or "Type”.

The “Export” modifier can now be used when setting and unsetting options, and will result in performing the same
change when the module corresponding the command is imported.

The Axiom command does not automatically declare axioms as instances when their type is a class. Previous
behavior can be restored using Set Typeclasses Axioms Are Instances.

Universes

Qualified naming of global universes now works like other namespaced objects (e.g. constants), with a separate
namespace, inside and across module and library boundaries. Global universe names introduced in an inductive /
constant / Let declaration get qualified with the name of the declaration.

Universe cumulativity for inductive types is now specified as a variance for each polymorphic universe. See the
reference manual for more information.

Inference of universe constraints with cumulative inductive types produces more general constraints. Unsetting
new option Cumulativity Weak Constraints produces even more general constraints (but may produce too many
universes to be practical).

Fix #5726: Notations that start with Type now support universe instances with @ {u}.

with Definition now understands universe declarations (like @ {u| Set < u}).

Tools
¢ Coq can now be run with the option -mangle-names to change the auto-generated name scheme. This is intended
to function as a linter for developments that want to be robust to changes in auto-generated names. This feature is
experimental, and may change or disappear without warning.
* GeoProof support was removed.
Checker
* The checker now accepts filenames in addition to logical paths.
CoqIDE
* Find and Replace All report the number of occurrences found; Find indicates when it wraps.
coqdep
e Learned to read -1, -Q, -R and filenames from _CoqProject files. This is used by coq_makefile when generating
dependencies for .v files (but not other files).
Documentation
e The Coq FAQ, formerly located at https://coq.inria.fr/faq, has been moved to the GitHub wiki section of this
repository; the main entry page is https://github.com/cog/coq/wiki/The-Coq-FAQ.
* Documentation: a large community effort resulted in the migration of the reference manual to the Sphinx docu-
mentation tool. The result is partially integrated in this version.
Standard Library
52 Chapter 3. Recent changes

https://coq.inria.fr/faq
https://github.com/coq/coq/wiki/The-Coq-FAQ

The Coq Reference Manual, Release 8.11.2

New libraries Coq.Init.Decimal, Coq.Numbers.DecimalFacts, Coq.Numbers.DecimalNat,
Cog.Numbers.DecimalPos, Coq.Numbers.DecimalN, Coq.Numbers.DecimalZ, Coq.Numbers.DecimalString
providing a type of decimal numbers, some facts about them, and conversions between decimal numbers and nat,
positive, N, Z, and string.

Added [Coq.Strings.String.concat] to concatenate a list of strings inserting a separator between each item
Notation ' for Zpos in QArith was removed.

Some deprecated aliases are now emitting warnings when used.

Compatibility support

Support for compatibility with versions before 8.6 was dropped.

Options

The following deprecated options have been removed:

Refolding Reduction

— Standard Proposition Elimination
— Dependent Propositions Elimination
— Discriminate Introduction

— Shrink Abstract

— Tactic Pattern Unification

— Intuition Iff Unfolding

— Injection L2R Pattern Order

— Record Elimination Schemes

— Match Strict

— Tactic Compat Context

— Typeclasses Legacy Resolution

- Typeclasses Module Eta

— Typeclass Resolution After Apply

3.4.3 Details of changes in 8.8.0

Tools

Asynchronous proof delegation policy was fixed. Since version 8.7 Coq was ignoring previous runs and the

—async-proofs—-delegation-threshold option did not have the expected behavior.

Tactic language

The undocumented “nameless” forms fix N, cofix have been deprecated; please use fix ident N /
cofix ident to explicitly name the (co)fixpoint hypothesis to be introduced.

Documentation

The reference manual is now fully ported to Sphinx.

Other small deprecations and bug fixes.

3.4. Version 8.8 53

The Coq Reference Manual, Release 8.11.2

3.4.4 Details of changes in 8.8.1

Kernel

* Fix a critical bug with cofixpoints and vm_compute/native_compute (#7333).

* Fix a critical bug with modules and algebraic universes (#7695)

* Fix a critical bug with inlining of polymorphic constants (#7615).

* Fix a critical bug with universe polymorphism and vm_compute (#7723). Was present since 8.5.
Notations

* Fixed unexpected collision between only-parsing and only-printing notations (issue #7462).
Windows installer

» The Windows installer now includes external packages Ltac2 and Equations (it included the Bignums package since
8.8+betal).

Many other bug fixes, documentation improvements (including fixes of regressions due to the Sphinx migration), and user
message improvements (for details, see the 8.8.1 milestone at https://github.com/cog/cog/milestone/13?closed=1).

3.4.5 Details of changes in 8.8.2

Documentation
* A PDF version of the reference manual is available once again.
Tools

e The cog-makefile targets print-pretty-timed, print-pretty-timed-diff, and
print-pretty-single-time—-diff now correctly label the “before” and ~after” columns, rather
than swapping them.

Kernel

* The kernel does not tolerate capture of global universes by polymorphic universe binders, fixing a soundness break
(triggered only through custom plugins)

Windows installer
* The Windows installer now includes many more external packages that can be individually selected for installation.

Many other bug fixes and lots of documentation improvements (for details, see the 8.8.2 milestone at https://github.com/
cog/cog/milestone/15?closed=1).

3.5 Version 8.7

3.5.1 Summary of changes

Coq version 8.7 contains the result of refinements, stabilization of features and cleanups of the internals of the system
along with a few new features. The main user visible changes are:

* New tactics: variants of tactics supporting existential variables eassert, eenough, etc... by Hugo Herbelin.
Tactics extensionality in Hand inversion_sigma by Jason Gross, specialize with ... ac-
cepting partial bindings by Pierre Courtieu.

54 Chapter 3. Recent changes

https://github.com/coq/coq/milestone/13?closed=1
https://github.com/coq/coq/milestone/15?closed=1
https://github.com/coq/coq/milestone/15?closed=1

The Coq Reference Manual, Release 8.11.2

e Cumulative Polymorphic Inductive types, allowing cumulativity of universes to go through applied
inductive types, by Amin Timany and Matthieu Sozeau.

* Integration of the SSReflect plugin and its documentation in the reference manual, by Enrico Tassi, Assia Mahboubi
and Maxime Dénes.

e The cogq_makefile tool was completely redesigned to improve its maintainability and the extensibility of gen-
erated Makefiles, and to make _CogProject files more palatable to IDEs by Enrico Tassi.

Coq 8.7 involved a large amount of work on cleaning and speeding up the code base, notably the work of Pierre-Marie
Pédrot on making the tactic-level system insensitive to existential variable expansion, providing a safer API to plugin
writers and making the code more robust. The dev/doc/changes . txt file documents the numerous changes to the
implementation and improvements of interfaces. An effort to provide an official, streamlined API to plugin writers is in
progress, thanks to the work of Matej Kosik.

Version 8.7 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system. We shall only list a few of them.

The efficiency of the whole system has been significantly improved thanks to contributions from Pierre-Marie Pédrot,
Maxime Dénes and Matthieu Sozeau and performance issue tracking by Jason Gross and Paul Steckler.

Thomas Sibut-Pinote and Hugo Herbelin added support for side effect hooks in cbv, cbn and simpl. The side effects are
provided via a plugin available at https://github.com/herbelin/reduction-effects/.

The BigN, BigZ, BigQ libraries are no longer part of the Coq standard library, they are now provided by a separate
repository https://github.com/coq/bignums, maintained by Pierre Letouzey.

In the Reals library, TZR has been changed to produce a compact representation of integers and real constants are now
represented using I ZR (work by Guillaume Melquiond).

Standard library additions and improvements by Jason Gross, Pierre Letouzey and others, documented in the next sub-
section file.

The mathematical proof language/declarative mode plugin was removed from the archive.

The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.

Packaging tools and software development kits were prepared by Michael Soegtrop with the help of Maxime Dénes and
Enrico Tassi for Windows, and Maxime Dénes for MacOS X. Packages are regularly built on the Travis continuous
integration server.

The contributors for this version are Abhishek Anand, C.J. Bell, Yves Bertot, Frédéric Besson, Tej Chajed, Pierre
Courtieu, Maxime Dénes, Julien Forest, Gaétan Gilbert, Jason Gross, Hugo Herbelin, Emilio Jesis Gallego Arias, Ralf
Jung, Matej Kosik, Xavier Leroy, Pierre Letouzey, Assia Mahboubi, Cyprien Mangin, Erik Martin-Dorel, Olivier Marty,
Guillaume Melquiond, Sam Pablo Kuper, Benjamin Pierce, Pierre-Marie Pédrot, Lars Rasmusson, Lionel Rieg, Valentin
Robert, Yann Régis-Gianas, Thomas Sibut-Pinote, Michael Soegtrop, Matthieu Sozeau, Arnaud Spiwack, Paul Steckler,
George Stelle, Pierre-Yves Strub, Enrico Tassi, Hendrik Tews, Amin Timany, Laurent Théry, Vadim Zaliva and Théo
Zimmermann.

The development process was coordinated by Matthieu Sozeau with the help of Maxime Dénes, who was also in charge
of the release process. Théo Zimmermann is the maintainer of this release.

Many power users helped to improve the design of the new features via the bug tracker, the pull request system, the Coq
development mailing list or the Coq-Club mailing list. Special thanks to the users who contributed patches and intensive
brain-storming and code reviews, starting with Jason Gross, Ralf Jung, Robbert Krebbers, Xavier Leroy, Clément Pit—
Claudel and Gabriel Scherer. It would however be impossible to mention exhaustively the names of everybody who to
some extent influenced the development.

Version 8.7 is the second release of Coq developed on a time-based development cycle. Its development spanned 9 months
from the release of Coq 8.6 and was based on a public road-map. It attracted many external contributions. Code reviews
and continuous integration testing were systematically used before integration of new features, with an important focus

3.5. Version 8.7 55

https://github.com/herbelin/reduction-effects/
https://github.com/coq/bignums
https://coq.inria.fr/opam/www/

The Coq Reference Manual, Release 8.11.2

given to compatibility and performance issues, resulting in a hopefully more robust release than Coq 8.6 while maintaining
compatibility.

Coq Enhancement Proposals (CEPs for short) and open pull request discussions were used to discuss publicly the new
features.

The Coq consortium, an organization directed towards users and supporters of the system, is now upcoming and will rely
on Inria’s newly created Foundation.

Paris, August 2017,
Matthieu Sozeau and the Coq development team

3.5.2 Potential compatibility issues

« Extra superfluous names in introduction patterns may now raise an error rather than a warning when the superfluous

name is already in use. The easy fix is to remove the superfluous name.

3.5.3 Details of changes in 8.7+betal

Tactics

» New tactic “extensionality in H” which applies (possibly dependent) functional extensionality in H supposed to be

a quantified equality until giving a bare equality.

New tactic inversion_sigma which turns equalities of dependent pairs (e.g., existT P x p = existT
P vy q,frequently left over by inversion on a dependent type family) into pairs of equalities (e.g., a hypothesis
H : x = y and a hypothesis of type rew H in p = q); these hypotheses can subsequently be simplified
using subst, without ever invoking any kind of axiom asserting uniqueness of identity proofs. If you want to
explicitly specify the hypothesis to be inverted, or name the generated hypotheses, you can invoke induction
H as [H1 H2] using eq_sigT_rect. The tactic also works for sig, sigT2, and sig2, and there are
similar eq_sig*_rect induction lemmas.

Tactic "specialize with ...” now accepts any partial bindings. Missing bindings are either solved by unification or
left quantified in the hypothesis.

New representation of terms that statically ensure stability by evar-expansion. This has several consequences.

— In terms of performance, this adds a cost to every term destructuration, but at the same time most eager evar
normalizations were removed, which couterbalances this drawback and even sometimes outperforms the old
implementation. For instance, many operations that would require O(n) normalization of the term are now
O(1) in tactics. YMMV.

— This triggers small changes in unification, which was not evar-insensitive. Most notably, the new implemen-
tation recognizes Miller patterns that were missed before because of a missing normalization step. Hopefully
this should be fairly uncommon.

Tactic "auto with real” can now discharge comparisons of literals.

The types of variables in patterns of “match” are now beta-iota-reduced after type-checking. This has an impact
on the type of the variables that the tactic “refine” introduces in the context, producing types a priori closer to the
expectations.

In "Tactic Notation” or "TACTIC EXTEND”, entry “constr_with_bindings” now uses type classes and rejects
terms with unresolved holes, like entry ”constr” does. To get the former behavior use "open_constr_with_bindings”
(possible source of incompatibility).

56

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

New e-variants eassert, eenough, epose proof, eset, eremember, epose which behave like the corresponding variants
with no “e” but turn unresolved implicit arguments into existential variables, on the shelf, rather than failing.

Tactic injection has become more powerful (closes bug #4890) and its documentation has been updated.
New variants of the first and solve tacticals that do not rely on parsing rules, meant to define tactic notations.

Added support for side effects hooks in cbv, cbn and simpl. The side effects are provided via a plugin: https:
//github.com/herbelin/reduction-effects/

It is now possible to take hint database names as parameters in a Ltac definition or a Tactic Notation.

New option Set Ltac Batch Debugontopof Set Ltac Debug for non-interactive Ltac debug output.

Gallina

Now supporting all kinds of binders, including ’pat, in syntax of record fields.

Vernacular Commands

Goals context can be printed in a more compact way when Set Printing Compact Contexts isactivated.
Unfocused goals can be printed with the Set Printing Unfocused option.
Print now shows the types of let-bindings.

The compatibility options for printing primitive projections (Set Printing Primitive Projection
Parameters and Set Printing Primitive Projection Compatibility) are now off by de-
fault.

Possibility to unset the printing of notations in a more fine grained fashion than Unset Printing Notations
is provided without any user-syntax. The goal is that someone creates a plugin to experiment such a user-syntax,
to be later integrated in Coq when stabilized.

About now tells if a reference is a coercion.

The deprecated Save vernacular and its form Save Theorem 1id to close proofs have been removed from the
syntax. Please use Qed.

Search now sorts results by relevance (the relevance metric is a weighted sum of number of distinct symbols and
size of the term).

Standard Library

New file PropExtensionality.v to explicitly work in the axiomatic context of propositional extensionality.

New file SetoidChoice.v axiomatically providing choice over setoids, and, consequently, choice of representatives
in equivalence classes. Various proof-theoretic characterizations of choice over setoids in file ChoiceFacts.v.

New lemmas about iff and about orders on positive and Z.
New lemmas on powerRZ.
Strengthened statement of JMeq_eq_dep (closes bug #4912).

The BigN, BigZ, BigZ libraries are no longer part of the Coq standard library, they are now provided by a separate
repository https://github.com/coq/bignums The split has been done just after the Int31 library.

IZR (Reals) has been changed to produce a compact representation of integers. As a consequence, [ZR is no longer
convertible to INR and lemmas such as INR_IZR_INZ should be used instead.

Real constants are now represented using IZR rather than RO and R1; this might cause rewriting rules to fail to
apply to constants.

Added new notation {x & P} for sigT (without a type for x)

Plugins

3.5. Version 8.7 57

https://github.com/herbelin/reduction-effects/
https://github.com/herbelin/reduction-effects/
https://github.com/coq/bignums

The Coq Reference Manual, Release 8.11.2

¢ The Ssreflect plugin is now distributed with Coq. Its documentation has been integrated as a chapter of the reference
manual. This chapter is work in progress so feedback is welcome.

» The mathematical proof language (also known as declarative mode) was removed.

¢ A new command Extraction TestCompile has been introduced, not meant for the general user but instead for Coq’s
test-suite.

 The extraction plugin is no longer loaded by default. It must be explicitly loaded with [Require Extraction], which
is backwards compatible.

¢ The functional induction plugin (which provides the [Function] vernacular) is no longer loaded by default. It must
be explicitly loaded with [Require Funlnd], which is backwards compatible.

Dependencies
* Support for camlp4 has been removed.
Tools

* coq_makefile was completely redesigned to improve its maintainability and the extensibility of generated Makefiles,
and to make _CoqProject files more palatable to IDEs. Overview:

— _CoqProject files contain only Coq specific data (i.e. the list of files, -R options, ...)

— coq_makefile translates _CoqProject to Makefile.conf and copies in the desired location a standard Makefile
(that reads Makefile.conf)

— Makefile extensions can be implemented in a Makefile.local file (read by the main Makefile) by installing a
hook in the extension points provided by the standard Makefile

The current version contains code for retro compatibility that prints warnings when a deprecated feature is used.
Please upgrade your _CoqProject accordingly.

— Additionally, coq_makefile-made Makefiles now support experimental timing targets pretty—-timed,
pretty-timed-before, pretty-timed-after, print-pretty-timed-diff,
print-pretty-single-time-diff, all.timing.diff, and the variable TIMING=1 (or
TIMING=before or TIMING=after); see the documentation for more details.

Build Infrastructure

* Note that 'make world’ does not build the bytecode binaries anymore. For that, you can use 'make byte’ (and ‘'make
install-byte’ afterwards). Warning: native and byte compilations should not be mixed in the same instance of ‘'make
-j’, otherwise both ocamlc and ocamlopt might race for access to the same .cmi files. In short, use “make -j &&
make -j byte” instead of “make -j world byte”.

Universes

* Cumulative inductive types. see prefixes "Cumulative”, "NonCumulative” for inductive definitions and the option
”Set Polymorphic Inductive Cumulativity” in the reference manual.

* New syntax foo@{_} to instantiate a polymorphic definition with anonymous universes (can also be used with
Type).
XML Protocol and internal changes

See dev/doc/changes.txt

Many bugfixes including #1859, #2884, #3613, #3943, #3994, #4250, #4709, #4720, #4824, #4844, #4911, #5026,
#5233, #5275, #5315, #5336, #5360, #5390, #5414, #5417, #5420, #5439, #5449, #5475, #5476, #5482, #5501, #5507,
#5520, #5523, #5524, #5553, #5577, #5578, #5589, #5597, #5598, #5607, #5618, #5619, #5620, #5641, #5648, #5651,
#5671.

Many bugfixes on OS X and Windows (now the test-suite passes on these platforms too).

58 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

Many optimizations.

Many documentation improvements.

3.5.4 Details of changes in 8.7+beta2

Tools

* In CoqIDE, the "Compile Buffer” command takes account of flags in _CoqProject or other project file.
Improvements around some error messages.
Many bug fixes including two important ones:

* Bug #5730: CoqIDE becomes unresponsive on file open.

¢ cog_makefile: make sure compile flags for Coq and coq_makefile are in sync (in particular, make sure the
-safe-string option is used to compile plugins).

3.5.5 Details of changes in 8.7.0

OCaml
e Users can pass specific flags to the OCaml optimizing compiler by -using the flambda-opts configure-time option.

Beware that compiling Coq with a flambda-enabled compiler is experimental and may require large amounts of
RAM and CPU, see INSTALL for more details.

3.5.6 Details of changes in 8.7.1

Compatibility with OCaml 4.06.0.

Many bug fixes, documentation improvements, and user message improvements (for details see the 8.7.1 milestone at
https://github.com/coq/cog/milestone/10?closed=1).

3.5.7 Details of changes in 8.7.2

Fixed a critical bug in the VM handling of universes (#6677). This bug affected all releases since 8.5.
Improved support for building with OCaml 4.06.0 and external num package.

Many other bug fixes, documentation improvements, and user message improvements (for details, see the 8.7.2 milestone
at https://github.com/cog/coqg/milestone/11?closed=1).

3.6 Version 8.6

3.6.1 Summary of changes

Coq version 8.6 contains the result of refinements, stabilization of 8.5’s features and cleanups of the internals of the system.
Over the year of (now time-based) development, about 450 bugs were resolved and over 100 contributions integrated. The
main user visible changes are:

* A new, faster state-of-the-art universe constraint checker, by Jacques-Henri Jourdan.

3.6. Version 8.6 59

https://github.com/coq/coq/milestone/10?closed=1
https://github.com/coq/coq/milestone/11?closed=1

The Coq Reference Manual, Release 8.11.2

¢ In CoqIDE and other asynchronous interfaces, more fine-grained asynchronous processing and error reporting by
Enrico Tassi, making Coq capable of recovering from errors and continue processing the document.

* More access to the proof engine features from Ltac: goal management primitives, range selectors and a
typeclasses eauto engine handling multiple goals and multiple successes, by Cyprien Mangin, Matthieu
Sozeau and Arnaud Spiwack.

¢ Tactic behavior uniformization and specification, generalization of intro-patterns by Hugo Herbelin and others.

* A brand new warning system allowing to control warnings, turn them into errors or ignore them selectively by
Maxime Dénes, Guillaume Melquiond, Pierre-Marie Pédrot and others.

* Irrefutable patterns in abstractions, by Daniel de Rauglaudre.

 The ssreflect subterm selection algorithm by Georges Gonthier and Enrico Tassi is now accessible to tactic writers
through the ssrmatching plugin.

* Integration of LtacProf, a profiler for Ltac by Jason Gross, Paul Steckler, Enrico Tassi and Tobias Tebbi.

Coq 8.6 also comes with a bunch of smaller-scale changes and improvements regarding the different components of the
system. We shall only list a few of them.

The iota reduction flag is now a shorthand for match, fix and cofix flags controlling the corresponding reduction rules (by
Hugo Herbelin and Maxime Dénes).

Maxime Dénes maintained the native compilation machinery.

Pierre-Marie Pédrot separated the Ltac code from general purpose tactics, and generalized and rationalized the handling
of generic arguments, allowing to create new versions of Ltac more easily in the future.

In patterns and terms, @, abbreviations and notations are now interpreted the same way, by Hugo Herbelin.

Name handling for universes has been improved by Pierre-Marie Pédrot and Matthieu Sozeau. The minimization algo-
rithm has been improved by Matthieu Sozeau.

The unifier has been improved by Hugo Herbelin and Matthieu Sozeau, fixing some incompatibilities introduced in Coq
8.5. Unification constraints can now be left floating around and be seen by the user thanks to a new option. The Keyed
Unification mode has been improved by Matthieu Sozeau.

The typeclass resolution engine and associated proof-search tactic have been reimplemented on top of the proof-engine
monad, providing better integration in tactics, and new options have been introduced to control it, by Matthieu Sozeau
with help from Théo Zimmermann.

The efficiency of the whole system has been significantly improved thanks to contributions from Pierre-Marie Pédrot,
Maxime Dénes and Matthieu Sozeau and performance issue tracking by Jason Gross and Paul Steckler.

Standard library improvements by Jason Gross, Sébastien Hinderer, Pierre Letouzey and others.

Emilio Jesis Gallego Arias contributed many cleanups and refactorings of the pretty-printing and user interface commu-
nication components.

Frédéric Besson maintained the micromega tactic.

The OPAM repository for Coq packages has been maintained by Guillaume Claret, Guillaume Melquiond, Matthieu
Sozeau, Enrico Tassi and others. A list of packages is now available at https://coq.inria.fr/opam/www/.

Packaging tools and software development kits were prepared by Michael Soegtrop with the help of Maxime Dénés and
Enrico Tassi for Windows, and Maxime Dénes and Matthieu Sozeau for MacOS X. Packages are now regularly built on
the continuous integration server. Coq now comes with a META file usable with ocamlfind, contributed by Emilio Jesds
Gallego Arias, Gregory Malecha, and Matthieu Sozeau.

Matej Kosik maintained and greatly improved the continuous integration setup and the testing of Coq contributions. He
also contributed many API improvements and code cleanups throughout the system.

60 Chapter 3. Recent changes

https://coq.inria.fr/opam/www/

The Coq Reference Manual, Release 8.11.2

The contributors for this version are Bruno Barras, C.J. Bell, Yves Bertot, Frédéric Besson, Pierre Boutillier, Tej Cha-
jed, Guillaume Claret, Xavier Clerc, Pierre Corbineau, Pierre Courtieu, Maxime Dénes, Ricky Elrod, Emilio Jesus
Gallego Arias, Jason Gross, Hugo Herbelin, Sébastien Hinderer, Jacques-Henri Jourdan, Matej Kosik, Xavier Leroy,
Pierre Letouzey, Gregory Malecha, Cyprien Mangin, Erik Martin-Dorel, Guillaume Melquiond, Clément Pit—Claudel,
Pierre-Marie Pédrot, Daniel de Rauglaudre, Lionel Rieg, Gabriel Scherer, Thomas Sibut-Pinote, Matthieu Sozeau, Ar-
naud Spiwack, Paul Steckler, Enrico Tassi, Laurent Théry, Nickolai Zeldovich and Théo Zimmermann. The development
process was coordinated by Hugo Herbelin and Matthieu Sozeau with the help of Maxime Dénes, who was also in charge
of the release process.

Many power users helped to improve the design of the new features via the bug tracker, the pull request system, the Coq
development mailing list or the Coq-Club mailing list. Special thanks to the users who contributed patches and intensive
brain-storming and code reviews, starting with Cyril Cohen, Jason Gross, Robbert Krebbers, Jonathan Leivent, Xavier
Leroy, Gregory Malecha, Clément Pit—Claudel, Gabriel Scherer and Beta Ziliani. It would however be impossible to
mention exhaustively the names of everybody who to some extent influenced the development.

Version 8.6 is the first release of Coq developed on a time-based development cycle. Its development spanned 10 months
from the release of Coq 8.5 and was based on a public roadmap. To date, it contains more external contributions than
any previous Coq system. Code reviews were systematically done before integration of new features, with an important
focus given to compatibility and performance issues, resulting in a hopefully more robust release than Coq 8.5.

Coq Enhancement Proposals (CEPs for short) were introduced by Enrico Tassi to provide more visibility and a discussion
period on new features, they are publicly available https://github.com/coqg/ceps.

Started during this period, an effort is led by Yves Bertot and Maxime Dénes to put together a Coq consortium.

Paris, November 2016,
Matthieu Sozeau and the Coq development team

3.6.2 Potential sources of incompatibilities

* Symptom: An obligation generated by Program or an abstracted subproof has different arguments.
Cause: Set Shrink Abstract and Set Shrink Obligations are on by default and the subproof does not use the argument.
Remedy:
— Adapt the script.
— Write an explicit lemma to prove the obligation/subproof and use it instead (compatible with 8.4).
— Unset the option for the program/proof the obligation/subproof originates from.

¢ Symptom: In a goal, order of hypotheses, or absence of an equality of the form ”x =t” or ”t = X”, or no unfolding
of a local definition.

Cause: This might be connected to a number of fixes in the tactic “subst”. The former behavior can be reactivated
by issuing ”"Unset Regular Subst Tactic”.

3.6.3 Details of changes in 8.6betat

Kernel
¢ A new, faster state-of-the-art universe constraint checker.

Specification language

3.6. Version 8.6 61

https://github.com/coq/ceps

The Coq Reference Manual, Release 8.11.2

Giving implicit arguments explicitly to a constant with multiple choices of implicit arguments does not break any
more insertion of further maximal implicit arguments.

Ability to put any pattern in binders, prefixed by quote, e.g. “fun ’(a,b) => ...”, ”A ’(a,(b,c)), ...”, "Definition foo
‘(x,y) = ...". It expands into a ”let ’pattern :=...”

Tactics

Hints

Flag "Bracketing Last Introduction Pattern” is now on by default.

Flag "Regular Subst Tactic” is now on by default: it respects the initial order of hypothesis, it contracts cycles, it
unfolds no local definitions (common source of incompatibilities, fixable by "Unset Regular Subst Tactic”).

New flag "Refolding Reduction”, now disabled by default, which turns on refolding of constants/fixpoints (as in
cbn) during the reductions done during type inference and tactic retyping. Can be extremely expensive. When set
off, this recovers the 8.4 behaviour of unification and type inference. Potential source of incompatibility with 8.5
developments (the option is set on in Compat/Coq85.v).

New flag ”Shrink Abstract” that minimalizes proofs generated by the abstract tactical w.r.t. variables appearing
in the body of the proof. On by default and deprecated. Minor source of incompatibility for code relying on the
precise arguments of abstracted proofs.

Serious bugs are fixed in tactic "double induction” (source of incompatibilities as soon as the inductive types have
dependencies in the type of their constructors; "double induction” remains however deprecated).

In introduction patterns of the form (patl,...,patn), n should match the exact number of hypotheses introduced
(except for local definitions for which pattern can be omitted, as in regular pattern-matching).

Tactic scopes in Ltac like constr: and Itac: now require parentheses around their argument.

Every generic argument type declares a tactic scope of the form “name:(...)” where name is the name of the argu-
ment. This generalizes the constr: and Itac: instances.

When in strict mode (i.e. in a Ltac definition), if the “intro” tactic is given a free identifier, it is not bound in
subsequent tactics anymore. In order to introduce a binding, use e.g. the “fresh” primitive instead (potential source
of incompatibilities).

New tactics is_ind, is_const, is_proj, is_constructor for use in Ltac.

New goal selectors. Sets of goals can be selected by listing integers ranges. Example: ”1,4-7,24: tac” focuses “tac”
on goals 1,4,5,6,7,24.

For uniformity with “destruct”/”induction” and for a more natural behavior, “injection” can now work in place by
activating option “Structural Injection”. In this case, hypotheses are also put in the context in the natural left-to-right
order and the hypothesis on which injection applies is cleared.

Tactic “contradiction” (hence “easy”) now also solve goals with hypotheses of the form ”~True” or “t<>t” (possible
source of incompatibilities because of more successes in automation, but generally a more intuitive strategy).

Option "Injection On Proofs” was renamed "Keep Proof Equalities”. When enabled, injection and inversion do not
drop equalities between objects in Prop. Still disabled by default.

New tactics "notypeclasses refine” and “simple notypeclasses refine” that disallow typeclass resolution when type-
checking their argument, for use in typeclass hints.

Integration of LtacProf, a profiler for Ltac.
Reduction tactics now accept more fine-grained flags: iota is now a shorthand for the new flags match, fix and cofix.
The ssreflect subterm selection algorithm is now accessible to tactic writers through the ssrmatching plugin.

When used as an argument of an Itac function, “auto” without "with” nor “using” clause now correctly uses only
the core hint database by default.

62

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

* Revised the syntax of [Hint Cut] to follow standard notation for regexps.

* Hint Mode now accepts ”!” which means that the mode matches only if the argument’s head is not an evar (it goes
under applications, casts, and scrutinees of matches and projections).

¢ Hints can now take an optional user-given pattern, used only by [typeclasses eauto] with the [Filtered Unification]
option on.

Typeclasses

* Many new options and new engine based on the proof monad. The [typeclasses eauto] tactic is now a multi-goal,
multi-success tactic. See reference manual for more information. It is planned to replace auto and eauto in the
following version. The 8.5 resolution engine is still available to help solve compatibility issues.

Program
» The ”Shrink Obligations” flag now applies to all obligations, not only those solved by the automatic tactic.

¢ ”Shrink Obligations” is on by default and deprecated. Minor source of incompatibility for code relying on the
precise arguments of obligations.

Notations
* ”Bind Scope” can once again bind "Funclass” and ”Sortclass”.
General infrastructure

» New configurable warning system which can be controlled with the vernacular command ”Set Warnings”, or, under
coqc/coqtop, with the flag ”-w”. In particular, the default is now that warnings are printed by coqc.

* In asynchronous mode, Coq is now capable of recovering from errors and continue processing the document.
Tools

* coqc accepts a -0 option to specify the output file name

* coqtop accepts —print-version to print Coq and OCaml versions in easy to parse format

* Setting [Printing Dependent Evars Line] can be unset to disable the computation associated with printing the
”dependent evars: ” line in -emacs mode

* Removed the -verbose-compat-notations flag and the corresponding Set Verbose Compat vernacular, since these
warnings can now be silenced or turned into errors using ”-w”.

XML protocol
» message format has changed, see dev/doc/changes.txt for more details.

Many bug fixes, minor changes and documentation improvements are not mentioned here.

3.6.4 Details of changes in 8.6

Kernel

* Fixed critical bug #5248 in VM long multiplication on 32-bit architectures. Was there only since 8.6betal, so no
stable release impacted.

Other bug fixes in universes, type class shelving,...

3.6.5 Details of changes in 8.6.1

 Fix #5380: Default colors for CoqIDE are actually applied.

¢ Fix plugin warnings

3.6. Version 8.6 63

The Coq Reference Manual, Release 8.11.2

Document named evars (including Show ident)

Fix Bug #5574, document function scope

Adding a test case as requested in bug 5205.

Fix Bug #5568, no dup notation warnings on repeated module imports
Fix documentation of Typeclasses eauto :=

Refactor documentation of records.

Protecting from warnings while compiling 8.6

Fixing an inconsistency between configure and configure.ml

Add test-suite checks for coqchk with constraints

Fix bug #5019 (looping zify on dependent types)

Fix bug 5550: “typeclasses eauto with” does not work with section variables.
Bug 5546, qualify datatype constructors when needed in Show Match
Bug #5535, test for Show with -emacs

Fix bug #5486, don’t reverse ids in tuples

Fixing #5522 (anomaly with free vars of pat)

Fix bug #5526, don’t check for nonlinearity in notation if printing only
Fix bug #5255

Fix bug #3659: -time should understand multibyte encodings.

FIx bug #5300: Anomaly: Uncaught exception Not_found” in "Print Assumptions”.
Fix outdated description in RefMan.

Repairing Set Rewriting Schemes

Fixing #5487 (v8.5 regression on ltac-matching expressions with evars).
Fix description of command-line arguments for Add (Rec) LoadPath
Fix bug #5377: @7 patterns broken.

add XML protocol doc

Fix anomaly when doing [all:Check _.] during a proof.

Correction of bug #4306

Fix #5435: [Eval native_compute in] raises anomaly.

Instances should obey universe binders even when defined by tactics.
Intern names bound in match patterns

funind: Ignore missing info for current function

Do not typecheck twice the type of opaque constants.

show unused intro pattern warning

[future] Be eager when “chaining” already resolved future values.
Opaque side effects

Fix #5132: coq_makefile generates incorrect install goal

64

Chapter 3.

Recent changes

The Coq Reference Manual, Release 8.11.2

¢ Run non-tactic comands without resilient_command

* Univs: fix bug #5365, generation of u+k <= v constraints

* make emit tail recursive

¢ Don’t require printing-only notation to be productive

* Fix the way setoid_rewrite handles bindings.

* Fix for bug 5244 - set printing width ignored when given enough space

* Fix bug 4969, autoapply was not tagging shelved subgoals correctly

3.7 Version 8.5

3.7.1 Summary of changes

Coq version 8.5 contains the result of five specific long-term projects:

* A new asynchronous evaluation and compilation mode by Enrico Tassi with help from Bruno Barras and Carst
Tankink.

* Full integration of the new proof engine by Arnaud Spiwack helped by Pierre-Marie Pédrot,
¢ Addition of conversion and reduction based on native compilation by Maxime Dénes and Benjamin Grégoire.
¢ Full universe polymorphism for definitions and inductive types by Matthieu Sozeau.

* An implementation of primitive projections with n-conversion bringing significant performance improvements
when using records by Matthieu Sozeau.

The full integration of the proof engine, by Arnaud Spiwack and Pierre-Marie Pédrot, brings to primitive tactics and
the user level Ltac language dependent subgoals, deep backtracking and multiple goal handling, along with miscellaneous
features and an improved potential for future modifications. Dependent subgoals allow statements in a goal to mention the
proof of another. Proofs of unsolved subgoals appear as existential variables. Primitive backtracking makes it possible to
write a tactic with several possible outcomes which are tried successively when subsequent tactics fail. Primitives are also
available to control the backtracking behavior of tactics. Multiple goal handling paves the way for smarter automation
tactics. It is currently used for simple goal manipulation such as goal reordering.

The way Coq processes a document in batch and interactive mode has been redesigned by Enrico Tassi with help from
Bruno Barras. Opaque proofs, the text between Proof and Qed, can be processed asynchronously, decoupling the checking
of definitions and statements from the checking of proofs. It improves the responsiveness of interactive development,
since proofs can be processed in the background. Similarly, compilation of a file can be split into two phases: the first one
checking only definitions and statements and the second one checking proofs. A file resulting from the first phase — with
the .vio extension — can be already Required. All .vio files can be turned into complete .vo files in parallel. The same
infrastructure also allows terminating tactics to be run in parallel on a set of goals via the par : goal selector.

CoqIDE was modified to cope with asynchronous checking of the document. Its source code was also made separate
from that of Coq, so that CoqIDE no longer has a special status among user interfaces, paving the way for decoupling its
release cycle from that of Coq in the future.

Carst Tankink developed a Coq back-end for user interfaces built on Makarius Wenzel’s Prover IDE framework (PIDE),
like PIDE/jEdit (with help from Makarius Wenzel) or PIDE/Coqoon (with help from Alexander Faithfull and Jesper
Bengtson). The development of such features was funded by the Paral-ITP French ANR project.

The full universe polymorphism extension was designed by Matthieu Sozeau. It conservatively extends the universes
system and core calculus with definitions and inductive declarations parameterized by universes and constraints. It is
based on a modification of the kernel architecture to handle constraint checking only, leaving the generation of constraints
to the refinement/type inference engine. Accordingly, tactics are now fully universe aware, resulting in more localized

3.7. Version 8.5 65

The Coq Reference Manual, Release 8.11.2

error messages in case of inconsistencies and allowing higher-level algorithms like unification to be entirely type safe. The
internal representation of universes has been modified but this is invisible to the user.

The underlying logic has been extended with n-conversion for records defined with primitive projections by Matthieu
Sozeau. This additional form of 7-conversion is justified using the same principle than the previously added n-conversion
for function types, based on formulations of the Calculus of Inductive Constructions with typed equality. Primitive
projections, which do not carry the parameters of the record and are rigid names (not defined as a pattern matching
construct), make working with nested records more manageable in terms of time and space consumption. This extension
and universe polymorphism were carried out partly while Matthieu Sozeau was working at the IAS in Princeton.

The guard condition has been made compliant with extensional equality principles such as propositional extensionality
and univalence, thanks to Maxime Dénes and Bruno Barras. To ensure compatibility with the univalence axiom, a new
flag —-indices-matter has been implemented, taking into account the universe levels of indices when computing the
levels of inductive types. This supports using Coq as a tool to explore the relations between homotopy theory and type
theory.

Maxime Dénes and Benjamin Grégoire developed an implementation of conversion test and normal form computation
using the OCaml native compiler. It complements the virtual machine conversion offering much faster computation for
expensive functions.

Coq 8.5 also comes with a bunch of many various smaller-scale changes and improvements regarding the different com-
ponents of the system. We shall only list a few of them.

Pierre Boutillier developed an improved tactic for simplification of expressions called cbn.
Maxime Dénes maintained the bytecode-based reduction machine. Pierre Letouzey maintained the extraction mechanism.

Pierre-Marie Pédrot has extended the syntax of terms to, experimentally, allow holes in terms to be solved by a locally
specified tactic.

Existential variables are referred to by identifiers rather than mere numbers, thanks to Hugo Herbelin who also improved
the tactic language here and there.

Error messages for universe inconsistencies have been improved by Matthieu Sozeau. Error messages for unification and
type inference failures have been improved by Hugo Herbelin, Pierre-Marie Pédrot and Arnaud Spiwack.

Pierre Courtieu contributed new features for using Coq through Proof General and for better interactive experience
(bullets, Search, etc).

The efficiency of the whole system has been significantly improved thanks to contributions from Pierre-Marie Pédrot.

A distribution channel for Coq packages using the OPAM tool has been initiated by Thomas Braibant and developed by
Guillaume Claret, with contributions by Enrico Tassi and feedback from Hugo Herbelin.

Packaging tools were provided by Pierre Letouzey and Enrico Tassi (Windows), Pierre Boutillier, Matthieu Sozeau and
Maxime Dénes (MacOS X). Maxime Dénes improved significantly the testing and benchmarking support.

Many power users helped to improve the design of the new features via the bug tracker, the coq development mailing list
or the Coq-Club mailing list. Special thanks are going to the users who contributed patches and intensive brain-storming,
starting with Jason Gross, Jonathan Leivent, Greg Malecha, Clément Pit-Claudel, Marc Lasson, Lionel Rieg. It would
however be impossible to mention with precision all names of people who to some extent influenced the development.

Version 8.5 is one of the most important releases of Coq. Its development spanned over about 3 years and a half with
about one year of beta-testing. General maintenance during part or whole of this period has been done by Pierre Boutillier,
Pierre Courtieu, Maxime Dénes, Hugo Herbelin, Pierre Letouzey, Guillaume Melquiond, Pierre-Marie Pédrot, Matthieu
Sozeau, Arnaud Spiwack, Enrico Tassi as well as Bruno Barras, Yves Bertot, Frédéric Besson, Xavier Clerc, Pierre
Corbineau, Jean-Christophe Filliatre, Julien Forest, Sébastien Hinderer, Assia Mahboubi, Jean-Marc Notin, Yann Régis-
Gianas, Francois Ripault, Carst Tankink. Maxime Dénes coordinated the release process.

Paris, January 2015, revised December 2015,

66 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

Hugo Herbelin, Matthieu Sozeau and the Coq development team

3.7.2 Potential sources of incompatibilities
List of typical changes to be done to adapt files from Coq 8.4 to Coq 8.5 when not using compatibility option —compat
8.4.
¢ Symptom: "The reference omega was not found in the current environment”.
Cause: "Require Omega” does not import the tactic omega” any more
Possible solutions:
— use "Require Import OmegaTactic” (not compatible with 8.4)
— use "Require Import Omega” (compatible with 8.4)
— add definition “Ltac omega := Coq.omega.Omega.omega.”
* Symptom: “intuition” cannot solve a goal (not working anymore on non standard connective)
Cause: ”intuition” had an accidental non uniform behavior fixed on non standard connectives
Possible solutions:

— use “dintuition” instead; it is stronger than “intuition” and works uniformly on non standard connectives, such
as n-ary conjunctions or disjunctions (not compatible with 8.4)

— do the script differently
» Symptom: The constructor foo (in type bar) expects n arguments.
Cause: parameters must now be given in patterns
Possible solutions:
— use option "Set Asymmetric Patterns” (compatible with 8.4)
— add ”_” for the parameters (not compatible with 8.4)
— turn the parameters into implicit arguments (compatible with 8.4)
¢ Symptom: "NPeano.Nat.foo” not existing anymore
Possible solutions:
— use "Nat.foo” instead
Symptom: typing problems with projl_sig or similar

Cause: coercion from sig to sigT and similar coercions have been removed so as to make the initial state easier to
understand for beginners

Solution: change projl_sig into projT1 and similarly (compatible with 8.4)
Other detailed changes
* options for cog compilation (see below for ocaml).

— [-Ifoo] is now deprecated and will not add directory foo to the coq load path (only for ocaml, see below). Just
replace [-I foo] by [-Q foo] in your project file and re-generate makefile. Or perform the same operation
directly in your makefile if you edit it by hand.

— Option -R Foo bar is the same in v8.5 than in v8.4 concerning coq load path.

3.7. Version 8.5 67

The Coq Reference Manual, Release 8.11.2

— Option [-I foo -as bar] is unchanged but discouraged unless you compile ocaml code. Use -Q foo bar instead.
for more details: see section “Customization at launch time” of the reference manual.
* Command line options for ocaml Compilation of ocaml code (plugins)
— [-Ifoo] is not deprecated to add foo to the ocaml load path.

— [-I foo -as bar] adds foo to the ocaml load path and adds foo to the coq load path with logical name bar
(shortcut for -I foo -Q foo bar).

for more details: section "Customization at launch time” of the reference manual.
¢ Universe Polymorphism.

¢ Refinement, unification and tactics are now aware of universes, resulting in more localized errors. Universe incon-
sistencies should no more get raised at Qed time but during the proof. Unification always produces well-typed
substitutions, hence some rare cases of unifications that succeeded while producing ill-typed terms before will now
fail.

e The [change p with c] tactic semantics changed, now typechecking [c] at each matching occurrence [t] of the
pattern [p], and converting [t] with [c].

» Template polymorphic inductive types: the partial application of a template polymorphic type (e.g. list) is not
polymorphic. An explicit parameter application (e.g [fun A => list A]) or [apply (list _)] will result in a polymorphic
instance.

* The type inference algorithm now takes opacity of constants into account. This may have effects on tactics using
type inference (e.g. induction). Extra “Transparent” might have to be added to revert opacity of constants.

Type classes.

¢ When writing an Instance foo : Class A := {| proj := t |} (note the vertical bars), support
for typechecking the projections using the type information and switching to proof mode is no longer available.
Use { } (without the vertical bars) instead.

Tactic abstract.

¢ Auxiliary lemmas generated by the abstract tactic are removed from the global environment and inlined in the proof
term when a proof is ended with Qed. The behavior of 8.4 can be obtained by ending proofs with “Qed exporting”
or ”"Qed exporting ident, .., ident”.

3.7.3 Details of changes in 8.5beta1

Logic

* Primitive projections for records allow for a compact representation of projections, without parameters and avoid
the behavior of defined projections that can unfold to a case expression. To turn the use of native projections on, use
[Set Primitive Projections]. Record, Class and Structure types defined while this option is set will be defined with
primitive projections instead of the usual encoding as a case expression. For compatibility, when p is a primitive
projection, @p can be used to refer to the projection with explicit parameters, i.e. [@p] is definitionally equal to [A
params r. r.(p)]. Records with primitive projections have eta-conversion, the canonical form being [mkR pars (pl

t) ... (pnt)].
* New universe polymorphism (see reference manual)
» New option -type-in-type to collapse the universe hierarchy (this makes the logic inconsistent).

¢ The guard condition for fixpoints is now a bit stricter. Propagation of subterm value through pattern matching is
restricted according to the return predicate. Restores compatibility of Coq’s logic with the propositional extension-
ality axiom. May create incompatibilities in recursive programs heavily using dependent types.

68 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

Trivial inductive types are no longer defined in Type but in Prop, which leads to a non-dependent induction principle
being generated in place of the dependent one. To recover the old behavior, explicitly define your inductive types
in Set.

Vernacular commands

A command ”Variant” allows to define non-recursive variant types.

The command “Record foo ...” does not generate induction principles (foo_rect, foo_rec, foo_ind) anymore by
default (feature wish #2693). The command ”Variant foo ...” does not either. A flag "Set/Unset Nonrecursive
Elimination Schemes” allows changing this. The tactic “induction” on a "Record” or a ”Variant” is now actually
doing “destruct”.

The ”Open Scope” command can now be given also a delimiter (e.g. Z).

The “Definition” command now allows the ”"Local” modifier, allowing for non-importable definitions. The same
goes for ”Axiom” and "Parameter”.

Section-specific commands such as "Let” (resp. ”Variable”, "Hypothesis”) used out of a section now behave like
the corresponding “Local” command, i.e. “Local Definition” (resp. "Local Parameter”, "Local Axiom”). (potential
source of rare incompatibilities).

The "Let” command can now define local (co)fixpoints.

Command ”Search” has been renamed into ”SearchHead”. The command name ”Search” now behaves like former
”SearchAbout”. The latter name is deprecated.

”Search”, ”About”, "SearchHead”, "SearchRewrite” and ”SearchPattern” now search for hypothesis (of the current
goal by default) first. They now also support the goal selector prefix to specify another goal to search: e.g. "n:Search
id”. This is also true for SearchAbout although it is deprecated.

The coq/user-contrib directory and the XDG directories are no longer recursively added to the load path, so files
from installed libraries now need to be fully qualified for the "Require” command to find them. The tools/update-
require script can be used to convert a development.

A new Print Strategies command allows visualizing the opacity status of the whole engine.

The "Locate” command now searches through all sorts of qualified namespaces of Coq: terms, modules, tactics,
etc. The old behavior of the command can be retrieved using the “Locate Term” command.

New “Derive” command to help writing program by derivation.

New "Refine Instance Mode” option that allows to deactivate the generation of obligations in incomplete typeclass
instances, raising an error instead.

”Collection” command to name sets of section hypotheses. Named collections can be used in the syntax of “Proof
using” to assert which section variables are used in a proof.

The ”Optimize Proof” command can be placed in the middle of a proof to force the compaction of the data structure
used to represent the ongoing proof (evar map). This may result in a lower memory footprint and speed up the
execution of the following tactics.

”Optimize Heap” command to tell the OCaml runtime to perform a major garbage collection step and heap com-
paction.

Instance no longer treats the { | . . . | } syntax specially; it handles it in the same way as other commands, e.g.
“Definition”. Use the { . . . } syntax (no pipe symbols) to recover the old behavior.

Specification Language

Slight changes in unification error messages.

Added a syntax $(...)$ that allows putting tactics in terms (may break user notations using ”$(”, fixable by inserting
a space or rewriting the notation).

3.7. Version 8.5 69

The Coq Reference Manual, Release 8.11.2

* Constructors in pattern-matching patterns now respect the same rules regarding implicit arguments as in applicative
position. The old behavior can be recovered by the command ”Set Asymmetric Patterns”. As a side effect, notations
for constructors explicitly mentioning non-implicit parameters can now be used in patterns. Considering that the
pattern language is already rich enough, binding local definitions is however now forbidden in patterns (source of
incompatibilities for local definitions that delta-reduce to a constructor).

» Type inference algorithm now granting opacity of constants. This might also affect behavior of tactics (source of
incompatibilities, solvable by re-declaring transparent constants which were set opaque).

* Existential variables are now referred to by an identifier and the relevant part of their instance is displayed by default.
They can be reparsed. The naming policy is yet unstable and subject to changes in future releases.

Tactics

* New tactic engine allowing dependent subgoals, fully backtracking (also known as multiple success) tactics, as
well as tactics which can consider multiple goals together. In the new tactic engine, instantiation information of
existential variables is always propagated to tactics, removing the need to manually use the “instantiate” tactics to
mark propagation points.

New tactical (a+b) inserts a backtracking point. When (a+b);c fails during the execution of c, it can backtrack
and try b instead of a.

New tactical (once a) removes all the backtracking points from a (i.e. it selects the first success of a).

Tactic “constructor” is now fully backtracking. In case of incompatibilities (e.g. combinatoric explosion),
the former behavior of “constructor” can be retrieved by using instead ”[> once constructor ..]”. Thanks to
backtracking, undocumented “constructor <tac>” syntax is now equivalent to ”[> once (constructor; tac) ..]”.

New “multimatch” variant of “match” tactic which backtracks to new branches in case of a later failure. The
“match” tactic is equivalent to “once multimatch”.

New selector all:” such that “all:tac” applies tactic “tac” to all the focused goals, instead of just the first one
as is the default.

A corresponding new option Set Default Goal Selector “all” makes the tactics in scripts be applied to all the
focused goal by default

New selector “par:” such that ”par:tac” applies the (terminating) tactic “tac” to all the focused goal in parallel.
The number of worker can be selected with -async-proofs-tac-j and also limited using the coqworkmgr utility.

EIE)

New tactics “revgoals”, “cycle” and “swap” to reorder goals.

The semantics of recursive tactics (introduced with ”"Ltac t :=...” or "let rec t := ... in ...”) changed slightly as
t is now applied to every goal, not each goal independently. In particular it may be applied when no goals are
left. This may cause tactics such as “let rec t := constructor;t” to loop indefinitely. The simple fix is to rewrite
the recursive calls as follows: "let rec t := constructor;[t..]” which recovers the earlier behavior (source of rare
incompatibilities).

New tactic language feature "numgoals” to count number of goals. It is accompanied by a “guard” tactic
which fails if a Boolean test over integers does not pass.

New tactical ”[> ...]” to apply tactics to individual goals.
New tactic "gfail” which works like "fail” except it will also fail if every goal has been solved.

The refine tactic is changed not to use an ad hoc typing algorithm to generate subgoals. It also uses the
dependent subgoal feature to generate goals to materialize every existential variable which is introduced by
the refinement (source of incompatibilities).

A tactic shelve is introduced to manage the subgoals which may be solved by unification: shelve removes every
goal it is applied to from focus. These goals can later be called back into focus by the Unshelve command.

70

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

— A variant shelve_unifiable only removes those goals which appear as existential variables in other goals. To
emulate the old refine, use “refine c;shelve_unifiable”. This can still cause incompatibilities in rare occasions.

— New ”give_up” tactic to skip over a goal. A proof containing given up goals cannot be closed with ”Qed”, but
only with ”Admitted”.

The implementation of the admit tactic has changed: no axiom is generated for the admitted sub proof. "admit” is
now an alias for give_up”. Code relying on this specific behavior of "admit” can be made to work by:

— Adding an "Axiom” for each admitted subproof.

— Adding a single “Axiom proof_admitted : False.” and the Ltac definition “Ltac admit := case
proof_admitted.”.

Matching using “lazymatch” was fundamentally modified. It now behaves like “match” (immediate execution of
the matching branch) but without the backtracking mechanism in case of failure.

New "tryif t then u else v” tactical which executes “u” in case of success of ”t” and ”v” in case of failure.

New conversion tactic "native_compute”: evaluates the goal (or an hypothesis) with a call-by-value strategy, using
the OCaml native compiler. Useful on very intensive computations.

New “cbn” tactic, a well-behaved simpl.
Repeated identical calls to omega should now produce identical proof terms.
Tactics btauto, a reflexive Boolean tautology solver.

CINEL)

Tactic “tauto” was exceptionally able to destruct other connectives than the binary connectives ”and”, ”or”, "prod”,
”sum”, "iff”. This non-uniform behavior has been fixed (bug #2680) and tauto is slightly weaker (possible source
of incompatibilities). On the opposite side, new tactic “dtauto” is able to destruct any record-like inductive types,
superseding the old version of “tauto”.

Similarly, “intuition” has been made more uniform and, where it now fails, “dintuition” can be used (possible source
of incompatibilities).

New option “Unset Intuition Negation Unfolding” for deactivating automatic unfolding of “not” in intuition.
Tactic notations can now be defined locally to a module (use "Local” prefix).

Tactic "red” now reduces head beta-iota redexes (potential source of rare incompatibilities).

Tactic hnf” now reduces inner beta-iota redexes (potential source of rare incompatibilities).

Tactic ”intro H” now reduces beta-iota redexes if these hide a product (potential source of rare incompatibilities).

In Ltac matching on patterns of the form ”_ patl ... patn” now behaves like if matching on ”?X patl ... patn”, i.e.
accepting ”_” to be instantiated by an applicative term (experimental at this stage, potential source of incompati-
bilities).

In Ltac matching on goal, types of hypotheses are now interpreted in the %type scope (possible source of incom-
patibilities).

“change ... in...” and ”simpl ... in ...” now properly consider nested occurrences (possible source of incompatibilities
since this alters the numbering of occurrences), but do not support nested occurrences.

Tactics simpl, vimm_compute and native_compute can be given a notation string to a constant as argument.

When given a reference as argument, simpl, vim_compute and native_compute now strictly interpret it as the head
of a pattern starting with this reference.

95 99

The “change p with ¢” tactic semantics changed, now type-checking ”c” at each matching occurrence “t” of the

9.9

pattern ”p”, and converting ”t” with “c”.

Now “appcontext” and “context” behave the same. The old buggy behavior of ”context” can be retrieved at parse
time by setting the "Tactic Compat Context” flag (possible source of incompatibilities).

3.7.

Version 8.5 4

The Coq Reference Manual, Release 8.11.2

New introduction pattern p/c which applies lemma c on the fly on the hypothesis under consideration before con-
tinuing with introduction pattern p.

New introduction pattern [= x1 .. xn] applies "injection as [x1 .. xn]” on the fly if injection is applicable to the
hypothesis under consideration (idea borrowed from Georges Gonthier). Introduction pattern [=] applies “discrim-
inate” if a discriminable equality.

New introduction patterns * and ** to respectively introduce all forthcoming dependent variables and all vari-
ables/hypotheses dependent or not.

Tactic “injection ¢ as ipats” now clears c if c refers to an hypothesis and moves the resulting equations in the
hypotheses independently of the number of ipats, which has itself to be less than the number of new hypotheses
(possible source of incompatibilities; former behavior obtainable by “Unset Injection L2R Pattern Order™).

9999

Tactic "injection” now automatically simplifies subgoals “existT n p = existT n p”” into ”p = p”” when "n” is in an
inductive type for which a decidable equality scheme has been generated with ”Scheme Equality” (possible source
of incompatibilities).

New tactic “rewrite_strat” for generalized rewriting with user-defined strategies, subsuming autorewrite.

Injection can now also deduce equality of arguments of sort Prop, by using the option ”Set Injection On Proofs”
(disabled by default). Also improved the error messages.

Tactic ”subst id” now supports id occurring in dependent local definitions.
Bugs fixed about intro-pattern ”*” might lead to some rare incompatibilities.
New tactical “time” to display time spent executing its argument.

Tactics referring or using a constant dependent in a section variable which has been cleared or renamed in the current
goal context now fail (possible source of incompatibilities solvable by avoiding clearing the relevant hypotheses).

New construct “uconstr:c” and “type_term c” to build untyped terms.

Binders in terms defined in Ltac (either ”constr” or "uconstr”) can now take their names from identifiers defined in
Ltac. As a consequence, a name cannot be used in a binder “constr:(fun x => ...)” if an Ltac variable of that name
already exists and does not contain an identifier. Source of occasional incompatibilities.

The refine” tactic now accepts untyped terms built with “uconstr” so that terms with holes can be constructed
piecewise in Ltac.

New bullets —, ++, , —, +++, *, ... made available.

More informative messages when wrong bullet is used.

Bullet suggestion when a subgoal is solved.

New tactic "enough”, symmetric to “assert”, but with subgoals swapped, as a more friendly replacement of “cut”.

AR

In destruct/induction, experimental modifier ”!” prefixing the hypothesis name to tell not erasing the hypothesis.
Bug fixes in “inversion as” may occasionally lead to incompatibilities.

Behavior of introduction patterns -> and <- made more uniform (hypothesis is cleared, rewrite in hypotheses and
conclusion and erasing the variable when rewriting a variable).

New experimental option ”Set Standard Proposition Elimination Names” so that case analysis or induction on
schemes in Type containing propositions now produces "H”-based names.

Tactics from plugins are now active only when the corresponding module is imported (source of incompatibilities,
solvable by adding an “Import”; in the particular case of Omega, use "Require Import OmegaTactic”).

Semantics of destruct/induction has been made more regular in some edge cases, possibly leading to incompatibil-
ities:

72

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

new goals are now opened when the term does not match a subterm of the goal and has unresolved holes,
while in 8.4 these holes were turned into existential variables

when no “at” option is given, the historical semantics which selects all subterms syntactically identical to the
first subterm matching the given pattern is used

non-dependent destruct/induction on an hypothesis with premises in an inductive type with indices is fixed

residual local definitions are now correctly removed.
 The rename tactic may now replace variables in parallel.

¢ A new "Info” command replaces the “info” tactical discontinued in v8.4. It still gives informative results in many
cases.

* The "info_auto” tactic is known to be broken and does not print a trace anymore. Use “Info 1 auto” instead. The
same goes for “info_trivial”. On the other hand “info_eauto” still works fine, while ”Info 1 eauto” prints a trivial
trace.

¢ When using a lemma of the prototypical form “forall A, {a:A & P a}”, apply” and “apply in” do not instantiate
anymore "A” with the current goal and use “a” as the proof, as they were sometimes doing, now considering that it
is a too powerful decision.

Program
* ”Solve Obligations using” changed to ”Solve Obligations with”, consistent with “Proof with”.
e Program Lemma, Definition now respect automatic introduction.

e Program Lemma, Definition, etc.. now interpret ”->” like Lemma and Definition as a non-dependent arrow (po-
tential source of incompatibility).

¢ Add/document ”Set Hide Obligations” (to hide obligations in the final term inside an implicit argument) and ”Set
Shrink Obligations” (to minimize dependencies of obligations defined by tactics).

Notations

* The syntax ”x ->y” is now declared at level 99. In particular, it has now a lower priority than "<->": ”A -> B <->
C” is now A -> (B <-> C)” (possible source of incompatibilities)

Notations accept term-providing tactics using the $(...)$ syntax.

”Bind Scope” can no longer bind “Funclass” and “Sortclass”.

A notation can be given a (compat “8.x”) annotation, making it behave like a "only parsing” notation, but the
annotation may lead to eventually issue warnings or errors in further versions when this notation is used.

* More systematic insertion of spaces as a default for printing notations ("format” still available to override the de-
fault).

In notations, a level modifier referring to a non-existent variable is now considered an error rather than silently
ignored.

Tools

¢ Option -1 now only adds directories to the ml path.

Option -Q behaves as -R, except that the logical path of any loaded file has to be fully qualified.

Option -R no longer adds recursively to the ml path; only the root directory is added. (Behavior with respect to the
load path is unchanged.)

Option -nois prevents coq/theories and coq/plugins to be recursively added to the load path. (Same behavior as
with cog/user-contrib.)

¢ coqdep accepts a -dumpgraph option generating a dot file.

3.7. Version 8.5 73

The Coq Reference Manual, Release 8.11.2

Makefiles generated through coq_makefile have three new targets “quick” “checkproofs” and “vio2vo”, allowing
respectively to asynchronously compile the files without playing the proof scripts, asynchronously checking that the
quickly generated proofs are correct and generating the object files from the quickly generated proofs.

The XML plugin was discontinued and removed from the source.

A new utility called coqworkmgr can be used to limit the number of concurrent workers started by independent
processes, like make and CoqIDE. This is of interest for users of the par: goal selector.

Interfaces

CoqIDE supports asynchronous edition of the document, ongoing tasks and errors are reported in the bottom right
window. The number of workers taking care of processing proofs can be selected with -async-proofs-j.

CoqIDE highlights in yellow "unsafe” commands such as axiom declarations, and tactics like ”give_up”.

CoqIDE supports Proof General like key bindings; to activate the PG mode go to Edit -> Preferences -> Editor.
For the documentation see Help -> Help for PG mode.

CoqIDE automatically retracts the locked area when one edits the locked text.

CoqIDE search and replace got regular expressions power. See the documentation of OCaml’s Str module for the
supported syntax.

Many CoqIDE windows, including the query one, are now detachable to improve usability on multi screen work
stations.

Coqtop/coqc outputs highlighted syntax. Colors can be configured thanks to the COQ_COLORS environment
variable, and their current state can be displayed with the -list-tags command line option.

Third party user interfaces can install their main loop in $COQLIB/toploop and call coqtop with the -toploop flag
to select it.

Internal Infrastructure

Many reorganizations in the ocaml source files. For instance, many internal a.s.t. of Coq are now placed in mli
files in a new directory intf/, for instance constrexpr.mli or glob_term.mli. More details in dev/doc/changes.

The file states/initial.coq does not exist anymore. Instead, coqtop initially does a "Require” of Prelude.vo (or nothing
when given the options -noinit or -nois).

The format of vo files has slightly changed: cf final comments in checker/cic.mli.

The build system does not produce anymore programs named coqtop.opt and a symbolic link to coqtop. Instead,
coqtop is now directly an executable compiled with the best OCaml compiler available. The bytecode program
coqtop.byte is still produced. Same for other utilities.

Some options of the ./configure script slightly changed:

— The -cogrunbyteflags and its blank-separated argument is replaced by option -vmbyteflags which expects a
comma-separated argument.

— The -coqtoolsbyteflags option is discontinued, see -no-custom instead.

Miscellaneous

ML plugins now require a "DECLARE PLUGIN “foo”” statement. The “foo” name must be exactly the name of
the ML module that will be loaded through a "Declare ML "foo”” command.

3.7.4 Details of changes in 8.5beta2

Logic

74

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

e The VM now supports inductive types with up to 8388851 non-constant constructors and up to 8388607 constant
ones.

Specification language
 Syntax "$(tactic)$” changed to "ltac: tactic”.
Tactics

* A script using the admit tactic can no longer be concluded by either Qed or Defined. In the first case, Admitted
can be used instead. In the second case, a subproof should be used.

¢ The easy tactic and the now tactical now have a more predictable behavior, but they might now discharge some
previously unsolved goals.

Extraction

* Definitions extracted to Haskell GHC should no longer randomly segfault when some Coq types cannot be repre-
sented by Haskell types.

¢ Definitions can now be extracted to Json for post-processing.
Tools

* Option -I -as has been removed, and option -R -as has been deprecated. In both cases, option -R can be used
instead.

¢ coq_makefile now generates double-colon rules for rules such as clean.
API

e The interface of [change] has changed to take a [change_arg], which can be built from a [constr] using
[make_change_arg].

3.7.5 Details of changes in 8.5beta3

Vernacular commands
* New command "Redirect” to redirect the output of a command to a file.
¢ New command “Undelimit Scope” to remove the delimiter of a scope.

* New option "Strict Universe Declaration”, set by default. It enforces the declaration of all polymorphic universes
appearing in a definition when introducing it.

* New command “Show id” to show goal named id.
* Option ”Virtual Machine” removed.
Tactics

» New flag "Regular Subst Tactic” which fixes ”subst” in situations where it failed to substitute all substitutable equa-
tions or failed to simplify cycles, or accidentally unfolded local definitions (flag is off by default).

* New flag “Loose Hint Behavior” to handle hints loaded but not imported in a special way. It accepts three distinct
flags: * ”Lax”, which is the default one, sets the old behavior, i.e. a non-imported hint behaves the same as an im-
ported one. * "Warn” outputs a warning when a non-imported hint is used. Note that this is an over-approximation,
because a hint may be triggered by an eauto run that will eventually fail and backtrack. * "Strict” changes the
behavior of an unloaded hint to the one of the fail tactic, allowing to emulate the hopefully future import-scoped
hint mechanism.

* New compatibility flag "Universal Lemma Under Conjunction” which let tactics working under conjunctions apply
sublemmas of the form “forall A, ... -> A”.

3.7. Version 8.5 75

The Coq Reference Manual, Release 8.11.2

* New compatibility flag ”"Bracketing Last Introduction Pattern” which can be set so that the last disjunctive-
conjunctive introduction pattern given to “intros” automatically complete the introduction of its subcomponents, as
the the disjunctive-conjunctive introduction patterns in non-terminal position already do.

¢ New flag ”Shrink Abstract” that minimalizes proofs generated by the abstract tactical w.r.t. variables appearing in
the body of the proof.

Program
» The ”Shrink Obligations” flag now applies to all obligations, not only those solved by the automatic tactic.
 Importing Program no longer overrides the “exists” tactic (potential source of incompatibilities).
* Hints costs are now correctly taken into account (potential source of incompatibilities).

¢ Documented the Hint Cut command that allows control of the proof-search during typeclass resolution (see refer-
ence manual).

API

* Some functions from pretyping/typing.ml and their derivatives were potential source of evarmap leaks, as they
dropped their resulting evarmap. The situation was clarified by renaming them according to a unsafe_ * scheme.
Their sound variant is likewise renamed to their old name. The following renamings were made.

Typing.type_of ->unsafe_type_of

Typing.e_type_of ->type_of

A new e_type_of function that matches the e__ prefix policy

Tacmach.pf_type_of ->pf_unsafe_type_of

A new safe pf_type_of function.
All uses of unsafe_ * functions should be eventually eliminated.
Tools
* Added an option -w to control the output of coqtop warnings.

 Configure now takes an optional -native-compiler (yesIno) flag replacing -no-native-compiler. The new flag is set
to no by default under Windows.

* Flag -no-native-compiler was removed and became the default for coqc. If precompilation of files for native con-
version test is desired, use -native-compiler.

¢ The -compile command-line option now takes the full path of the considered file, including the ”.v” extension, and
outputs a warning if such an extension is lacking.

* The -require and -load-vernac-object command-line options now take a logical path of a given library rather than
a physical path, thus they behave like Require [Import] path.

¢ The -vm command-line option has been removed.
Standard Library

¢ There is now a Coq.Compat.Coq84 library, which sets the various compatibility options and does a few redefinitions
to make Coq behave more like Coq v8.4. The standard way of putting Coq in v8.4 compatibility mode is to pass
the command line flags ”-require Coq.Compat.Coq84 -compat 8.4”.

3.7.6 Details of changes in 8.5

Tools

76 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

 Flag ”-compat 8.4” now loads Coq.Compat.Coq84. The standard way of putting Coq in v8.4 compatibility mode
is to pass the command line flag ”-compat 8.4”. It can be followed by ”-require Coq.Compat.AdmitAxiom” if the

8.4 behavior of admit is needed, in which case it uses an axiom.

Specification language

Syntax “$(tactic)$” changed to "ltac:(tactic)”.

Tactics

» Syntax “destruct 'hyp” changed to “destruct (hyp)”, and similarly for induction (rare source of incompatibilities

easily solvable by removing parentheses around "hyp” when not for the purpose of keeping the hypothesis).

Syntax “p/c” for on-the-fly application of a lemma c before introducing along pattern p changed to p%cl..%cn.

The feature and syntax are in experimental stage.

“Proof using” does not clear unused section variables.

Tactic “refine” has been changed back to the 8.4 behavior of shelving subgoals that occur in other subgoals. The

“refine” tactic of 8.5beta3 has been renamed “simple refine”; it does not shelve any subgoal.

New tactical "unshelve tac” which grab existential variables put on the tactic shelve by the execution of “tac”.

3.7.7 Details of changes in 8.5pl1

Critical bugfix

* The subterm relation for the guard condition was incorrectly defined on primitive projections (#4588)

Plugin development tools

add a .merlin target to the makefile

Various performance improvements (time, space used by .vo files)

Other bugfixes

Fix order of arguments to Big.compare_case in ExtrOcamlZBigInt.v

Added compatibility coercions from Specif.v which were present in Coq 8.4.

Fixing a source of inefficiency and an artificial dependency in the printer in the congruence tactic.
Allow to unset the refinement mode of Instance in ML

Fixing an incorrect use of prod_appvect on a term which was not a product in setoid_rewrite.
Add -compat 8.4 econstructor tactics, and tests

Add compatibility Nonrecursive Elimination Schemes

Fixing the "No applicable tactic” non informative error message regression on apply.

Univs: fix get_current_context (bug #4603, part I)

Fix a bug in Program coercion code

Fix handling of arity of definitional classes.

#4630: Some tactics are 20x slower in 8.5 than 8.4.

#4627: records with no declared arity can be template polymorphic.

#4623: set tactic too weak with universes (regression)

Fix incorrect behavior of CS resolution

3.7.

Version 8.5

77

The Coq Reference Manual, Release 8.11.2

e #4591: Uncaught exception in directory browsing.

* CoqIDE is more resilient to initialization errors.

» #4614: “Fully check the document” is uninterruptible.

 Try eta-expansion of records only on non-recursive ones

* Fix bug when a sort is ascribed to a Record

* Primitive projections: protect kernel from erroneous definitions.

* Fixed bug #4533 with previous Keyed Unification commit

* Win: kill unreliable hence do not waitpid after kill -9 (Close #4369)

* Fix strategy of Keyed Unification

» #4608: Anomaly "output_value: abstract value (outside heap)”.

e #4607: do not read native code files if native compiler was disabled.

* #4105: poor escaping in the protocol between CoqIDE and coqtop.

* #4596: [rewrite] broke in the past few weeks.

e #4533 (partial): respect declared global transparency of projections in unification.ml
o #4544: Backtrack on using full betaiota reduction during keyed unification.

e #4540: CogIDE bottom progress bar does not update.

* Fix regression from 8.4 in reflexivity

o #4580: [Set Refine Instance Mode] also used for Program Instance.

e #4582: cannot override notation [X . MAY CREATE INCOMPATIBILITIES, see #4683.
e STM: Print/Extraction have to be skipped if -quick

» #4542: CoqIDE: STOP button also stops workers

¢ STM: classify some variants of Instance as regular “ Fork ° nodes.

e #4574: Anomaly: Uncaught exception Invalid_argument(”splay_arity”).

* Do not give a name to anonymous evars anymore. See bug #4547.

¢ STM: always stock in vio files the first node (state) of a proof

¢ STM: not delegate proofs that contain Vernac(ModulelRequirellmport), #4530

* Don’t fail fatally if PATH is not set.

» #4537: Coq 8.5 is slower in typeclass resolution.

e #4522: Incorrect "Warning...” on windows.

e #4373: coqdep does not know about .vio files.

* #3826: “Incompatible module types” is uninformative.

 #4495: Failed assertion in metasyntax.ml.

e #4511: evar tactic can create non-typed evars.

* #4503: mixing universe polymorphic and monomorphic variables and definitions in sections is unsupported.
* #4519: oops, global shadowed local universe level bindings.

* #4506: Anomaly: File "pretyping/indrec.ml”, line 169, characters 14-20: Assertion failed.

78 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

* #4548: Coqide crashes when going back one command

3.7.8 Details of changes in 8.5pl2

Critical bugfix

¢ Checksums of .vo files dependencies were not correctly checked.

* Unicode-to-ASCII translation was not injective, leading in a soundness bug in the native compiler.

Other bugfixes

#4097
#4398
#4450
#4677

: more efficient occur-check in presence of primitive projections
: type_scope used consistently in “match goal”.
: eauto does not work with polymorphic lemmas

: fix alpha-conversion in notations needing eta-expansion.

Fully preserve initial order of hypotheses in "Regular Subst Tactic” mode.

#4644

#4725
type)

#4747
#4752:
#4777:
#4818:
#4823:
#4841:
#4851:
#4858:
#4880:
#4881:

#4882

: a regression in unification.

: Function (Error: Conversion test raised an anomaly) and Program (Error: Cannot infer this placeholder of

Problem building Coq 8.5pl1 with OCaml 4.03.0: Fatal warnings

CoqIDE crash on files not ended by ”.v”.

printing inefficiency with implicit arguments

”Admitted” fails due to undefined universe anomaly after calling ”destruct”
remote counter: avoid thread race on sockets

-verbose flag changed semantics in 8.5, is much harder to use

[nsatz] cannot handle duplicated hypotheses

Anomaly: Uncaught exception Failure(”hd”). Please report. in variant of nsatz
[nsatz_compute] generates invalid certificates if given redundant hypotheses
synchronizing "Declare Implicit Tactic” with backtrack.

: anomaly with Declare Implicit Tactic on hole of type with evars

Fix use of "Declare Implicit Tactic” in refine. triggered by CoqIDE

#4069

Universes

, #4718: congruence fails when universes are involved.

* Disallow silently dropping universe instances applied to variables (forward compatible)

 Allow explicit universe instances on notations, when they can apply to the head reference of their expansion.

Build infrastructure

» New update on how to find camlp5 binary and library at configure time.

3.7. Version 8.5 79

The Coq Reference Manual, Release 8.11.2

3.7.9 Details of changes in 8.5pI3

Critical bugfix

#4876: Guard checker incompleteness when using primitive projections

Other bugfixes

#4780: Induction with universe polymorphism on was creating ill-typed terms.
#4673: regression in setoid_rewrite, unfolding let-ins for type unification.
#4754: Regression in setoid_rewrite, allow postponed unification problems to remain.
#4769: Anomaly with universe polymorphic schemes defined inside sections.
#3886: Program: duplicate obligations of mutual fixpoints.

#4994: Documentation typo.

#5008: Use the "md5” command on OpenBSD.

#5007: Do not assume the "TERM” environment variable is always set.
#4606: Output a break before a list only if there was an empty line.

#5001: metas not cleaned properly in clenv_refine_in.

#2336: incorrect glob data for module symbols (bug #2336).

#4832: Remove extraneous dot in error message.

Anomaly in printing a unification error message.

#4947: Options which take string arguments are not backwards compatible.
#4156: micromega cache files are now hidden files.

#4871: interrupting par:abstract kills coqtop.

#5043: [Admitted] lemmas pick up section variables.

Fix name of internal refine ("simple refine”).

#5062: probably a typo in Strict Proofs mode.

#5065: Anomaly: Not a proof by induction.

Restore native compiler optimizations, they were disabled since 8.5!
#5077: failure on typing a fixpoint with evars in its type.

Fix recursive notation bug.

#5095: non relevant too strict test in let-in abstraction.

Ensuring that the evar name is preserved by “rename”.

#4887: confusion between using and with in documentation of firstorder.
Bug in subst with let-ins.

#4762: eauto weaker than auto.

Remove if_then_else (was buggy). Use tryif instead.

#4970: confusion between special ”{” and non special ”{{” in notations.
#4529: primitive projections unfolding.

#4416: Incorrect “Error: Incorrect number of goals”.

80

Chapter 3.

Recent changes

The Coq Reference Manual, Release 8.11.2

* #4863: abstract in typeclass hint fails.

e #5123: unshelve can impact typeclass resolution

* Fix a collision about the meta-variable ”..” in recursive notations.

¢ Fix printing of info_auto.

e #3209: Not_found due to an occur-check cycle.

* #5097: status of evars refined by “clear” in ltac: closed wrt evars.

e #5150: Missing dependency of the test-suite subsystems in prerequisite.
¢ Fix a bug in error printing of unif constraints

e #3941: Do not stop propagation of signals when Coq is busy.

* #4822: Incorrect assertion in cbn.

* #3479 parsing of ”{” and ”}” when a keyword starts with ”{” or ”}”
* #5127: Memory corruption with the VM.

e #5102: bullets parsing broken by calls to parse_entry.

Various documentation improvements

3.8 Version 8.4

3.8.1 Summary of changes

Coq version 8.4 contains the result of three long-term projects: a new modular library of arithmetic by Pierre Letouzey,
a new proof engine by Arnaud Spiwack and a new communication protocol for CoqIDE by Vincent Gross.

The new modular library of arithmetic extends, generalizes and unifies the existing libraries on Peano arithmetic (types
nat, N and BigN), positive arithmetic (type positive), integer arithmetic (Z and BigZ) and machine word arithmetic (type
Int31). It provides with unified notations (e.g. systematic use of add and mul for denoting the addition and multiplication
operators), systematic and generic development of operators and properties of these operators for all the types mentioned
above, including gcd, pcm, power, square root, base 2 logarithm, division, modulo, bitwise operations, logical shifts,
comparisons, iterators, ...

The most visible feature of the new proof engine is the support for structured scripts (bullets and proof brackets) but, even
if yet not user-available, the new engine also provides the basis for refining existential variables using tactics, for applying
tactics to several goals simultaneously, for reordering goals, all features which are planned for the next release. The new
proof engine forced Pierre Letouzey to reimplement info and Show Script differently.

Before version 8.4, CogIDE was linked to Coq with the graphical interface living in a separate thread. From version
8.4, CoqIDE is a separate process communicating with Coq through a textual channel. This allows for a more robust
interfacing, the ability to interrupt Coq without interrupting the interface, and the ability to manage several sessions in
parallel. Relying on the infrastructure work made by Vincent Gross, Pierre Letouzey, Pierre Boutillier and Pierre-Marie
Pédrot contributed many various refinements of CoqIDE.

Coq 8.4 also comes with a bunch of various smaller-scale changes and improvements regarding the different components
of the system.

The underlying logic has been extended with n-conversion thanks to Hugo Herbelin, Stéphane Glondu and Benjamin
Grégoire. The addition of n-conversion is justified by the confidence that the formulation of the Calculus of Inductive
Constructions based on typed equality (such as the one considered in Lee and Werner to build a set-theoretic model of
CIC [LW11]) is applicable to the concrete implementation of Coq.

3.8. Version 8.4 81

The Coq Reference Manual, Release 8.11.2

The underlying logic benefited also from a refinement of the guard condition for fixpoints by Pierre Boutillier, the point
being that it is safe to propagate the information about structurally smaller arguments through S-redexes that are blocked
by the “match” construction (blocked commutative cuts).

Relying on the added permissiveness of the guard condition, Hugo Herbelin could extend the pattern matching compilation
algorithm so that matching over a sequence of terms involving dependencies of a term or of the indices of the type of a
term in the type of other terms is systematically supported.

Regarding the high-level specification language, Pierre Boutillier introduced the ability to give implicit arguments to
anonymous functions, Hugo Herbelin introduced the ability to define notations with several binders (e.g. exists x y
z, P), Matthieu Sozeau made the typeclass inference mechanism more robust and predictable, Enrico Tassi introduced
a command Arguments that generalizes Implicit Arguments and Arguments Scope for assigning various properties to
arguments of constants. Various improvements in the type inference algorithm were provided by Matthieu Sozeau and
Hugo Herbelin with contributions from Enrico Tassi.

Regarding tactics, Hugo Herbelin introduced support for referring to expressions occurring in the goal by pattern in tactics
such as set or destruct. Hugo Herbelin also relied on ideas from Chung-Kil Hur’s Heq plugin to introduce automatic
computation of occurrences to generalize when using destruct and induction on types with indices. Stéphane Glondu
introduced new tactics constr_eq, is_evar, and has_evar, to be used when writing complex tactics. Enrico
Tassi added support to fine-tuning the behavior of simpI. Enrico Tassi added the ability to specify over which variables
of a section a lemma has to be exactly generalized. Pierre Letouzey added a tactic timeout and the interruptibility of
vm_compute. Bug fixes and miscellaneous improvements of the tactic language came from Hugo Herbelin, Pierre
Letouzey and Matthieu Sozeau.

Regarding decision tactics, Loic Pottier maintained nsatz, moving in particular to a typeclass based reification of goals
while Frédéric Besson maintained Micromega, adding in particular support for division.

Regarding vernacular commands, Stéphane Glondu provided new commands to analyze the structure of type universes.

Regarding libraries, a new library about lists of a given length (called vectors) has been provided by Pierre Boutillier. A
new instance of finite sets based on Red-Black trees and provided by Andrew Appel has been adapted for the standard
library by Pierre Letouzey. In the library of real analysis, Yves Bertot changed the definition of 7 and provided a proof
of the long-standing fact yet remaining unproved in this library, namely that sing = 1.

Pierre Corbineau maintained the Mathematical Proof Language (C-zar).

Bruno Barras and Benjamin Grégoire maintained the call-by-value reduction machines.

The extraction mechanism benefited from several improvements provided by Pierre Letouzey.
Pierre Letouzey maintained the module system, with contributions from Elie Soubiran.

Julien Forest maintained the Function command.

Matthieu Sozeau maintained the setoid rewriting mechanism.

Coq related tools have been upgraded too. In particular, coq_makefile has been largely revised by Pierre Boutillier. Also,
patches from Adam Chlipala for coqdoc have been integrated by Pierre Boutillier.

Bruno Barras and Pierre Letouzey maintained the cogchk checker.
Pierre Courtieu and Arnaud Spiwack contributed new features for using Coq through Proof General.
The Dp plugin has been removed. Use the plugin provided with Why 3 instead (http://why3.Iri.fr/).

Under the hood, the Coq architecture benefited from improvements in terms of efficiency and robustness, especially
regarding universes management and existential variables management, thanks to Pierre Letouzey and Yann Régis-Gianas
with contributions from Stéphane Glondu and Matthias Puech. The build system is maintained by Pierre Letouzey with
contributions from Stéphane Glondu and Pierre Boutillier.

A new backtracking mechanism simplifying the task of external interfaces has been designed by Pierre Letouzey.

82 Chapter 3. Recent changes

http://why3.lri.fr/

The Coq Reference Manual, Release 8.11.2

The general maintenance was done by Pierre Letouzey, Hugo Herbelin, Pierre Boutillier, Matthieu Sozeau and Stéphane
Glondu with also specific contributions from Guillaume Melquiond, Julien Narboux and Pierre-Marie Pédrot.

Packaging tools were provided by Pierre Letouzey (Windows), Pierre Boutillier (MacOS), Stéphane Glondu (Debian).
Releasing, testing and benchmarking support was provided by Jean-Marc Notin.

Many suggestions for improvements were motivated by feedback from users, on either the bug tracker or the Coq-Club
mailing list. Special thanks are going to the users who contributed patches, starting with Tom Prince. Other patch
contributors include Cédric Auger, David Baelde, Dan Grayson, Paolo Herms, Robbert Krebbers, Marc Lasson, Hendrik
Tews and Eelis van der Weegen.

Paris, December 2011
Hugo Herbelin

3.8.2 Potential sources of incompatibilities

The main known incompatibilities between 8.3 and 8.4 are consequences of the following changes:
* The reorganization of the library of numbers:

Several definitions have new names or are defined in modules of different names, but a special care has been taken
to have this renaming transparent for the user thanks to compatibility notations.

However some definitions have changed, what might require some adaptations. The most noticeable examples are:

— The ”?=" notation which now bind to Pos.compare rather than former Pcompare (now Pos.compare_cont).

Changes in names may induce different automatically generated names in proof scripts (e.g. when issuing
”destruct Z_le_gt_dec”).

Z.add has a new definition, hence, applying “simpl” on subterms of its body might give different results than
before.

BigN.shiftl and BigN.shiftr have reversed arguments order, the power function in BigN now takes two BigN.
¢ Other changes in libraries:

— The definition of functions over “vectors” (list of fixed length) have changed.

— TheoryList.v has been removed.
* Slight changes in tactics:

— Less unfolding of fixpoints when applying destruct or inversion on a fixpoint hiding an inductive type (add an
extra call to simpl to preserve compatibility).

— Less unexpected local definitions when applying “destruct” (incompatibilities solvable by adapting name hy-
potheses).

— Tactic "apply” might succeed more often, e.g. by now solving pattern-matching of the form 7f x y = g(x.y)
(compatibility ensured by using “Unset Tactic Pattern Unification”), but also because it supports (full) betaiota
(using “simple apply” might then help).

— Tactic autorewrite does no longer instantiate pre-existing existential variables.
— Tactic ”info” is now available only for auto, eauto and trivial.
* Miscellaneous changes:

— The command "Load” is now atomic for backtracking (use "Unset Atomic Load” for compatibility).

3.8. Version 8.4 83

The Coq Reference Manual, Release 8.11.2

3.8.3 Details of changes in 8.4beta

Logic

Standard eta-conversion now supported (dependent product only).

Guard condition improvement: subterm property is propagated through beta-redex blocked by pattern-matching,
as in ”"(match v with C .. => fun x => u end) x”; this allows for instance to use “rewrite ... in ...” without breaking
the guard condition.

Specification language and notations

Maximal implicit arguments can now be set locally by { }. The registration traverses fixpoints and lambdas. Because
there is conversion in types, maximal implicit arguments are not taken into account in partial applications (use eta
expanded form with explicit { } instead).

Added support for recursive notations with binders (allows for instance to write “exists X y z, P”).

Structure/Record printing can be disable by “Unset Printing Records”. In addition, it can be controlled on type by
type basis using ”Add Printing Record” or ”Add Printing Constructor”.

Pattern-matching compilation algorithm: in "match x, y with ... end”, possible dependencies of x (or of the indices
of its type) in the type of y are now taken into account.

Tactics

New proof engine.

Scripts can now be structured thanks to bullets - * + and to subgoal delimitation via { }. Note: for use with Proof
General, a cvs version of Proof General no older than mid-July 2011 is currently required.

Support for tactical info” is suspended.

Support for command ”Show Script” is suspended.

New tactics constr_eq, is_evar and has_evar for use in Ltac (DOC TODO).
Removed the two-argument variant of decide equality”.

New experimental tactical “timeout <n> <tac>”. Since <n> is a time in second for the moment, this feature should
rather be avoided in scripts meant to be machine-independent.

Fix in ”destruct”: removal of unexpected local definitions in context might result in some rare incompatibilities
(solvable by adapting name hypotheses).

LIS

Introduction pattern made more robust.

Tactic (and Eval command) vm_compute can now be interrupted via Ctrl-C.

Unification in “apply” supports unification of patterns of the form ?f x y = g(x,y) (compatibility ensured by using
”Unset Tactic Pattern Unification”). It also supports (full) betaiota.

Tactic autorewrite does no longer instantiate pre-existing existential variables (theoretical source of possible incom-
patibilities).

Tactic "dependent rewrite” now supports equality in “sig”.

Tactic omega now understands Zpred (wish #1912) and can prove any goal from a context containing an arithmetical
contradiction (wish #2236).

Using "auto with nocore” disables the use of the “core” database (wish #2188). This pseudo-database "nocore” can
also be used with trivial and eauto.

Tactics "set”, “destruct” and “induction” accepts incomplete terms and use the goal to complete the pattern assuming
it is non ambiguous.

84

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

CIET) L) LT

When used on arguments with a dependent type, tactics such as “destruct”, ”induction”, “case”, “elim”, etc. now try
to abstract automatically the dependencies over the arguments of the types (based on initial ideas from Chung-Kil
Hur, extension to nested dependencies suggested by Dan Grayson)

Tactic "injection” now failing on an equality showing no constructors while it was formerly generalizing again the
goal over the given equality.

In Ltac, the “context [...]” syntax has now a variant "appcontext [...]” allowing to match partial applications in larger
applications.

When applying destruct or inversion on a fixpoint hiding an inductive type, recursive calls to the fixpoint now remain
folded by default (rare source of incompatibility generally solvable by adding a call to simpl).

In an ltac pattern containing a “match”, a final ”| _ => _” branch could be used now instead of enumerating all
remaining constructors. Moreover, the pattern "match _ with _ => _ end” now allows to match any “match”. A
”in” annotation can also be added to restrict to a precise inductive type.

The behavior of ”simpl” can be tuned using the ”Arguments” vernacular. In particular constants can be marked so
that they are always/never unfolded by “simpl”, or unfolded only when a set of arguments evaluates to a constructor.
Last one can mark a constant so that it is unfolded only if the simplified term does not expose a match in head
position.

Vernacular commands

2 9

It is now mandatory to have a space (or tabulation or newline or end-of-file) after a ”.” ending a sentence.
In SearchAbout, the [] delimiters are now optional.

New command ”Add/Remove Search Blacklist <substring>...”: a Search or SearchAbout or similar query will never
mention lemmas whose qualified names contain any of the declared substrings. The default blacklisted substrings
are _subproof,Private_.

When the output file of "Print Universes” ends in ”.dot” or ”.gv”, the universe graph is printed in the DOT language,
and can be processed by Graphviz tools.

New command ”Print Sorted Universes”.

The undocumented and obsolete option ”Set/Unset Boxed Definitions” has been removed, as well as syntaxes like
”Boxed Fixpoint foo”.

A new option "Set Default Timeout n / Unset Default Timeout”.

Qed now uses information from the reduction tactics used in proof script to avoid conversion at Qed time to go into
a very long computation.

New command “Show Goal ident” to display the statement of a goal, even a closed one (available from Proof
General).

Command “Proof” accept a new modifier "using” to force generalization over a given list of section variables at
section ending (DOC TODO).

New command ”Arguments” generalizing "Implicit Arguments” and ”Arguments Scope” and that also allows to
rename the parameters of a definition and to tune the behavior of the tactic “simpl”.

Module System

During subtyping checks, an opaque constant in a module type could now be implemented by anything of the
right type, even if bodies differ. Said otherwise, with respect to subtyping, an opaque constant behaves just as a
parameter. Coqchk was already implementing this, but not coqtop.

The inlining done during application of functors can now be controlled more precisely, by the annotations (no
inline) or (inline at level XX). With the latter annotation, only functor parameters whose levels are lower or equal
than XX will be inlined. The level of a parameter can be fixed by "Parameter Inline(30) foo”. When levels aren’t
given, the default value is 100. One can also use the flag "Set Inline Level ...” to set a level (DOC TODO).

3.8. Version 8.4 85

The Coq Reference Manual, Release 8.11.2

* Print Assumptions should now handle correctly opaque modules (#2168).

 Print Module (Type) now tries to print more details, such as types and bodies of the module elements. Note that

Print Module Type could be used on a module to display only its interface. The option ”Set Short Module Printing”
could be used to switch back to the earlier behavior were only field names were displayed.

Libraries

» Extension of the abstract part of Numbers, which now provide axiomatizations and results about many more integer

functions, such as pow, ged, lem, sqrt, log2 and bitwise functions. These functions are implemented for nat, N, BigN,
Z, BigZ. See in particular file NPeano for new functions about nat.

The definition of types positive, N, Z is now in file BinNums.v

Major reorganization of ZArith. The initial file ZArith/BinInt.v now contains an internal module Z implementing
the Numbers interface for integers. This module Z regroups:

— all functions over type Z : Z.add, Z.mul, ...
— the minimal proofs of specifications for these functions : Z.add_0_1, ...
— an instantiation of all derived properties proved generically in Numbers : Z.add_comm, Z.add_assoc, ...

A large part of ZArith is now simply compatibility notations, for instance Zplus_comm is an alias for Z.add_comm.
The direct use of module Z is now recommended instead of relying on these compatibility notations.

Similar major reorganization of NArith, via a module N in NArith/BinNat.v

Concerning the positive datatype, BinPos.v is now in a specific directory PArith, and contains an internal submodule
Pos. We regroup there functions such as Pos.add Pos.mul etc as well as many results about them. These results are
here proved directly (no Number interface for strictly positive numbers).

Note that in spite of the compatibility layers, all these reorganizations may induce some marginal incompatibilies
in scripts. In particular:

— the ”?=" notation for positive now refers to a binary function Pos.compare, instead of the infamous ternary
Pcompare (now Pos.compare_cont).

— some hypothesis names generated by the system may changed (typically for a ”destruct Z_le_gt_dec”) since
naming is done after the short name of the head predicate (here now “le” in module Z instead of “Zle”, etc).

— the internals of Z.add has changed, now relying of Z.pos_sub.
Also note these new notations:
— 7<?” 7<=7""=7" for boolean tests such as Z.1tb Z.leb Z.eqb.

— 7+” for the alternative integer division Z.quot implementing the Truncate convention (former ZOdiv), while
the notation for the Coq usual division Z.div implementing the Flooring convention remains ”/”. Their cor-
responding modulo functions are Z.rem (no notations) for Z.quot and Z.modulo (infix "mod” notation) for
Z.div.

Lemmas about conversions between these datatypes are also organized in modules, see for instance modules Z2Nat,
N27Z, etc.

When creating BigN, the macro-generated part NMake_gen is much smaller. The generic part NMake has been
reworked and improved. Some changes may introduce incompatibilities. In particular, the order of the arguments
for BigN.shiftl and BigN.shiftr is now reversed: the number to shift now comes first. By default, the power function
now takes two BigN.

Creation of Vector, an independent library for lists indexed by their length. Vectors’ names overwrite lists’ one
so you should not "Import” the library. All old names changed: function names follow the ocaml ones and, for
example, Vcons becomes Vector.cons. You can get [..;..;..]-style notations by importing Vector.VectorNotations.

Removal of TheoryList. Requiring List instead should work most of the time.

86

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

New syntax "rew Heq in H” and “rew <- Heq in H” for eq_rect and eq_rect_r (available by importing module
EqNotations).

Wi .iter_nat is now Peano.nat_iter (with an implicit type argument).

Internal infrastructure

Opaque proofs are now loaded lazily by default. This allows to be almost as fast as -dont-load-proofs, while being
safer (no creation of axioms) and avoiding feature restrictions (Print and Print Assumptions work ok).

Revised hash-consing code allowing more sharing of memory

Experimental support added for camlp4 (the one provided alongside ocaml), simply pass option -usecamlp4 to
.Jconfigure. By default camlp5 is used.

Revised build system: no more stages in Makefile thanks to some recursive aspect of recent gnu make, use of
vo.itarget files containing .v to compile for both make and ocamlbuild, etc.

Support of cross-compilation via mingw from unix toward Windows, contact P. Letouzey for more informations.

New Makefile rules mli-doc to make html of mli in dev/doc/html and full-stdlib to get a (huge) pdf reflecting the
whole standard library.

Extraction

By default, opaque terms are now truly considered opaque by extraction: instead of accessing their body, they
are now considered as axioms. The previous behaviour can be reactivated via the option "Set Extraction Acces-
sOpaque”.

The pretty-printer for Haskell now produces layout-independent code

A new command “Separate Extraction cstl cst2 ...” that mixes a minimal extracted environment a la “"Recursive
Extraction” and the production of several files (one per coq source) a la "Extraction Library” (DOC TODO).

New option "Set/Unset Extraction KeepSingleton” for preventing the extraction to optimize singleton container
types (DOC TODO).

The extraction now identifies and properly rejects a particular case of universe polymorphism it cannot handle yet
(the pair (I,I) being Prop).

Support of anonymous fields in record (#2555).

CoqIDE

Coqide now runs coqtop as separated process, making it more robust: coqtop subprocess can be interrupted, or
even killed and relaunched (cf button "Restart Coq”, ex-"Go to Start”). For allowing such interrupts, the Windows
version of cogide now requires Windows >= XP SP1.

The communication between CogIDE and Coqtop is now done via a dialect of XML (DOC TODO).

The backtrack engine of CoqIDE has been reworked, it now uses the “Backtrack” command similarly to Proof
General.

The Coqide parsing of sentences has be reworked and now supports tactic delimitation via { }.
Coqide now accepts the Abort command (wish #2357).
Cogqide can read coq_makefile files as "project file” and use it to set automatically options to send to coqtop.

Preference files have moved to $XDG_CONFIG_HOME/coq and accelerators are not stored as a list anymore.

Coq now searches directories specified in COQPATH, $XDG_DATA_HOME/coq, $XDG_DATA_DIRS/coq,
and user-contribs before the standard library.

Coq rc file has moved to $XDG_CONFIG_HOME/coq.

3.8. Version 8.4 87

The Coq Reference Manual, Release 8.11.2

* Major changes to coq_makefile:
— mli/mlpack/mllib taken into account, ml not preproccessed anymore, ml4 work;

— mlihtml generates doc of mli, install-doc install the html doc in DOCDIR with the same policy as vo in
COQLIB;

— More variables are given by coqtop -config, others are defined only if the users doesn’t have defined them
elsewhere. Consequently, generated makefile should work directly on any architecture;

— Packagers can take advantage of $(DSTROOT) introduction. Installation can be made in
$XDG_DATA_HOME/coq;

— -arg option allows to send option as argument to coqc.

3.8.4 Details of changes in 8.4beta2

Vernacular commands

¢ Commands "Back” and "BackTo” are now handling the proof states. They may perform some extra steps of
backtrack to avoid states where the proof state is unavailable (typically a closed proof).

e The commands ”Suspend” and "Resume” have been removed.
A basic Show Script has been reintroduced (no indentation).

¢ New command ”Set Parsing Explicit” for deactivating parsing (and printing) of implicit arguments (useful for
teaching).

* New command “Grab Existential Variables” to transform the unresolved evars at the end of a proof into goals.
Tactics

« Still no general ”info” tactical, but new specific tactics info_auto, info_eauto, info_trivial which provides information
on the proofs found by auto/eauto/trivial. Display of these details could also be activated by “Set Info Auto”/”Set
Info Eauto”/”Set Info Trivial”.

* Details on everything tried by auto/eauto/trivial during a proof search could be obtained by “debug auto”, "debug
eauto”, “debug trivial” or by a global ”Set Debug Auto”/”Set Debug Eauto”/”Set Debug Trivial”.

¢ New command ”r string” in Ltac debugger that interprets “idtac string” in Ltac code as a breakpoint and jumps to
its next use.

e Tactics from the Dp plugin (simplify, ergo, yices, cvc3, z3, cvcl, harvey, zenon, gwhy) have been removed, since
Why?2 has not been maintained for the last few years. The Why3 plugin should be a suitable replacement in most
cases.

Libraries
* MSetRBT: a new implementation of MSets via Red-Black trees (initial contribution by Andrew Appel).

e MSetAVL: for maximal sharing with the new MSetRBT, the argument order of Node has changed (this should be
transparent to regular MSets users).

Module System

e The names of modules (and module types) are now in a fully separated namespace from ordinary definitions:
“Definition E:=0. Module E. End E.” is now accepted.

CoqIDE

* Cogide now supports the "Restart” command, and “Undo” (with a warning). Better support for ”Abort”.

88 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

3.8.5 Details of changes in 8.4

Vernacular commands
» The "Reset” command is now supported again in files given to coqc or Load.

¢ ”Show Script” now indents again the displayed scripts. It can also work correctly across Load’ed files if the option
”Unset Atomic Load” is used.

* ”Open Scope” can now be given the delimiter (e.g. Z) instead of the full scope name (e.g. Z_scope).
Notations

* Most compatibility notations of the standard library are now tagged as (compat xyz), where xyz is a former Coq ver-
sion, for instance ”8.3”. These notations behave as (only parsing) notations, except that they may triggers warnings
(or errors) when used while Coq is not in a corresponding -compat mode.

* To activate these compatibility warnings, use “Set Verbose Compat Notations” or the command-line flag -verbose-
compat-notations.

¢ For a strict mode without these compatibility notations, use “Unset Compat Notations” or the command-line flag
-no-compat-notations.

Tactics

¢ An annotation "eqn:H” or eqn:?” can be added to a “destruct” or “induction” to make it generate equations in the
spirit of ”case_eq”. The former syntax ”_eqn” is discontinued.

* The name of the hypothesis introduced by tactic “remember” can be set via the new syntax “remember t as x eqn:H”
(wish #2489).

Libraries
¢ Reals: changed definition of PI, no more axiom about sin(P1/2).
* SetoidPermutation: a notion of permutation for lists modulo a setoid equality.
 BigN: fixed the ocaml code doing the parsing/printing of big numbers.
* List: a couple of lemmas added especially about no-duplication, partitions.

* Init: Removal of the coercions between variants of sigma-types and subset types (possible source of incompatibil-
ity).

3.9 Version 8.3

3.9.1 Summary of changes

Coq version 8.3 is before all a transition version with refinements or extensions of the existing features and libraries and
a new tactic nsatz based on Hilbert’s Nullstellensatz for deciding systems of equations over rings.

With respect to libraries, the main evolutions are due to Pierre Letouzey with a rewriting of the library of finite sets FSets
and a new round of evolutions in the modular development of arithmetic (library Numbers). The reason for making
FSets evolve is that the computational and logical contents were quite intertwined in the original implementation, leading
in some cases to longer computations than expected and this problem is solved in the new MSets implementation. As
for the modular arithmetic library, it was only dealing with the basic arithmetic operators in the former version and its
current extension adds the standard theory of the division, min and max functions, all made available for free to any
implementation of N, Z or Z/nZ.

The main other evolutions of the library are due to Hugo Herbelin who made a revision of the sorting library (including
a certified merge-sort) and to Guillaume Melquiond who slightly revised and cleaned up the library of reals.

3.9. Version 8.3 89

The Coq Reference Manual, Release 8.11.2

The module system evolved significantly. Besides the resolution of some efficiency issues and a more flexible construction
of module types, Elie Soubiran brought a new model of name equivalence, the A-equivalence, which respects as much as
possible the names given by the users. He also designed with Pierre Letouzey a new, convenient operator <+ for nesting
functor application that provides a light notation for inheriting the properties of cascading modules.

The new tactic nsatz is due to Loic Pottier. It works by computing Grobner bases. Regarding the existing tactics, various
improvements have been done by Matthieu Sozeau, Hugo Herbelin and Pierre Letouzey.

Matthieu Sozeau extended and refined the typeclasses and Program features (the Russell language). Pierre Letouzey
maintained and improved the extraction mechanism. Bruno Barras and Elie Soubiran maintained the Coq checker, Julien
Forest maintained the Function mechanism for reasoning over recursively defined functions. Matthieu Sozeau, Hugo
Herbelin and Jean-Marc Notin maintained coqdoc. Frédéric Besson maintained the Micromega platform for deciding
systems of inequalities. Pierre Courtieu maintained the support for the Proof General Emacs interface. Claude Marché
maintained the plugin for calling external provers (dp). Yves Bertot made some improvements to the libraries of lists and
integers. Matthias Puech improved the search functions. Guillaume Melquiond usefully contributed here and there. Yann
Régis-Gianas grounded the support for Unicode on a more standard and more robust basis.

Though invisible from outside, Arnaud Spiwack improved the general process of management of existential variables.
Pierre Letouzey and Stéphane Glondu improved the compilation scheme of the Coq archive. Vincent Gross provided
support to CoqIDE. Jean-Marc Notin provided support for benchmarking and archiving.

Many users helped by reporting problems, providing patches, suggesting improvements or making useful comments, either
on the bug tracker or on the Coq-Club mailing list. This includes but not exhaustively Cédric Auger, Arthur Charguéraud,
Francois Garillot, Georges Gonthier, Robin Green, Stéphane Lescuyer, Eelis van der Weegen, ...

Though not directly related to the implementation, special thanks are going to Yves Bertot, Pierre Castéran, Adam Chli-
pala, and Benjamin Pierce for the excellent teaching materials they provided.

Paris, April 2010
Hugo Herbelin

3.9.2 Details of changes

Rewriting tactics
* Tactic "rewrite” now supports rewriting on ad hoc equalities such as eq_true.
» “Hint Rewrite” now checks that the lemma looks like an equation.
¢ New tactic “etransitivity”.
* Support for heterogeneous equality (JMeq) in "injection” and “discriminate”.

* Tactic ”subst” now supports heterogeneous equality and equality proofs that are dependent (use “simple subst” for
preserving compatibility).

¢ Added support for Leibniz-rewriting of dependent hypotheses.

¢ Renamed "Morphism” into "Proper” and “respect” into “proper_prf” (possible source of incompatibility). A partial
fix is to define "Notation Morphism R f := (Proper (R%signature) f).”

» New tactic variants "rewrite* by” and “autorewrite*” that rewrite respectively the first and all matches whose side-
conditions are solved.

» ”Require Import Setoid” does not export all of "Morphisms” and “RelationClasses” anymore (possible source of
incompatibility, fixed by importing "Morphisms” too).

920 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

 Support added for using Chung-Kil Hur’s Heq library for rewriting over heterogeneous equality (courtesy of the
library’s author).

e Tactic "replace” supports matching terms with holes.

Automation tactics

e Tactic intuition now preserves inner i ff and not (exceptional source of incompatibilities solvable by redefin-
ing intuitionasunfold iff, not in *; intuition, or, foriff only, by using Set Intuition
Iff Unfolding.)

» Tactic tauto now proves classical tautologies as soon as classical logic (i.e. library Classical_Prop or
Classical) is loaded.

¢ Tactic gappa has been removed from the Dp plugin.
e Tactic firstorder now supports the combination of its using and with options.
e New Hint Resolve -> (or <-) for declaring iff’s as oriented hints (wish #2104).

¢ An inductive type as argument of the using option of auto / eauto / firstorder is interpreted as using
the collection of its constructors.

» New decision tactic “nsatz” to prove polynomial equations by computation of Groebner bases.

Other tactics

Tactic “discriminate” now performs intros before trying to discriminate an hypothesis of the goal (previously it
applied intro only if the goal had the form t1<>t2) (exceptional source of incompatibilities - former behavior can
be obtained by “Unset Discriminate Introduction”).

Tactic "quote” now supports quotation of arbitrary terms (not just the goal).

Tactic "idtac” now displays its “list” arguments.

New introduction patterns ”*” for introducing the next block of dependent variables and ”**” for introducing all
quantified variables and hypotheses.

Pattern Unification for existential variables activated in tactics and new option “Unset Tactic Evars Pattern Unifi-
cation” to deactivate it.

Resolution of canonical structure is now part of the tactic’s unification algorithm.

New tactic "decide lemma with hyp” for rewriting decidability lemmas when one knows which side is true.

Improved support of dependent goals over objects in dependent types for destruct” (rare source of incompatibility
that can be avoided by unsetting option "Dependent Propositions Elimination”).

PP

Tactic “exists”, "eexists”, “destruct” and “edestruct” supports iteration using comma-separated arguments.

Tactic names “case” and “elim” now support clauses “as” and ”in” and become then synonymous of “destruct” and
”induction” respectively.

A new tactic name “exfalso” for the use of ’ex-falso quodlibet’ principle. This tactic is simply a shortcut for “elimtype
False”.

Made quantified hypotheses get the name they would have if introduced in the context (possible but rare source of
incompatibilities).

When applying a component of a conjunctive lemma, “apply in” (and sequences of “apply in”) now leave the side
conditions of the lemmas uniformly after the main goal (possible source of rare incompatibilities).

In ”simpl ¢” and “change ¢ with d”, ¢ can be a pattern.

Tactic "revert” now preserves let-in’s making it the exact inverse of "intro”.

3.9.

Version 8.3 91

The Coq Reference Manual, Release 8.11.2

New tactics “clear dependent H” and “revert dependent H” that clears (resp. reverts) H and all the hypotheses that
depend on H.

Ltac’s pattern-matching now supports matching metavariables that depend on variables bound upwards in the pat-
tern.

Tactic definitions

Ltac definitions support Local option for non-export outside modules.
Support for parsing non-empty lists with separators in tactic notations.

New command "Locate Ltac” to get the full name of an Ltac definition.

Notations

Record syntax { |x=...; y=...|} now works inside patterns too.
Abbreviations from non-imported module now invisible at printing time.
Abbreviations now use implicit arguments and arguments scopes for printing.

Abbreviations to pure names now strictly behave like the name they refer to (make redirections of qualified names
easier).

Abbreviations for applied constant now propagate the implicit arguments and arguments scope of the underly-
ing reference (possible source of incompatibilities generally solvable by changing such abbreviations from e.g.
Notation foo' := (foo x) toNotation foo' y := (foo x (y:=y))).

The ”where” clause now supports multiple notations per defined object.

Recursive notations automatically expand one step on the left for better factorization; recursion notations inner
separators now ensured being tokens.

Added "Reserved Infix” as a specific shortcut of the corresponding "Reserved Notation”.

Open/Close Scope command supports Global option in sections.

Specification language

New support for local binders in the syntax of Record/Structure fields.
Fixpoint/CoFixpoint now support building part or all of bodies using tactics.

99,9

Binders given before ”:” in lemmas and in definitions built by tactics are now automatically introduced (possible
source of incompatibility that can be resolved by invoking “Unset Automatic Introduction”).

New support for multiple implicit arguments signatures per reference.

Module system

Include Type is now deprecated since Include now accept both modules and module types.
Declare ML Module supports Local option.

The sharing between non-logical object and the management of the name-space has been improved by the new
“Delta-equivalence” on qualified name.

The include operator has been extended to high-order structures
Sequences of Include can be abbreviated via new syntax "<+”.
A module (or module type) can be given several “<:” signatures.

Interactive proofs are now permitted in module type. Functors can hence be declared as Module Type and be used
later to type themselves.

92

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

)

A functor application can be prefixed by a ”!” to make it ignore any “Inline” annotation in the type of its argument(s)
(for examples of use of the new features, see libraries Structures and Numbers).

Coercions are now active only when modules are imported (use ”Set Automatic Coercions Import” to get the
behavior of the previous versions of Coq).

Extraction

When using (Recursive) Extraction Library, the filenames are directly the Coq ones with new appropriate extensions
: we do not force anymore uncapital first letters for Ocaml and capital ones for Haskell.

The extraction now tries harder to avoid code transformations that can be dangerous for the complexity. In particular
many eta-expansions at the top of functions body are now avoided, clever partial applications will likely be preserved,
let-ins are almost always kept, etc.

In the same spirit, auto-inlining is now disabled by default, except for induction principles, since this feature was
producing more frequently weird code than clear gain. The previous behavior can be restored via ”Set Extraction
Autolnline”.

Unicode characters in identifiers are now transformed into ascii strings that are legal in Ocaml and other languages.

Harsh support of module extraction to Haskell and Scheme: module hierarchy is flattened, module abbreviations
and functor applications are expanded, module types and unapplied functors are discarded.

Less unsupported situations when extracting modules to Ocaml. In particular module parameters might be alpha-
renamed if a name clash is detected.

Extract Inductive is now possible toward non-inductive types (e.g. nat => int)

Extraction Implicit: this new experimental command allows to mark some arguments of a function or constructor
for removed during extraction, even if these arguments don’t fit the usual elimination principles of extraction, for
instance the length n of a vector.

Files ExtrOcaml*.v in plugins/extraction try to provide a library of common extraction commands: mapping of
basics types toward Ocaml’s counterparts, conversions from/to int and big_int, or even complete mapping of nat,Z,N
to int or big_int, or mapping of ascii to char and string to char list (in this case recognition of ascii constants is
hard-wired in the extraction).

Program

Streamlined definitions using well-founded recursion and measures so that they can work on any subset of the
arguments directly (uses currying).

Try to automatically clear structural fixpoint prototypes in obligations to avoid issues with opacity.
Use return type clause inference in pattern-matching as in the standard typing algorithm.

Support [Local Obligation Tactic] and [Next Obligation with tactic].

Use [Show Obligation Tactic] to print the current default tactic.

[fst] and [snd] have maximal implicit arguments in Program now (possible source of incompatibility).

Type classes

Declaring axiomatic type class instances in Module Type should be now done via new command “Declare Instance”,
while the syntax “Instance” now always provides a concrete instance, both in and out of Module Type.

Use [Existing Class foo] to declare foo as a class a posteriori. [foo] can be an inductive type or a constant definition.
No projections or instances are defined.

Various bug fixes and improvements: support for defined fields, anonymous instances, declarations giving terms,
better handling of sections and [Context].

Vernacular commands

3.9. Version 8.3 93

The Coq Reference Manual, Release 8.11.2

New command "Timeout <n> <command>.” interprets a command and a timeout interrupts the interpretation after
<n> seconds.

New command "Compute <expr>.” is a shortcut for "Eval vm_compute in <expr>".

New command “Fail <command>.” interprets a command and is successful iff the command fails on an error (but
not an anomaly). Handy for tests and illustration of wrong commands.

Most commands referring to constant (e.g. Print or About) now support referring to the constant by a notation
string.

New option "Boolean Equality Schemes” to make generation of boolean equality automatic for datatypes (together
with option "Decidable Equality Schemes”, this replaces deprecated option "Equality Scheme™).

Made support for automatic generation of case analysis schemes available to user (governed by option ”Set Case
Analysis Schemes”).

? *
New command Global Generalizable |All | No |variable \ Variables| |ident

to declare which identifiers are generalizable in “ { } * and “ () " binders.

New command "Print Opaque Dependencies” to display opaque constants in addition to all variables, parameters
or axioms a theorem or definition relies on.

New command "Declare Reduction <id> := <conv_expr>", allowing to write later "Eval <id> in ...”. This command
accepts a Local variant.

Syntax of Implicit Type now supports more than one block of variables of a given type.
Command ”Canonical Structure” now warns when it has no effects.

Commands of the form ”Set X” or “Unset X” now support "Local” and “Global” prefixes.

Library

Use 7standard” Coq names for the properties of eq and identity (e.g. refl_equal is now eq_refl). Support for
compatibility is provided.

The function Compare_dec.nat_compare is now defined directly, instead of relying on It_eq_It_dec. The earlier
version is still available under the name nat_compare_alt.

Lemmas in library Relations and Reals have been homogenized a bit.

The implicit argument of Logic.eq is now maximally inserted, allowing to simply write "eq” instead of "@eq _” in
morphism signatures.

Wrongly named lemmas (ZIt_gt_succ and ZIt_succ_gt) fixed (potential source of incompatibilities)

List library:
— Definitions of list, length and app are now in Init/Datatypes. Support for compatibility is provided.
— Definition of Permutation is now in Sorting/Permtation.v

— Some other light revisions and extensions (possible source of incompatibilities solvable by qualifying names
accordingly).

In ListSet, set_map has been fixed (source of incompatibilities if used).
Sorting library:

— new mergesort of worst-case complexity O(n*In(n)) made available in Mergesort.v;

former notion of permutation up to setoid from Permutation.v is deprecated and moved to PermutSetoid.v;

heapsort from Heap.v of worst-case complexity O(n*n) is deprecated;

new file Sorted.v for some definitions of being sorted.

94

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

e Structure library. This new library is meant to contain generic structures such as types with equalities or orders,
either in Module version (for now) or Type Classes (still to do):

— DecidableType.v and OrderedType.v: initial notions for FSets/FMaps, left for compatibility but considered
as deprecated.

— Equalities.v and Orders.v: evolutions of the previous files, with fine-grain Module architecture, many variants,
use of Equivalence and other relevant Type Classes notions.

— OrdersTac.v: a generic tactic for solving chains of (in)equalities over variables. See
{Nat,N,Z,P}OrderedType.v for concrete instances.

— GenericMinMax.v: any ordered type can be equipped with min and max. We derived here all the generic
properties of these functions.

* MSets library: an important evolution of the FSets library. "MSets” stands for Modular (Finite) Sets, by contrast
with a forthcoming library of Class (Finite) Sets contributed by S. Lescuyer which will be integrated with the next
release of Coq. The main features of MSets are:

— The use of Equivalence, Proper and other Type Classes features easing the handling of setoid equalities.
— The interfaces are now stated in iff-style. Old specifications are now derived properties.

— The compare functions are now pure, and return a "comparison” value. Thanks to the CompSpec inductive
type, reasoning on them remains easy.

— Sets structures requiring invariants (i.e. sorted lists) are built first as "Raw” sets (pure objects and separate
proofs) and attached with their proofs thanks to a generic functor. "Raw” sets have now a proper interface
and can be manipulated directly.

Note: No Maps yet in MSets. The FSets library is still provided for compatibility, but will probably be considered
as deprecated in the next release of Coq.

e Numbers library:

— The abstract layer (NatInt, Natural/Abstract, Integer/Abstract) has been simplified and enhance thanks to new
features of the module system such as Include (see above). It has been extended to Euclidean division (three
flavors for integers: Trunc, Floor and Math).

— The arbitrary-large efficient numbers (BigN, BigZ, BigQ) has also been reworked. They benefit from the
abstract layer improvements (especially for div and mod). Note that some specifications have slightly changed
(compare, div, mod, shift{r,1}). Ring/Field should work better (true recognition of constants).

Tools
* Option -R now supports binding Coq root read-only.
* New coqtop/coqc option -beautify to reformat .v files (usable e.g. to globally update notations).
» New tool beautify-archive to beautify a full archive of developments.

» New coqtop/coqc option -compat X.Y to simulate the general behavior of previous versions of Coq (provides e.g.
support for 8.2 compatibility).

Coqdoc
* List have been revamped. List depth and scope is now determined by an “offside” whitespace rule.
¢ Text may be italicized by placing it in _underscores_.
* The "—index <string>" flag changes the filename of the index.
* The "—toc-depth <int>” flag limits the depth of headers which are included in the table of contents.

¢ The "-lib-name <string>" flag prints "<string> Foo” instead of "Library Foo” where library titles are called for.
The ”—no-lib-name” flag eliminates the extra title.

3.9. Version 8.3 95

The Coq Reference Manual, Release 8.11.2

* New option "—parse-comments” to allow parsing of regular (* *) comments.
* New option "—plain-comments” to disable interpretation inside comments.

» New option "—interpolate” to try and typeset identifiers in Coq escapings using the available globalization informa-
tion.

* New option "—external url root” to refer to external libraries.
* Links to section variables and notations now supported.
Internal infrastructure

 To avoid confusion with the repository of user’s contributions, the subdirectory “contrib” has been renamed into
”plugins”. On platforms supporting ocaml native dynlink, code located there is built as loadable plugins for coqtop.

* An experimental build mechanism via ocamlbuild is provided. From the top of the archive, run ./configure as
usual, and then ./build. Feedback about this build mechanism is most welcome. Compiling Coq on platforms such
as Windows might be simpler this way, but this remains to be tested.

¢ The Makefile system has been simplified and factorized with the ocamlbuild system. In particular “make” takes
advantage of .mllib files for building .cma/.cmxa. The .vo files to compile are now listed in several vo.itarget files.

3.10 Version 8.2

3.10.1 Summary of changes

Coq version 8.2 adds new features, new libraries and improves on many various aspects.

Regarding the language of Coq, the main novelty is the introduction by Matthieu Sozeau of a package of commands
providing Haskell-style typeclasses. Typeclasses, which come with a few convenient features such as type-based resolution
of implicit arguments, play a new landmark role in the architecture of Coq with respect to automation. For instance, thanks
to typeclass support, Matthieu Sozeau could implement a new resolution-based version of the tactics dedicated to rewriting
on arbitrary transitive relations.

Another major improvement of Coq 8.2 is the evolution of the arithmetic libraries and of the tools associated to them.
Benjamin Grégoire and Laurent Théry contributed a modular library for building arbitrarily large integers from bounded
integers while Evgeny Makarov contributed a modular library of abstract natural and integer arithmetic together with a
few convenient tactics. On his side, Pierre Letouzey made numerous extensions to the arithmetic libraries on Z and @,
including extra support for automation in presence of various number-theory concepts.

Frédéric Besson contributed a reflective tactic based on Krivine-Stengle Positivstellensatz (the easy way) for validating
provability of systems of inequalities. The platform is flexible enough to support the validation of any algorithm able to
produce a “certificate” for the Positivstellensatz and this covers the case of Fourier-Motzkin (for linear systems in Q and
R), Fourier-Motzkin with cutting planes (for linear systems in Z) and sum-of-squares (for non-linear systems). Evgeny
Makarov made the platform generic over arbitrary ordered rings.

Arnaud Spiwack developed a library of 31-bits machine integers and, relying on Benjamin Grégoire and Laurent Théry’s
library, delivered a library of unbounded integers in base 23!. As importantly, he developed a notion of “retro-knowledge”
so as to safely extend the kernel-located bytecode-based efficient evaluation algorithm of Coq version 8.1 to use 31-bits
machine arithmetic for efficiently computing with the library of integers he developed.

Beside the libraries, various improvements were contributed to provide a more comfortable end-user language and more
expressive tactic language. Hugo Herbelin and Matthieu Sozeau improved the pattern matching compilation algorithm
(detection of impossible clauses in pattern matching, automatic inference of the return type). Hugo Herbelin, Pierre
Letouzey and Matthieu Sozeau contributed various new convenient syntactic constructs and new tactics or tactic features:
more inference of redundant information, better unification, better support for proof or definition by fixpoint, more
expressive rewriting tactics, better support for meta-variables, more convenient notations...

96 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

Elie Soubiran improved the module system, adding new features (such as an “include” command) and making it more
flexible and more general. He and Pierre Letouzey improved the support for modules in the extraction mechanism.

Matthieu Sozeau extended the Russell language, ending in an convenient way to write programs of given specifications,
Pierre Corbineau extended the Mathematical Proof Language and the automation tools that accompany it, Pierre Letouzey
supervised and extended various parts of the standard library, Stéphane Glondu contributed a few tactics and improve-
ments, Jean-Marc Notin provided help in debugging, general maintenance and coqdoc support, Vincent Siles contributed
extensions of the Scheme command and of injection.

Bruno Barras implemented the cogchk tool: this is a stand-alone type checker that can be used to certify .vo files.
Especially, as this verifier runs in a separate process, it is granted not to be “hijacked” by virtually malicious extensions
added to Coq.

Yves Bertot, Jean-Christophe Filliatre, Pierre Courtieu and Julien Forest acted as maintainers of features they imple-
mented in previous versions of Coq.

Julien Narboux contributed to CoqIDE. Nicolas Tabareau made the adaptation of the interface of the old “setoid rewrite”
tactic to the new version. Lionel Mamane worked on the interaction between Coq and its external interfaces. With Samuel
Mimram, he also helped making Coq compatible with recent software tools. Russell O’Connor, Cezary Kaliszyk, Milad
Niqui contributed to improve the libraries of integers, rational, and real numbers. We also thank many users and partners
for suggestions and feedback, in particular Pierre Castéran and Arthur Charguéraud, the INRIA Marelle team, Georges
Gonthier and the INRIA-Microsoft Mathematical Components team, the Foundations group at Radboud university in
Nijmegen, reporters of bugs and participants to the Coq-Club mailing list.

Palaiseau, June 2008
Hugo Herbelin

3.10.2 Details of changes

Language

* If a fixpoint is not written with an explicit { struct ... }, then all arguments are tried successively (from left to right)
until one is found that satisfies the structural decreasing condition.

» New experimental typeclass system giving ad-hoc polymorphism and overloading based on dependent records and
implicit arguments.

» New syntax “let ’pat := b in ¢” for let-binding using irrefutable patterns.

¢ New syntax “forall {A}, T” for specifying maximally inserted implicit arguments in terms.

* Sort of Record/Structure, Inductive and Colnductive defaults to Type if omitted.

¢ (Co)Inductive types can be defined as records (e.g. "Colnductive stream := { hd : nat; tl : stream }.”)
* New syntax "Theorem id1:t1 ... with idn:tn” for proving mutually dependent statements.

* Support for sort-polymorphism on constants denoting inductive types.

 Several evolutions of the module system (handling of module aliases, functorial module types, an Include feature,
etc).

* Prop now a subtype of Set (predicative and impredicative forms).

¢ Recursive inductive types in Prop with a single constructor of which all arguments are in Prop is now considered to
be a singleton type. It consequently supports all eliminations to Prop, Set and Type. As a consequence, Acc_rect has
now a more direct proof [possible source of easily fixed incompatibility in case of manual definition of a recursor
in a recursive singleton inductive type].

3.10. Version 8.2 97

The Coq Reference Manual, Release 8.11.2

Vernacular commands

Added option Global to ”Arguments Scope” for section surviving.
Added option ”Unset Elimination Schemes” to deactivate the automatic generation of elimination schemes.

Modification of the Scheme command so you can ask for the name to be automatically computed (e.g. Scheme
Induction for nat Sort Set).

New command "Combined Scheme” to build combined mutual induction principles from existing mutual induction
principles.

New command ”Scheme Equality” to build a decidable (boolean) equality for simple inductive datatypes and a
decision property over this equality (e.g. Scheme Equality for nat).

Added option “Set Equality Scheme” to make automatic the declaration of the boolean equality when possible.
Source of universe inconsistencies now printed when option ”Set Printing Universes” is activated.
New option ”Set Printing Existential Instances” for making the display of existential variable instances explicit.

Support for option “[idl ... idn]”, and ”-[id1 ... idn]”, for the "compute”/’cbv” reduction strategy, respectively
meaning reduce only, or everything but, the constants id1 ... idn. “lazy” alone or followed by “[id1 ... idn]”, and
”-[id1 ... idn]” also supported, meaning apply all of beta-iota-zeta-delta, possibly restricting delta.

New command ”Strategy” to control the expansion of constants during conversion tests. It generalizes commands
Opaque and Transparent by introducing a range of levels. Lower levels are assigned to constants that should be
expanded first.

New options Global and Local to Opaque and Transparent.

New command “Print Assumptions” to display all variables, parameters or axioms a theorem or definition relies
on.

”Add Rec LoadPath” now provides references to libraries using partially qualified names (this holds also for cog-
top/coqc option -R).

SearchAbout supports negated search criteria, reference to logical objects by their notation, and more generally
search of subterms.

“Declare ML Module” now allows to import .cmxs files when Coq is compiled in native code with a version of
OCaml that supports native Dynlink (>=3.11).

Specific sort constraints on Record now taken into account.

”Print LoadPath” supports a path argument to filter the display.

Libraries

Several parts of the libraries are now in Type, in particular FSets, SetoidList, ListSet, Sorting, Zmisc. This may
induce a few incompatibilities. In case of trouble while fixing existing development, it may help to simply declare
Set as an alias for Type (see file SetIsType).

New arithmetical library in theories/Numbers. It contains:

— an abstract modular development of natural and integer arithmetics in Numbers/Natural/Abstract and Num-
bers/Integer/Abstract

— an implementation of efficient computational bounded and unbounded integers that can be mapped to pro-
cessor native arithmetics. See Numbers/Cyclic/Int31 for 31-bit integers and Numbers/Natural/BigN for un-
bounded natural numbers and Numbers/Integer/BigZ for unbounded integers.

— some proofs that both older libraries Arith, ZArith and NArith and newer BigN and BigZ implement the
abstract modular development. This allows in particular BigN and BigZ to already come with a large database
of basic lemmas and some generic tactics (ring),

98

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

This library has still an experimental status, as well as the processor-acceleration mechanism, but both its abstract
and its concrete parts are already quite usable and could challenge the use of nat, N and Z in actual developments.
Moreover, an extension of this framework to rational numbers is ongoing, and an efficient Q structure is already
provided (see Numbers/Rational/BigQ), but this part is currently incomplete (no abstract layer and generic lemmas).

Many changes in FSets/FMaps. In practice, compatibility with earlier version should be fairly good, but some
adaptations may be required.

— Interfaces of unordered ("weak”) and ordered sets have been factorized thanks to new features of Coq modules
(in particular Include), see FSetInterface. Same for maps. Hints in these interfaces have been reworked (they
are now placed in a "set” database).

— To allow full subtyping between weak and ordered sets, a field "eq_dec” has been added to OrderedType.
The old version of OrderedType is now called MiniOrderedType and functor MOT_to_OT allow to convert
to the new version. The interfaces and implementations of sets now contain also such a “eq_dec” field.

— FSetDecide, contributed by Aaron Bohannon, contains a decision procedure allowing to solve basic set-related
goals (for instance, is a point in a particular set ?). See FSetProperties for examples.

— Functors of properties have been improved, especially the ones about maps, that now propose some induction
principles. Some properties of fold need less hypothesis.

— More uniformity in implementations of sets and maps: they all use implicit arguments, and no longer export
unnecessary scopes (see bug #1347)

— Internal parts of the implementations based on AVL have evolved a lot. The main files FSetAVL and FMa-
PAVL are now much more lightweight now. In particular, minor changes in some functions has allowed
to fully separate the proofs of operational correctness from the proofs of well-balancing: well-balancing is
critical for efficiency, but not anymore for proving that these trees implement our interfaces, hence we have
moved these proofs into appendix files FSetFullAVL and FMapFullAVL. Moreover, a few functions like
union and compare have been modified in order to be structural yet efficient. The appendix files also contains
alternative versions of these few functions, much closer to the initial Ocaml code and written via the Function
framework.

Library IntMap, subsumed by FSets/FMaps, has been removed from Coq Standard Library and moved into a user
contribution Cachan/IntMap

Better computational behavior of some constants (eq_nat_dec and le_It_dec more efficient, Z_It_le_dec and Posi-
tive_as_OT.compare transparent, ...) (exceptional source of incompatibilities).

Boolean operators moved from module Bool to module Datatypes (may need to rename qualified references in
script and force notations Il and && to be at levels 50 and 40 respectively).

The constructors xI and xO of type positive now have postfix notations ”~1” and ”~07, allowing to write numbers
in binary form easily, for instance 6 is 1~1~0 and 4*p is p~0~0 (see BinPos.v).

Improvements to NArith (Nminus, Nmin, Nmax), and to QArith (in particular a better power function).

Changes in ZArith: several additional lemmas (used in theories/Numbers), especially in Zdiv, Znumtheory, Zpower.
Moreover, many results in Zdiv have been generalized: the divisor may simply be non-null instead of strictly positive
(see lemmas with name ending by ”_full”). An alternative file ZOdiv proposes a different behavior (the one of
Ocaml) when dividing by negative numbers.

Changes in Arith: EqNat and Wf_nat now exported from Arith, some constructions on nat that were outside Arith
are now in (e.g. iter_nat).

In SetoidList, eqlistA now expresses that two lists have similar elements at the same position, while the predicate
previously called eqglistA is now equivlistA (this one only states that the lists contain the same elements, nothing
more).

Changes in Reals:

3.10

. Version 8.2 99

The Coq Reference Manual, Release 8.11.2

— Most statement in sigT” (including the completeness axiom) are now in “sig” (in case of incompatibility, use
projl_sig instead of projT1, sig instead of sigT, etc).

— More uniform naming scheme (identifiers in French moved to English, consistent use of 0 — zero — instead of
O — letter O —, etc).

— Lemma on prod_f_SO is now on prod_f_RO.

— Useless hypothesis of In_exists1 dropped.

— New Rlogic.v states a few logical properties about R axioms.
— RlIneq.v extended and made cleaner.

Slight restructuration of the Logic library regarding choice and classical logic. Addition of files providing intuition-
istic axiomatizations of descriptions: Epsilon.v, Description.v and IndefiniteDescription.v.

Definition of pred and minus made compatible with the structural decreasing criterion for use in fixpoints.

Files Relations/Rstar.v and Relations/Newman.v moved out to the user contribution repository (contribution
CoC_History). New lemmas about transitive closure added and some bound variables renamed (exceptional risk
of incompatibilities).

Syntax for binders in terms (e.g. for “exists”) supports anonymous names.

Notations, coercions, implicit arguments and type inference

More automation in the inference of the return clause of dependent pattern-matching problems.
Experimental allowance for omission of the clauses easily detectable as impossible in pattern-matching problems.
Improved inference of implicit arguments.

New options ”Set Maximal Implicit Insertion”, ”Set Reversible Pattern Implicit”, ”Set Strongly Strict Implicit” and
”Set Printing Implicit Defensive” for controlling inference and use of implicit arguments.

New modifier in “Implicit Arguments” to force an implicit argument to be maximally inserted.

New modifier of "Implicit Arguments” to enrich the set of implicit arguments.

New options Global and Local to "Implicit Arguments” for section surviving or non export outside module.
Level ”constr” moved from 9 to 8.

Structure/Record now printed as Record (unless option Printing All is set).

Support for parametric notations defining constants.

Insertion of coercions below product types refrains to unfold constants (possible source of incompatibility).

New support for fix/cofix in notations.

Tactic Language

Second-order pattern-matching now working in Ltac “match” clauses (syntax for second-order unification variable
is 7@?X”).

Support for matching on let bindings in match context using syntax ”"H := body” or "H := body : type”.
Ltac accepts integer arguments (syntax is “ltac:nnn” for nnn an integer).

The general sequence tactical “expr_0 ; [expr_1 | ... | expr_n]” is extended so that at most one expr_i may have
the form “expr ..” or just ”..”. Also, n can be different from the number of subgoals generated by expr_0. In this

case, the value of expr (or idtac in case of just ”..”) is applied to the intermediate subgoals to make the number of
tactics equal to the number of subgoals.

100

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

A name used as the name of the parameter of a lemma (like f in "apply f_equal with (f:=t)”) is now interpreted as
a ltac variable if such a variable exists (this is a possible source of incompatibility and it can be fixed by renaming
the variables of a Itac function into names that do not clash with the lemmas parameter names used in the tactic).

New syntax “Ltac tac ::=...” to rebind a tactic to a new expression.

“let rec ... in ... ” now supported for expressions without explicit parameters; interpretation is lazy to the contrary
of "let ... in ...”; hence, the "rec” keyword can be used to turn the argument of a ”let ... in ...” into a lazy one.

Patterns for hypotheses types in “match goal” are now interpreted in type_scope.

A bound variable whose name is not used elsewhere now serves as metavariable in “match” and it gets instantiated
by an identifier (allow e.g. to extract the name of a statement like “exists x, P x”).

New printing of Ltac call trace for better debugging.

Tactics

” 9 EERNRT)

New tactics “apply -> term”, “apply <- term”, “apply -> term in ident”, apply <- term in ident” for applying
equivalences (iff).

Slight improvement of the hnf and simpl tactics when applied on expressions with explicit occurrences of match or
fix.

» » ”

New tactics “eapply in”, “erewrite”, “erewrite in”.

LIS » 9

New tactics “ediscriminate”, “einjection”, “esimplify_eq”.

39 9 LEEY)

Tactics "discriminate”, "injection”, "simplify_eq” now support any term as argument. Clause “with” is also sup-
ported.

Unfoldable references can be given by notation’s string rather than by name in unfold.

The ”with” arguments are now typed using informations from the current goal: allows support for coercions and
more inference of implicit arguments.

Application of ’f_equal”-style lemmas works better.
Tactics elim, case, destruct and induction now support variants eelim, ecase, edestruct and einduction.

Tactics destruct and induction now support the "with” option and the ”in” clause option. If the option “in” is used,
an equality is added to remember the term to which the induction or case analysis applied (possible source of
parsing incompatibilities when destruct or induction is part of a let-in expression in Ltac; extra parentheses are then
required).

New support for ”as” clause in tactics apply in” and “eapply in”.
Some new intro patterns:

— intro pattern ”?A” genererates a fresh name based on A. Caveat about a slight loss of compatibility: Some
intro patterns don’t need space between them. In particular intros ?a?b used to be legal and equivalent to
intros 7 a 7 b. Now it is still legal but equivalent to intros ?a ?b.

— intro pattern (A & ... & Y & Z)” synonym to "(A.,....,(Y,Z)))))” for right-associative constructs like /or exists.
Several syntax extensions concerning “rewrite”:

— "rewrite A,B,C” can be used to rewrite A, then B, then C. These rewrites occur only on the first subgoal: in
particular, side-conditions of the “rewrite A” are not concerned by the “rewrite B,C”.

— “rewrite A by tac” allows to apply tac on all side-conditions generated by the “rewrite A”.

— “rewrite A at n” allows to select occurrences to rewrite: rewrite only happen at the n-th exact occurrence of
the first successful matching of A in the goal.

“rewrite 3 A” or “rewrite 3!A” is equivalent to “rewrite A,A,A”.

3.10.

Version 8.2 101

The Coq Reference Manual, Release 8.11.2

— 7rewrite !A” means rewriting A as long as possible (and at least once).
— “rewrite 37A” means rewriting A at most three times.

— “rewrite 7A” means rewriting A as long as possible (possibly never).
— many of the above extensions can be combined with each other.

Introduction patterns better respect the structure of context in presence of missing or extra names in nested
disjunction-conjunction patterns [possible source of rare incompatibilities].

New syntax “rename a into b, ¢ into d” for “rename a into b; rename c into d”

New tactics “dependent induction/destruction H [generalizing id_1 .. id_n]” to do induction-inversion on instan-
tiated inductive families a la BasicElim.

Tactics "apply” and “apply in” now able to reason modulo unfolding of constants (possible source of incompatibility
in situations where apply may fail, e.g. as argument of a try or a repeat and in a ltac function); versions that do not
unfold are renamed into “simple apply” and “simple apply in” (usable for compatibility or for automation).

Tactics “apply” and “apply in” now able to traverse conjunctions and to select the first matching lemma among the
components of the conjunction; tactic “apply” also able to apply lemmas of conclusion an empty type.

Tactic ”apply” now supports application of several lemmas in a row.
Tactics “set” and ”pose” can set functions using notation ”(f x1..xn := ¢)”.
New tactic "instantiate” (without argument).

Tactic firstorder “with” and "using” options have their meaning swapped for consistency with auto/eauto (source of
incompatibility).

Tactic “generalize” now supports “at” options to specify occurrences and “as” options to name the quantified hy-
potheses.

New tactic “specialize H with a” or “specialize (H a)” allows to transform in-place a universally-quantified hypoth-
esis (H : forall x, T x) into its instantiated form (H : T a). Nota: “specialize” was in fact there in earlier versions of
Coq, but was undocumented, and had a slightly different behavior.

New tactic "contradict H” can be used to solve any kind of goal as long as the user can provide afterwards a proof
of the negation of the hypothesis H. If H is already a negation, say ~T, then a proof of T is asked. If the current
goal is a negation, say ~U, then U is saved in H afterwards, hence this new tactic “contradict” extends earlier tactic
”swap”, which is now obsolete.

Tactics f_equal is now done in ML instead of Ltac: it now works on any equality of functions, regardless of the
arity of the function.

99 99

New options “before id”, “at top”, “at bottom” for tactics "move”/”intro”.

Some more debug of reflexive omega (romega), and internal clarifications. Moreover, romega now has a variant
romega with * that can be also used on non-Z goals (nat, N, positive) via a call to a translation tactic named
zify (its purpose is to Z-ify your goal...). This zify may also be used independently of romega.

Tactic “remember” now supports an ”in” clause to remember only selected occurrences of a term.
Tactic “pose proof” supports name overwriting in case of specialization of an hypothesis.

Semi-decision tactic ”jp” for first-order intuitionistic logic moved to user contributions (subsumed by “firstorder”).

Program

Moved useful tactics in theories/Program and documented them.
Add Program.Basics which contains standard definitions for functional programming (id, apply, flip...)

More robust obligation handling, dependent pattern-matching and well-founded definitions.

102

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

New syntax ” dest term as pat in term ” for destructing objects using an irrefutable pattern while keeping equalities
(use this instead of "let” in Programs).

Program CoFixpoint is accepted, Program Fixpoint uses the new way to infer which argument decreases struc-
turally.

Program Lemma, Axiom etc... now permit to have obligations in the statement iff they can be automatically solved
by the default tactic.

Renamed ”Obligations Tactic” command to “Obligation Tactic”.
New command "Preterm [of id]” to see the actual term fed to Coq for debugging purposes.

New option “Transparent Obligations” to control the declaration of obligations as transparent or opaque. All obli-
gations are now transparent by default, otherwise the system declares them opaque if possible.

Changed the notations “left” and “right” to ”in_left” and "in_right” to hide the proofs in standard disjunctions, to
avoid breaking existing scripts when importing Program. Also, put them in program_scope.

Type Classes

New ”Class”, "Instance” and “"Program Instance” commands to define classes and instances documented in the
reference manual.

New binding construct ” [Class_1 param_1 .. param_n, Class_2 ...] ” for binding type classes, usable everywhere.
New command ” Print Classes ” and ” Print Instances some_class ” to print tables for typeclasses.
New default eauto hint database “typeclass_instances” used by the default typeclass instance search tactic.

New theories directory “theories/Classes” for standard typeclasses declarations. Module Classes.RelationClasses is
a typeclass port of Relation_Definitions plus a generic development of algebra on n-ary heterogeneous predicates.

Setoid rewriting

Complete (and still experimental) rewrite of the tactic based on typeclasses. The old interface and semantics are
almost entirely respected, except:

— Import Setoid is now mandatory to be able to call setoid_replace and declare morphisms.

tH) 5 9

>”, ”++>” and ”==>" are now right associative notations declared at level 55 in scope signature_scope.
Their introduction may break existing scripts that defined them as notations with different levels.

— One needs to use [Typeclasses unfold [cst]] if [cst] is used as an abbreviation hiding products in types of
morphisms, e.g. if ones redefines [relation] and declares morphisms whose type mentions [relation].

— The [setoid_rewrite]’s semantics change when rewriting with a lemma: it can rewrite two different instanti-
ations of the lemma at once. Use [setoid_rewrite H at 1] for (almost) the usual semantics. [setoid_rewrite]
will also try to rewrite under binders now, and can succeed on different terms than before. In particular, it
will unify under let-bound variables. When called through [rewrite], the semantics are unchanged though.

— [Add Morphism term : id] has different semantics when used with parametric morphism: it will try to find
a relation on the parameters too. The behavior has also changed with respect to default relations: the most
recently declared Setoid/Relation will be used, the documentation explains how to customize this behavior.

— Parametric Relation and Morphism are declared differently, using the new [Add Parametric] commands,
documented in the manual.

— Setoid_Theory is now an alias to Equivalence, scripts building objects of type Setoid_Theory need to unfold
(or "red”) the definitions of Reflexive, Symmetric and Transitive in order to get the same goals as before.
Scripts which introduced variables explicitly will not break.

— The order of subgoals when doing [setoid_rewrite] with side-conditions is always the same: first the new goal,
then the conditions.

3.10.

Version 8.2 103

The Coq Reference Manual, Release 8.11.2

¢ New standard library modules Classes.Morphisms declares standard morphisms on refl / sym/ trans
relations. Classes.Morphisms_Prop declares morphisms on propositional connectives and Classes.
Morphisms_Relations on generalized predicate connectives. Classes.Equivalence declares nota-
tions and tactics related to equivalences and Classes.SetoidTactics defines the setoid_replace tactics and
some support for the Add * interface, notably the tactic applied automatically before each Add Morphism
proof.

» User-defined subrelations are supported, as well as higher-order morphisms and rewriting under binders. The tactic
is also extensible entirely in Ltac. The documentation has been updated to cover these features.

¢ [setoid_rewrite] and [rewrite] now support the [at] modifier to select occurrences to rewrite, and both use the
[setoid_rewrite] code, even when rewriting with leibniz equality if occurrences are specified.

Extraction
* Improved behavior of the Caml extraction of modules: name clashes should not happen anymore.

¢ The command Extract Inductive has now a syntax for infix notations. This allows in particular to map Coq lists and
pairs onto Caml ones:

— Extract Inductive list => list [”[]” ”(::)”].
— Extract Inductive prod => "(*)” [”(,)”].

¢ In pattern matchings, a default pattern ”I _ -> ...” is now used whenever possible if several branches are identical.
For instance, functions corresponding to decidability of equalities are now linear instead of quadratic.

* A new instruction Extraction Blacklist id1 .. idn allows to prevent filename conflits with existing code, for instance
when extracting module List to Ocaml.

CoqlDE

¢ CoqIDE font defaults to monospace so as indentation to be meaningful.

CoqIDE supports nested goals and any other kind of declaration in the middle of a proof.

Undoing non-tactic commands in CoqIDE works faster.

New CoqIDE menu for activating display of various implicit informations.

Added the possibility to choose the location of tabs in coqide: (in Edit->Preferences->Misc)
* New Open and Save As dialogs in CoqIDE which filter * . v files.
Tools

» New stand-alone .vo files verifier "coqchk”.

Extended -1 coqtop/coqc option to specify a logical dir: ”-I dir -as coqdir”.

New coqtop/coqc option -exclude-dir to exclude subdirs for option -R.

The binary "parser” has been renamed to ”coq-parser”.

Improved coqdoc and dump of globalization information to give more meta-information on identifiers. All cate-
gories of Coq definitions are supported, which makes typesetting trivial in the generated documentation. Support
for hyperlinking and indexing developments in the tex output has been implemented as well.

Miscellaneous

* Coq installation provides enough files so that Ocaml’s extensions need not the Coq sources to be compiled (this
assumes O’Caml 3.10 and Camlp5).

* New commands ”Set Whelp Server” and ”Set Whelp Getter” to customize the Whelp search tool.

¢ Syntax of "Test Printing Let ref” and "Test Printing If ref” changed into "Test Printing Let for ref” and Test
Printing If for ref”.

104 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

¢ An overhauled build system (new Makefiles); see dev/doc/build-system.txt.
* Add -browser option to configure script.

* Build a shared library for the C part of Coq, and use it by default on non-(Windows or MacOS) systems. Bytecode
executables are now pure. The behaviour is configurable with -coqrunbyteflags, -coqtoolsbyteflags and -custom
configure options.

» Complexity tests can be skipped by setting the environment variable COQTEST_SKIPCOMPLEXITY.

3.11 Version 8.1

3.11.1 Summary of changes

Coq version 8.1 adds various new functionalities.

Benjamin Grégoire implemented an alternative algorithm to check the convertibility of terms in the Coq type checker.
This alternative algorithm works by compilation to an efficient bytecode that is interpreted in an abstract machine similar
to Xavier Leroy’s ZINC machine. Convertibility is performed by comparing the normal forms. This alternative algorithm
is specifically interesting for proofs by reflection. More generally, it is convenient in case of intensive computations.

Christine Paulin implemented an extension of inductive types allowing recursively non uniform parameters. Hugo Her-
belin implemented sort-polymorphism for inductive types (now called template polymorphism).

Claudio Sacerdoti Coen improved the tactics for rewriting on arbitrary compatible equivalence relations. He also gener-
alized rewriting to arbitrary transition systems.

Claudio Sacerdoti Coen added new features to the module system.

Benjamin Grégoire, Assia Mahboubi and Bruno Barras developed a new, more efficient and more general simplification
algorithm for rings and semirings.

Laurent Théry and Bruno Barras developed a new, significantly more efficient simplification algorithm for fields.
Hugo Herbelin, Pierre Letouzey, Julien Forest, Julien Narboux and Claudio Sacerdoti Coen added new tactic features.
Hugo Herbelin implemented matching on disjunctive patterns.

New mechanisms made easier the communication between Coq and external provers. Nicolas Ayache and Jean-
Christophe Filliatre implemented connections with the provers cvcl, Simplify and zenon. Hugo Herbelin implemented an
experimental protocol for calling external tools from the tactic language.

Matthieu Sozeau developed Russell, an experimental language to specify the behavior of programs with subtypes.

A mechanism to automatically use some specific tactic to solve unresolved implicit has been implemented by Hugo Her-
belin.

Laurent Théry’s contribution on strings and Pierre Letouzey and Jean-Christophe Fillidtre’s contribution on finite maps
have been integrated to the Coq standard library. Pierre Letouzey developed a library about finite sets “a la Objective
Caml”. With Jean-Marc Notin, he extended the library on lists. Pierre Letouzey’s contribution on rational numbers has
been integrated and extended.

Pierre Corbineau extended his tactic for solving first-order statements. He wrote a reflection-based intuitionistic tautology
solver.

Pierre Courtieu, Julien Forest and Yves Bertot added extra support to reason on the inductive structure of recursively
defined functions.

Jean-Marc Notin significantly contributed to the general maintenance of the system. He also took care of cogdoc.

Pierre Castéran contributed to the documentation of (co-)inductive types and suggested improvements to the libraries.

3.11. Version 8.1 105

The Coq Reference Manual, Release 8.11.2

Pierre Corbineau implemented a declarative mathematical proof language, usable in combination with the tactic-based
style of proof.

Finally, many users suggested improvements of the system through the Coq-Club mailing list and bug-tracker systems,
especially user groups from INRIA Rocquencourt, Radboud University, University of Pennsylvania and Yale University.

Palaiseau, July 2006
Hugo Herbelin

3.11.2 Details of changes in 8.1beta

Logic
* Added sort-polymorphism on inductive families
* Allowance for recursively non uniform parameters in inductive types
Syntax
* No more support for version 7 syntax and for translation to version 8 syntax.
* Infixpoints, the { struct ... } annotation is not mandatory any more when only one of the arguments has an inductive
type
* Added disjunctive patterns in match-with patterns
* Support for primitive interpretation of string literals
» Extended support for Unicode ranges
Vernacular commands
* Added "Print Ltac qualid” to print a user defined tactic.
* Added "Print Rewrite HintDb” to print the content of a DB used by autorewrite.
¢ Added "Print Canonical Projections”.
¢ Added "Example” as synonym of "Definition”.
* Added "Proposition” and "Corollary” as extra synonyms of "Lemma”.

* New command "Whelp” to send requests to the Helm database of proofs formalized in the Calculus of Inductive
Constructions.

¢ Command “functional induction” has been re-implemented from the new “Function” command.
Ltac and tactic syntactic extensions
» New primitive “external” for communication with tool external to Coq

¢ New semantics for “match t with”: if a clause returns a tactic, it is now applied to the current goal. If it fails, the
next clause or next matching subterm is tried (i.e. it behaves as “match goal with” does). The keyword “lazymatch”
can be used to delay the evaluation of tactics occurring in matching clauses.

* Hint base names can be parametric in auto and trivial.
¢ Occurrence values can be parametric in unfold, pattern, etc.
* Added entry constr_may_eval for tactic extensions.

» Low-priority term printer made available in ML-written tactic extensions.

106 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

Tacti

”Tactic Notation” extended to allow notations of tacticals.
cs

New implementation and generalization of setoid_* (setoid_rewrite, setoid_symmetry,
setoid_transitivity, setoid_reflexivity and autorewite). New syntax for declaring
relations and morphisms (old syntax still working with minor modifications, but deprecated).

New implementation (still experimental) of the ring tactic with a built-in notion of coefficients and a better usage
of setoids.

New conversion tactic “vm_compute”: evaluates the goal (or an hypothesis) with a call-by-value strategy, using the
compiled version of terms.

When rewriting H where H is not directly a Coq equality, search first H for a registered setoid equality before starting
to reduce in H. This is unlikely to break any script. Should this happen nonetheless, one can insert manually some
“unfold ... in H” before rewriting.

Fixed various bugs about (setoid) rewrite ... in ... (in particular bug #5941)

“rewrite ... in” now accepts a clause as place where to rewrite instead of just a simple hypothesis name. For in-
stance: rewrite H in H1,H2 |- * means rewrite H in H1l; rewrite H in H2; rewrite
Hrewrite H in * |-willdotry rewrite H in Hi for all hypothesis Hi <> H.

Added ”dependent rewrite term” and “dependent rewrite term in hyp”.

Added “autorewrite with ... in hyp [using ...]”.

Tactic "replace” now accepts a “by” tactic clause.

Added “clear - id” to clear all hypotheses except the ones depending in id.

The argument of Declare Left Step and Declare Right Step is now a term (it used to be a reference).
Omega now handles arbitrary precision integers.

Several bug fixes in Reflexive Omega (romega).

Idtac can now be left implicit in a [...I...] construct: for instance, [foo | | bar] stands for [foo | idtac | bar].
Fixed a "fold” bug (non critical but possible source of incompatibilities).

Added classical_left and classical_right which transforms |- A \/ Binto ~B |- A and ~A |- B respec-
tively.

Added command “Declare Implicit Tactic” to set up a default tactic to be used to solve unresolved subterms of
term arguments of tactics.

Better support for coercions to Sortclass in tactics expecting type arguments.

Tactic "assert” now accepts “as” intro patterns and “by” tactic clauses.

New tactic "pose proof” that generalizes “assert (id:=p)” with intro patterns.

New introduction pattern ”?” for letting Coq choose a name.

Introduction patterns now support side hypotheses (e.g. intros [I] on ”(nat -> nat) -> nat” works).
New introduction patterns ”->" and ”<-" for immediate rewriting of introduced hypotheses.

Introduction patterns coming after non trivial introduction patterns now force full introduction of the first pattern
(e.g. intros [[|] pl] onnat->nat->nat now behaves like intros [[]?] pl)

Added “eassumption”.

Added option "using lemmas’ to auto, trivial and eauto.

3.11

. Version 8.1 107

The Coq Reference Manual, Release 8.11.2

¢ Tactic "congruence” is now complete for its intended scope (ground equalities and inequalities with constructors).
Furthermore, it tries to equates goal and hypotheses.

» New tactic “rtauto” solves pure propositional logic and gives a reflective version of the available proof.

¢ Numbering of ”pattern”, "unfold”, ”simpl”, ... occurrences in “match with” made consistent with the printing
of the return clause after the term to match in the “match-with” construct (use ”Set Printing All” to see hidden
occurrences).

¢ Generalization of induction “induction x1...xn using scheme” where scheme is an induction principle with complex
predicates (like the ones generated by function induction).

* Some small Ltac tactics has been added to the standard library (file Tactics.v):

f_equal : instead of using the different f_equalX lemmas

case_eq : a "case” without loss of information. An equality stating the current situation is generated in every
sub-cases.

— swap : for a negated goal ~B and a negated hypothesis H:~A, swap H asks you to prove A from hypothesis B

revert : revert H is generalize H; clear H.
Extraction
¢ All type parts should now disappear instead of sometimes producing _ (for instance in Map.empty).
» Haskell extraction: types of functions are now printed, better unsafeCoerce mechanism, both for hugs and ghc.
* Scheme extraction improved, see http://www.pps.jussieu.fr/~letouzey/scheme.
* Many bug fixes.
Modules
¢ Added "Locate Module qualid” to get the full path of a module.
* Module/Declare Module syntax made more uniform.
¢ Added syntactic sugar "Declare Module Export/Import” and "Module Export/Import”.

¢ Added syntactic sugar "Module M(Export/Import X Y: T)” and "Module Type M(Export/Import X Y: T)” (only
for interactive definitions)

* Construct "with” generalized to module paths: T with (DefinitionlModule) M1.M2....Mn.l :=T.
Notations

* Option “format” aware of recursive notations.

* Added insertion of spaces by default in recursive notations w/o separators.

* No more automatic printing box in case of user-provided printing “format”.

¢ New notation “exists! x:A, P” for unique existence.

* Notations for specific numerals now compatible with generic notations of numerals (e.g. ”1” can be used to denote
the unit of a group without hiding 1%nat)

Libraries
e New library on String and Ascii characters (contributed by L. Thery).
¢ New library FSets+FMaps of finite sets and maps.
* New library QArith on rational numbers.

¢ Small extension of Zmin.V, new Zmax.v, new Zminmax.v.

108 Chapter 3. Recent changes

http://www.pps.jussieu.fr/~letouzey/scheme

The Coq Reference Manual, Release 8.11.2

Tools

3.11

Reworking and extension of the files on classical logic and description principles (possible incompatibilities)

Few other improvements in ZArith potentially exceptionally breaking the compatibility (useless hypothesys of
Zgt_square_simpl and Zlt_square_simpl removed; fixed names mentioning letter O instead of digit 0; weaken
premises in Z_lt_induction).

Restructuration of Eqdep_dec.v and Eqdep.v: more lemmas in Type.

Znumtheory now contains a gcd function that can compute within Coq.

More lemmas stated on Type in Wf.v, removal of redundant Acc_iter and Acc_iter2.
Change of the internal names of lemmas in Omegal.emmas.

Acc in Wf.v and clos_refl_trans in Relation_Operators.v now rely on the allowance for recursively non uniform
parameters (possible source of incompatibilities: explicit pattern-matching on these types may require to remove
the occurrence associated to their recursively non uniform parameter).

Coq.List.In_dec has been set transparent (this may exceptionally break proof scripts, set it locally opaque for
compatibility).

More on permutations of lists in List.v and Permutation.v.
List.v has been much expanded.
New file SetoidList.v now contains results about lists seen with respect to a setoid equality.

Library NArith has been expanded, mostly with results coming from Intmap (for instance a bitwise xor), plus also
a bridge between N and Bitvector.

Intmap has been reorganized. In particular its address type “addr” is now N. User contributions known to use
Intmap have been adapted accordingly. If you're using this library please contact us. A wrapper FMapIntMap now
presents Intmap as a particular implementation of FMaps. New developments are strongly encouraged to use either
this wrapper or any other implementations of FMap instead of using directly this obsolete Intmap.

New semantics for coqtop options (”-batch” expects option ”-top dir” for loading vernac file that contains defini-
tions).

Tool coq_makefile now removes custom targets that are file names in “make clean”

New environment variable COQREMOTEBROWSER to set the command invoked to start the remote browser
both in Coq and cogide. Standard syntax: ”%s” is the placeholder for the URL.

.3 Details of changes in 8.1gamma

Syntax

changed parsing precedence of let/in and fun constructions of Ltac: let x :=tin el; e2 is now parsed as let x :=t in
(el;e2).

Language and commands

Added sort-polymorphism for definitions in Type (but finally abandoned).
Support for implicit arguments in the types of parameters in (co-)fixpoints and (co-)inductive declarations.

Improved type inference: use as much of possible general information. before applying irreversible unification
heuristics (allow e.g. to infer the predicate in ”(exist _ O (refl_equal 0) : {n:nat | n=0 })”).

Support for Miller-Pfenning’s patterns unification in type synthesis (e.g. can infer P such that P x y = phi(x,y)).

Support for “where” clause in cofixpoint definitions.

3.11.

Version 8.1 109

The Coq Reference Manual, Release 8.11.2

* New option "Set Printing Universes” for making Type levels explicit.
Tactics

* Improved implementation of the ring and field tactics. For compatibility reasons, the previous tactics are renamed
as legacy ring and legacy field, but should be considered as deprecated.

* New declarative mathematical proof language.

* Support for argument lists of arbitrary length in Tactic Notation.

* rewrite ... in Hnow fails if H is used either in an hypothesis or in the goal.
¢ The semantics of rewrite ... in * has been slightly modified (see doc).

* Support for as clause in tactic injection.

* New forward-reasoning tactic “apply in”.

* Ltac fresh operator now builds names from a concatenation of its arguments.

* New ltac tactic “remember” to abstract over a subterm and keep an equality

* Support for Miller-Pfenning’s patterns unification in apply/rewrite/... (may lead to few incompatibilities - generally
now useless tactic calls).

Bug fixes
¢ Fix for notations involving basic "match” expressions.

* Numerous other bugs solved (a few fixes may lead to incompatibilities).

3.11.4 Details of changes in 8.1

Bug fixes
¢ Many bugs have been fixed (cf cog-bugs web page)
Tactics

¢ New tactics ring, ring_simplify and new tactic field now able to manage power to a positive integer constant. Tactic
ring on Z and R, and field on R manage power (may lead to incompatibilities with V8.1gamma).

¢ Tactic field_simplify now applicable in hypotheses.
» New field_simplify_eq for simplifying field equations into ring equations.

e Tactics ring, ring_simplify, field, field_simplify and field_simplify_eq all able to apply user-given equations to
rewrite monoms on the fly (see documentation).

Libraries

» New file ConstructiveEpsilon.v defining an epsilon operator and proving the axiom of choice constructively for a
countable domain and a decidable predicate.

3.12 Version 8.0

3.12.1 Summary of changes

Coq version 8 is a major revision of the Coq proof assistant. First, the underlying logic is slightly different. The so-called
impredicativity of the sort Set has been dropped. The main reason is that it is inconsistent with the principle of description
which is quite a useful principle for formalizing mathematics within classical logic. Moreover, even in an constructive

110 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

setting, the impredicativity of Set does not add so much in practice and is even subject of criticism from a large part of the
intuitionistic mathematician community. Nevertheless, the impredicativity of Set remains optional for users interested in
investigating mathematical developments which rely on it.

Secondly, the concrete syntax of terms has been completely revised. The main motivations were

* a more uniform, purified style: all constructions are now lowercase, with a functional programming perfume (e.g.
abstraction is now written fun), and more directly accessible to the novice (e.g. dependent product is now written
forall and allows omission of types). Also, parentheses are no longer mandatory for function application.

* extensibility: some standard notations (e.g. “<” and “>”) were incompatible with the previous syntax. Now all
standard arithmetic notations (=, +, *, /, <, <=, ... and more) are directly part of the syntax.

Together with the revision of the concrete syntax, a new mechanism of interpretation scopes permits to reuse the same
symbols (typically +, -, *, /, <, <=) in various mathematical theories without any ambiguities for Coq, leading to a largely
improved readability of Coq scripts. New commands to easily add new symbols are also provided.

Coming with the new syntax of terms, a slight reform of the tactic language and of the language of commands has been
carried out. The purpose here is a better uniformity making the tactics and commands easier to use and to remember.

Thirdly, a restructuring and uniformization of the standard library of Coq has been performed. There is now just one
Leibniz equality usable for all the different kinds of Coq objects. Also, the set of real numbers now lies at the same level
as the sets of natural and integer numbers. Finally, the names of the standard properties of numbers now follow a standard
pattern and the symbolic notations for the standard definitions as well.

The fourth point is the release of CoqIDE, a new graphical gtk2-based interface fully integrated with Coq. Close in
style to the Proof General Emacs interface, it is faster and its integration with Coq makes interactive developments more
friendly. All mathematical Unicode symbols are usable within CoqIDE.

Finally, the module system of Coq completes the picture of Coq version 8.0. Though released with an experimental status
in the previous version 7.4, it should be considered as a salient feature of the new version.

Besides, Coq comes with its load of novelties and improvements: new or improved tactics (including a new tactic for
solving first-order statements), new management commands, extended libraries.

Bruno Barras and Hugo Herbelin have been the main contributors of the reflection and the implementation of the new
syntax. The smart automatic translator from old to new syntax released with Coq is also their work with contributions by
Olivier Desmettre.

Hugo Herbelin is the main designer and implementer of the notion of interpretation scopes and of the commands for
easily adding new notations.

Hugo Herbelin is the main implementer of the restructured standard library.

Pierre Corbineau is the main designer and implementer of the new tactic for solving first-order statements in presence of
inductive types. He is also the maintainer of the non-domain specific automation tactics.

Benjamin Monate is the developer of the CoqIDE graphical interface with contributions by Jean-Christophe Fillidtre,
Pierre Letouzey, Claude Marché and Bruno Barras.

Claude Marché coordinated the edition of the Reference Manual for Coq V8.0.
Pierre Letouzey and Jacek Chrzaszcz respectively maintained the extraction tool and module system of Coq.

Jean-Christophe Fillidtre, Pierre Letouzey, Hugo Herbelin and other contributors from Sophia-Antipolis and Nijmegen
participated in extending the library.

Julien Narboux built a NSIS-based automatic Coq installation tool for the Windows platform.

Hugo Herbelin and Christine Paulin coordinated the development which was under the responsibility of Christine Paulin.

Palaiseau & Orsay, Apr. 2004

3.12. Version 8.0 111

The Coq Reference Manual, Release 8.11.2

Hugo Herbelin & Christine Paulin
(updated Apr. 2006)

3.12.2 Details of changes in 8.0beta old syntax

Logic
* Set now predicative by default
» New option -impredicative-set to set Set impredicative

¢ The standard library doesn’t need impredicativity of Set and is compatible with the classical axioms which contradict
Set impredicativity

Syntax for arithmetic

”__%

* Notation and "<>” in Z and R are no longer implicitly in Z or R (with possible introduction of a coercion), use
<Z>..=...or <Z>..<>... instead

» Locate applied to a simple string (e.g. ”+”) searches for all notations containing this string
Vernacular commands

* "Declare ML Module” now allows to import .cma files. This avoids to use a bunch of “Declare ML Module”
statements when using several ML files.

* ”Set Printing Width n” added, allows to change the size of width printing.
* “Implicit Variables Type x,y:t” (new syntax: “Implicit Types x y:t”) assigns default types for binding variables.

 Declarations of Hints and Notation now accept a “Local” flag not to be exported outside the current file even if not
in section

* "Print Scopes” prints all notations

e New command ”About name” for light printing of type, implicit arguments, etc.
* New command ”Admitted” to declare incompletely proven statement as axioms
¢ New keyword “Conjecture” to declare an axiom intended to be provable

 SearchAbout can now search for lemmas referring to more than one constant and on substrings of the name of the
lemma

¢ ”Print Implicit” displays the implicit arguments of a constant
* Locate now searches for all names having a given suffix

e New command "Functional Scheme” for building an induction principle from a function defined by case analysis
and fix.

Commands
* new coqtop/coqc option -dont-load-proofs not to load opaque proofs in memory

Implicit arguments
¢ Inductive in sections declared with implicits now “discharged” with implicits (like constants and variables)
 Implicit Arguments flags are now synchronous with reset

» New switch "Unset/Set Printing Implicits” (new syntax: "Unset/Set Printing Implicit”) to globally control printing
of implicits

112 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

Grammar extensions

* Many newly supported UTF-8 encoded unicode blocks - Greek letters (0380-03FF), Hebrew letters (UO5SDO0-05EF),
letter-like symbols (2100-214F, that includes double N,Z,Q,R), prime signs (from 2080-2089) and characters from
many written languages are valid in identifiers - mathematical operators (2200-22FF), supplemental mathematical
operators (2A00-2AFF), miscellaneous technical (2300-23FF that includes sqrt symbol), miscellaneous symbols
(2600-26FF), arrows (2190-21FF and 2900-297F), invisible mathematical operators (from 2080-2089), ... are
valid symbols

Library
¢ New file about the factorial function in Arith

* An additional elimination Acc_iter for Acc, simpler than Acc_rect. This new elimination principle is used for
definition well_founded_induction.

e New library NArith on binary natural numbers
* R is now of type Set
* Restructuration in ZArith library

— “true_sub” used in Zplus now a definition, not a local one (source of incompatibilities in proof referring to
true_sub, may need extra Unfold)

— Some lemmas about minus moved from fast_integer to Arith/Minus.v (le_minus, 1t_mult_left) (theoretical
source of incompatibilities)

— Several lemmas moved from auxiliary.v and zarith_aux.v to fast_integer.v (theoretical source of incompati-
bilities)
— Variables names of iff_trans changed (source of incompatibilities)

— ZArith lemmas named OMEGA something or fast_ something, and lemma new_var are now out of ZArith
(except OMEGA?2)

— Redundant ZArith lemmas have been renamed: for the following pairs, use the second name
(Zle_Zmult_right2, Zle_mult_simpl), (OMEGA2, Zle_0O_plus), (Zplus_assoc_l, Zplus_assoc),
(Zmult_one, Zmult_1_n), (Zmult_assoc_l, Zmult_assoc), (Zmult_minus_distr, Zmult_Zminus_distr_I)
(add_un_double_moins_un_xO, is_double_moins_un), (RIt_monotony_rev,RIt_monotony_contra) (source
of incompatibilities)

* Few minor changes (no more implicit arguments in Zmult_Zminus_distr_l and Zmult_Zminus_distr_r, lemmas
moved from Zcomplements to other files) (rare source of incompatibilities)

¢ New lemmas provided by users added
Tactic language
* Fail tactic now accepts a failure message
* Idtac tactic now accepts a message
¢ New primitive tactic "Freshld” (new syntax: “fresh”) to generate new names
* Debugger prints levels of calls
Tactics
* Replace can now replace proofs also

* Fail levels are now decremented at "Match Context” blocks only and if the right-hand-side of "Match term With”
are tactics, these tactics are never evaluated immediately and do not induce backtracking (in contrast with "Match
Context”)

3.12. Version 8.0 113

The Coq Reference Manual, Release 8.11.2

Quantified names now avoid global names of the current module (like Intro names did) [source of rare incompati-
bilities: 2 changes in the set of user contribs]

NewDestruct/NewInduction accepts intro patterns as introduction names
NewDestruct/NewInduction now work for non-inductive type using option “using”

A NewlInduction naming bug for inductive types with functional arguments (e.g. the accessibility predicate) has
been fixed (source of incompatibilities)

Symmetry now applies to hypotheses too

Inversion now accept option “as [...]” to name the hypotheses

Contradiction now looks also for contradictory hypotheses stating ~A and A (source of incompatibility)
”Contradiction c” try to find an hypothesis in context which contradicts the type of ¢

Ring applies to new library NArith (require file NArithRing)

Field now works on types in Set

Auto with reals now try to replace le by ge (Rge_le is no longer an immediate hint), resulting in shorter proofs
Instantiate now works in hyps (syntax : Instantiate in ...)

Some new tactics : EConstructor, ELeft, Eright, ESplit, EExists

New tactic "functional induction” to perform case analysis and induction following the definition of a function.

Clear now fails when trying to remove a local definition used by a constant appearing in the current goal

Extraction (See details in plugins/extraction/CHANGES)

The old commands: (Recursive) Extraction Module M. are now: (Recursive) Extraction Library M. To use these
commands, M should come from a library M.v

The other syntax Extraction & Recursive Extraction now accept module names as arguments.

Bugs
* see coq-bugs server for the complete list of fixed bugs
Miscellaneous
* Implicit parameters of inductive types definition now taken into account for inferring other implicit arguments
Incompatibilities
* Persistence of true_sub (4 incompatibilities in Coq user contributions)
 Variable names of some constants changed for a better uniformity (2 changes in Coq user contributions)
* Naming of quantified names in goal now avoid global names (2 occurrences)
¢ NewlInduction naming for inductive types with functional arguments (no incompatibility in Coq user contributions)
¢ Contradiction now solve more goals (source of 2 incompatibilities)
* Merge of eq and eqT may exceptionally result in subgoals now solved automatically
¢ Redundant pairs of ZArith lemmas may have different names: it may cause ”Apply/Rewrite with” to fail if us-
ing the first name of a pair of redundant lemmas (this is solved by renaming the variables bound by "with”; 3
incompatibilities in Coq user contribs)
e ML programs referring to constants from fast_integer.v must use “Coqlib.gen_constant_modules Co-
glib.zarith_base_modules” instead
114 Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

3.12.3 Details of changes in 8.0beta new syntax

New concrete syntax

* A completely new syntax for terms

* A more uniform syntax for tactics and the tactic language

A few syntactic changes for vernacular commands

* A smart automatic translator translating V8.0 files in old syntax to files valid for V8.0
Syntax extensions

e ”Grammar” for terms disappears

* ”Grammar” for tactics becomes “Tactic Notation”

» ”Syntax” disappears

Introduction of a notion of interpretation scope allowing to use the same notations in various contexts without using

9 9

specific delimiters (e.g the same expression “4<=3+x" is interpreted either in “nat”, “positive”, "N” (previously
“entier”), ”Z”, "R”, depending on which interpretation scope is currently open) [see documentation for details]

* Notation now mandatorily requires a precedence and associativity (default was to set precedence to 1 and associa-
tivity to none)

Revision of the standard library

e Many lemmas and definitions names have been made more uniform mostly in Arith, NArith, ZArith and Reals
(e.g: "times” -> "Pmult”, “times_sym” -> "Pmult_comm”, “Zle_Zmult_pos_right” ->”Zmult_le_compat_r”, ”SU-
PERIEUR” -> "Gt”, ”ZERO” -> "Z0”)

* Order and names of arguments of basic lemmas on nat, Z, positive and R have been made uniform.
 Notions of Coq initial state are declared with (strict) implicit arguments

* eq merged with eqT: old eq disappear, new eq (written =) is old eqT and new eqT is syntactic sugar for new eq
(notation == is an alias for = and is written as it, exceptional source of incompatibilities)

 Similarly, ex, ex2, all, identity are merged with exT, exT2, allT, identityT
 Arithmetical notations for nat, positive, N, Z, R, without needing any backquote or double-backquotes delimiters.
* In Lists: new concrete notations; argument of nil is now implicit
¢ All changes in the library are taken in charge by the translator
Semantical changes during translation
* Recursive keyword set by default (and no longer needed) in Tactic Definition
 Set Implicit Arguments is strict by default in new syntax
* reductions in hypotheses of the form ... in H” now apply to the type also if H is a local definition
* etc
Gallina
¢ New syntax of the form “Inductive bool : Set := true, false : bool.” for enumerated types

* Experimental syntax of the form p.(fst) for record projections (activable with option ”Set Printing Projections”
which is recognized by the translator)

Known problems of the automatic translation

3.12. Version 8.0 115

The Coq Reference Manual, Release 8.11.2

iso-latin-1 characters are no longer supported: move your files to 7-bits ASCII or unicode before translation (switch
to unicode is automatically done if a file is loaded and saved again by coqide)

Renaming in ZArith: incompatibilities in Coq user contribs due to merging names INZ, from Reals, and inject_nat.
Renaming and new lemmas in ZArith: may clash with names used by users

Restructuration of ZArith: replace requirement of specific modules in ZArith by “Require Import ZArith_base” or
“Require Import ZArith”

Some implicit arguments must be made explicit before translation: typically for “length nil”, the implicit argument
of length must be made explicit

Grammar rules, Infix notations and V7.4 Notations must be updated wrt the new scheme for syntactic extensions
(see translator documentation)

Unsafe for annotation Cases when constructors coercions are used or when annotations are eta-reduced predicates

3.12.4 Details of changes in 8.0

Vernacular commands

New option ”Set Printing All” to deactivate all high-level forms of printing (implicit arguments, coercions, destruc-
ting let, if-then-else, notations, projections)

”Functional Scheme” and Functional Induction” extended to polymorphic types and dependent types

Notation now allows recursive patterns, hence recovering parts of the functionalities of pre-V8 Grammar/Syntax
commands

Command ”Print.” discontinued.

Redundant syntax “Implicit Arguments On/Off” discontinued

New syntax

Semantics change of the if-then-else construction in new syntax: ”if c then t1 else t2” now stands for “match ¢ with
cl _..._=>tllc2_.. _=>1t2end” with no dependency of tl and t2 in the arguments of the constructors; this
may cause incompatibilities for files translated using coq 8.0beta

Interpretation scopes

Delimiting key %bool for bool_scope added

Import no more needed to activate argument scopes from a module

Tactics and the tactic Language

Semantics of “assert” is now consistent with the reference manual
New tactics stepl and stepr for chaining transitivity steps
Tactic “replace ... with ... in” added

Intro patterns now supported in Ltac (parsed with prefix “ipattern:”)

Executables and tools

Added option -top to change the name of the toplevel module "Top”
Coqdoc updated to new syntax and now part of Coq sources

XML exportation tool now exports the structure of vernacular files (cf chapter 13 in the reference manual)

User contributions

116

Chapter 3. Recent changes

The Coq Reference Manual, Release 8.11.2

 User contributions have been updated to the new syntax
Bug fixes
* Many bugs have been fixed (cf cog-bugs web page)

3.12. Version 8.0 117

CHAPTER
FOUR

THE LANGUAGE

4.1 The Gallina specification language

This chapter describes Gallina, the specification language of Coq. It allows developing mathematical theories and to
prove specifications of programs. The theories are built from axioms, hypotheses, parameters, lemmas, theorems and
definitions of constants, functions, predicates and sets. The syntax of logical objects involved in theories is described in
Section Terms. The language of commands, called The Vernacular is described in Section The Vernacular.

In Coq, logical objects are typed to ensure their logical correctness. The rules implemented by the typing algorithm are
described in Chapter Calculus of Inductive Constructions.

4.1.1 About the grammars in the manual
Grammars are presented in Backus-Naur form (BNF). Terminal symbols are set in black typewriter font. In
addition, there are special notations for regular expressions.

An expression enclosed in square brackets [..] means at most one occurrence of this expression (this corresponds to an
optional component).

The notation “entry sep .. sep entry” stands for a non empty sequence of expressions parsed by entry and
separated by the literal “sep”.

Similarly, the notation “entry .. entry” stands for a non empty sequence of expressions parsed by the “entry”
entry, without any separator between.

At the end, the notation “[entry sep .. sep entry]” stands for a possibly empty sequence of expressions parsed
by the “ent ry” entry, separated by the literal “sep”.

4.1.2 Lexical conventions

Blanks Space, newline and horizontal tab are considered blanks. Blanks are ignored but they separate tokens.

Comments Comments are enclosed between (* and *) . They can be nested. They can contain any character. However,
embedded st ring literals must be correctly closed. Comments are treated as blanks.

Identifiers and field identifiers Identifiers, written ident, are sequences of letters, digits, _ and ', that do not start
with a digit or '. That is, they are recognized by the following grammar (except that the string __ is reserved; it is
not a valid identifier):

ident = first_letter[subsequent_letter..subsequent_letter]

! This is similar to the expression “entry { sep entry }” in standard BNF, or “entry (sep entry)*” in the syntax of regular expressions.

118

The Coq Reference Manual, Release 8.11.2

field n= .ident
first_letter = a..z | A..Z | _ | unicode_letter
subsequent_letter = first_letter | 0..9 | ' | unicode_id part

All characters are meaningful. In particular, identifiers are case-sensitive. unicode_letter non-exhaustively
includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian, Hangul, Hiragana and Katakana charac-
ters, CJK ideographs, mathematical letter-like symbols and non-breaking space. unicode_id_part non-
exhaustively includes symbols for prime letters and subscripts.

Field identifiers, written £ie1d, are identifiers prefixed by . (dot) with no blank between the dot and the identifier.
They are used in the syntax of qualified identifiers.

Numerals Numerals are sequences of digits with an optional fractional part and exponent, optionally preceded by a minus
sign. int is an integer; a numeral without fractional or exponent parts. num is a non-negative integer. Underscores
embedded in the digits are ignored, for example 1_000_000 is the same as 1000000.

numeral = num[. num] [exp[sign]num]
int = [-]1num

num = digit..digit

digit = 0..9

exp = e | E

sign L= + | -

Strings Strings begin and end with " (double quote). Use "" to represent a double quote character within a string. In
the grammar, strings are identified with st ring.

Keywords The following character sequences are reserved keywords that cannot be used as identifiers:

_ Axiom CoFixpoint Definition Fixpoint Hypothesis IF Parameter Prop
SProp Set Theorem Type Variable as at by cofix discriminated else
end exists exists2 fix for forall fun if in lazymatch let match
multimatch return then using where with

Note that plugins may define additional keywords when they are loaded.

Other tokens The set of tokens defined at any given time can vary because the Notat i on command can define new
tokens. A Require command may load more notation definitions, while the end of a Sect i on may remove no-
tations. Some notations are defined in the basic library (see The Coq library) and are normally loaded automatically
at startup time.

Here are the character sequences that Coq directly defines as tokens without using Notat i on (omitting 25 spe-
cialized tokens that begin with #int 63_):

VP #0% & " (() (bfs) (dfs)) * ** + , — —>
(e s = = i> 1>> ;< <4 <= <
<<: <= ==>>>>>= 2?2 @ Q{ [[=] eqn

G S G O A N R NI

When multiple tokens match the beginning of a sequence of characters, the longest matching token is used. Occa-
sionally you may need to insert spaces to separate tokens. For example, if ~ and ~~ are both defined as tokens, the
inputs ~ ~ and ~~ generate different tokens, whereas if ~~ is not defined, then the two inputs are equivalent.

4.1.3 Terms

4.1. The Gallina specification language 119

The Coq Reference Manual, Release 8.11.2

Syntax of terms

The following grammars describe the basic syntax of the terms of the Calculus of Inductive Constructions (also called
Cic). The formal presentation of Cic is given in Chapter Calculus of Inductive Constructions. Extensions of this syntax
are given in Chapter Extensions of Gallina. How to customize the syntax is described in Chapter Syntax extensions and
interpretation scopes.

term = forall binders , term
fun binders => term
fix fix bodies
cofix cofix _bodies
let ident [binders] [: term] := term in term
let fix fix _body in term
let cofix cofix_body in term
let ([name , .. , name]) [dep_ret_type] := term in term
let ' pattern [in term] := term [return_type] in term
if term [dep_ret_type] then term else term
term : term
term <: term
term :>
term —-> term
term arg .. arg
@ qualid [term .. term]
term % ident
match match_item , .. , match_item [return_type] with
[[I] equation | .. | equation] end
qualid
sort
num
(term)
arg = term
(ident := term)
binders RES binder .. binder
binder = name
(name .. name : term)
(name [: term] := term)
' pattern
name BES ident | _
qualid ident | qualid field
sort SProp | Prop | Set | Type
fix_bodies = fix_body
fix_body with fix_body with .. with fix body for ident
cofix_bodies = cofix_body
cofix_body with cofix_body with .. with cofix_body for ident
fix_body u= ident binders [annotation] [: term] := term
cofix_body ident [binders] [: term] := term
annotation { struct ident }
match_item term [as name] [in qualid [pattern .. pattern]]
dep_ret_type = [as name] return_type
return_type return term
equation mult_pattern | .. | mult_pattern => term
mult_pattern = pattern , .. , pattern

120 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

pattern = qualid pattern .. pattern
@ gualid pattern .. pattern
pattern as ident
pattern % ident
qualid
num
(pattern | .. | pattern)

Types

Coq terms are typed. Coq types are recognized by the same syntactic class as term. We denote by type the semantic
subclass of types inside the syntactic class term.

Qualified identifiers and simple identifiers

Qualified identifiers (qua 1 1 d) denote global constants (definitions, lemmas, theorems, remarks or facts), global variables
(parameters or axioms), inductive types or constructors of inductive types. Simple identifiers (or shortly ident) are a
syntactic subset of qualified identifiers. Identifiers may also denote local variables, while qualified identifiers do not.

Numerals

Numerals have no definite semantics in the calculus. They are mere notations that can be bound to objects through the
notation mechanism (see Chapter Syntax extensions and interpretation scopes for details). Initially, numerals are bound to
Peano’s representation of natural numbers (see Datatypes).

Note: Negative integers are not at the same level as num, for this would make precedence unnatural.

Sorts

There are four sorts SProp, Prop, Set and Type.
* SProp is the universe of definitionally irrelevant propositions (also called strict propositions).

e Prop is the universe of logical propositions. The logical propositions themselves are typing the proofs. We denote
propositions by form. This constitutes a semantic subclass of the syntactic class term.

* Set is the universe of program types or specifications. The specifications themselves are typing the programs. We
denote specifications by specif. This constitutes a semantic subclass of the syntactic class t erm.

e Type is the type of sorts.

More on sorts can be found in Section Sorts.
Binders
Various constructions such as fun, forall, fix and cofix bind variables. A binding is represented by an identifier.

If the binding variable is not used in the expression, the identifier can be replaced by the symbol _. When the type of a
bound variable cannot be synthesized by the system, it can be specified with the notation (ident : type). Thereis

4.1. The Gallina specification language 121

The Coq Reference Manual, Release 8.11.2

+
also a notation for a sequence of binding variables sharing the same type: (| ident : type). A binder can also be
any pattern prefixed by a quote, e.g. ' (x,Vy).

Some constructions allow the binding of a variable to value. This is called a “let-binder”. The entry binder of
the grammar accepts either an assumption binder as defined above or a let-binder. The notation in the latter case is
(ident := term). In a let-binder, only one variable can be introduced at the same time. It is also possible to give
the type of the variable as follows: (ident : type := term).

Lists of binders are allowed. In the case of fun and forall, it is intended that at least one binder of the list is an
assumption otherwise fun and forall gets identical. Moreover, parentheses can be omitted in the case of a single sequence
of bindings sharing the same type (e.g.: fun (x y z : A) => tcanbeshortenedin fun x y z : A => t).

Abstractions

The expression fun ident : type => termdefines the abstraction of the variable i dent, of type t ype, over
the term term. It denotes a function of the variable ident that evaluates to the expression term (e.g. fun x
A => x denotes the identity function on type A). The keyword fun can be followed by several binders as given in

Section Binders. Functions over several variables are equivalent to an iteration of one-variable functions. For instance

. ; + . ; +
the expression fun |ident; : type => termdenotes the same functionas| fun ident, : type =>

term. If alet-binder occurs in the list of binders, it is expanded to a let-in definition (see Section Lez-in definitions).

Products

The expression forall ident : type, termdenotesthe productof the variable ident of type t ype, over the
term term. As for abstractions, forall is followed by a binder list, and products over several variables are equivalent
to an iteration of one-variable products. Note that term is intended to be a type.

If the variable ident occurs in term, the product is called dependent product. The intention behind a dependent
product forall x : A, Bistwofold. It denotes either the universal quantification of the variable x of type A in the
proposition B or the functional dependent product from A to B (a construction usually written IT_, ,. B in set theory).

Non dependent product types have a special notation: A —-> B stands for forall _ : A, B. The non dependent
product is used both to denote the propositional implication and function types.

Applications

The expression t erm, ,, termdenotes the application of term, (whichis expected to have a function type) to t erm.
. + L. . .

The expression term, ,, |term; | denotes the application of the term term, , to the arguments term,. It is equiv-

alentto (.. (term.,, term,) ..) term,: associativity is to the left.

The notation (ident := term) for arguments is used for making explicit the value of implicit arguments (see Sec-

tion Explicit applications).

Type cast

The expression term : type is atype cast expression. It enforces the type of termto be type.
term <: type locally sets up the virtual machine for checking that t e rm has type t ype.

term <<: type uses native compilation for checking that t e rm has type type.

122 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Inferable subterms

Expressions often contain redundant pieces of information. Subterms that can be automatically inferred by Coq can be
replaced by the symbol _ and Coq will guess the missing piece of information.

Let-in definitions

let ident := term in term’ denotes the local binding of term to the variable ident in term. There is
. . ., + .
a syntactic sugar for let-in definition of functions: let ident |binder := term in term’ standsfor let
+
ident := fun |binder => term in term’.

Definition by case analysis

Objects of inductive types can be destructured by a case-analysis construction called pattern matching expression. A
pattern matching expression is used to analyze the structure of an inductive object and to apply specific treatments ac-
cordingly.

This paragraph describes the basic form of pattern matching. See Section Multiple and nested pattern matching and Chap-
ter Extended pattern matching for the description of the general form. The basic form of pattern matching is characterized

by a single mat ch_item expression, a mult_pattern restricted to a single pattern and pattern restricted to
*
the form qualid ident

The expression match "t erm, return_type with pattern, =>term, | ... | pattern, => term, end” denotes
a pattern matching over the term term, (expected to be of an inductive type I). The terms term,...term, are the
branches of the pattern matching expression. Each of pattern; has a form qualid ident where qualid must
denote a constructor. There should be exactly one branch for every constructor of I.

The return_type expresses the type returned by the whole match expression. There are several cases. In the non
dependent case, all branches have the same type, and the return_t ype is the common type of branches. In this case,
return_type can usually be omitted as it can be inferred from the type of the branches’.

In the dependent case, there are three subcases. In the first subcase, the type in each branch may depend on the exact
value being matched in the branch. In this case, the whole pattern matching itself depends on the term being matched.
This dependency of the term being matched in the return type is expressed with an “as i dent” clause where ident is
dependent in the return type. For instance, in the following example:

Inductive bool : Type := true : bool | false : bool.
Inductive eq (A:Type) (x:A) : A —-> Prop := eqg_refl : eqg A x X.
Inductive or (A:Prop) (B:Prop) : Prop :=

| or_introl : A -> or A B
| or_intror : B -> or A B.
Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) :=
match b as x return or (eq bool x true) (eq bool x false) with
| true => or_introl (eq bool true true) (eq bool true false) (eg_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false) (eq_refl bool false)
end.

the branches have respective types "or (eq bool true true) (eq bool true false)” and "or (eq
bool false true) (eq bool false false)” while the whole pattern matching expression has type “or
(eq bool b true) (eq bool b false)?”, the identifier b being used to represent the dependency.

2 Except if the inductive type is empty in which case there is no equation that can be used to infer the return type.

4.1. The Gallina specification language 123

The Coq Reference Manual, Release 8.11.2

Note: When the term being matched is a variable, the as clause can be omitted and the term being matched can serve
itself as binding name in the return type. For instance, the following alternative definition is accepted and has the same
meaning as the previous one.

Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) :=

match b return or (eq bool b true) (eq bool b false) with

| true => or_introl (eq bool true true) (eq bool true false) (eq_refl bool true)

| false => or_intror (eqg bool false true) (eq bool false false) (eq_refl bool false)
end.

The second subcase is only relevant for annotated inductive types such as the equality predicate (see Section Equality),
the order predicate on natural numbers or the type of lists of a given length (see Section Matching objects of dependent
types). In this configuration, the type of each branch can depend on the type dependencies specific to the branch and
the whole pattern matching expression has a type determined by the specific dependencies in the type of the term being
matched. This dependency of the return type in the annotations of the inductive type is expressed usinga “in I _ ..
pattern; ... pattern,” clause, where

* I is the inductive type of the term being matched;
* the _ are matching the parameters of the inductive type: the return type is not dependent on them.
* the pat tern; are matching the annotations of the inductive type: the return type is dependent on them

* in the basic case which we describe below, each pattern; is a name ident;; see Patterns in in for the general
case

For instance, in the following example:

Definition eqg_sym (A:Type) (x y:A) (Hiegq A xy) : eg Ay X :=
match H in eq _ _ z return eq A z x with

| eg refl = => eqg_refl A x

end.

the type of the branchis eq A x x because the third argument of eq is x in the type of the pattern eq_ref1. On the
contrary, the type of the whole pattern matching expression has type eq A vy x because the third argument of eq is y
in the type of H. This dependency of the case analysis in the third argument of eq is expressed by the identifier z in the
return type.

Finally, the third subcase is a combination of the first and second subcase. In particular, it only applies to pattern matching
on terms in a type with annotations. For this third subcase, both the clauses as and in are available.

There are specific notations for case analysis on types with one or two constructors: 1f .. then .. else ..and let
(wy..) = .. in .. (see Sections Pattern-matching on boolean values: the if expression and Irrefutable patterns: the
destructuring let variants).

Recursive functions

The expression “fix ident,; binder; : type; := term; with .. with ident,, binder, : type, :=
term, for ident;” denotes the i-th component of a block of functions defined by mutual structural recursion. It is
the local counterpart of the i xpoint command. When n = 1, the “for ident,” clause is omitted.

2

The expression “cofix ident; binder; : type; with .. with ident, binder, : type, for ident;
denotes the i-th component of a block of terms defined by a mutual guarded co-recursion. It is the local counterpart of
the CoFixpoint command. When n = 1, the “for ident;” clause is omitted.

The association of a single fixpoint and a local definition have a special syntax: let fix ident binders :=
term instands for let ident := fix ident binders := term in. The same applies for co-fixpoints.

124 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

4.1.4 The Vernacular

decorated-sentence = [decoration .. decoration] sentence
sentence n= assumption

definition

inductive

fixpoint

assertion proof
assumption = assumption_keyword assums.
assumption_keyword = Axiom | Conjecture

Parameter | Parameters

Variable | Variables

Hypothesis | Hypotheses

assums u= ident .. ident : term

(ident .. ident : term) .. (ident .. ident : term)
definition = [Local] Definition ident [binders] [: term] := term

Let ident [binders] [: term] := term
inductive = Inductive ind_body with .. with ind _body

CoInductive ind _body with .. with ind_body
ind_body = ident [binders] : term :=

[[|] ident [binders] [:term] | .. | ident [binders] [:term]]
fixpoint = Fixpoint fix body with .. with fix body

CoFixpoint cofix body with .. with cofix_ body
assertion = assertion_keyword ident [binders] : term
assertion_keyword L= Theorem | Lemma

Remark | Fact
Corollary | Property | Proposition
Definition | Example

proof = Proof . .. Qed .

Proof . .. Defined

Proof . .. Admitted
decoration = #[attributes]
attributes = [attribute, .. , attribute]
attribute = ident

ident = string

ident (attributes)

This grammar describes The Vernacular which is the language of commands of Gallina. A sentence of the vernacular
language, like in many natural languages, begins with a capital letter and ends with a dot.

Sentences may be decorated with so-called attributes, which are described in the corresponding section (Attributes).

The different kinds of command are described hereafter. They all suppose that the terms occurring in the sentences are
well-typed.

Assumptions

Assumptions extend the environment with axioms, parameters, hypotheses or variables. An assumption binds an i dent
toa type. Itis accepted by Coq if and only if this t ype is a correct type in the environment preexisting the declaration
and if ident was not previously defined in the same module. This ¢ ype is considered to be the type (or specification,
or statement) assumed by ident and we say that i dent has type type.

Command: Parameter ident : type
This command links ¢t ype to the name ident as its specification in the global context. The fact asserted by t ype

4.1. The Gallina specification language 125

The Coq Reference Manual, Release 8.11.2

is thus assumed as a postulate.

Error: ident already exists.

+
Variant: Parameter ident : type
Adds several parameters with specification t ype.

+

+
Variant: Parameter (ident : type)
Adds blocks of parameters with different specifications.

+
Variant: Local Parameter | (ident : type)
Such parameters are never made accessible through their unqualified name by ITmport and its variants. You
have to explicitly give their fully qualified name to refer to them.

+

? +

Variant: Local Parameters | (ident : type)
+

2 +

Variant: Local Axiom | (ident : type)
+

? +

Variant: Local Axioms (ident : type)
+

? +

Variant: Local Conjecture (ident : type)
+

2 +

Variant: Local Conjectures | (ident : type)
+
. ? : +
These variants are synonyms of | Local Parameter | (ident : type)
+
+
Variant: Variable (ident : type)
+
+
Variant: Variables (ident : type)
+
+
Variant: Hypothesis (ident : type)
+
+
Variant: Hypotheses (ident : type)
Outside of any section, these variants are synonyms of Local Parameter
+
+
(|ident : type) | . For their meaning inside a section, see Variable in Section mech-

anism.

Warning: ident is declared as a local axiom [local-declaration, scope]
Warning generated when using Variable instead of Local Parameter.

Note: It is advised to use the commands Axiom, Conjecture and Hypothesis (and their plural forms) for logical
postulates (i.e. when the assertion t ype is of sort Prop), and to use the commands Parameter and Variable (and
their plural forms) in other cases (corresponding to the declaration of an abstract mathematical entity).

See also:

Section Section mechanism.

126 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Definitions

Definitions extend the environment with associations of names to terms. A definition can be seen as a way to give a
meaning to a name or as a way to abbreviate a term. In any case, the name can later be replaced at any time by its
definition.

The operation of unfolding a name into its definition is called J-conversion (see Section J-reduction). A definition is
accepted by the system if and only if the defined term is well-typed in the current context of the definition and if the
name is not already used. The name defined by the definition is called a constant and the term it refers to is its body. A
definition has a type which is the type of its body.

A formal presentation of constants and environments is given in Section 7yping rules.

Command: Definition ident := term
This command binds term to the name ident in the environment, provided that term is well-typed.

Error: ident already exists.

Variant: Definition ident : type := term
This variant checks that the type of term is definitionally equal to ¢ ype, and registers i dent as being of
type t ype, and bound to value term.

Error: The term term has type type while it is expected to have type type'.

o

Variant: Definition ident binders |: type | := term
This is equivalent to Definition ident : forall binders, type := fun
binders => term.
? ?
Variant: Local Definition ident binders : type = term

Such definitions are never made accessible through their unqualified name by Import and its variants. You
have to explicitly give their fully qualified name to refer to them.

? ? ?
Variant: Local Example ident binders : type := term

This is equivalent to Definition.

Variant: Let ident := term
Outside of any section, this variant is a synonym of Local Definition ident := term. For its
meaning inside a section, see Let in Section mechanism.

Warning: ident is declared as a local definition [local-declaration, scope]
Warning generated when using Let instead of Local Definition.

See also:

Section Section mechanism, commands Opaque, Transparent, and tactic unfold.

Inductive definitions

We gradually explain simple inductive types, simple annotated inductive types, simple parametric inductive types, mutually
inductive types. We explain also co-inductive types.

Simple inductive types

? 2 *
Command: Inductive ident : sort = ident : type || ident : type

This command defines a simple inductive type and its constructors. The first i dent is the name of the inductively
defined type and sort is the universe where it lives. The next i dents are the names of its constructors and t ype
their respective types. Depending on the universe where the inductive type ident lives (e.g. its type sort),

4.1. The Gallina specification language 127

The Coq Reference Manual, Release 8.11.2

Coq provides a number of destructors. Destructors are named i dent_sind,token:ident_ind, ident_rec
or ident_rect which respectively correspond to elimination principles on SProp, Prop, Set and Type.
The type of the destructors expresses structural induction/recursion principles over objects of type ident. The
constant i dent_ind is always provided, whereas i dent_rec and ident_rect can be impossible to derive
(for example, when ident is a proposition).

Error: Non strictly positive occurrence of ident in type.
The types of the constructors have to satisfy a positivity condition (see Section Positivity Condition). This
condition ensures the soundness of the inductive definition. The positivity checking can be disabled using the
Positivity Checking flag (see Controlling Typing Flags).

Error: The conclusion of type is not wvalid; it must be built from ident.
The conclusion of the type of the constructors must be the inductive type i dent being defined (or ident
applied to arguments in the case of annotated inductive types — cf. next section).

Example

The set of natural numbers is defined as:

Inductive nat : Set :=

| O : nat

| S : nat —> nat.
nat is defined
nat_rect is defined
nat_ind is defined
nat_rec is defined
nat_sind is defined

The type nat is defined as the least Set containing O and closed by the S constructor. The names nat, O and S
are added to the environment.

Now let us have a look at the elimination principles. They are three of them: nat_ind, nat_rec and
nat_rect. The type of nat_indis:

Check nat_ind.
nat_ind
forall P : nat -> Prop,
P O —> (forall n : nat, Pn -—> P (S n)) —> forall n : nat, P n

This is the well known structural induction principle over natural numbers, i.e. the second-order form of Peano’s
induction principle. It allows proving some universal property of natural numbers (forall n:nat, P n) by
induction on n.

The types of nat_rec and nat_rect are similar, except that they pertain to (P:nat->Set) and
(P:nat->Type) respectively. They correspond to primitive induction principles (allowing dependent types)
respectively over sorts Set and Type.

? ? ? ?
Variant: Inductive ident : sort = | ident |binders : type

|
Constructors idents can come with binders in which case, the actual type of the constructor is forall

binders, type.

In the case where inductive types have no annotations (next section gives an example of such annotations), a
constructor can be defined by only giving the type of its arguments.

Example

128

Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Inductive nat : Set := O | S (_:nat).

Simple annotated inductive types

In an annotated inductive types, the universe where the inductive type is defined is no longer a simple sort, but what is
called an arity, which is a type whose conclusion is a sort.

Example
As an example of annotated inductive types, let us define the even predicate:

Inductive even : nat -> Prop :=

| even_0 : even O

| even_SS : forall n:nat, even n —> even (S (S n)).
even is defined
even_ind is defined
even_sind is defined

The type nat ->Prop means that even is a unary predicate (inductively defined) over natural numbers. The type of its
two constructors are the defining clauses of the predicate even. The type of even_ind is:

Check even_ind.
even_ind
forall P : nat -> Prop,
P O —>
(forall n : nat, even n —> P n —> P (S (S n))) —>
forall n : nat, even n -> P n

From a mathematical point of view it asserts that the natural numbers satisfying the predicate even are exactly in the
smallest set of naturals satisfying the clauses even_0 or even_SS. This is why, when we want to prove any predicate
P over elements of even, it is enough to prove it for O and to prove that if any natural number n satisfies P its double
successor (S (S n)) satisfies also P. This is indeed analogous to the structural induction principle we got for nat.

Parameterized inductive types

? ? *
Variant: Inductive ident binders |: type = ident : type || ident : type

In the previous example, each constructor introduces a different instance of the predicate even. In some cases,
all the constructors introduce the same generic instance of the inductive definition, in which case, instead of an
annotation, we use a context of parameters which are binders shared by all the constructors of the definition.

Parameters differ from inductive type annotations in the fact that the conclusion of each type of constructor invoke
the inductive type with the same values of parameters as its specification.

Example

A typical example is the definition of polymorphic lists:

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A —> list A —> list A.

4.1. The Gallina specification language 129

The Coq Reference Manual, Release 8.11.2

In the type of nil and cons, we write (1ist A) and not just 1ist. The constructors nil and cons will
have respectively types:

Check nil.
nil
forall A : Set, list A

Check cons.
cons
forall A : Set, A —> list A —> list A
Types of destructors are also quantified with (A: Set).

Once again, it is possible to specify only the type of the arguments of the constructors, and to omit the type of the
conclusion:

Inductive list (A:Set) : Set := nil | cons (_:A) (_:1list A).

Note:

It is possible in the type of a constructor, to invoke recursively the inductive definition on an argument which is not
the parameter itself.

One can define :

Inductive list2 (A:Set) : Set :=
| nil2 : list2 A
| cons2 : A —-> list2 (A*A) —-> list2 A.
list2 is defined
list2_rect is defined
list2_ind is defined
list2_rec is defined
list2_sind is defined

that can also be written by specifying only the type of the arguments:

Inductive list2 (A:Set) : Set := nil2 | cons2 (_:A) (_:1list2 (A*A)).
list2 is defined
list2_rect is defined
list2_ind is defined
list2_rec is defined
list2_sind is defined

But the following definition will give an error:

Fail Inductive listw (A:Set) : Set :=
| nilw : listw (A*A)
| consw : A -> listw (A*A) -> listw (A*A).
The command has indeed failed with message:
Last occurrence of "listw" must have "A" as lst argument in
"listw (A * A)Stype".

because the conclusion of the type of constructors should be 1istw A in both cases.

A parameterized inductive definition can be defined using annotations instead of parameters but it will sometimes
give a different (bigger) sort for the inductive definition and will produce a less convenient rule for case elimination.

130

Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Flag: Uniform Inductive Parameters

When this flag is set (it is off by default), inductive definitions are abstracted over their parameters before type
checking constructors, allowing to write:

Set Uniform Inductive Parameters.
Inductive 1list3 (A:Set) : Set :=
| nil3 : 1list3
| cons3 : A —> 1list3 —-> 1list3.
1list3 is defined
list3_rect is defined
list3_ind is defined
list3_rec is defined
list3_sind is defined

This behavior is essentially equivalent to starting a new section and using Context to give the uniform parameters,
like so (cf. Section mechanism):

Section 1list3.
Context (A:Set).
A is declared

Inductive 1list3 : Set :=

| nil3 : 1list3

| cons3 : A —> 1ist3 —> 1list3.
list3 is defined
list3_rect is defined
list3_ind is defined
list3_rec is defined
list3_sind is defined

End list3.

See also:

Section Inductive Definitions and the i nduct ion tactic.

Variants

? ? *

Command: Variant ident binders |: type = := || | ident : type || ident : type
The Variant command is identical to the Tnductive command, except that it disallows recursive definition

of types (for instance, lists cannot be defined using Variant). No induction scheme is generated for this variant,
unless the Nonrecursive Elimination Schemes flagison.

Error: The num th argument of ident must be ident in type.

Mutually defined inductive types

? ? * ? 2
Variant: Inductive ident : type = | ident : typeI with | ident |: type

This variant allows defining a block of mutually inductive types. It has the same semantics as the above
Inductive definition for each ident. All ident are simultaneously added to the environment. Then well-
typing of constructors can be checked. Each one of the i dent can be used on its own.

4.1. The Gallina specification language 131

The Coq Reference Manual, Release 8.11.2

? ? * ?

Variant: Inductive ident binders |: type | :=|| | |ident : t_ypeI with || | |ident binders

In this variant, the inductive definitions are parameterized with binders. However, parameters correspond
to a local context in which the whole set of inductive declarations is done. For this reason, the parameters
must be strictly the same for each inductive types.

Example

The typical example of a mutual inductive data type is the one for trees and forests. We assume given two types A and B
as variables. It can be declared the following way.

Parameters A B : Set.
Inductive tree : Set := node : A -> forest —-> tree

with forest : Set :=
| leaf : B —-> forest
| cons : tree —-> forest —-> forest.

This declaration generates automatically six induction principles. They are respectively called t ree_rec, tree_ind,
tree_rect, forest_rec, forest_ind, forest_rect. These ones are not the most general ones but are just
the induction principles corresponding to each inductive part seen as a single inductive definition.

To illustrate this point on our example, we give the types of tree_rec and forest_rec.

Check tree_rec.
tree_rec
forall P : tree —> Set,
(forall (a : A) (f : forest), P (node a f)) —> forall t : tree, P t

Check forest_rec.
forest_rec
forall P : forest -> Set,
(forall b : B, P (leaf b)) —>
(forall (t : tree) (f0 : forest), P £f0 -> P (cons t f0)) ->
forall f1 : forest, P f1

Assume we want to parameterize our mutual inductive definitions with the two type variables A and B, the declaration
should be done the following way:

Inductive tree (A B:Set) : Set := node : A -> forest A B -> tree A B
with forest (A B:Set) : Set :=

| leaf : B —> forest A B

| cons : tree A B —> forest A B —> forest A B.

Assume we define an inductive definition inside a section (cf. Section mechanisnm). When the section is closed, the variables
declared in the section and occurring free in the declaration are added as parameters to the inductive definition.

See also:

A generic command Scheme is useful to build automatically various mutual induction principles.

132 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Co-inductive types

The objects of an inductive type are well-founded with respect to the constructors of the type. In other words, such objects
contain only a finite number of constructors. Co-inductive types arise from relaxing this condition, and admitting types
whose objects contain an infinity of constructors. Infinite objects are introduced by a non-ending (but effective) process
of construction, defined in terms of the constructors of the type.
? ? *
Command: CoInductive ident binders : type = | ident : type || ident : type
This command introduces a co-inductive type. The syntax of the command is the same as the command
Inductive. No principle of induction is derived from the definition of a co-inductive type, since such prin-
ciples only make sense for inductive types. For co-inductive types, the only elimination principle is case analysis.

Example
An example of a co-inductive type is the type of infinite sequences of natural numbers, usually called streams.

CoInductive Stream : Set := Seq : nat -> Stream -> Stream.

The usual destructors on streams hd: St ream—>nat and t1:Str—>Str can be defined as follows:

Definition hd (x:Stream) := let (a,s) := x in a.
Definition tl1 (x:Stream) := let (a,s) := x in s.

Definition of co-inductive predicates and blocks of mutually co-inductive definitions are also allowed.

Example
An example of a co-inductive predicate is the extensional equality on streams:

CoInductive EgSt : Stream -> Stream -> Prop :=
egst : forall sl s2:Stream,
hd s1 = hd s2 -> EgSt (tl sl1) (tl s2) -> EgSt sl s2.

In order to prove the extensional equality of two streams s1 and s2 we have to construct an infinite proof of equality,
that is, an infinite object of type (EgqSt s1 s2). We will see how to introduce infinite objects in Section Definitions
of recursive objects in co-inductive types.

Caveat

The ability to define co-inductive types by constructors, hereafter called positive co-inductive types, is known to break
subject reduction. The story is a bit long: this is due to dependent pattern-matching which implies propositional 1-
equality, which itself would require full n-conversion for subject reduction to hold, but full n-conversion is not acceptable
as it would make type-checking undecidable.

Since the introduction of primitive records in Coq 8.5, an alternative presentation is available, called negative co-inductive
types. This consists in defining a co-inductive type as a primitive record type through its projections. Such a technique is
akin to the co-pattern style that can be found in e.g. Agda, and preserves subject reduction.

The above example can be rewritten in the following way.

Set Primitive Projections.
CoInductive Stream : Set := Seq { hd : nat; tl : Stream }.
Stream is defined
(continues on next page)

4.1. The Gallina specification language 133

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

hd is defined
tl is defined

CoInductive EqgSt (sl s2: Stream) Prop := egst {
egst_hd hd s1 = hd s2;
egst_t1l EgSt (tl s1) (tl s2);
b
EgSt is defined
egst_hd is defined

egst_t1l

is defined

Some properties that hold over positive streams are lost when going to the negative presentation, typically when they
imply equality over streams. For instance, propositional n-equality is lost when going to the negative presentation. It is
nonetheless logically consistent to recover it through an axiom.

Axiom Stream_eta forall s:
Stream_eta is declared

Stream, s = Seq (hd s) (tl s).

More generally, as in the case of positive coinductive types, it is consistent to further identify extensional equality of
coinductive types with propositional equality:

Axiom Stream_ ext forall s2.

Stream_ext is declared

(sl s2: Stream), EgSt sl s2 -> sl =

As of Coq 8.9, it is now advised to use negative co-inductive types rather than their positive counterparts.
See also:

Primitive Projections for more information about negative records and primitive projections.

Definition of recursive functions

Definition of functions by recursion over inductive objects

This section describes the primitive form of definition by recursion over inductive objects. See the Funct i on command
for more advanced constructions.

2 ?
Command: Fixpoint ident binders {struct ident} type := term

This command allows defining functions by pattern matching over inductive objects using a fixed point construction.
The meaning of this declaration is to define i dent a recursive function with arguments specified by the binders
such that ident applied to arguments corresponding to these binders has type t ype, and is equivalent to the
expression term. The type of ident is consequently forall binders, type and its value is equivalent
to fun binders => term.

To be accepted, a F'i xpoint definition has to satisfy some syntactical constraints on a special argument called the
decreasing argument. They are needed to ensure that the Fi xpoint definition always terminates. The point of
the { struct ident} annotation is to let the user tell the system which argument decreases along the recursive
calls.

The {struct ident} annotation may be left implicit, in this case the system tries successively arguments from
left to right until it finds one that satisfies the decreasing condition.

Note:

134 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

» Some fixpoints may have several arguments that fit as decreasing arguments, and this choice influences the
reduction of the fixpoint. Hence an explicit annotation must be used if the leftmost decreasing argument is
not the desired one. Writing explicit annotations can also speed up type checking of large mutual fixpoints.

* In order to keep the strong normalization property, the fixed point reduction will only be performed when the
argument in position of the decreasing argument (which type should be in an inductive definition) starts with
a constructor.

Example

One can define the addition function as :

Fixpoint add (n m:nat) {struct n} : nat :=
match n with

| O =>m

| S p =>9S (add p m)

end.

add is defined
add is recursively defined (decreasing on 1st argument)

The match operator matches a value (here n) with the various constructors of its (inductive) type. The remaining
arguments give the respective values to be returned, as functions of the parameters of the corresponding constructor.
Thus here when n equals O we return m, and when n equals (S p) wereturn (S (add p m)).

The match operator is formally described in Section The match ... with ... end construction. The system recognizes
that in the inductive call (add p m) the first argument actually decreases because it is a pattern variable coming
frommatch n with.

Example

The following definition is not correct and generates an error message:

Fail Fixpoint wrongplus (n m:nat) {struct n} : nat :=

match m with

| O => n

| S p => S (wrongplus n p)

end.
The command has indeed failed with message:
Recursive definition of wrongplus is ill-formed.
In environment

wrongplus : nat —-> nat —-> nat
n : nat
m : nat
p : nat

Recursive call to wrongplus has principal argument equal to
"n" instead of a subterm of "n"
Recursive definition is:

"fun n m : nat => match m with
| 0 =>n
| S p => S (wrongplus n p)
end".

because the declared decreasing argument n does not actually decrease in the recursive call. The function computing
the addition over the second argument should rather be written:

4.1. The Gallina specification language 135

The Coq Reference Manual, Release 8.11.2

Fixpoint plus (n m:nat) {struct m} : nat :=
match m with

| O =>n

| S p =>3S (plus n p)

end.

plus is defined
plus is recursively defined (decreasing on 2nd argument)

Example

The recursive call may not only be on direct subterms of the recursive variable n but also on a deeper subterm and
we can directly write the function mod2 which gives the remainder modulo 2 of a natural number.

Fixpoint mod2 (n:nat) : nat :=
match n with
| O =>0
| S p => match p with
| O => S 0
| S g =>mod2 g
end
end.

mod2 is defined
mod2 is recursively defined (decreasing on lst argument)

? ?
Variant: Fixpoint ident binders {struct ident} . type := term |with ident binders

This variant allows defining simultaneously several mutual fixpoints. It is especially useful when defining
functions over mutually defined inductive types.

Example

The size of trees and forests can be defined the following way:

Fixpoint tree_size (t:tree) : nat :=
match t with
| node a £ => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| leaf b => 1
| cons t f' => (tree_size t + forest_size f')
end.
tree_size is defined
forest_size is defined
tree_size, forest_size are recursively defined
(decreasing respectively on 1lst, 1st arguments)

Definitions of recursive objects in co-inductive types

? ?
Command: CoFixpoint ident binders . type = term

This command introduces a method for constructing an infinite object of a coinductive type. For example, the

136 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

stream containing all natural numbers can be introduced applying the following method to the number O (see
Section Co-inductive types for the definition of St ream, hd and t1):

CoFixpoint from (n:nat) : Stream := Seq n (from (S n)).
from is defined
from is corecursively defined

Oppositely to recursive ones, there is no decreasing argument in a co-recursive definition. To be admissible, a
method of construction must provide at least one extra constructor of the infinite object for each iteration. A
syntactical guard condition is imposed on co-recursive definitions in order to ensure this: each recursive call in the
definition must be protected by at least one constructor, and only by constructors. That is the case in the former
definition, where the single recursive call of from is guarded by an application of Seqg. On the contrary, the
following recursive function does not satisfy the guard condition:

Fail CoFixpoint filter (p:nat —> bool) (s:Stream) : Stream :=
if p (hd s) then Seqg (hd s) (filter p (tl s)) else filter p (tl s).
The command has indeed failed with message:
Recursive definition of filter is ill-formed.
In environment

filter : (nat —> bool) —-> Stream —> Stream
p : nat —> bool
s : Stream

Unguarded recursive call in "filter p (tl s)".
Recursive definition is:

"fun (p : nat —-> bool) (s : Stream) =>
if p (hd s)
then {|] hd := hd s; tl := filter p (tl s) |}

else filter p (tl s)".

The elimination of co-recursive definition is done lazily, i.e. the definition is expanded only when it occurs at the
head of an application which is the argument of a case analysis expression. In any other context, it is considered as
a canonical expression which is completely evaluated. We can test this using the command Eva 1, which computes
the normal forms of a term:

Eval compute in (from O0).
= (cofix from (n : nat) : Stream := {| hd := n; tl := from (S n) [}) O
Stream

Eval compute in (hd (from 0)).
=0

nat

Eval compute in (tl (from 0)).

= (cofix from (n : nat) : Stream := {| hd := n; tl := from (S n) |}) 1
Stream
? ? ? ?
Variant: CoFixpoint ident binders : type := term |with ident binders : |type

As in the Fixpoint command, it is possible to introduce a block of mutually dependent methods.

Assertions and proofs

An assertion states a proposition (or a type) of which the proof (or an inhabitant of the type) is interactively built using
tactics. The interactive proof mode is described in Chapter Proof handling and the tactics in Chapter Tactics. The basic
assertion command is:

4.1. The Gallina specification language 137

The Coq Reference Manual, Release 8.11.2

?
Command: Theorem ident binders : type

After the statement is asserted, Coq needs a proof. Once a proof of ¢ ype under the assumptions represented by
binders is given and validated, the proof is generalized into a proof of forall binders, type and the
theorem is bound to the name ident in the environment.

Error: The term term has type type which should be Set, Prop or Type.

Error: ident already exists.
The name you provided is already defined. You have then to choose another name.

Error: Nested proofs are not allowed unless you turn the Nested Proofs Allowed flag on.
You are asserting a new statement while already being in proof editing mode. This feature, called nested
proofs, is disabled by default. To activate it, turn the Nested Proofs Allowed flagon.

o

Variant: Lemma ident binders | : type
Variant: Remark ident binders z : type
Variant: Fact ident binders 7 : type
Variant: Corollary ident binders z : type
Variant: Proposition ident binders f . type
These commands are all synonyms of Theorem ident |binders 7 : type.
*
? ?
Variant: Theorem ident binders : type |with ident |binders : type

This command is useful for theorems that are proved by simultaneous induction over a mutually inductive assump-
tion, or that assert mutually dependent statements in some mutual co-inductive type. It is equivalent to i xpoint
or CoFixpoint butusing tactics to build the proof of the statements (or the body of the specification, depending
on the point of view). The inductive or co-inductive types on which the induction or coinduction has to be done is
assumed to be non ambiguous and is guessed by the system.

Likeina Fixpoint or CoFixpoint definition, the induction hypotheses have to be used on structurally smaller
arguments (for a F'i xpoint) or be guarded by a constructor (for a CoF'i xpoint). The verification that recursive
proof arguments are correct is done only at the time of registering the lemma in the environment. To know if the
use of induction hypotheses is correct at some time of the interactive development of a proof, use the command
Guarded.

The command can be used also with Lemma, Remark, etc. instead of Theorem.

?
Variant: Definition ident binders . type

This allows defining a term of type ¢ ype using the proof editing mode. It behaves as Theorem but is intended to
be used in conjunction with De £ i ned in order to define a constant of which the computational behavior is relevant.

The command can be used also with Examp e instead of Definition.
See also:

Opaque, Transparent, unfold.

?
Variant: Let ident binders : type
?
Like Definition ident binders 1 type except that the definition is turned into a let-in definition

generalized over the declarations depending on it after closing the current section.
*
Variant: Fixpoint ident binders : type with ident binders : type
This generalizes the syntax of F'i xpoint so that one or more bodies can be defined interactively using the proof
editing mode (when a body is omitted, its type is mandatory in the syntax). When the block of proofs is completed,
it is intended to be ended by De fined.

138 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

2 ?
Variant: CoFixpoint ident binders : type |with ident |binders : type

This generalizes the syntax of CoFixpoint so that one or more bodies can be defined interactively using the
proof editing mode.

A proof starts by the keyword Proof. Then Coq enters the proof editing mode until the proof is completed. The proof
editing mode essentially contains tactics that are described in chapter Tactics. Besides tactics, there are commands to
manage the proof editing mode. They are described in Chapter Proof handling.

When the proof is completed it should be validated and put in the environment using the keyword QOed.

Note:

1. Several statements can be simultaneously asserted provided the Nested Proofs Allowed flag was turned
on.

2. Not only other assertions but any vernacular command can be given while in the process of proving a given assertion.
In this case, the command is understood as if it would have been given before the statements still to be proved.
Nonetheless, this practice is discouraged and may stop working in future versions.

3. Proofs ended by Oed are declared opaque. Their content cannot be unfolded (see Performing computations), thus
realizing some form of proof-irrelevance. To be able to unfold a proof, the proof should be ended by De fined.

4. Proof is recommended but can currently be omitted. On the opposite side, Oed (or De £ 1ined) is mandatory to
validate a proof.

5. One can also use Admitted in place of Oed to turn the current asserted statement into an axiom and exit the
proof editing mode.

Attributes
Any vernacular command can be decorated with a list of attributes, enclosed between # [(hash and opening square
bracket) and] (closing square bracket) and separated by commas , . Multiple space-separated blocks may be provided.

Each attribute has a name (an identifier) and may have a value. A value is either a st ring (in which case it is specified
with an equal = sign), or a list of attributes, enclosed within brackets.

Some attributes are specific to a command, and so are described with that command. Currently, the following attributes
are recognized by a variety of commands:

universes (monomorphic),universes (polymorphic) Equivalent to the Monomorphic and
Polymorphic flags (see Polymorphic Universes).

program Takes no value, equivalent to the Program flag (see Program).
global, local Take no value, equivalent to the G1obal and Local flags (see Controlling the locality of commands).
deprecated Takes as value the optional attributes since and note; both have a string value.

This attribute is supported by the following commands: Ltac, Tactic Notation, Notation, Infix.

It can trigger the following warnings:

Warning: Tactic gqualid is deprecated since string. string.

Warning: Tactic Notation qualid is deprecated since string. string.

Warning: Notation string; is deprecated since string,. string;.
string, is the actual notation, st ring, is the version number, st ring, is the note.

4.1. The Gallina specification language 139

The Coq Reference Manual, Release 8.11.2

Example

From Cog Require Program.
[Loading ML file extraction_plugin.cmxs ... done]

[program] Definition one : nat := S _
one has type-checked, generating 1 obligation
Solving obligations automatically...
1 obligation remaining
Obligation 1 of one: nat.

Next Obligation.
1 subgoal

exact O.
No more subgoals.

Defined.
[deprecated (since="8.9.0", note="Use idtac instead.")]
Ltac foo := idtac.

foo is defined

Goal True.
1 subgoal

Proof.
now foo.
Toplevel input, characters 4-7:
> now foo.
> AAA
Warning: Tactic foo is deprecated since 8.9.0. Use idtac instead.
[deprecated-tactic, deprecated]
No more subgoals.

Abort.

Warning: Unsupported attribute
This warning is an error by default. It is caused by using a command with some attribute it does not understand.

4.2 Extensions of Gallina

Gallina is the kernel language of Coq. We describe here extensions of Gallina’s syntax.

4.2.1 Record types

The Record construction is a macro allowing the definition of records as is done in many programming languages. Its
syntax is described in the grammar below. In fact, the Re cord macro is more general than the usual record types, since

140 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

it allows also for “manifest” expressions. In this sense, the Record construction allows defining “signatures”.

record RES record_keyword record _body with .. with record_body
record_keyword = Record | Inductive | CoInductive
record_body = ident [binders] [: sort] := [ident] { [field ; .. ;
field = ident [binders] : type [where notation]
ident [binders] [: type] := term
? ? *
Command: Record ident binders |: sort := |ident { |ident binders : type I }

The first identifier 1 dent is the name of the defined record and sort is its type. The optional identifier following

: = is the name of its constructor. If it is omitted, the default name Build_ident, where ident is the record
name, is used. If sort is omitted, the default sort is Type. The identifiers inside the brackets are the names of
fields. For a given field ident, its type is forall binders, type. Remark that the type of a particular
identifier may depend on a previously-given identifier. Thus the order of the fields is important. Finally, binders
are parameters of the record.

More generally, a record may have explicitly defined (a.k.a. manifest) fields. For instance, we might have: Record
ident binders : sort := { ident, : type, ; ident, := term, ; ident,; : type; }. in
which case the correctness of ¢ ype, may rely on the instance term, of ident, and term, may in turn depend on
ident,.

Example

The set of rational numbers may be defined as:

Record Rat : Set := mkRat
{ sign : bool
; top : nat

; bottom : nat
; Rat_bottom_cond : 0 <> bottom
; Rat_irred_cond
forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1

Rat is defined

sign is defined

top is defined

bottom is defined
Rat_bottom_cond is defined
Rat_irred_cond is defined

Note here that the fields Rat_bottom_cond depends on the field bot tomand Rat_irred_cond depends on both
top and bottom.

Let us now see the work done by the Record macro. First the macro generates a variant type definition with just one
? ?
constructor: Variant ident | binders : sort := ident, |binders

To build an object of type ident, one should provide the constructor ident , with the appropriate number of terms
filling the fields of the record.

Example

Let us define the rational 1/2:

4.2. Extensions of Gallina 141

field]

b

The Coq Reference Manual, Release 8.11.2

Theorem one_two_irred : forall x y z:nat, x * y =1 /\ x * z =2 -> x = 1.
Admitted.
Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
Check half.
record_term = {| [field def ; .. ; field def] |}
field_def = ident [binders] := term

Alternatively, the following syntax allows creating objects by using named fields, as shown in this grammar. The fields do
not have to be in any particular order, nor do they have to be all present if the missing ones can be inferred or prompted
for (see Program).

Definition half' :=

{| sign := true;
Rat_bottom_cond := 0O_S 1;
Rat_irred_cond := one_two_irred |}.

half' is defined

The following settings let you control the display format for types:

Flag: Printing Records
If set, use the record syntax (shown above) as the default display format.

You can override the display format for specified types by adding entries to these tables:

Table: Printing Record qualid
Specifies a set of qualids which are displayed as records. Use the Add @table and Remove @table com-
mands to update the set of qualids.

Table: Printing Constructor qualid
Specifies a set of qualids which are displayed as constructors. Use the Add @table and Remove @table
commands to update the set of qualids.

This syntax can also be used for pattern matching.

Eval compute in (
match half with
| {| sign := true; top :=n |} =>n
| _ =>20
end) .
=1
nat

The macro generates also, when it is possible, the projection functions for destructuring an object of type i dent. These
projection functions are given the names of the corresponding fields. If a field is named _ then no projection is built for
it. In our example:

Eval compute in top half.
=1
nat

Eval compute in bottom half.

=2
nat

(continues on next page)

142 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

Eval compute in Rat_bottom_cond half.
= 0_S 1
0 <> bottom half

An alternative syntax for projections based on a dot notation is available:

Eval compute in half. (top) .
=1
nat

Flag: Printing Projections
This flag activates the dot notation for printing.

Example

Set Printing Projections.
Check top half.

half. (top)
: nat
projection = term ~ . (qualid)
term . (qualid arg .. arg)
term ~ . (Qgualid term .. term)

Syntax of Record projections

The corresponding grammar rules are given in the preceding grammar. When qua1id denotes a projection, the syntax

term. (qualid) is equivalent to qualid term, the syntax term. (qualid [arg +) to qualid [arg +

+ + :
term. and the syntax term. (Qqualid term |) to Qgualid | term term. In each case, term is the
object projected and the other arguments are the parameters of the inductive type.

Note: Records defined with the Record keyword are not allowed to be recursive (references to the record’s name in
the type of its field raises an error). To define recursive records, one can use the Inductive and CoInductive
keywords, resulting in an inductive or co-inductive record. Definition of mutually inductive or co-inductive records are
also allowed, as long as all of the types in the block are records.

Note: Induction schemes are automatically generated for inductive records. Automatic generation of induction
schemes for non-recursive records defined with the Record keyword can be activated with the Nonrecursive
Elimination Schemes flag (see Generation of induction principles with Scheme).

Note: Structure is a synonym of the keyword Record.

Warning: ident cannot be defined.
It can happen that the definition of a projection is impossible. This message is followed by an explanation of this
impossibility. There may be three reasons:

1. The name ident already exists in the environment (see Ax1iom).

4.2. Extensions of Gallina 143

The Coq Reference Manual, Release 8.11.2

2. The body of ident uses an incorrect elimination for i dent (see Fixpoint and Destructors).
3. The type of the projections ident depends on previous projections which themselves could not be defined.

Error: Records declared with the keyword Record or Structure cannot be recursive.
The record name ident appears in the type of its fields, but uses the keyword Record. Use the keyword
Inductive or CoInductive instead.

Error: Cannot handle mutually (co)inductive records.
Records cannot be defined as part of mutually inductive (or co-inductive) definitions, whether with records only or
mixed with standard definitions.

During the definition of the one-constructor inductive definition, all the errors of inductive definitions, as described in
Section Inductive definitions, may also occur.

See also:

Coercions and records in section Classes as Records of the chapter devoted to coercions.

Primitive Projections

Flag: Primitive Projections

Turns on the use of primitive projections when defining subsequent records (even through the Inductive and
CoInductive commands). Primitive projections extended the Calculus of Inductive Constructions with a new
binary term constructor r. (p) representing a primitive projection p applied to a record object r (i.e., primitive
projections are always applied). Even if the record type has parameters, these do not appear in the internal represen-
tation of applications of the projection, considerably reducing the sizes of terms when manipulating parameterized
records and type checking time. On the user level, primitive projections can be used as a replacement for the usual
defined ones, although there are a few notable differences.

Flag: Printing Primitive Projection Parameters
This compatibility flag reconstructs internally omitted parameters at printing time (even though they are absent in
the actual AST manipulated by the kernel).

Primitive Record Types

Whenthe Primitive Projectionsflagison, definitions of record types change meaning. When a type is declared
with primitive projections, its match construct is disabled (see Primitive Projections though). To eliminate the (co-
)inductive type, one must use its defined primitive projections.

For compatibility, the parameters still appear to the user when printing terms even though they are absent in the ac-
tual AST manipulated by the kernel. This can be changed by unsetting the Printing Primitive Projection
Parameters flag.

There are currently two ways to introduce primitive records types:

1. Through the Record command, in which case the type has to be non-recursive. The defined type enjoys eta-
conversion definitionally, that is the generalized form of surjective pairing for records: r = Build_R (r. (p;)
..r. (p,)) . Eta-conversion allows to define dependent elimination for these types as well.

2. Through the Inductive and CoInductive commands, when the body of the definition is a record declaration
of the form Build R {p; : t;; .. ; p, : t, }.Inthiscase the types can be recursive and eta-conversion is
disallowed. These kind of record types differ from their traditional versions in the sense that dependent elimination
is not available for them and only non-dependent case analysis can be defined.

144 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Reduction

The basic reduction rule of a primitive projection is p; (Build R t; ... t,) —, t,. However, to take the ¢ flag
into account, projections can be in two states: folded or unfolded. An unfolded primitive projection application obeys
the rule above, while the folded version delta-reduces to the unfolded version. This allows to precisely mimic the usual
unfolding rules of constants. Projections obey the usual simpl flags of the Argument s command in particular. There
is currently no way to input unfolded primitive projections at the user-level, and there is no way to display unfolded
projections differently from folded ones.

Compatibility Projections and match

To ease compatibility with ordinary record types, each primitive projection is also defined as a ordinary constant taking
parameters and an object of the record type as arguments, and whose body is an application of the unfolded primitive
projection of the same name. These constants are used when elaborating partial applications of the projection. One
can distinguish them from applications of the primitive projection if the Printing Primitive Projection
Parameters flag is off: For a primitive projection application, parameters are printed as underscores while for the
compatibility projections they are printed as usual.

Additionally, user-written mat ch constructs on primitive records are desugared into substitution of the projections, they
cannot be printed back as mat ch constructs.

4.2.2 Variants and extensions of match

Multiple and nested pattern matching
The basic version of match allows pattern matching on simple patterns. As an extension, multiple nested patterns or
disjunction of patterns are allowed, as in ML-like languages.

The extension just acts as a macro that is expanded during parsing into a sequence of match on simple patterns. Espe-
cially, a construction defined using the extended match is generally printed under its expanded form (see Printing
Matching).

See also:

Extended pattern matching.

Pattern-matching on boolean values: the if expression

For inductive types with exactly two constructors and for pattern matching expressions that do not depend on the arguments
of the constructors, it is possible tousea 1f .. then .. else notation. For instance, the definition

Definition not (b:bool) :=
match b with
| true => false
| false => true
end.
not is defined

can be alternatively written

Definition not (b:bool) := if b then false else true.
not is defined

More generally, for an inductive type with constructors C; and C,, we have the following equivalence

4.2. Extensions of Gallina 145

The Coq Reference Manual, Release 8.11.2

if term [dep_ret_type] then term, else term, =
match term [dep_ret_type] with

| C, _ .. _ => term
| C, _ .. _ => term,
end

Example

Check (fun x (H:{x=0}+{x<>0}) =>
match H with

| left _ => true
| right _ => false
end) .
fun (x : nat) (H : {x = 0} + {x <> 0}) => if H then true else false

forall x : nat, {x = 0} + {x <> 0} —> bool

Notice that the printing uses the i f syntax because sumbool is declared as such (see Controlling pretty-printing of match
expressions).

Irrefutable patterns: the destructuring let variants

Pattern-matching on terms inhabiting inductive type having only one constructor can be alternatively written using let
in .. constructions. There are two variants of them.

First destructuring let syntax

The expression let (ident;, .. , ident,) :=termyin term; performs case analysis on term;, which must
be in an inductive type with one constructor having itself n arguments. Variables ident; ... ident,, are bound to the
n arguments of the constructor in expression term;. For instance, the definition

Definition fst (A B:Set) (H:A * B) := match H with
| pair x y => x
end.

fst is defined

can be alternatively written

Definition fst (A B:Set) (p:A * B) := let (x, _) := p in x.
fst is defined
Notice that reduction is different from regular 1et .. in ...construction since it happens only if t e rm is in constructor

form. Otherwise, the reduction is blocked.

The pretty-printing of a definition by matching on a irrefutable pattern can either be done using match or the let
construction (see Section Controlling pretty-printing of match expressions).

If term inhabits an inductive type with one constructor C, we have an equivalence between

let (ident,, .., ident[d) [dep_ret_type] := term in term'

and

146 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

match term [dep_ret_type] with
C ident, .. ident[d => term'
end

Second destructuring let syntax

Another destructuring let syntax is available for inductive types with one constructor by giving an arbitrary pattern instead
of just a tuple for all the arguments. For example, the preceding example can be written:

Definition fst (A B:Set) (p:A*B) := let 'pair x _ := p in x.
fst is defined

This is useful to match deeper inside tuples and also to use notations for the pattern, as the syntax let 'p := t in
b allows arbitrary patterns to do the deconstruction. For example:

Definition deep_tuple (A:Set) (x: (A*A)*(A*A)) : A*A*A*A :=
let '((a,b), (¢, d)) := x in (a,b,c,d).
deep_tuple is defined

Notation " x 'With' p " := (exist _ x p) (at level 20).
Identifier 'With' now a keyword

Definition projl_sig' (A:Set) (P:A->Prop) (t:{ x:A | P x }) : A :=
let 'x With p := t in x.
projl_sig' is defined

When printing definitions which are written using this construct it takes precedence over let printing directives for the
datatype under consideration (see Section Controlling pretty-printing of match expressions).

Controlling pretty-printing of match expressions

The following commands give some control over the pretty-printing of mat ch expressions.

Printing nested patterns

Flag: Printing Matching
The Calculus of Inductive Constructions knows pattern matching only over simple patterns. It is however convenient
to re-factorize nested pattern matching into a single pattern matching over a nested pattern.

When this flag is on (default), Coq’s printer tries to do such limited re-factorization. Turning it off tells Coq to print
only simple pattern matching problems in the same way as the Coq kernel handles them.

Factorization of clauses with same right-hand side

Flag: Printing Factorizable Match Patterns
When several patterns share the same right-hand side, it is additionally possible to share the clauses using disjunctive
patterns. Assuming that the printing matching mode is on, this flag (on by default) tells Coq’s printer to try to do
this kind of factorization.

4.2. Extensions of Gallina 147

The Coq Reference Manual, Release 8.11.2

Use of a default clause

Flag: Printing Allow Match Default Clause
When several patterns share the same right-hand side which do not depend on the arguments of the patterns, yet an
extra factorization is possible: the disjunction of patterns can be replaced with a __ default clause. Assuming that
the printing matching mode and the factorization mode are on, this flag (on by default) tells Coq’s printer to use a
default clause when relevant.

Printing of wildcard patterns

Flag: Printing Wildcard
Some variables in a pattern may not occur in the right-hand side of the pattern matching clause. When this flag
is on (default), the variables having no occurrences in the right-hand side of the pattern matching clause are just
printed using the wildcard symbol “_”.

Printing of the elimination predicate

Flag: Printing Synth
In most of the cases, the type of the result of a matched term is mechanically synthesizable. Especially, if the result
type does not depend of the matched term. When this flag is on (default), the result type is not printed when Coq
knows that it can re- synthesize it.

Printing matching on irrefutable patterns

If an inductive type has just one constructor, pattern matching can be written using the first destructuring let syntax.

Table: Printing Let qualid
Specifies a set of qualids for which pattern matching is displayed using a let expression. Note that this only applies
to pattern matching instances entered with match. It doesn’t affect pattern matching explicitly entered with a
destructuring let. Use the Add @table and Remove @table commands to update this set.

Printing matching on booleans

If an inductive type is isomorphic to the boolean type, pattern matching can be written using 1 f ... then ... else
This table controls which types are written this way:

Table: Printing If qualid
Specifies a set of qualids for which pattern matching is displayed using i f ... then ... else Use the Add
@tableand Remove @table commands to update this set.

This example emphasizes what the printing settings offer.

Example

Definition snd (A B:Set) (H:A * B) := match H with
| pair x y => vy

end.

snd is defined

Test Printing Let for prod.

(continues on next page)

148 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

Cases on elements of prod are printed using a "let' form

Print snd.

snd =

fun (A B : Set) (H : A * B) => 1let (_, y) := Hin vy
forall A B : Set, A * B —> B

Arguments snd (_ _)%type_scope

Remove Printing Let prod.
Unset Printing Synth.
Unset Printing Wildcard.
Print snd.

snd =
fun (A B : Set) (H : A * B) => match H return B with
I (%, y) => vy
end
forall AB : Set, A * B —> B
Arguments snd (_ _)%type_scope

4.2.3 Advanced recursive functions

The following experimental command is available when the FunInd library has been loaded via Require Import
FunInd:

*
Command: Function ident binder { decrease_annot } : type := term

This command can be seen as a generalization of Fixpoint. It is actually a wrapper for several ways of defin-
ing a function and other useful related objects, namely: an induction principle that reflects the recursive structure
of the function (see function induction) and its fixpoint equality. The meaning of this declaration is to
define a function ident, similarly to Fixpoint. Like in Fixpoint, the decreasing argument must be given
(unless the function is not recursive), but it might not necessarily be structurally decreasing. The point of the {
decrease_annot } annotation is to name the decreasing argument and to describe which kind of decreasing
criteria must be used to ensure termination of recursive calls.

decrease_annot = struct ident
measure term ident
wf term ident

The Function construction also enjoys the with extension to define mutually recursive definitions. However, this
feature does not work for non structurally recursive functions.

See the documentation of functional induction (function induction)and Functional Scheme (Generation
of induction principles with Functional Scheme) for how to use the induction principle to easily reason about the function.

Note: To obtain the right principle, it is better to put rigid parameters of the function as first arguments. For example it
is better to define plus like this:

Function plus (m n : nat) {struct n} : nat :=
match n with
| 0 =>m

(continues on next page)

4.2. Extensions of Gallina 149

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

| S p=>9S (plus m p)
end.
plus is defined
plus is recursively defined (decreasing on 2nd argument)
plus_equation is defined
plus_rect is defined
plus_ind is defined
plus_rec is defined
R_plus_correct is defined
R_plus_complete is defined

than like this:

Function plus (n m : nat) {struct n} : nat :=
match n with
| 0 =>m
| S p=>9S (plus p m)
end.
plus is defined
plus is recursively defined (decreasing on 1st argument)
plus_equation is defined
plus_rect is defined
plus_ind is defined
plus_rec is defined
R_plus_correct is defined
R_plus_complete is defined

Limitations
termmust be built as a pure pattern matching tree (match .. with) with applications only at the end of each branch.

Function does not support partial application of the function being defined. Thus, the following example cannot be
accepted due to the presence of partial application of wrong in the body of wrong:

Function wrong (C:nat) : nat :=
List.hd 0 (List.map wrong (C::nil)).

Toplevel input, characters 0-70:
> Function wrong (C:nat) : nat := List.hd 0 (List.map wrong (C::nil)).
S AAAAAAAAAAAAAAAAAAAAAAAAAAAAAANANAAAAAANANAAAAANNNNAAAAANNNNAAAANNANAA
Error:
Recursive definition of wrong is ill-formed.
In environment
wrong : nat —-> nat
C : nat
Recursive call to wrong has principal argument equal to
"C" instead of a subterm of "C".
Recursive definition is: "fun C : nat => List.hd 0 (List.map wrong [C])".

For now, dependent cases are not treated for non structurally terminating functions.

Error: The recursive argument must be specified.

Error: No argument name ident.

Error: Cannot use mutual definition with well-founded recursion or measure.

Warning: Cannot define graph for ident.
The generation of the graph relation (R_ident) used to compute the induction scheme of ident raised a typing

150 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

error. Only ident is defined; the induction scheme will not be generated. This error happens generally when:
* the definition uses pattern matching on dependent types, which Funct ion cannot deal with yet.
* the definition is not a pattern matching tree as explained above.

Warning: Cannot define principle(s) for ident.
The generation of the graph relation (R_ident) succeeded but the induction principle could not be built. Only
ident is defined. Please report.

Warning: Cannot build functional inversion principle.
functional inversion will not be available for the function.

See also:
Generation of induction principles with Functional Scheme and function induction

Depending on the {...} annotation, different definition mechanisms are used by Function. A more precise description
is given below.

*
Variant: Function ident binder : type := term

Defines the not recursive function ident as if declared with De finit ion. Moreover the following are defined:

e ident_rect, ident_rec and ident_ind, which reflect the pattern matching structure of term (see
Inductive);

¢ The inductive R__i dent corresponding to the graph of ident (silently);

e ident_complete and ident_correct which are inversion information linking the function and its

graph.
*
Variant: Function ident binder { struct ident } : type := term
Defines the structural recursive function ident as if declared with Fixpoint. Moreover the following are
defined:

* The same objects as above;

 The fixpoint equation of ident: ident_equation.

*

Variant: Function ident binder { measure term ident } : type := term
*

Variant: Function ident binder { wf term ident } : type := term

Defines a recursive function by well-founded recursion. The module Recdef of the standard library must be
loaded for this feature. The { } annotation is mandatory and must be one of the following:

* {measure term ident } with ident being the decreasing argument and ¢ e rm being a function from
type of ident to nat for which value on the decreasing argument decreases (for the 1t order on nat) at
each recursive call of t erm. Parameters of the function are bound in e rm;

e {wf term ident } with ident being the decreasing argument and term an ordering relation on the
type of ident (i.e. of type Tigent — Tigent — Prop) for which the decreasing argument decreases at each
recursive call of t erm. The order must be well-founded. Parameters of the function are bound in term.

If the annotation is measure or fw, the user is left with some proof obligations that will be used to define the
function. These proofs are: proofs that each recursive call is actually decreasing with respect to the given criteria,
and (if the criteria is wf) a proof that the ordering relation is well-founded. Once proof obligations are discharged,
the following objects are defined:

* The same objects as with the struct;
e The lemma ident,,, which collects all proof obligations in one property;

* The lemmas identgminate and ident which is needed to be inlined during extraction of ident.

4.2. Extensions of Gallina 151

The Coq Reference Manual, Release 8.11.2

The way this recursive function is defined is the subject of several papers by Yves Bertot and Antonia Balaa on the
one hand, and Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu on the other hand. Remark: Proof
obligations are presented as several subgoals belonging to a Lemma ident.

4.2.4 Section mechanism

Sections create local contexts which can be shared across multiple definitions.

Example

Sections are opened by the Sect ion command, and closed by End.

Section sli.

Inside a section, local parameters can be introduced using Variable, Hypothesis, or Context (there are also
plural variants for the first two).

Variables x y : nat.
x is declared
y is declared

The command Let introduces section-wide Let-in definitions. These definitions won’t persist when the section is closed,

and all persistent definitions which depend on y ' will be prefixed with 1let y' := y in.
Let y' := y.
Definition x' := S x.
Definition x'' := x' + y'.
Print x'.
x' = S x
nat
Print x''.
x''" = x' + % 1
nat
End sl.
Print x'.
x' = fun x : nat => S x

nat —-> nat

Arguments x' _%nat_scope
Print x''.
x''" = fun x y : nat => let y' =y in x' x + y'

nat —-> nat —-> nat

Arguments x'' (_ _)%nat_scope

Notice the difference between the value of x' and x' ' inside section s1 and outside.

Command: Section ident
This command is used to open a section named ident. Section names do not need to be unique.

Command: End ident
This command closes the section named i dent. After closing of the section, the local declarations (variables and

152 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

local definitions, see Variable) get discharged, meaning that they stop being visible and that all global objects
defined in the section are generalized with respect to the variables and local definitions they each depended on in
the section.

Error: This is not the last opened section.

Note: Most commands, like Hint, Notat ion, option management, ... which appear inside a section are canceled
when the section is closed.

Command: Variable ident : type
This command links ¢ ype to the name ident in the context of the current section. When the current section
is closed, name ident will be unknown and every object using this variable will be explicitly parameterized (the
variable is discharged).

Error: ident already exists.

+
Variant: Variable |ident : type
Links ¢ ype to each ident.

+
Variant: Variable (ident : type)
Declare one or more variables with various types.

+
+
Variant: Variables (ident : type)

+
Variant: Hypothesis (ident : type)
0 . +
Variant: Hypotheses (ident : type)

+
These variants are synonyms of Variable | (| ident : type)

Command: Let ident := term
This command binds the value term to the name ident in the environment of the current section. The name
ident is accessible only within the current section. When the section is closed, all persistent definitions and
theorems within it and depending on ident will be prefixed by the let-in definition let ident := term
in.

Error: ident already exists.

? ?
Variant: Let ident binders : type := term

*
Variant: Let Fixpoint ident fix body |\with fix body

*
Variant: Let CoFixpoint ident cofix body with cofix body
Command: Context binders

Declare variables in the context of the current section, like Variable, but also allowing implicit variables, Implicit
generalization, and let-binders.

Context {A : Type} (a b : A).
Context "~ {EgDec A}.
Context (b' := Db).

See also:

4.2. Extensions of Gallina 153

The Coq Reference Manual, Release 8.11.2

Section Binders. Section Sections and contexts in chapter T'ypeclasses.

4.2.5 Module system

The module system provides a way of packaging related elements together, as well as a means of massive abstraction.

module_type n= qualid
module_type with Definition qualid := term
module_type with Module qualid := qualid

qualid qualid .. qualid

'qualid qualid .. qualid
module_binding L= ([Import|Export] ident .. ident : module_type)
module_bindings module_binding .. module_binding
module_expression qualid .. qualid

'qualid .. qualid

Syntax of modules

In the syntax of module application, the ! prefix indicates that any Inline directive in the type of the functor arguments
will be ignored (see the Module Type command below).

Command: Module ident
This command is used to start an interactive module named ident.

*
Variant: Module ident module_binding

Starts an interactive functor with parameters given by module_bindings.

Variant: Module ident : module_ type
Starts an interactive module specifying its module type.

*
Variant: Module ident module binding : module_type

Starts an interactive functor with parameters given by the list of module_bindings, and output module type
module_type.

+
Variant: Module ident <: module_ type
<:

Starts an interactive module satisfying each module_type.
* +
Variant: Module ident module_ binding <: |module_type T .
29

Starts an interactive functor with parameters given by the list of module_binding. The output module
type is verified against each module_type.

Variant: Module Import | Export
Behaves like Modu e, but automatically imports or exports the module.

Reserved commands inside an interactive module

Command: Include module
Includes the content of module in the current interactive module. Here module can be a module expression or
a module type expression. If module is a high-order module or module type expression then the system tries to
instantiate module by the current interactive module.

154 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

+
Command: Include module =

is a shortcut for the commands Include module for each module.

Command: End ident
This command closes the interactive module ident. If the module type was given the content of the module
is matched against it and an error is signaled if the matching fails. If the module is basic (is not a functor) its
components (constants, inductive types, submodules etc.) are now available through the dot notation.

Error: No such label ident.
Error: Signature components for label ident do not match.
Error: This is not the last opened module.

Command: Module ident := module_expression
This command defines the module identifier i dent to be equal to module_expression.
*
Variant: Module ident module_binding := module_expression
Defines a functor with parameters given by the list of module_binding and body
module_expression.
*
Variant: Module ident module_binding : module_type := module_expression
Defines a functor with parameters given by the list of module_binding (possibly none), and output mod-
ule type module_type, with body module_expression.

* +
Variant: Module ident module_binding <: |module_type := module_expression
s

Defines a functor with parameters given by module_bindings (possibly none) with body
module_expression. The body is checked against each module type..
* +
Variant: Module ident module_binding := |module_expression
<+
is equivalent to an interactive module where each module expression is included.
Command: Module Type ident
This command is used to start an interactive module type ident.

*
Variant: Module Type ident module binding

Starts an interactive functor type with parameters given by module bindings.

Reserved commands inside an interactive module type:

Command: Include module
Same as Include inside a module.
+
Command: Include module_<+
This is a shortcut for the command Include module for each module.
Command: assumption_keyword Inline assums

The instance of this assumption will be automatically expanded at functor application, except when this functor
application is prefixed by a ! annotation.

Command: End ident
This command closes the interactive module type ident.

Error: This is not the last opened module type.

Command: Module Type ident := module_type
Defines a module type ident equal to module_type.

4.2. Extensions of Gallina 155

The Coq Reference Manual, Release 8.11.2

*
Variant: Module Type ident module_binding := module_type

Defines a functor type ident specifying functors taking arguments module_bindings and
returning module_type.

* +

Variant: Module Type ident module_binding := |module_type -

o

is equivalent to an interactive module type were each module_type is included.
Command: Declare Module ident : module_type
Declares a module ident of type module_type.
*
Variant: Declare Module ident module binding : module_type

Declares a functor with parameters given by the list of module_binding and output module
type module_type.

Example
Let us define a simple module.

Module M.
Interactive Module M started

Definition T := nat.
T is defined

Definition x := 0.
x is defined

Definition y : bool.
1 subgoal

exact true.
No more subgoals.

Defined.
End M.
Module M is defined

Inside a module one can define constants, prove theorems and do any other things that can be done in the toplevel. Com-
ponents of a closed module can be accessed using the dot notation:

Print M.x.

M.x = 0
: nat

A simple module type:

Module Type SIG.
Interactive Module Type SIG started

Parameter T : Set.
T is declared

(continues on next page)

156 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Parameter x : T.
x is declared

End SIG.
Module Type SIG is defined

(continued from previous page)

Now we can create a new module from M, giving it a less precise specification: the y component is dropped as well as the

body of x.

Module N : SIG with Definition T := nat
Module N is defined

Print N.T.
N.T = nat
Set
Print N.x.

FAx [N.x : N.T]

Fail Print N.y.

The command has indeed failed with message:

N.y not a defined object.

The definition of N using the module type expression SIGwithDefinition T := nat isequivalent to the following

one:

Module Type SIG'.
Interactive Module Type SIG' started

Definition T : Set := nat.
T is defined

Parameter x : T.
x is declared

End SIG'.
Module Type SIG' is defined

Module N : SIG' := M.
Module N is defined

If we just want to be sure that our implementation satisfies a given module type without restricting the interface, we can

use a transparent constraint

Module P <: SIG := M.
Module P is defined

Print P.y.
P.y = true
bool

Now let us create a functor, i.e. a parametric module

Module Two (X Y: SIG).
Interactive Module Two started

Definition T := (X.T * Y.T) %type.

(continues on next page)

4.2. Extensions of Gallina

157

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

T is defined

Definition x := (X.x, Y.x).
x is defined

End Two.
Module Two is defined

and apply it to our modules and do some computations:

Module Q := Two M N.
Module Q is defined

Eval compute in (fst Q.x + snd Q.x).
= N.x
nat

In the end, let us define a module type with two sub-modules, sharing some of the fields and give one of its possible
implementations:

Module Type SIG2.
Interactive Module Type SIG2 started

Declare Module M1 : SIG.
Module M1 is declared

Module M2 <: SIG.
Interactive Module M2 started

Definition T := M1.T.
T is defined

Parameter x : T.
x is declared

End M2.
Module M2 is defined

End SIG2.
Module Type SIG2 is defined

Module Mod <: SIG2.
Interactive Module Mod started

Module M1.
Interactive Module M1 started

Definition T := nat.
T is defined

Definition x := 1.
x is defined

End M1.
Module M1 is defined

Module M2 := M.
(continues on next page)

158 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

(continued from previous page)
Module M2 is defined

End Mod.
Module Mod is defined

Notice that M is a correct body for the component M2 since its T component is equal nat and hence M1 . T as specified.

Note:
1. Modules and module types can be nested components of each other.
2. One can have sections inside a module or a module type, but not a module or a module type inside a section.

3. Commands like Hint or Notat ion can also appear inside modules and module types. Note that in case of a
module definition like:

Module N : SIG := M.
or:
Module N : SIG. .. End N.

hints and the like valid for N are not those defined in M (or the module body) but the ones defined in SIG.

Command: Import qualid
If qualid denotes a valid basic module (i.e. its module type is a signature), makes its components available by
their short names.

Example

Module Mod.
Interactive Module Mod started

Definition T:=nat.
T is defined

Check T.
T
Set

End Mod.
Module Mod is defined

Check Mod.T.
Mod.T
Set

Fail Check T.
The command has indeed failed with message:
The reference T was not found in the current environment.

Import Mod.
Check T.
T
Set

4.2. Extensions of Gallina 159

The Coq Reference Manual, Release 8.11.2

Some features defined in modules are activated only when a module is imported. This is for instance the case of
notations (see Notations).

Declarations made with the Local flag are never imported by the Tmport command. Such declarations are only
accessible through their fully qualified name.

Example

Module A.
Interactive Module A started

Module B.
Interactive Module B started

Local Definition T := nat.
T is defined

End B.
Module B is defined

End A.
Module A is defined

Import A.
Fail Check B.T.
The command has indeed failed with message:
The reference B.T was not found in the current environment.

Variant: Export qualid
When the module containing the command Export qualid is imported, qualid is imported as well.

Error: gualid is not a module.
Warning: Trying to mask the absolute name qualid!

Command: Print Module ident
Prints the module type and (optionally) the body of the module i dent.

Command: Print Module Type ident
Prints the module type corresponding to ident.

Flag: Short Module Printing
This flag (off by default) disables the printing of the types of fields, leaving only their names, for the commands
Print Moduleand Print Module Type.

4.2.6 Libraries and qualified names

Names of libraries

The theories developed in Coq are stored in library files which are hierarchically classified into libraries and sublibraries.
To express this hierarchy, library names are represented by qualified identifiers qualid, i.e. as list of identifiers separated
by dots (see Qualified identifiers and simple identifiers). For instance, the library file Mult of the standard Coq library
Arithisnamed Cog.Arith.Mult. The identifier that starts the name of a library is called a library root. All library
files of the standard library of Coq have the reserved root Coq but library filenames based on other roots can be obtained
by using Coq commands (coqc, coqtop, coqdep, ...) options —Q or —R (see By command line options). Also, when an

160 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

interactive Coq session starts, a library of root Top is started, unless option —top or —notop is set (see By command
line options).

Qualified names

Library files are modules which possibly contain submodules which eventually contain constructions (axioms, parameters,
definitions, lemmas, theorems, remarks or facts). The absolute name, or full name, of a construction in some library file
is a qualified identifier starting with the logical name of the library file, followed by the sequence of submodules names
encapsulating the construction and ended by the proper name of the construction. Typically, the absolute name Coq.
Init.Logic.eqdenotes Leibniz’ equality defined in the module Logic in the sublibrary Init of the standard library
of Coq.

The proper name that ends the name of a construction is the short name (or sometimes base name) of the construction
(for instance, the short name of Cog.Init.Logic.eqis eq). Any partial suffix of the absolute name is a partially
qualified name (e.g. Logic.eqis a partially qualified name for Coqg.Init.Logic.eq). Especially, the short name
of a construction is its shortest partially qualified name.

Coq does not accept two constructions (definition, theorem, ...) with the same absolute name but different constructions
can have the same short name (or even same partially qualified names as soon as the full names are different).

Notice that the notion of absolute, partially qualified and short names also applies to library filenames.

Visibility

Coq maintains a table called the name table which maps partially qualified names of constructions to absolute names.
This table is updated by the commands Require, Import and Export and also each time a new declaration is added
to the context. An absolute name is called visible from a given short or partially qualified name when this latter name is

enough to denote it. This means that the short or partially qualified name is mapped to the absolute name in Coq name
table. Definitions flagged as Local are only accessible with their fully qualified name (see Definitions).

It may happen that a visible name is hidden by the short name or a qualified name of another construction. In this case,
the name that has been hidden must be referred to using one more level of qualification. To ensure that a construction
always remains accessible, absolute names can never be hidden.

Example
Check 0.
0
nat
Definition nat := bool.

nat is defined

Check 0.
0
Datatypes.nat

Check Datatypes.nat.
Datatypes.nat
Set

Locate nat.
Constant Top.nat
Inductive Cog.Init.Datatypes.nat
(shorter name to refer to it in current context is Datatypes.nat)

See also:

4.2. Extensions of Gallina 161

The Coq Reference Manual, Release 8.11.2

Commands Locate and Locate Library.

Libraries and filesystem

Note: The questions described here have been subject to redesign in Coq 8.5. Former versions of Coq use the same
terminology to describe slightly different things.

Compiled files (. vo and .vio) store sub-libraries. In order to refer to them inside Coq, a translation from file-system
names to Coq names is needed. In this translation, names in the file system are called physical paths while Coq names
are contrastingly called logical names.

A logical prefix Lib can be associated with a physical path using the command line option —Q path Lib. All subfolders
of path are recursively associated to the logical path Lib extended with the corresponding suffix coming from the physical
path. For instance, the folder path/f00/Bar maps to Lib.f00.Bar. Subdirectories corresponding to invalid Coq
identifiers are skipped, and, by convention, subdirectories named CVS or _darcs are skipped too.

Thanks to this mechanism, . vo files are made available through the logical name of the folder they are in, extended with
their own basename. For example, the name associated to the file path/f00/Bar/File.vo is Lib.f00.Bar.
File. The same caveat applies for invalid identifiers. When compiling a source file, the . vo file stores its logical name,
so that an error is issued if it is loaded with the wrong loadpath afterwards.

Some folders have a special status and are automatically put in the path. Coq commands associate auto-
matically a logical path to files in the repository trees rooted at the directory from where the command is
launched, coglib/user-contrib/, the directories listed in the SCOQPATH, ${XDG_DATA_HOME }/coq/ and
${XDG_DATA_DIRS}/coqg/ environment variables (see XDG base directory speciﬁcation294) with the same physical-
to-logical translation and with an empty logical prefix.

The command line option —R is a variant of —Q which has the strictly same behavior regarding loadpaths, but which also
makes the corresponding . vo files available through their short names in a way not unlike the Import command (see
here). For instance, -R path Lib associates to the file /path/f00/Bar/File.vo the logical name Lib. £00.
Bar.File, but allows this file to be accessed through the short names fOO0.Bar.File,Bar.File and File. If
several files with identical base name are present in different subdirectories of a recursive loadpath, which of these files is
found first may be system- dependent and explicit qualification is recommended. The From argument of the Require
command can be used to bypass the implicit shortening by providing an absolute root to the required file (see Compiled

files).

There also exists another independent loadpath mechanism attached to OCaml object files (. cmo or . cmxs) rather than
Coq object files as described above. The OCaml loadpath is managed using the option —I path (in the OCaml world,
there is neither a notion of logical name prefix nor a way to access files in subdirectories of path). See the command
Declare ML Module in Compiled files to understand the need of the OCaml loadpath.

See By command line options for a more general view over the Coq command line options.

4.2.7 Implicit arguments

An implicit argument of a function is an argument which can be inferred from contextual knowledge. There are different
kinds of implicit arguments that can be considered implicit in different ways. There are also various commands to control
the setting or the inference of implicit arguments.

The different kinds of implicit arguments

294 http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

162 Chapter 4. The language

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

The Coq Reference Manual, Release 8.11.2

Implicit arguments inferable from the knowledge of other arguments of a function

The first kind of implicit arguments covers the arguments that are inferable from the knowledge of the type of other
arguments of the function, or of the type of the surrounding context of the application. Especially, such implicit arguments
correspond to parameters dependent in the type of the function. Typical implicit arguments are the type arguments in
polymorphic functions. There are several kinds of such implicit arguments.

Strict Implicit Arguments

An implicit argument can be either strict or non strict. An implicit argument is said to be strict if, whatever the other
arguments of the function are, it is still inferable from the type of some other argument. Technically, an implicit argument
is strict if it corresponds to a parameter which is not applied to a variable which itself is another parameter of the function
(since this parameter may erase its arguments), not in the body of a match, and not itself applied or matched against
patterns (since the original form of the argument can be lost by reduction).

For instance, the first argument of
cons: forall A:Set, A -> list A -> list A
in module List .v is strict because 1ist is an inductive type and A will always be inferable from the type 1ist A

of the third argument of cons. Also, the first argument of cons is strict with respect to the second one, since the first
argument is exactly the type of the second argument. On the contrary, the second argument of a term of type

forall P:nat->Prop, forall n:nat, P n -> ex nat P
is implicit but not strict, since it can only be inferred from the type P n of the third argument and if P is, e.g., fun _
=> True, it reduces to an expression where n does not occur any longer. The first argument P is implicit but not strict

either because it can only be inferred from P n and P is not canonically inferable from an arbitrary n and the normal
form of P n. Consider, e.g., that n is 0 and the third argument has type True, then any P of the form

fun n => match n with 0 => True | _ => anything end

would be a solution of the inference problem.
Contextual Implicit Arguments

An implicit argument can be contextual or not. An implicit argument is said contextual if it can be inferred only from the
knowledge of the type of the context of the current expression. For instance, the only argument of:

nil : forall A:Set, list A"

is contextual. Similarly, both arguments of a term of type:

forall P:nat->Prop, forall n:nat, P n \/ n =0

are contextual (moreover, n is strict and P is not).
Reversible-Pattern Implicit Arguments

There is another class of implicit arguments that can be reinferred unambiguously if all the types of the remaining ar-
guments are known. This is the class of implicit arguments occurring in the type of another argument in position of
reversible pattern, which means it is at the head of an application but applied only to uninstantiated distinct variables.
Such an implicit argument is called reversible- pattern implicit argument. A typical example is the argument P of nat_rec
in

nat_rec : forall P : nat -> Set, P 0 —>
(forall n : nat, Pn -> P (S n)) -> forall x : nat, P x

4.2. Extensions of Gallina 163

The Coq Reference Manual, Release 8.11.2

(P is reinferable by abstracting over n in the type P n).

See Controlling reversible-pattern implicit arguments for the automatic declaration of reversible-pattern implicit arguments.

Implicit arguments inferable by resolution

This corresponds to a class of non-dependent implicit arguments that are solved based on the structure of their type only.

Maximal or non maximal insertion of implicit arguments

In case a function is partially applied, and the next argument to be applied is an implicit argument, two disciplines are
applicable. In the first case, the function is considered to have no arguments furtherly: one says that the implicit argument
is not maximally inserted. In the second case, the function is considered to be implicitly applied to the implicit arguments
it is waiting for: one says that the implicit argument is maximally inserted.

Each implicit argument can be declared to have to be inserted maximally or non maximally. This can be governed
argument per argument by the command Arguments (implicits) or globally by the Maximal Implicit
Insertion flag.

See also:

Displaying what the implicit arguments are.

Casual use of implicit arguments

In a given expression, if it is clear that some argument of a function can be inferred from the type of the other arguments,
the user can force the given argument to be guessed by replacing it by “_”. If possible, the correct argument will be
automatically generated.

Error: Cannot infer a term for this placeholder.
Coq was not able to deduce an instantiation of a “_”

Declaration of implicit arguments

In case one wants that some arguments of a given object (constant, inductive types, constructors, assumptions, local or
not) are always inferred by Coq, one may declare once and for all which are the expected implicit arguments of this object.
There are two ways to do this, a priori and a posteriori.

Implicit Argument Binders
In the first setting, one wants to explicitly give the implicit arguments of a declared object as part of its definition. To do
this, one has to surround the bindings of implicit arguments by curly braces:

Definition id {A : Type} (x : A) : A := x.
id is defined

This automatically declares the argument A of id as a maximally inserted implicit argument. One can then do as-if the
argument was absent in every situation but still be able to specify it if needed:

164 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Definition compose {A B C} (g : B -—> C) (f : A -> B) := fun x => g (f x).
compose is defined

Goal forall A, compose id id = id (A:=A).
1 subgoal

forall A : Type, compose id id = id

The syntax is supported in all top-level definitions: Definition, Fixpoint, Lemma and so on. For (co-)inductive
datatype declarations, the semantics are the following: an inductive parameter declared as an implicit argument need not
be repeated in the inductive definition and will become implicit for the inductive type and the constructors. For example:

Inductive list {A : Type} : Type :=
| nil : 1list
| cons : A —> list —-> list.

list is defined

list_rect is defined

list_ind is defined

list_rec is defined

list_sind is defined

Print list.
Inductive list (A : Type) : Type := nil : list | cons : A -> list -> list

Arguments list {A}%type_scope
Arguments nil {A}%type_scope
Arguments cons {A}%type_scope

One can always specify the parameter if it is not uniform using the usual implicit arguments disambiguation syntax.

Declaring Implicit Arguments

*
Command: Arguments qualid [ident] | { ident } | ident

This command is used to set implicit arguments a posteriori, where the list of possibly bracketed i dent is a prefix
of the list of arguments of qualid where the ones to be declared implicit are surrounded by square brackets and
the ones to be declared as maximally inserted implicits are surrounded by curly braces.

After the above declaration is issued, implicit arguments can just (and have to) be skipped in any expression involv-
ing an application of qualid.

Command: Arguments qualid : clear implicits
This command clears implicit arguments.

Variant: Global Arguments gqualid [ident] ‘ { ident } ‘ ident .
This command is used to recompute the implicit arguments of qua11id after ending of the current section if any,
enforcing the implicit arguments known from inside the section to be the ones declared by the command.
Variant: Local Arguments qualid [ident] ‘ { ident } ‘ ident .
When in a module, tell not to activate the implicit arguments of qualid declared by this command to contexts
that require the module.

? +
Variant: Global \ Local Arguments qualid | [ident] ‘ { ident } ‘ ident

’

For names of constants, inductive types, constructors, lemmas which can only be applied to a fixed number of argu-

4.2. Extensions of Gallina 165

The Coq Reference Manual, Release 8.11.2

ments (this excludes for instance constants whose type is polymorphic), multiple implicit arguments declarations
can be given. Depending on the number of arguments qualid is applied to in practice, the longest applicable list of
implicit arguments is used to select which implicit arguments are inserted. For printing, the omitted arguments are
the ones of the longest list of implicit arguments of the sequence.

Example

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A —> list A —> list A.
list is defined
list_rect is defined
list_ind is defined
list_rec is defined
list_sind is defined

Check (cons nat 3 (nil nat)).
cons nat 3 (nil nat)
list nat

Arguments cons [A]

Arguments nil {A}.

Check (cons 3 nil).
cons 3 nil

list nat
Fixpoint map (A B : Type) (f : A —> B) (1 : list A) : list B :=
match 1 with nil => nil | cons a t => cons (f a) (map A B f t) end.

map is defined
map is recursively defined (decreasing on 4th argument)

Fixpoint length (A : Type) (1 : list A) nat :=
match 1 with nil => 0 | cons _ m => S (length A m) end.
length is defined
length is recursively defined (decreasing on 2nd argument)

Arguments map [A B] f 1.
Arguments length {A} 1.
(* A has to be maximally inserted *)

Check (fun 1l:1ist (list nat) => map length 1).
fun 1 : list (list nat) => map length 1
list (list nat) —> list nat

Arguments map [A B] £ 1, [A] B f 1, A B f 1.
Check (fun 1 => map length 1 = map (list nat) nat length 1).
fun 1 : list (list nat) => map length 1 = map length 1
list (list nat) —-> Prop

Note: To know which are the implicit arguments of an object, use the command Print Implicit (see Displaying
what the implicit arguments are).

Warning: Argument number num is a trailing implicit so must be maximal.
For instance in

166 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Arguments prod _ [_].
Toplevel input, characters 0-21:
> Arguments prod _ [_].

S AANAAAAAAAANANAAAAAANANAN

Warning: Argument number 1 is a trailing implicit so must be maximal

Automatic declaration of implicit arguments

Command: Arguments qualid : default implicits
This command tells Coq to automatically detect what are the implicit arguments of a defined object.

The auto-detection is governed by flags telling if strict, contextual, or reversible-pattern implicit arguments must
be considered or not (see Controlling strict implicit arguments, Controlling strict implicit arguments, Controlling
reversible-pattern implicit arguments, and also Controlling the insertion of implicit arguments not followed by explicit
arguments).

Variant: Global Arguments gqualid : default implicits
Tell to recompute the implicit arguments of qualid after ending of the current section if any.

Variant: Local Arguments qualid : default implicits
When in a module, tell not to activate the implicit arguments of qualid computed by this declaration to
contexts that requires the module.

Example

Inductive list (A:Set) : Set

| nil : list A

| cons : A —> list A —-> list A.
list is defined
list_rect is defined
list_ind is defined
list_rec is defined
list_sind is defined

Arguments cons : default implicits.
Print Implicit cons.
cons : forall A : Set, A -> list A —-> list A

Argument A is implicit

Arguments nil : default implicits.
Print Implicit nil.
nil : forall A : Set, list A

Set Contextual Implicit.
Arguments nil : default implicits.
Print Implicit nil.

nil : forall A : Set, list A

Argument A is implicit and maximally inserted

The computation of implicit arguments takes account of the unfolding of constants. For instance, the variable p below has
type (Transitivity R) whichisreducibleto forall x,y:U, R x y -> forall z:U, Ry z -> R
x z. As the variables x, y and z appear strictly in the body of the type, they are implicit.

4.2. Extensions of Gallina 167

The Coq Reference Manual, Release 8.11.2

Parameter X : Type.
X is declared

Definition Relation := X -> X -> Prop.
Relation is defined

Definition Transitivity (R:Relation) := forall x y:X, R x y —> forall z:X, Ry z —> R_
“X Z.
Transitivity is defined

Parameters (R : Relation) (p : Transitivity R).
R is declared
p is declared

Arguments p : default implicits.
Print p.
** % [p : Transitivity R]

Expanded type for implicit arguments
p : forall xy : X, Rxy —> forall z : X, Ry z —> R x z

Arguments p [x y] _ [z]

Print Implicit p.
p : forall xy : X, Rx vy —> forall z : X, Ry z > R x z

Arguments x, y, z are implicit

Parameters (a b ¢ : X) (rl : Rab) (r2 : Rb c).
a is declared
b is declared
c is declared
rl is declared
r2 is declared

Check (p rl r2).
p rl r2
R ac

Mode for automatic declaration of implicit arguments

Flag: Implicit Arguments
This flag (off by default) allows to systematically declare implicit the arguments detectable as such. Auto-detection
of implicit arguments is governed by flags controlling whether strict and contextual implicit arguments have to be
considered or not.

Controlling strict implicit arguments

Flag: Strict Implicit
When the mode for automatic declaration of implicit arguments is on, the default is to automatically set implicit
only the strict implicit arguments plus, for historical reasons, a small subset of the non-strict implicit arguments.
To relax this constraint and to set implicit all non strict implicit arguments by default, you can turn this flag off.

Flag: Strongly Strict Implicit
Use this flag (off by default) to capture exactly the strict implicit arguments and no more than the strict implicit

168 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

arguments.

Controlling contextual implicit arguments

Flag: Contextual Implicit
By default, Coq does not automatically set implicit the contextual implicit arguments. You can turn this flag on to
tell Coq to also infer contextual implicit argument.

Controlling reversible-pattern implicit arguments

Flag: Reversible Pattern Implicit
By default, Coq does not automatically set implicit the reversible-pattern implicit arguments. You can turn this flag
on to tell Coq to also infer reversible-pattern implicit argument.

Controlling the insertion of implicit arguments not followed by explicit arguments

Flag: Maximal Implicit Insertion
Assuming the implicit argument mode is on, this flag (off by default) declares implicit arguments to be automatically
inserted when a function is partially applied and the next argument of the function is an implicit one.

Explicit applications

In presence of non-strict or contextual argument, or in presence of partial applications, the synthesis of implicit arguments
may fail, so one may have to give explicitly certain implicit arguments of an application. The syntax for this is (ident
:= term) where ident is the name of the implicit argument and term is its corresponding explicit term. Alternatively,

. .1 + .
one can locally deactivate the hiding of implicit arguments of a function by using the notation qualid [term | . This
syntax extension is given in the following grammar:

term = @ gqualid term .. term

@ qualid

qualid argument .. argument
argument = term

(ident := term)

Syntax for explicitly giving implicit arguments

Example: (continued)

Check (p rl (z:=c)).
p rl (z:=c)
Rbc->Rac

Check (p (x:=a) (y:=b) rl (z:=c) r2).
p rl r2
R ac

4.2. Extensions of Gallina 169

The Coq Reference Manual, Release 8.11.2

Renaming implicit arguments

*
Command: Arguments qualid |name : rename

This command is used to redefine the names of implicit arguments.

*
Command: Arguments qualid |name : assert
This command is used to assert that a given object has the expected number of arguments and that these arguments
are named as expected.

Example: (continued)

Arguments p [s t] _ [u] _: rename.
Check (p rl (u:=c)).
p rl (u:=c)
Rbc ->Rac

Check (p (s:=a) (t:=b) rl (u:=c) r2).
p rl r2
: Rac

Fail Arguments p [s t] _ [w] _ : assert.
The command has indeed failed with message:
Flag "rename" expected to rename u into w.

Displaying what the implicit arguments are

Command: Print Implicit qualid
Use this command to display the implicit arguments associated to an object, and to know if each of them is to be
used maximally or not.

Explicit displaying of implicit arguments for pretty-printing

Flag: Printing Implicit
By default, the basic pretty-printing rules hide the inferable implicit arguments of an application. Turn this flag on
to force printing all implicit arguments.

Flag: Printing Implicit Defensive
By default, the basic pretty-printing rules display the implicit arguments that are not detected as strict implicit
arguments. This “defensive” mode can quickly make the display cumbersome so this can be deactivated by turning
this flag off.

See also:

Printing A1l
Interaction with subtyping
When an implicit argument can be inferred from the type of more than one of the other arguments, then only the type of

the first of these arguments is taken into account, and not an upper type of all of them. As a consequence, the inference
of the implicit argument of “=" fails in

170 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Fail Check nat = Prop.
The command has indeed failed with message:
The term "Prop" has type "Type" while it is expected to have type
"Set" (universe inconsistency) .

but succeeds in

Check Prop = nat.
Prop = nat
Prop

Deactivation of implicit arguments for parsing

Flag: Parsing Explicit
Turning this flag on (it is off by default) deactivates the use of implicit arguments.

In this case, all arguments of constants, inductive types, constructors, etc, including the arguments declared as
implicit, have to be given as if no arguments were implicit. By symmetry, this also affects printing.

Canonical structures

A canonical structure is an instance of a record/structure type that can be used to solve unification problems involving a
projection applied to an unknown structure instance (an implicit argument) and a value. The complete documentation of
canonical structures can be found in Canonical Structures; here only a simple example is given.
?
Command: Canonical Structure qualid
This command declares qua 1 1d as a canonical instance of a structure (a record).

Assume that qualid denotes an object (Build_struct c; ... ¢,) in the structure st ruct of which the
fields are x4, ..., x,,. Then, each time an equation of the form (x; _) = gouc Ci has to be solved during the type
checking process, qualid is used as a solution. Otherwise said, gualid is canonically used to extend the field
c, into a complete structure built on c;.

Canonical structures are particularly useful when mixed with coercions and strict implicit arguments.

Example
Here is an example.

Require Import Relations.
Require Import EgNat.
Set Implicit Arguments.
Unset Strict Implicit.
Structure Setoid : Type := {Carrier :> Set; Equal : relation Carrier;
Prf_equiv : equivalence Carrier Equal}.
Setoid is defined
Carrier is defined
Equal is defined
Prf_equiv is defined

Definition is_law (A B:Setoid) (f:A -> B) := forall x y:A, Equal x y —> Equal (f_
-x) (f y).
is_law is defined

Axiom eqg_nat_equiv : equivalence nat eqg_nat.
(continues on next page)

4.2. Extensions of Gallina 171

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

eq_nat_equiv is declared

Definition nat_setoid : Setoid := Build_Setoid eg_nat_equiv.
nat_setoid is defined

Canonical nat_setoid.

Thanks to nat_setoid declared as canonical, the implicit arguments A and B can be synthesized in the next
statement.

Lemma is_law_S : is_law S.
1 subgoal

is_law (A:=nat_setoid) (B:=nat_setoid) S

Note: If a same field occurs in several canonical structures, then only the structure declared first as canonical is
considered.

Note: To prevent a field from being involved in the inference of canonical instances, its declaration can be anno-
tated with the # [canonical (false)] attribute.

Example

For instance, when declaring the Set oid structure above, the Prf_equiv field declaration could be written as
follows.

#[canonical (false)] Prf_equiv : equivalence Carrier Equal

See Canonical Structures for a more realistic example.

? ?
Variant: Canonical Structure ident |: type := term

This is equivalent to a regular definition of i dent followed by the declaration Canonical ident.

Command: Print Canonical Projections
This displays the list of global names that are components of some canonical structure. For each of them, the
canonical structure of which it is a projection is indicated.

Example

For instance, the above example gives the following output:

Print Canonical Projections.
nat <- Carrier (nat_setoid)
eq_nat <- Equal (nat_setoid)
eq_nat_equiv <- Prf_equiv (nat_setoid)

Note: The last line would not show up if the corresponding projection (namely Prf_equiv) were annotated as

172 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

not canonical, as described above.

Implicit types of variables

It is possible to bind variable names to a given type (e.g. in a development using arithmetic, it may be convenient to bind
the names n or m to the type nat of natural numbers).

Command: Implicit Types | ident i : type
The effect of the command is to automatically set the type of bound variables starting with i dent (either ident
itself or i dent followed by one or more single quotes, underscore or digits) to be t ype (unless the bound variable
is already declared with an explicit type in which case, this latter type is considered).

Example

Require Import List.
Implicit Types m n : nat.
Lemma cons_inj_nat : forallmn 1, n :: 1 = m :: 1 -> n = m.

1 subgoal
forall (m n : nat) (1 : Datatypes.list nat), n :: 1 =m :: 1 -> n =m
Proof.
intros m n.
1 subgoal
m, n nat
forall 1 : Datatypes.list nat, n :: 1 =m :: 1 ->n =m
Abort.
Lemma cons_inj_bool : forall (m n:bool) 1, n :: 1 =m :: 1 -> n = m.
1 subgoal
forall (m n : bool) (1 : Datatypes.list bool), n :: 1 =m :: 1 ->n =m
Abort.

Variant: Implicit Type ident : type
This is useful for declaring the implicit type of a single variable.

+

+
Variant: Implicit Types (ident : type)
Adds blocks of implicit types with different specifications.

Implicit generalization

Implicit generalization is an automatic elaboration of a statement with free variables into a closed statement where these
variables are quantified explicitly.

It is activated for a binder by prefixing a ‘, and for terms by surrounding it with ‘{ } or ‘().

4.2. Extensions of Gallina 173

The Coq Reference Manual, Release 8.11.2

Terms surrounded by ‘{ } introduce their free variables as maximally inserted implicit arguments, and terms surrounded
by ‘() introduce them as explicit arguments.

Generalizing binders always introduce their free variables as maximally inserted implicit arguments. The binder itself
introduces its argument as usual.

In the following statement, A and y are automatically generalized, A is implicit and %, y and the anonymous equality
argument are explicit.

Generalizable All Variables.
Definition sym "~ (x:A) : " (x =y -> vy = x) := fun _ p => eqg_sym p.
sym is defined

Print sym.
sym =
fun (A : Type) (x vy : A) (p @ x =y) => eqg_sym
forall (A : Type) (x y : A), Xx =y —> Y

I o
w

Arguments sym {A}3type_scope

Dually to normal binders, the name is optional but the type is required:

Check (forall {x =y :> A}, y = X).
forall (A : Type) (xy : A), X =y —> Yy =X
Prop

When generalizing a binder whose type is a typeclass, its own class arguments are omitted from the syntax and are
generalized using automatic names, without instance search. Other arguments are also generalized unless provided. This
produces a fully general statement. this behaviour may be disabled by prefixing the type with a ! or by forcing the
typeclass name to be an explicit application using @ (however the later ignores implicit argument information).

Class Op (A:Type) := op : A -> A —> A.
Class Commutative (A:Type) ~ (Op A) := commutative : forall x y, op X y = O0p V X.
Instance nat_op : Op nat := plus.

nat_op is defined

Set Printing Implicit.
Check (forall " {Commutative }, True).
forall (A : Type) (H : Op A), Commutative A H -> True
Prop

Check (forall " {Commutative nat}, True).
forall H : Op nat, Commutative nat H -> True
Prop

Fail Check (forall " {Commutative nat _}, True).
The command has indeed failed with message:
Typeclass does not expect more arguments

Fail Check (forall {!Commutative nat}, True).
The command has indeed failed with message:
The term "Commutative nat" has type "Op nat -> Prop"
which should be Set, Prop or Type.

Arguments Commutative _ {_}.
Check (forall " {!Commutative nat}, True).
@Commutative nat nat_op —-> True
Prop

(continues on next page)

174 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

Check (forall " {(@Commutative nat plus}, True).
@Commutative nat Nat.add -> True
Prop

Multiple binders can be merged using , as a separator:

Check (forall " {Commutative A, Hnat : !Commutative nat}, True).
forall (A : Type) (H : Op A),
@Commutative A H -> (@Commutative nat nat_op —-> True
Prop

One can control the set of generalizable identifiers with the Generalizable vernacular command to avoid unex-
pected generalizations when mistyping identifiers. There are several commands that specify which variables should be
generalizable.

Command: Generalizable All Variables
All variables are candidate for generalization if they appear free in the context under a generalization delimiter. This
may result in confusing errors in case of typos. In such cases, the context will probably contain some unexpected
generalized variable.

Command: Generalizable No Variables
Disable implicit generalization entirely. This is the default behavior.

Command: Generalizable Variable | Variables |ident
Allow generalization of the given identifiers only. Calling this command multiple times adds to the allowed identi-
fiers.

Command: Global Generalizable
Allows exporting the choice of generalizable variables.

4.2.8 Coercions

Coercions can be used to implicitly inject terms from one class in which they reside into another one. A class is either a
sort (denoted by the keyword Sortclass), a product type (denoted by the keyword Funclass), or a type constructor
(denoted by its name), e.g. an inductive type or any constant with a type of the form forall (x;:2;)... (x,:34,),
s where s is a sort.

Then the user is able to apply an object that is not a function, but can be coerced to a function, and more generally to
consider that a term of type A is of type B provided that there is a declared coercion between A and B.

More details and examples, and a description of the commands related to coercions are provided in /mplicit Coercions.

4.2.9 Printing constructions in full

Flag: Printing All

Coercions, implicit arguments, the type of pattern matching, but also notations (see Syntax extensions and interpre-
tation scopes) can obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms
are sensitive to the implicit arguments). Turning this flag on deactivates all high-level printing features such as
coercions, implicit arguments, returned type of pattern matching, notations and various syntactic sugar for pattern
matching or record projections. Otherwise said, Printing A1l includes the effects of the flags Printing
Implicit, Printing Coercions, Printing Synth, Printing Projections,and Printing
Notations. To reactivate the high-level printing features, use the command Unset Printing All.

4.2. Extensions of Gallina 175

The Coq Reference Manual, Release 8.11.2

4.2.10 Printing universes

Flag: Printing Universes
Turn this flag on to activate the display of the actual level of each occurrence of Type. See Sorts for details. This
wizard flag, in combination with Printing A1l can help to diagnose failures to unify terms apparently identical
but internally different in the Calculus of Inductive Constructions.
?
Command: Print Sorted | Universes
This command can be used to print the constraints on the internal level of the occurrences of Type (see Sorts).

If the Sorted keyword is present, each universe will be made equivalent to a numbered label reflecting its level
(with a linear ordering) in the universe hierarchy.
?
Variant: Print Sorted | Universes string
This variant accepts an optional output filename.

If stringendsin .dot or .gv, the constraints are printed in the DOT language, and can be processed by
Graphviz tools. The format is unspecified if st ring doesn’t end in . dot or . gv.

+
Variant: Print Universes Subgraph (qualid |)
Prints the graph restricted to the requested names (adjusting constraints to preserve the implied transitive constraints
between kept universes).

4.2.11 Existential variables

Coq terms can include existential variables which represents unknown subterms to eventually be replaced by actual sub-
terms.

@ »

Existential variables are generated in place of unsolvable implicit arguments or “_" placeholders when using commands
such as Check (see Section Requests to the environment) or when using tactics such as refine, as well as in place of
unsolvable instances when using tactics such that eapply. An existential variable is defined in a context, which is the
context of variables of the placeholder which generated the existential variable, and a type, which is the expected type of
the placeholder.

As a consequence of typing constraints, existential variables can be duplicated in such a way that they possibly appear in
different contexts than their defining context. Thus, any occurrence of a given existential variable comes with an instance
of its original context. In the simple case, when an existential variable denotes the placeholder which generated it, or is
used in the same context as the one in which it was generated, the context is not displayed and the existential variable is
represented by “?” followed by an identifier.

Parameter identity : forall (X:Set), X -> X.
identity is declared

Check identity _ _
identity ?X 2y

?X
where
?X : [|- Set]
2y [|- ?X]
Check identity _ (fun x => _).

identity (forall x : 73, ?2S0) (fun x : ?S => ?y)
forall x : 2S5, 2SO
where
25 : [|- Set]
(continues on next page)

176 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

2?80 : [x : ?S |- Set]
7y ¢ [x @ 2?8 |- ?50]

In the general case, when an existential variable ? i dent appears outside of its context of definition, its instance, written
*

under the form { | ident := term , } isappending to its name, indicating how the variables of its defining context

are instantiated. The variables of the context of the existential variables which are instantiated by themselves are not

written, unless the Printing Existential Instances flagis on (see Section Explicit displaying of existential

instances for pretty-printing), and this is why an existential variable used in the same context as its context of definition is

written with no instance.

Check (fun x y => _) 0 1.
(fun x y : nat => ?y) 0 1
?TA{x:=0; y:=1}

where
?T : [x : nat vy : nat |- Type]
?y ¢ [x : nat vy : nat |- ?T]

Set Printing Existential Instances.
Check (fun x y => _) 0 1.
(fun x vy : nat => ?y@{x:=x; y:=y};) 0 1
?T@{x:=0; y:=1}

where
?T ¢ [x : nat vy : nat |- Type]
?y : [x : nat y : nat |- ?T@{x:=x; y:=y}]

Existential variables can be named by the user upon creation using the syntax ? [ident]. This is useful when the
existential variable needs to be explicitly handled later in the script (e.g. with a named-goal selector, see Goal selectors).

Explicit displaying of existential instances for pretty-printing

Flag: Printing Existential Instances
This flag (off by default) activates the full display of how the context of an existential variable is instantiated at each
of the occurrences of the existential variable.

Solving existential variables using tactics

Instead of letting the unification engine try to solve an existential variable by itself, one can also provide an explicit
hole together with a tactic to solve it. Using the syntax 1tac: (tacexpr), the user can put a tactic anywhere a term
is expected. The order of resolution is not specified and is implementation-dependent. The inner tactic may use any
variable defined in its scope, including repeated alternations between variables introduced by term binding as well as
those introduced by tactic binding. The expression tacexpr can be any tactic expression as described in Ltac.

Definition foo (x : nat) : nat := ltac: (exact x).
foo is defined

This construction is useful when one wants to define complicated terms using highly automated tactics without resorting
to writing the proof-term by means of the interactive proof engine.

4.2.12 Primitive Integers

The language of terms features 63-bit machine integers as values. The type of such a value is axiomatized; it is declared
through the following sentence (excerpt from the Int 63 module):

4.2. Extensions of Gallina 177

The Coq Reference Manual, Release 8.11.2

Primitive int := #int63_type.

This type is equipped with a few operators, that must be similarly declared. For instance, equality of two primitive integers
can be decided using the Int 63 . egb function, declared and specified as follows:

Primitive egb := #int63_eq.
Notation "m '==' n" := (egb m n) (at level 70, no associativity) : int63_scope.
Axiom egb_correct : forall i j, (i == Jj)%int63 = true -> i = J.

The complete set of such operators can be obtained looking at the Int 63 module.

These primitive declarations are regular axioms. As such, they must be trusted and are listed by the Print
Assumptions command, as in the following example.

From Cog Require Import Int63.

Lemma one_minus_one_is_zero : (1 — 1 = 0)%int63.
Proof.

apply egb_correct; vm_compute; reflexivity.

Qed.

Print Assumptions one_minus_one_is_zero.

Axioms:

sub : int -> int -> int

egb_correct : forall 1 j : int, (i == j)%int63 = true -> i = j
egb : int -> int -> bool

The reduction machines (vim_compute, native_compute) implement dedicated, efficient, rules to reduce the ap-
plications of these primitive operations.

The extraction of these primitives can be customized similarly to the extraction of regular axioms (see Extraction of
programs in OCaml and Haskell). Nonetheless, the Ext rOCam1Int 63 module can be used when extracting to OCaml:
it maps the Coq primitives to types and functions of a Uint 63 module. Said OCaml module is not produced by extraction.
Instead, it has to be provided by the user (if they want to compile or execute the extracted code). For instance, an
implementation of this module can be taken from the kernel of Coq.

Literal values (at type Int63.int) are extracted to literal OCaml values wrapped into the Uint63.0f_int
(resp. Uint 63.0f_int 64) constructor on 64-bit (resp. 32-bit) platforms. Currently, this cannot be customized (see
the function Uint 63 . compile from the kernel).

4.2.13 Primitive Floats

The language of terms features Binary64 floating-point numbers as values. The type of such a value is axiomatized; it is
declared through the following sentence (excerpt from the PrimF1loat module):

Primitive float := #float64_type.

This type is equipped with a few operators, that must be similarly declared. For instance, the product of two primitive
floats can be computed using the PrimFloat .mul function, declared and specified as follows:

Primitive mul := #float64_mul.
Notation "x * y" := (mul x y) : float_scope.

Axiom mul_spec : forall x y, Prim2SF (x * y)%float = SF64mul (Prim2SF x) (Prim2SF vy).

where Prim2SF is defined in the F1oatOps module.

178 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

The set of such operators is described in section Floats library.

These primitive declarations are regular axioms. As such, they must be trusted, and are listed by the Print
Assumptions command.

The reduction machines (vim_compute, native_compute) implement dedicated, efficient rules to reduce the appli-
cations of these primitive operations, using the floating-point processor operators that are assumed to comply with the
IEEE 754 standard for floating-point arithmetic.

The extraction of these primitives can be customized similarly to the extraction of regular axioms (see Extraction of
programs in OCaml and Haskell). Nonetheless, the Ext rOCam1F loat s module can be used when extracting to OCaml:
it maps the Coq primitives to types and functions of a Float 64 module. Said OCaml module is not produced by
extraction. Instead, it has to be provided by the user (if they want to compile or execute the extracted code). For instance,
an implementation of this module can be taken from the kernel of Coq.

Literal values (of type Float64.t) are extracted to literal OCaml values (of type float) written in hexadecimal
notation and wrapped into the Float 64 .o0f_float constructor, e.g.: Float64.0f_float (0xlp+0).

4.2.14 Bidirectionality hints

When type-checking an application, Coq normally does not use information from the context to infer the types of the
arguments. It only checks after the fact that the type inferred for the application is coherent with the expected type.
Bidirectionality hints make it possible to specify that after type-checking the first arguments of an application, typing
information should be propagated from the context to help inferring the types of the remaining arguments.
Command: Arguments qualid ident, : & |ident, :
This commands tells the typechecking algorithm, when type-checking applications of qualid, to first type-check
the arguments in ident, and then propagate information from the typing context to type-check the remaining
arguments (in ident).

Example

In a context where a coercion was declared from bool to nat:

Definition b2n (b : bool) := if b then 1 else 0.
Coercion b2n : bool >-> nat.

Coq cannot automatically coerce existential statements over boo1l to statements over nat, because the need for inserting
a coercion is known only from the expected type of a subterm:

Fail Check (ex_intro _ true _ : exists n : nat, n > 0).
The command has indeed failed with message:
The term "ex_intro ?P true ?y" has type "exists y, ?P y"
while it is expected to have type "exists n : nat, n > 0"
(cannot unify "bool" and "nat").

However, a suitable bidirectionality hint makes the example work:

Arguments ex_intro _ _ & _ _
Check (ex_intro _ true _ : exists n : nat, n > 0).
ex_intro (fun n : nat => n > 0) true ?g : exists n : nat, n > 0
exists n : nat, n > 0
where

?2g : [|- (fun n : nat => n > 0) true]

4.2. Extensions of Gallina 179

The Coq Reference Manual, Release 8.11.2

Coq will attempt to produce a term which uses the arguments you provided, but in some cases involving Program mode
the arguments after the bidirectionality starts may be replaced by convertible but syntactically different terms.

4.3 The Coq library

The Coq library has two parts:

¢ The basic library: definitions and theorems for the most commonly used elementary logical notions and data types.
Coq normally loads these files automatically when it starts.

* The standard library: general-purpose libraries with definitions and theorems for sets, lists, sorting, arithmetic,
etc. To use these files, users must load them explicitly with the Require command (see Compiled files)

There are also many libraries provided by Coq users’ community. These libraries and developments are available for
download at http://coq.inria.fr (see Users’ contributions).

This chapter briefly reviews the Coq libraries whose contents can also be browsed at http://coq.inria.fr/stdlib/.

4.3.1 The basic library

This section lists the basic notions and results which are directly available in the standard Coq system. Most of these
constructions are defined in the Pre1ude module in directory theories/Init atthe Coqroot directory; this includes
the modules Notations, Logic, Datatypes, Specif, Peano, Wf and Tactics. Module Logic_Type also
makes it in the initial state.

Notations

This module defines the parsing and pretty-printing of many symbols (infixes, prefixes, etc.). However, it does not assign
a meaning to these notations. The purpose of this is to define and fix once for all the precedence and associativity of very
common notations. The main notations fixed in the initial state are :

180 Chapter 4. The language

http://coq.inria.fr
http://coq.inria.fr/stdlib/

The Coq Reference Manual, Release 8.11.2

Logic

Notation Precedence | Associativity
> 99 right
<> 95 no
_\/ _ 85 right
_ /N _ 80 right
~ _ 75 right
_ = _ 70 no
_ _ = _ 70 no
= _ > 70 no
<> 70 no
_ <> _ > _ |70 no
< 70 no
> 70 no
<= _ 70 no
_o>= _ 70 no
< < _ 70 no
< <= _ 70 no
<= _ < _ 70 no
<= _ <= _ 1170 no
o+ 50 left
_ 1 _ 50 left
_ - _ 50 left
_* 40 left
_ 40 left
_/ _ 40 left
- _ 35 right
/ _ 35 right
_ " 30 right

The basic library of Coq comes with the definitions of standard (intuitionistic) logical connectives (they are defined as
inductive constructions). They are equipped with an appealing syntax enriching the subclass orm of the syntactic class
term. The syntax of form is shown below:

form

True (True)

False (False)

~ form (not)

form /\ form (and)

form \/ form (or)

form —> form (primitive implication)
form <=> form (iff)

forall ident : type, form (primitive for all)
exists ident [: specif], form (ex)

exists2 ident [: specif], form & form (ex2)
term = term (eq)

term = term :> specif (eq)

Note: Implication is not defined but primitive (it is a non-dependent product of a proposition over another proposition).

4.3. The Coq library 181

The Coq Reference Manual, Release 8.11.2

There is also a primitive universal quantification (it is a dependent product over a proposition). The primitive universal
quantification allows both first-order and higher-order quantification.

Propositional Connectives

First, we find propositional calculus connectives:

Inductive True : Prop := I.

Inductive False : Prop :=

Definition not (A: Prop) := A —> False.

Inductive and (A B:Prop) : Prop := conj (_:A) (_:B).

Section Projections.
Variables A B : Prop.
Theorem projl : A /\ B —> A.
Theorem proj2 : A /\ B -> B.

End Projections.

Inductive or (A B:Prop) : Prop :=

| or_introl (_:A)

| or_intror (_:B).

Definition iff (P Q:Prop) := (P —> Q) /\ (Q —> P).
Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R.
Quantifiers

Then we find first-order quantifiers:

Definition all (A:Set) (P:A —-> Prop) := forall x:A, P x.
Inductive ex (A: Set) (P:A -> Prop) : Prop :=
ex_intro (x:A) (_:P x).
Inductive ex2 (A:Set) (P Q:A —> Prop) : Prop :=
ex_intro2 (x:A) (_:P x) (_:Q x).

The following abbreviations are allowed:

exists x:A, P ex A (fun x:A => P)

exists x, P ex _ (fun x => P)

exists2 x:A, P & Q | ex2 A (fun x:A => P) (fun x:A => Q)
exists2 x, P & Q ex2 _ (fun x => P) (fun x => Q)

The type annotation : A can be omitted when A can be synthesized by the system.

Equality

Then, we find equality, defined as an inductive relation. That is, given a type A and an x of type A, the predicate (eq A
x) is the smallest one which contains x. This definition, due to Christine Paulin-Mohring, is equivalent to define eq as
the smallest reflexive relation, and it is also equivalent to Leibniz’ equality.

Inductive eq (A:Type) (x:A) : A -> Prop :=
eq_refl : eqg A x X.

182 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Lemmas

Finally, a few easy lemmas are provided.

Theorem absurd : forall A C:Prop, A -> ~ A —> C.
Section equality.
Variables A B : Type.
Variable £ : A —> B.
Variables x y z : A.
Theorem eg_sym : x =y —> y = X.
Theorem eq_trans : x = ->y =2z —> X = Z.
Theorem f_equal : x =y —> £ x = f y.
Theorem not_eg_sym : x <> y —> y <> X.
End equality.
Definition eq_ind_r
forall (A:Type) (x:A) (P:A->Prop), P x —> forall y:A, v = x —> P y.
Definition eq_rec_r
forall (A:Type) (x:A) (P:A->Set), P x —> forall y:A, vy = x —> P y.
Definition eq_rect_r
forall (A:Type) (x:A) (P:A->Type), P x —> forall y:A, y = x —> P y.
Hint Immediate eqg_sym not_eqg_sym : core.

=

The theorem f_equal is extended to functions with two to five arguments. The theorem are names f_equal?2,
f_equal3, f_equald and £_equalb. Forinstance f_equal3 is defined the following way.

Theorem f_equal3
forall (Al A2 A3 B:Type) (f:Al -> A2 -> A3 —> B)
(x1 y1:Al) (x2 y2:A2) (x3 y3:A3),
x1l =yl —> x2 = y2 —> x3 = y3 —> £ x1 x2 x3 = £ yl y2 y3.

Datatypes

In the basic library, we find in Datat ypes . v the definition of the basic data-types of programming, defined as inductive
constructions over the sort Set. Some of them come with a special syntax shown below (this syntax table is common
with the next section Specification):

specif = specif * specif (prod)

specif + specif (sum)

specif + { specif } (sumor)

{ specif } + { specif } (sumbool)

{ ident : specif | form } (siqg)

{ ident : specif | form & form } (sig2)

{ ident : specif & specif } (sigT)
{ ident : specif & specif & specif } (sigT2)
(

term = term, term) (pair)
Programming
Inductive unit : Set := tt.
Inductive bool : Set := true | false.
Inductive nat : Set := O | S (n:nat).

(continues on next page)

4.3. The Coq library 183

The Coq Reference Manual, Release 8.11.2

(continued from previous page)
Inductive option (A:Set) : Set := Some (_:A) | None.
Inductive identity (A:Type) (a:A) : A —> Type :=
refl_identity : identity A a a.

Note that zero is the letter O, and not the numeral 0.

The predicate ident ity is logically equivalent to equality but it lives in sort Type. It is mainly maintained for com-
patibility.

We then define the disjoint sum of A+B of two sets A and B, and their product A*B.

Inductive sum (A B:Set) : Set := inl (_:A) | inr (_:B).
Inductive prod (A B:Set) : Set := pair (_:A) (_:B).
Section projections.

Variables A B : Set.

Definition fst (H: prod A B) := match H with
| pair _ _ x y => x
end.

Definition snd (H: prod A B) := match H with
| pair = _ xy => vy
end.

End projections.

Some operations on boo1 are also provided: andb (with infix notation & &), orb (with infix notation | |), xorb, implb
and negb.

Specification

The following notions defined in module Specif . v allow to build new data-types and specifications. They are available
with the syntax shown in the previous section Datatypes.

For instance, given A: Type and P : A->Prop, the construct {x:A | P x} (in abstract syntax (sig A P))isa
Type. We may build elements of this setas (exist x p) whenever we have a witness x : A with its justification p : P
X.

From such a (exist x p) we may in turn extract its witness x : A (using an elimination construct such as match)
but not its justification, which stays hidden, like in an abstract data-type. In technical terms, one says that sig is a weak
(dependent) sum. A variant sig2 with two predicates is also provided.

Inductive sig (A:Set) (P:A -> Prop) : Set := exist (x:A) (_:P x).
Inductive sig2 (A:Set) (P Q:A -> Prop) : Set :=
exist?2 (x:A) (_:P x) (_:Q x).

A strong (dependent) sum {x:A & P x} may be also defined, when the predicate P is now defined as a constructor of
types in Type.

Inductive sigT (A:Type) (P:A -> Type) : Type existT (x:A) (_:P x).
Section Projections2.
Variable A : Type.
Variable P : A —> Type.

Definition projTl (H:sigT A P) := let (x, h) := H in x.

Definition projT2 (H:sigT A P) :=

match H return P (projTl H) with

existT = _ x h =>h
end.
End Projections2.

(continues on next page)

184 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

Inductive sigT2 (A: Type) (P Q:A -> Type) : Type :=
existT2 (x:A) (_:P x) (_:Q x).

A related non-dependent construct is the constructive sum {A}+{B} of two propositions A and B.

Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).

This sumbool construct may be used as a kind of indexed boolean data-type. An intermediate between sumbool and
sum is the mixed sumor which combines A : Set and B: Prop in the construction A+{B} in Set.

Inductive sumor (A:Set) (B:Prop) : Set :=
| inleft (_:A)
| inright (_:B).

We may define variants of the axiom of choice, like in Martin-L&f’s Intuitionistic Type Theory.

Lemma Choice
forall (S S':Set) (R:S -> S' -> Prop),
(forall x:S, {y : S' | R x y}) —>
{f : S -—>3'" | forall z:S, R z (f z)}.
Lemma Choice2
forall (S S':Set) (R:S -> S' —-> Set),
(forall x:S, {y : S'" & R x y}) —>
{f : S ->95'" & forall z:S, R z (f z)}.
Lemma bool_choice
forall (S:Set) (R1 R2:S —-> Prop),
(forall x:S, {R1 x} + {R2 x}) —>
{f : S —> bool |
forall x:S, £ x = true /\ Rl x \/ £ x = false /\ R2 x}.

The next construct builds a sum between a data-type A : Type and an exceptional value encoding errors:

Definition Exc := option.
Definition value := Some.
Definition error := None.

This module ends with theorems, relating the sorts Set or Type and Prop in a way which is consistent with the realiz-
ability interpretation.

Definition except := False_rec.
Theorem absurd_set : forall (A:Prop) (C:Set), A > ~ A —> C.
Theorem and_rect?2

forall (A B:Prop) (P:Type), (A -> B -> P) -> A /\ B -> P.

Basic Arithmetic

The basic library includes a few elementary properties of natural numbers, together with the definitions of predecessor,
addition and multiplication, in module Peano . v. It also provides a scope nat_scope gathering standard notations for
common operations (+, *) and a decimal notation for numbers, allowing for instance to write 3 for S (S (S 0))).
This also works on the left hand side of a mat ch expression (see for example section refine). This scope is opened
by default.

Example

The following example is not part of the standard library, but it shows the usage of the notations:

4.3. The Coq library 185

The Coq Reference Manual, Release 8.11.2

Fixpoint even (n:nat) : bool :=
match n with

| 0 => true

| 1 => false

| S (S n) => even n

end.

Now comes the content of module Peano:

Theorem eq_S : forall x y:nat, x =y —> S x =S y.

Definition pred (n:nat) : nat :=

match n with

| 0 =>0

| S u =>u

end.
Theorem pred_Sn : forall m:nat, m = pred (S m).
Theorem eq_add_S : forall n m:nat, S n =S m —> n = m.
Hint Immediate eqg_add_S : core.
Theorem not_eqg_S : forall n m:nat, n <> m -> S n <> S m.
Definition IsSucc (n:nat) : Prop :=

match n with
| 0 => False
S p => True

end.
Theorem O_S : forall n:nat, 0 <> S n.
Theorem n_Sn : forall n:nat, n <> S n.
Fixpoint plus (n m:nat) {struct n} : nat :=

match n with

[0 =>m

| Sp=>S (p + m

end
where "n + m" := (plus n m) : nat_scope.
Lemma plus_n_O : forall n:nat, n = n + 0.
Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Fixpoint mult (n m:nat) {struct n} : nat :=

match n with

| 0 =>0

| Sp=>m+p *m

end
where "n * m" := (mult n m) : nat_scope.
Lemma mult_n_O : forall n:nat, 0 = n * 0.
Lemma mult_n_Sm : forall n m:nat, n * m + n =n * (S m).

Finally, it gives the definition of the usual orderings le, 1t, ge and gt.

Inductive le (n:nat) : nat —-> Prop :=

| le_.n : le nn

| le_S : forall m:nat, n <= m -> n <= (S m)
where "n <= m" := (le n m) : nat_scope.
Definition 1t (n m:nat) := S n <= m.
Definition ge (n m:nat) := m <= n.
Definition gt (n m:nat) := m < n.

Properties of these relations are not initially known, but may be required by the user from modules Le and Lt. Finally,
Peano gives some lemmas allowing pattern matching, and a double induction principle.

186 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Theorem nat_case

forall (n:nat) (P:nat -> Prop),

P 0 -> (forall m:nat, P (S m)) -> P n.
Theorem nat_double_ind

forall R:nat -> nat -> Prop,

(forall n:nat, R 0 n) —->
(forall n:nat, R (S n) 0) —>
(forall n m:nat, Rnm —> R (S n) (S m)) —> forall n m:nat, R n m.

Well-founded recursion

The basic library contains the basics of well-founded recursion and well-founded induction, in module Wf . v.

Section Well_ founded.
Variable A : Type.
Variable R : A -> A -> Prop.

Inductive Acc (x:A) : Prop :=

Acc_intro : (forall y:A, Ry x —-> Acc y) —-> Acc X.
Lemma Acc_inv x : Acc x —> forall y:A, Ry x —-> AcC V.
Definition well_founded := forall a:A, Acc a.

Hypothesis Rwf : well_founded.
Theorem well_ founded_induction
forall P:A —-> Set,
(forall x:A, (forall y:A, Ry x -> P y) —-> P x) —> forall a:A, P a.
Theorem well_ founded_ind
forall P:A —-> Prop,
(forall x:A, (forall y:A, Ry x -> P y) —-> P x) —-> forall a:A, P a.

The automatically generated scheme Acc_rect can be used to define functions by fixpoints using well-founded relations
to justify termination. Assuming extensionality of the functional used for the recursive call, the fixpoint equation can be
proved.

Section FixPoint.
Variable P : A -> Type.
Variable F : forall x:A, (forall y:A, Ry x —> P vy) —-> P x.

Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=
F x (fun (y:A) (p:R vy x) => Fix_F vy (Acc_inv x r y p)) .
Definition Fix (x:A) := Fix F x (Rwf x).

Hypothesis F_ext
forall (x:A) (f g:forall y:A, Ry x —> P vy),
(forall (y:A) (p:Ry x), fyp=gyp —>Fxf=F=zxgqg.
Lemma Fix_F_eq
forall (x:A) (r:Acc x),

F x (fun (y:A) (p:R vy x) => Fix F vy (Acc_inv x r yv p)) = Fix F x r.
Lemma Fix_ F_inv : forall (x:A) (r s:Acc x), Fix F x r = Fix_F x s.
Lemma fix_eqg : forall x:A, Fix x = F x (fun (y:A) (p:R vy x) => Fix vy).
End FixPoint.

End Well_ founded.

Accessing the Type level

The standard library includes Type level definitions of counterparts of some logic concepts and basic lemmas about them.

The module Datatypes defines identity, which is the Type level counterpart of equality:

4.3. The Coq library 187

The Coq Reference Manual, Release 8.11.2

Inductive identity (A:Type) (a:A) : A —> Type :=
identity_refl : identity A a a.

Some properties of identity are proved in the module Logic_Type, which also provides the definition of Type

level negation:

Definition notT (A:Type) := A —> False.

Tactics

A few tactics defined at the user level are provided in the initial state, in module Tactics.v. They are listed at http:
/[coq.inria.fr/stdlib, in paragraph Init, link Tactics.

4.3.2 The standard library
Survey

The rest of the standard library is structured into the following subdirectories:
* Logic : Classical logic and dependent equality
* Arith : Basic Peano arithmetic
* PArith : Basic positive integer arithmetic
* NArith : Basic binary natural number arithmetic
e ZArith : Basic relative integer arithmetic

e Numbers : Various approaches to natural, integer and cyclic numbers (currently axiomatically and on top of 2”31
binary words)

¢ Bool : Booleans (basic functions and results)

¢ Lists : Monomorphic and polymorphic lists (basic functions and results), Streams (infinite sequences defined with
co-inductive types)

¢ Sets : Sets (classical, constructive, finite, infinite, power set, etc.)
* FSets : Specification and implementations of finite sets and finite maps (by lists and by AVL trees)

¢ Reals : Axiomatization of real numbers (classical, basic functions, integer part, fractional part, limit, derivative,
Cauchy series, power series and results,...)

* Floats : Machine implementation of floating-point arithmetic (for the binary64 format)
¢ Relations : Relations (definitions and basic results)

* Sorting : Sorted list (basic definitions and heapsort correctness)

* Strings : 8-bits characters and strings

¢ Wellfounded : Well-founded relations (basic results)

These directories belong to the initial load path of the system, and the modules they provide are compiled at installation
time. So they are directly accessible with the command Require (see Section Compiled files).

The different modules of the Coq standard library are documented online at https://coq.inria.fr/stdlib.

188 Chapter 4. The language

http://coq.inria.fr/stdlib
http://coq.inria.fr/stdlib
https://coq.inria.fr/stdlib

The Coq Reference Manual, Release 8.11.2

Peano’s arithmetic (nat)

While in the initial state, many operations and predicates of Peano’s arithmetic are defined, further operations and results
belong to other modules. For instance, the decidability of the basic predicates are defined here. This is provided by

requiring the module Arith.

The following table describes the notations available in scope nat_scope :

Notation Interpretation

< 1t
_ <= _ le
> gt
_ >= _ ge
x <y < z x <y /\y < z
X <y <=z x <y /\y <=2z
X <=y < z x <=y /\y < z
X <=y <=z |x<=y /\y <=2z
_ 1t _ plus
-~ minus

* mult

Notations for integer arithmetic

The following table describes the syntax of expressions for integer arithmetic. It is provided by requiring and opening the
module ZArith and opening scope Z_scope. It specifies how notations are interpreted and, when not already reserved,

the precedence and associativity.

Notation Interpretation Precedence | Associativity
< _ Z.1t
<= _ Z.le
> Z.gt
_o>= Z.ge
x <y < z x <y /\Ny <z
X <y <=z x <y /\Ny <=z
X <=y < z x <=y /\y < z
X <=y <=2z |x <=y /\y <=2z
2= Z.compare 70 no
_ t+t _ Z.add
_ T Z .sub
_r _ Z.mul
_/ _ Z.div
_ mod _ Z.modulo 40 no
- _ Z .opp
_ " _ Z .pow

Example

Require Import ZArith.

[Loading ML file newring_plugin.cmxs done]

[Loading ML file zify_plugin.cmxs

done]

(continues on next page)

4.3. The Coq library

189

The Coq Reference Manual, Release 8.11.2

[Loading ML file omega_plugin.cmxs

Check (2 + 3)%Z.
(2 + 3)%Z

N

Open Scope 7Z_scope.
Check 2 + 3.
2 + 3

done]

(continued from previous page)

Real numbers library

Notations for real numbers

This is provided by requiring and opening the module Reals and opening scope R__scope. This set of notations is very
similar to the notation for integer arithmetic. The inverse function was added.

Notation Interpretation
— < _ R1t
_ <= _ Rle
D G Rgt
_ >= _ Rge
x <y < z x <y /\Ny < z
X <y <= z x <y /\y <=z
X <=y < z x <=y /\y < z
X <=y <= x <=y /\y <= z
_ t+t _ Rplus
- Rminus
_* Rmult
_/ _ Rdiv
— Ropp
/ Rinv
— _ pow

Example

Require Import Reals.

[Loading ML file r_syntax_plugin.cmxs done]

[Loading ML file micromega_plugin.cmxs

Check (2 + 3)%R.
(2 + 3)%R
R

Open Scope R_scope.
Check 2 + 3.

2 + 3

: R

done]

190

Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Some tactics for real numbers

In addition to the powerful ring, field and 1lra tactics (see Chapter Tactics), there are also:

discrR
Proves that two real integer constants are different.

Example

Require Import DiscrR.
Open Scope R_scope.
Goal 5 <> 0.

1 subgoal

split_Rabs
Allows unfolding the Rabs constant and splits corresponding conjunctions.

Example

Require Import Reals.

Open Scope R_scope.

Goal forall x:R, x <= Rabs x.
1 subgoal

forall x : R, x <= Rabs x

intro; split_Rabs.
2 subgoals

subgoal 2 is:
X <= X

split_Rmult
Splits a condition that a product is non null into subgoals corresponding to the condition on each operand of the
product.

Example

Require Import Reals.
Open Scope R_scope.
Goal forall x y z:R, x * y * z <> 0.
1 subgoal
(continues on next page)

4.3. The Coq library 191

The Coq Reference Manual, Release 8.11.2

forall x y z : R, x *

intros;
3 subgoals

split_Rmult.

subg
y <
subg
z <

oal 2 is:
> 0
oal 3 is:
> 0

(continued from previous page)

These tactics has been written with the tactic language L

List library

tac

described in Chapter Lzac.

Some elementary operations on polymorphic lists are defined here. They can be accessed by requiring module List.

It defines the following notions:

length

head : first element (with default)

tai
app
rev
nth

map

1 : all but first element
: concatenation

. reverse

: accessing n-th element (with default)

: applying a function

flat_map : applying a function returning lists

fold_left : iterator (from head to tail)

fold_right : iterator (from tail to head)

The following table shows notations available when opening scope 1ist_scope.

Notation | Interpretation | Precedence | Associativity
_ ++ _ | app 60 right
_ _ | cons 60 right

Floats library

The library of primitive floating-point arithmetic can be loaded by requiring module Floats:

Require Import Floats.

192

Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

It exports the module PrimFloat that provides a primitive type named float, defined in the kernel (see section

Primitive Floats), as well as two variant types f loat_comparison and float_class:

Print float.
**x [float : Set |

Print float_comparison.
Variant float_comparison : Set :=
FEg : float_comparison
| FLt : float_comparison
| FGt : float_comparison
| FNotComparable : float_comparison

Print float_class.

Variant float_class : Set :=
PNormal : float_class
NNormal : float_class

PSubn : float_class
NSubn : float_class
PZero : float_class
NZero : float_class
PInf : float_class
NInf : float_class
NaN : float_class

It then defines the primitive operators below, using the processor floating-point operators for binary64 in rounding-to-

nearest even:
* abs
* opp
* sub
e add
e mul
e div
* sgrt
e compare : compare two floats and return a float_comparison
* classify: analyze afloat and return a float_class
e of_int63: round a primitive integer and convert it into a float
e normfr_mantissa:takeafloatin [0.5; 1.0) and return its mantissa
e frshiftexp : convert a float to fractional partin [0.5; 1.0) and integer part
e ldshiftexp : multiply a float by an integral power of 2
* next_up : return the next float towards positive infinity
e next_down : return the next float towards negative infinity
For special floating-point values, the following constants are also defined:
® Zero
* neg_zero

¢ one

4.3. The Coq library

The Coq Reference Manual, Release 8.11.2

* two

e infinity

* neg_infinity

* nan : Not a Number (assumed to be unique: the “payload” of NaNs is ignored)

The following table shows the notations available when opening scope float_scope.

Notation | Interpretation
- - opp

_ T sub

_ o+ _ add

_* mul

_/ _ div

_ == _ | egb

_ < _ 1tb

_ <= _ | leb

_ ?= _ | compare

Floating-point constants are parsed and pretty-printed as (17-digit) decimal constants. This ensures that the composition
parse o print amounts to the identity.

Warning: The constant numeral is not a binary64 floating-point value. A closest value will b
Not all decimal constants are floating-point values. This warning is generated when parsing such a constant (for
instance 0. 1).

Example

Open Scope float_scope.
Eval compute in 1 + 0.5.
= 1.5
float

Eval compute in 1 / 0.
= infinity
float
Eval compute in 1 / -0.
= neg_infinity

float

Eval compute in 0 / 0.

= nan
float
Eval compute in 0 ?= -0.
= FEqg

float_comparison

Eval compute in nan ?= nan.
= FNotComparable
float_comparison

Eval compute in next_down (-1).

(continues on next page)

194 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

= —-1.0000000000000002
float

The primitive operators are specified with respect to their Gallina counterpart, using the variant type spec_float, and
the injection Prim2SF:

Print spec_float.
Variant spec_float : Set :=
S754_zero : bool —-> spec_float
| S754_infinity : bool —-> spec_float
| S754_nan : spec_float
| S754_finite : bool -> positive -> Z -> spec_float

Arguments S754_zero _%bool_scope
Arguments S754_infinity _%bool_scope
Arguments S754_finite _%bool_scope _%positive_scope _%Z_scope

Check Prim2SF.
Prim2SF
float —> spec_float

Check mul_spec.
mul_spec
forall x y : float, Prim2SF (x * y) = SF64mul (Prim2SF x) (Prim2SF vy)

For more details on the available definitions and lemmas, see the online documentation of the F1oats library.

4.3.3 Users’ contributions

Numerous users’ contributions have been collected and are available at URL http://coq.inria.fr/opam/www/. On this web
page, you have a list of all contributions with informations (author, institution, quick description, etc.) and the possibility
to download them one by one. You will also find informations on how to submit a new contribution.

4.4 Calculus of Inductive Constructions

The underlying formal language of Coq is a Calculus of Inductive Constructions (Cic) whose inference rules are presented
in this chapter. The history of this formalism as well as pointers to related work are provided in a separate chapter; see
Credits.

4.41 The terms

The expressions of the Cic are ferms and all terms have a rype. There are types for functions (or programs), there are
atomic types (especially datatypes)... but also types for proofs and types for the types themselves. Especially, any object
handled in the formalism must belong to a type. For instance, universal quantification is relative to a type and takes the
form “for all x of type T', P”. The expression “z of type T” is written “x : T”. Informally, “x : T can be thought as “x
belongs to T”.

The types of types are sorts. Types and sorts are themselves terms so that terms, types and sorts are all components of a
common syntactic language of terms which is described in Section 7erms but, first, we describe sorts.

4.4. Calculus of Inductive Constructions 195

http://coq.inria.fr/opam/www/

The Coq Reference Manual, Release 8.11.2

Sorts

All sorts have a type and there is an infinite well-founded typing hierarchy of sorts whose base sorts are SProp, Prop and
Set.

The sort Prop intends to be the type of logical propositions. If M is a logical proposition then it denotes the class of
terms representing proofs of M. An object m belonging to M witnesses the fact that M is provable. An object of type
Prop is called a proposition.

The sort SProp is like Prop but the propositions in SProp are known to have irrelevant proofs (all proofs are equal).
Objects of type SProp are called strict propositions. See SProp (proof irrelevant propositions) for information about using
SProp, and [GCST19] for meta theoretical considerations.

The sort Set intends to be the type of small sets. This includes data types such as booleans and naturals, but also products,
subsets, and function types over these data types.

SProp, Prop and Set themselves can be manipulated as ordinary terms. Consequently they also have a type. Because
assuming simply that Set has type Set leads to an inconsistent theory [Coq86], the language of Cic has infinitely many
sorts. There are, in addition to the base sorts, a hierarchy of universes Type(i) for any integer ¢ > 1.

Like Set, all of the sorts Type(i) contain small sets such as booleans, natural numbers, as well as products, subsets and
function types over small sets. But, unlike Set, they also contain large sets, namely the sorts Set and Type(y) for j < i,
and all products, subsets and function types over these sorts.

Formally, we call § the set of sorts which is defined by:
8 = {SProp, Prop, Set, Type(i) | i € N}

Their properties, such as: Prop : Type(1), Set : Type(1), and Type(i) : Type(i + 1), are defined in Section Subtyping

rules.

The user does not have to mention explicitly the index ¢ when referring to the universe Type(z). One only writes Type.
The system itself generates for each instance of Type a new index for the universe and checks that the constraints between
these indexes can be solved. From the user point of view we consequently have Type : Type. We shall make precise in
the typing rules the constraints between the indices.

Implementation issues In practice, the Type hierarchy is implemented using algebraic universes. An algebraic universe
u is either a variable (a qualified identifier with a number) or a successor of an algebraic universe (an expression u + 1),
or an upper bound of algebraic universes (an expression max(t, ..., u,,)), or the base universe (the expression 0) which
corresponds, in the arity of template polymorphic inductive types (see Section Well-formed inductive definitions), to the
predicative sort Set. A graph of constraints between the universe variables is maintained globally. To ensure the existence
of a mapping of the universes to the positive integers, the graph of constraints must remain acyclic. Typing expressions
that violate the acyclicity of the graph of constraints results in a Universe inconsistency error.

See also:

Section Printing universes.

Terms

Terms are built from sorts, variables, constants, abstractions, applications, local definitions, and products. From a syntactic
point of view, types cannot be distinguished from terms, except that they cannot start by an abstraction or a constructor.
More precisely the language of the Calculus of Inductive Constructions is built from the following rules.

1. the sorts SProp, Prop, Set, Type(7) are terms.
2. variables, hereafter ranged over by letters x, y, etc., are terms

3. constants, hereafter ranged over by letters c, d, etc., are terms.

196 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

4. if x is a variable and T', U are terms then Vx : T, U (forall x:T, U in Coq concrete syntax) is a term. If
x occurs in U, Vx : T, U reads as “for all x of type T', U”. As U depends on x, one says that Vz : T', U is a
dependent product. If x does not occur in U then Vz : T', U reads as “if T' then U”. A non dependent product can
be written: T' — U.

5. if z is a variable and T, u are terms then Az : T'. w (fun x:T => u in Coq concrete syntax) is a term. This is
a notation for the Ah-abstraction of A-calculus [Bar81]. The term Az : T. u is a function which maps elements of 7'
to the expression u.

6. if t and w are terms then (¢ u) is a term (t u in Coq concrete syntax). The term (¢ u) reads as “¢ applied to u”.

7. if x is a variable, and ¢, T and u are terms then let z := ¢ : T in u is a term which denotes the term v where the
variable z is locally bound to ¢ of type T'. This stands for the common “let-in” construction of functional programs
such as ML or Scheme.

Free variables. The notion of free variables is defined as usual. In the expressions Az : T. U and Vx : T, U the
occurrences of x in U are bound.

Substitution. The notion of substituting a term ¢ to free occurrences of a variable x in a term v is defined as usual. The
resulting term is written u{x/t}.

The logical vs programming readings. The constructions of the Cic can be used to express both logical and program-
ming notions, accordingly to the Curry-Howard correspondence between proofs and programs, and between propositions
and types [CFC58][How80][dB72].

For instance, let us assume that nat is the type of natural numbers with zero element written 0 and that True is the always
true proposition. Then — is used both to denote nat — nat which is the type of functions from nat to nat, to denote
True—True which is an implicative proposition, to denote nat — Prop which is the type of unary predicates over the
natural numbers, etc.

Let us assume that mult is a function of type nat — nat — nat and egnat a predicate of type nat — nat — Prop.
The A-abstraction can serve to build “ordinary” functions as in Az : nat. (mult z z) (i.e. fun x:nat => mult x
x in Coq notation) but may build also predicates over the natural numbers. For instance Az : nat. (egnat z 0) (i.e. fun
x:nat => eqgnat x 0 in Coq notation) will represent the predicate of one variable x which asserts the equality of
x with 0. This predicate has type nat — Prop and it can be applied to any expression of type nat, say ¢, to give an object
P t of type Prop, namely a proposition.

Furthermore forall x:nat, P x will represent the type of functions which associate to each natural number n an
object of type (P n) and consequently represent the type of proofs of the formula “Vz. P(x)”.

4.4.2 Typing rules

As objects of type theory, terms are subjected to type discipline. The well typing of a term depends on a global environment
and a local context.

Local context. A local context is an ordered list of local declarations of names which we call variables. The declaration
of some variable x is either a local assumption, written x : T' (T is a type) or a local definition, written x : =t : T'. We
use brackets to write local contexts. A typical example is [z : T'; y := u : U; z : V]. Notice that the variables declared
in a local context must be distinct. If I" is a local context that declares some z, we write € I'. By writing (¢ : T) € T
we mean that either = : T is an assumption in I" or that there exists some ¢ such that x := ¢ : T is a definition in I". If
T defines some x :=t : T, we also write (z :=t : T') € I'. For the rest of the chapter, I" :: (y : T') denotes the local
context I" enriched with the local assumption y : 7. Similarly, " :: (y := ¢ : T') denotes the local context I" enriched
with the local definition (y := ¢ : T'). The notation [] denotes the empty local context. By I';; I', we mean concatenation
of the local context I'; and the local context I',.

Global environment. A global environment is an ordered list of global declarations. Global declarations are either global
assumptions or global definitions, but also declarations of inductive objects. Inductive objects themselves declare both
inductive or coinductive types and constructors (see Section Inductive Definitions).

4.4. Calculus of Inductive Constructions 197

The Coq Reference Manual, Release 8.11.2

A global assumption will be represented in the global environment as (¢ : T') which assumes the name c¢ to be of some
type T'. A global definition will be represented in the global environment as ¢ := ¢ : T" which defines the name c to have
value ¢ and type 1. We shall call such names constants. For the rest of the chapter, the E; ¢ : T denotes the global
environment F enriched with the global assumption ¢ : T'. Similarly, E; ¢ := t : T denotes the global environment E
enriched with the global definition (¢ := ¢ : T').

The rules for inductive definitions (see Section /nductive Definitions) have to be considered as assumption rules to which
the following definitions apply: if the name c is declared in E, we write ¢ € E andif ¢ : T or ¢ := t : T is declared in
E,wewrite (c:T) € E.

Typing rules. In the following, we define simultaneously two judgments. The first one E[I'] - ¢ : T means the term ¢
is well-typed and has type T in the global environment F and local context I'. The second judgment W.F (E)[T'] means
that the global environment F is well-formed and the local context I' is a valid local context in this global environment.

A term ¢ is well typed in a global environment E iff there exists a local context I' and a term 7" such that the judgment
E[T] F t: T can be derived from the following rules.

W-Empty
Wz (Dl

W-Local-Assum

ElFT:s sES xz ¢l
WF ()T = (2 T)]

W-Local-Def

E[lFt:T 2 ¢T
WF(E)L :: (x:=1t:T))

W-Global-Assum

EJ+-T:s seS c¢t E
WF(E; c¢:T)[]
W-Global-Def
E[Ft:T c¢E

WF(E; c:i=1t:T)||

Ax-SProp
W7 (E)[T]
E[T] + SProp : Type(1)
Ax-Prop
W7 (E)[I]
E[l] + Prop : Type(1)
Ax-Set

W7 (E)[T]
E[l'|+ Set: Type(1)

198 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Ax-Type

Var

Const

Prod-SProp

Prod-Prop

Prod-Set

Prod-Type

Lam

App

Let

Wa (E)[I]
E[T]+ Type(i) : Type(i + 1)

WF (E)[T) (x:T)eT or (x:=t:T) €T forsomet
EltFa:T

WF (E)[T (¢c:T)eFE or (c:=t:T) € E for some ¢
ET|Fc:T

ElET:s seS E[l:: (z:T) - U : SProp

ETEVaz:T,U : SProp

ET|FT:s sES E[l:(z:T)FU:Prop
E[|F vz T, U : Prop

ElFT:s s € {SProp, Prop, Set} E[l: (z:T)FU : Set
EllFVa:T, U : Set

ElFT:s s € {SProp, Typei} El: (z:T)|FU: Type(i)

E[l|-Va:T, U : Type(i)

El|F-Vz:T,U:s El = (x:T)kHt:U
ElflkXe:T.t:Vo: T, U

Elrt:Va:U, T ElkFu:U
El)F (tu): T{x/u}

ETk¢t:T El:(z:=t:T)]Fu:U
ElFletx:=t:Tinu:U{x/t}

Note: Prod-Prop and Prod-Set typing-rules make sense if we consider the semantic difference between Prop and Set:

« All values of a type that has a sort Set are extractable.

* No values of a type that has a sort Prop are extractable.

Note: We may have let z := ¢ : T in u well-typed without having ((Az : T'. u) t) well-typed (where T is a type of t).
This is because the value ¢ associated to z may be used in a conversion rule (see Section Conversion rules).

4.4. Calculus of Inductive Constructions 199

The Coq Reference Manual, Release 8.11.2

4.4.3 Conversion rules

In Cic, there is an internal reduction mechanism. In particular, it can decide if two programs are intentionally equal (one
says convertible). Convertibility is described in this section.

B-reduction

We want to be able to identify some terms as we can identify the application of a function to a given argument with its
result. For instance the identity function over a given type 7" can be written Az : 7. z. In any global environment £ and
local context I', we want to identify any object a (of type T') with the application ((Az : T. x) a). We define for this a
reduction (or a conversion) rule we call 3:

ETE(Az:T.t)u) >g t{x/u}
We say that ¢t{x/u} is the S-contraction of ((Ax : T.t) u) and, conversely, that ((A\z : T'. ¢) u) is the S-expansion of
According to B-reduction, terms of the Calculus of Inductive Constructions enjoy some fundamental properties such as

confluence, strong normalization, subject reduction. These results are theoretically of great importance but we will not
detail them here and refer the interested reader to [Coq85].

t-reduction

A specific conversion rule is associated to the inductive objects in the global environment. We shall give later on (see
Section Well-formed inductive definitions) the precise rules but it just says that a destructor applied to an object built from
a constructor behaves as expected. This reduction is called i-reduction and is more precisely studied in [PM93a][Wer94].

O-reduction

We may have variables defined in local contexts or constants defined in the global environment. It is legal to identify such
a reference with its value, that is to expand (or unfold) it into its value. This reduction is called 8-reduction and shows as
follows.

Delta-Local

WF (E)[T) (x:=t:T)eTl
ElFax ot

Delta-Global

WF(E)[T) (c:=t:T)eFE
ET|Fc D>y ¢

C-reduction

Coq allows also to remove local definitions occurring in terms by replacing the defined variable by its value. The declaration
being destroyed, this reduction differs from d-reduction. It is called C-reduction and shows as follows.

Zeta

WF (E)[I] ElkFu:U El:(x:=u:U)]Ft:T
El|Fletr:=u:Uint >, t{x/u}

200 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

n-expansion

Another important concept is n-expansion. It is legal to identify any term ¢ of functional type Va : T', U with its so-called
1-expansion

Az T. (tx)

for x an arbitrary variable name fresh in ¢.

Note: We deliberately do not define n-reduction:

Ae T (tx) B, t

This is because, in general, the type of ¢ need not to be convertible to the type of Az : T'. (¢ x). E.g., if we take f such
that:

f: Vo :Type(2), Type(l)
then
Az : Type(l). (fz) : Va: Type(l), Type(l)
We could not allow
Az : Type(l). (f z) D>, f

because the type of the reduced term Vx : Type(2), Type(1) would not be convertible to the type of the original term
Vo : Type(1), Type(1).

Proof Irrelevance

It is legal to identify any two terms whose common type is a strict proposition A : SProp. Terms in a strict propositions
are therefore called irrelevant.

Convertibility
Let us write E[I'] F ¢ [> u for the contextual closure of the relation ¢ reduces to u in the global environment F and local
context I' with one of the previous reductions 3, d, v or T.

We say that two terms ¢, and t, are Séuin-convertible, or simply convertible, or equivalent, in the global environment E
and local context I iff there exist terms w, and u, such that E[T'] - ¢, [>...[>u, and E[['] F ¢4 > ... [> u, and either u,
and u, are identical up to irrelevant subterms, or they are convertible up to 1-expansion, i.e. u, is Az : T'. uj and u,z is
recursively convertible to u/, or, symmetrically, u, is Az : T'. u} and u, x is recursively convertible to u5. We then write
BT Fty =gs,cp to-

Apart from this we consider two instances of polymorphic and cumulative (see Chapter Polymorphic Universes) inductive
types (see below) convertible

B[]+ tw,y..w,, =gs,c, t w)...w
if we have subtypings (see below) in both directions, i.e.,

B Ftwy.wy, <gseptw)..w

4.4. Calculus of Inductive Constructions 201

The Coq Reference Manual, Release 8.11.2

and

Furthermore, we consider

convertible if
E[F] + Ui =Bty vz/'

and we have that ¢ and ¢’ are the same constructors of different instances of the same inductive types (differing only in
universe levels) such that

E[l)F cvy..v,, s twy..w

m
and
EF ¢ v, st wi..w),
and we have

4
m*

Bl Ftwy.w,, =gsep t whew

The convertibility relation allows introducing a new typing rule which says that two convertible well-formed types have
the same inhabitants.

4.4.4 Subtyping rules

At the moment, we did not take into account one rule between universes which says that any term in a universe of index
1 is also a term in the universe of index ¢ + 1 (this is the cumulativity rule of Cic). This property extends the equivalence
relation of convertibility into a subtyping relation inductively defined by:

1. if B[] =t =g4,¢,, u then E[T] =t <gg, ¢, u,

2. if i < j then E[T] F Type(i) <gs,c, TYPE()),
3. for any i, E[I'] - Set <g;,,, Type(i),
4

. E[T'] = Prop <gs,¢, Set, hence, by transitivity, E[T'] - Prop <gs,., Type(i), for any i (note: SProp is not
related by cumulativity to any other term)

if B[T] - T =p5,c, Uand BT = (2 : T)] - T' <gg,c U’ then E[T] - Va : T, T <gs ey Y : U, U’

e

6. if Ind [p] (T'; := T') is a universe polymorphic and cumulative (see Chapter Polymorphic Universes) inductive
type (see below) and (¢ : VI'p, VI'y,,(;),S) € Ipand (¢ : VI'p, VI,), S") € I'; are two different instances of
the same inductive type (differing only in universe levels) with constructors

[eq : VEp, VT 1Ty s 20y 10 s s € 2 VD p, VT Ty, t Vg 1V]
and
. ’ / / ;7 ’. . . ’ / / o ’
[c; : VP, VI 1 T s U 0] 10 s oy € VD, VT T, 8 Vg 1oV)

respectively then

Bl F twy..w,, <gse,t" wy..p,

202 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

(notice that ¢ and ¢’ are both fully applied, i.e., they have a sort as a type) if
E[F] F w; =Bty w’/b
for 1 < i < m and we have

E[F] T Sﬁ&(n Ti/,j

i,

and

E[F] + Az SBéL(n A;

where L'y = [ag = Ay; o5 ap s A and T) = [ay = Aps 5 ap 2 Af
The conversion rule up to subtyping is now exactly:
Conv

ElFU:s Elrt:T BT <gsen U
ElkFt:U

Normal form. A term which cannot be any more reduced is said to be in normal form. There are several ways (or
strategies) to apply the reduction rules. Among them, we have to mention the head reduction which will play an important
role (see Chapter Tactics). Any term ¢ can be written as Az : Ty. .. xy, : T}.. (¢, ty...t,,) where ¢, is not an application.
We say then that ¢, is the head of t. If we assume that ¢, is Az : T'. u, then one step of $-head reduction of ¢ is:

Aoy Ty Ay, Ty (A s Toug ty.ty,) D> Moy 2 Th) . (xy 2 1) (ug{z/ty)} ty.. L)

Iterating the process of head reduction until the head of the reduced term is no more an abstraction leads to the 3-head
normal form of t:

t> .. DAz Ty Az T (vug..u,,)

where v is not an abstraction (nor an application). Note that the head normal form must not be confused with the normal
form since some u,; can be reducible. Similar notions of head-normal forms involving d, \ and T reductions or any
combination of those can also be defined.

4.4.5 Inductive Definitions

Formally, we can represent any inductive definition as Ind [p] (I'; := T';) where:
* I'; determines the names and types of inductive types;
* I' - determines the names and types of constructors of these inductive types;
¢ p determines the number of parameters of these inductive types.

These inductive definitions, together with global assumptions and global definitions, then form the global environment.
Additionally, for any p there always exists I'p = [a; : Ay; ...; @, : A] such thateach T"in (¢t : T') € I'; UT'; can be
written as: VI'p, T” where I is called the context of parameters. Furthermore, we must have thateach T'in (¢t : T) € T';
can be written as: VI'p, VI'y,, 4, S where I',,) is called the Arify of the inductive type ¢ and S is called the sort of the
inductive type t (not to be confused with § which is the set of sorts).

Example
The declaration for parameterized lists is:

Ind [1] ([liSt : Set — Set] := nil : VA: Set, list A D

cons : VA:Set, A—listA—listA

which corresponds to the result of the Coq declaration:

4.4. Calculus of Inductive Constructions 203

The Coq Reference Manual, Release 8.11.2

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.

Example

The declaration for a mutual inductive definition of tree and forest is:

tree : Set node : forest— tree
Ind [0] { forest) Set } = | emptyf : forest
' consf : tree — forest — forest

which corresponds to the result of the Coq declaration:

Inductive tree : Set :=

| node : forest —-> tree

with forest : Set :=

| emptyf : forest

| consf : tree —-> forest —-> forest.

Example

The declaration for a mutual inductive definition of even and odd is:

even : nat— Prop eveno : even
Ind [0] [odd : nat— Pro } = eveng : Vn, oddn — even (Sn)
' P odds : Vn, evenn — odd (S n)

which corresponds to the result of the Coq declaration:

Inductive even : nat -> Prop :=

| even_O : even 0

| even_S : forall n, odd n -> even (S n)
with odd : nat -> Prop :=

| odd_S : forall n, even n —> odd (S n).

Types of inductive objects

We have to give the type of constants in a global environment ' which contains an inductive definition.

Ind

WF (E)[T] Ind [p] (T'; :=Ty) €E (a:A)eTy
ElFa:A
Constr
WF (E)[T) Ind[p] (T'; :=Ty) €E (c: C)eT,
EllFec:C
Example

204 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Provided that our environment £ contains inductive definitions we showed before, these two inference rules above enable
us to conclude that:

E[I'l + even : nat — Prop

E[T'] + odd : nat — Prop

E[l'] - eveng : even O

E[') - eveng : Vn : nat, odd n — even (S n)
E[I'lF oddg : Vn : nat, even n — odd (S n)

Well-formed inductive definitions

We cannot accept any inductive definition because some of them lead to inconsistent systems. We restrict ourselves to
definitions which satisfy a syntactic criterion of positivity. Before giving the formal rules, we need a few definitions:

Arity of a given sort

A type T is an arity of sort s if it converts to the sort s or to a product Vo : T, U with U an arity of sort s.

Example

A — Set is an arity of sort Set. VA : Prop, A — Prop is an arity of sort Prop.

Arity

A type T is an arity if there is a s € & such that 1" is an arity of sort s.

Example

A — Setand VA : Prop, A — Prop are arities.

Type of constructor

We say that T is a type of constructor of I in one of the following two cases:
o Tis (Ity...t,)

e TisVx: U, T’ where T" is also a type of constructor of [

Example

nat and nat — nat are types of constructor of nat. VA : Type, list Aand VA : Type, A — list A — list A are types
of constructor of list.

4.4. Calculus of Inductive Constructions 205

The Coq Reference Manual, Release 8.11.2

Positivity Condition

The type of constructor 7" will be said to satisfy the positivity condition for a constant X in the following cases:
e T'=(Xt...t,) and X does not occur free in any ¢,

e T'=Vx:U, V and X occurs only strictly positively in U and the type V satisfies the positivity condition for X.

Strict positivity

The constant X occurs strictly positively in I" in the following cases:
* X does not occur in T’
* T converts to (X ¢;...t,,) and X does not occur in any of ¢,
e T converts to Vz : U, V and X does not occur in type U but occurs strictly positively in type V'

* T converts to (I a;...a,, t;...t,) where I is the name of an inductive definition of the form
Ind[m|(l:A :=¢ :Vp,:P,..Vp,: P, Cy; ...;¢,:Vp, : P,..Np, : P, C.)

(in particular, it is not mutually defined and it has m parameters) and X does not occur in any of the ¢;, and the

(instantiated) types of constructor C;{p;/a;},_; ,, of I satisfy the nested positivity condition for X

Nested Positivity

The type of constructor T" of I satisfies the nested positivity condition for a constant X in the following cases:
o T'=(Iby...b, uy...u,), I is an inductive type with m parameters and X does not occur in any u;

e T'=Vz:U, Vand X occurs only strictly positively in U and the type V satisfies the nested positivity condition
for X

Example

For instance, if one considers the following variant of a tree type branching over the natural numbers:

Inductive nattree (A:Type) : Type :=
| leaf : nattree A
| natnode : A -> (nat —-> nattree A) —-> nattree A.

Then every instantiated constructor of nattree A satisfies the nested positivity condition for nattree:

* Type nattree A of constructor leaf satisfies the positivity condition for natt ree because nattree does
not appear in any (real) arguments of the type of that constructor (primarily because natt ree does not have any
(real) arguments) ... (bullet 1)

e TypeA — (nat — nattree A) — nattree A of constructor natnode satisfies the positivity condi-
tion for natt ree because:

— nattree occurs only strictly positively in A ... (bullet 1)
— nattree occurs only strictly positively in nat — nattree A ... (bullet3 +2)

— nattree satisfies the positivity condition for nattree A ... (bullet 1)

206 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Correctness rules

We shall now describe the rules allowing the introduction of a new inductive definition.

Let F be a global environment and I' p, T';, T’ be contexts such that T'; is [I; : V' p, Ay; ..; I, : VI p, A], and Ty is
[cq : VI'p,Cy; .5 ¢, 2 VT p, C]. Then
W-Ind

WF(E)[L p] (BT Tpl -Gy Sq)

i

W7 (E; Ind [p] (T = T¢))]]

i=1l..n

provided that the following side conditions hold:
* k> 0Oandall of I, and c; are distinct names for j = 1...kand i = 1...n,
* p is the number of parameters of Ind [p] (I'; := TI'y) and I'p is the context of parameters,
e for j = 1...k we have that A; is an arity of sort s; and I, ¢ F,

e for s = 1...n we have that C; is a type of constructor of I, which satisfies the positivity condition for /; ..., and
c; ¢ E.

One can remark that there is a constraint between the sort of the arity of the inductive type and the sort of the type of its
constructors which will always be satisfied for the impredicative sorts SProp and Prop but may fail to define inductive
type on sort Set and generate constraints between universes for inductive types in the Type hierarchy.

Example

It is well known that the existential quantifier can be encoded as an inductive definition. The following declaration intro-
duces the second-order existential quantifier 3X. P(X).

Inductive exProp (P:Prop—>Prop) : Prop :=
| exP_intro : forall X:Prop, P X —> exProp P.

The same definition on Set is not allowed and fails:

Fail Inductive exSet (P:Set->Prop) : Set :=
exS_intro : forall X:Set, P X —> exSet P.
The command has indeed failed with message:
Large non-propositional inductive types must be in Type.

It is possible to declare the same inductive definition in the universe Type. The exType inductive definition has type
(Type(i) — Prop) — Type(j) with the constraint that the parameter X of exT;,,, has type Type(k) with k < j and
k<.

Inductive exType (P:Type->Prop) : Type :=
exT_intro : forall X:Type, P X —> exType P.
exType is defined
exType_rect is defined
exType_ind is defined
exType_rec is defined
exType_sind is defined

Example: Negative occurrence (first example)

The following inductive definition is rejected because it does not satisfy the positivity condition:

4.4. Calculus of Inductive Constructions 207

The Coq Reference Manual, Release 8.11.2

Fail Inductive I : Prop := not_I_TI (not_I : I -> False) : I.
The command has indeed failed with message:
Non strictly positive occurrence of "I" in " (I -> False) —-> I".

If we were to accept such definition, we could derive a contradiction from it (we can test this by disabling the
Positivity Checking flag):

Definition I_not_ I : I -> ~ I := fun i =>
match i with not_I_T not_I => not_I end.
I_not_I is defined

Lemma contradiction : False.

Proof.

enough (I /\ ~ I) as [] by contradiction.
split.

- apply not_I_TI.

intro.

now apply I_not_TI.

— intro.

now apply I_not_TI.

Qed.

Example: Negative occurrence (second example)

Here is another example of an inductive definition which is rejected because it does not satify the positivity condition:

Fail Inductive Lam := lam (_ : Lam —-> Lam).
The command has indeed failed with message:
Non strictly positive occurrence of "Lam" in " (Lam -> Lam) —> Lam".

Again, if we were to accept it, we could derive a contradiction (this time through a non-terminating recursive function):

Fixpoint infinite_loop 1 : False :=
match 1 with lam x => infinite_loop (x 1) end.
infinite_loop is defined
infinite_loop is recursively defined (decreasing on lst argument)

Check infinite_loop (lam (€@id Lam)) : False.
infinite_loop (lam (id (A:=Lam))) : False
False

Example: Non strictly positive occurrence

It is less obvious why inductive type definitions with occurences that are positive but not strictly positive are harmful. We
will see that in presence of an impredicative type they are unsound:

Fail Inductive A: Type := introA: ((A -> Prop) —-> Prop) —> A.
The command has indeed failed with message:
Non strictly positive occurrence of "A" in " ((A -> Prop) —-> Prop) —-> A".

If we were to accept this definition we could derive a contradiction by creating an injective function from A — Prop to

A.

This function is defined by composing the injective constructor of the type A with the function Az.Az.z = x injecting
any type 7" into 7' — Prop.

208 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Definition f (x: A —> Prop): A := introA (fun z => z = x).
f is defined

Lemma f_inj: forall xy, £f x=fy > x = y.

Proof.
unfold f; intros ? ? H; injection H.
set (F := fun z => z = y); intro HF.

symmetry; replace (y = x) with (F y).
+ unfold F; reflexivity.

+ rewrite <- HF; reflexivity.

Qed.

The type A — Prop can be understood as the powerset of the type A. To derive a contradiction from the injective
function f we use Cantor’s classic diagonal argument.

Definition d: A -> Prop := fun x => exists s, x = f s /\ ~s x.
d is defined

Definition fd: A := f d.
fd is defined

Lemma cantor: (d fd) <-> ~(d fd).
Proof.

split.

+ intros [s [H1 H2]]; unfold fd in HI1.
replace d with s.

* assumption.

* apply f_inj; congruence.

+ intro; exists d; tauto.

Qed.

Lemma bad: False.
Proof.

pose cantor; tauto.
Qed.

This derivation was first presented by Thierry Coquand and Christine Paulin in [CP90].

Template polymorphism

Inductive types can be made polymorphic over the universes introduced by their parameters in Type, if the minimal
inferred sort of the inductive declarations either mention some of those parameter universes or is computed to be Prop
or Set.

If A is an arity of some sort and s is a sort, we write A /s for the arity obtained from A by replacing its sort with s.
Especially, if A is well-typed in some global environment and local context, then A, is typable by typability of all
products in the Calculus of Inductive Constructions. The following typing rule is added to the theory.

Let Ind [p] (T'; := I') be an inductive definition. Let 'y = [p; : Py; ...; p, : P,] be its context of parameters,
I; = : VI'p,Aq; .. I, : VD'p, A;] its context of definitions and T'x = [¢; : VI'p,Cy; .o ¢, = VI'p,C,]
its context of constructors, with ¢; a constructor of I, . Let m < p be the length of the longest prefix of parameters
such that the mn first arguments of all occurrences of all I; in all Cj; (even the occurrences in the hypotheses of C') are
exactly applied to p;...p,,, (m is the number of recursively uniform parameters and the p — m remaining parameters are
the recursively non-uniform parameters). Let qq, ..., q,, with 0 < 7 < m, be a (possibly) partial instantiation of the
recursively uniform parameters of I" . We have:

4.4. Calculus of Inductive Constructions 209

The Coq Reference Manual, Release 8.11.2

Ind-Family

Ind[p](T; :=Ty) €F

(B[l q Pl/)l:L..r

(E[] = P)l, SBéL(n Pl{pu/qu}uzlmlfl)l:lmr
1<i<k

E[+ I q..q, VD1t Prpys oo Dy Pp], (Aj)/s_

J

provided that the following side conditions hold:

» T'p/ is the context obtained from I'p by replacing each P, that is an arity with P/ for 1 <[< r (notice that P,
arity implies P, arity since E[] - P/ <psucn PAp./t} uet 1-1);

» there are sorts s;, for 1 < ¢ < ksuch that, for 'y = [[} : VD'p/, (Ay) 55 o I+ VD pr, (Ay)),] We have
(B[Pp]=Ches,)

s /i=1l.n >

* the sorts s, are all introduced by the inductive declaration and have no universe constraints beside being greater than
or equal to Prop, and such that all eliminations, to Prop, Set and Type(j), are allowed (see Section Destructors).

Notice that if I; g;...q, is typable using the rules Ind-Const and App, then it is typable using the rule Ind-Family.
Conversely, the extended theory is not stronger than the theory without Ind-Family. We get an equiconsistency result
by mapping each Ind [p] (I'; := T'») occurring into a given derivation into as many different inductive types and con-
structors as the number of different (partial) replacements of sorts, needed for this derivation, in the parameters that are
arities (this is possible because Ind [p] (I'; := T'y) well-formed implies that Ind [p] (T';, := T') is well-formed and
has the same allowed eliminations, where I";, is defined as above and I' v = [¢; : VI'p/, Cy; ... ¢, 2 VI pr, C,]). That
is, the changes in the types of each partial instance ¢; ...q, can be characterized by the ordered sets of arity sorts among
the types of parameters, and to each signature is associated a new inductive definition with fresh names. Conversion
is preserved as any (partial) instance I; gy ...q, or C; ¢;...q, is mapped to the names chosen in the specific instance of
Ind [p] (T} = T'¢).

Warning: The restriction that sorts are introduced by the inductive declaration prevents inductive types declared
in sections to be template-polymorphic on universes introduced previously in the section: they cannot parameterize
over the universes introduced with section variables that become parameters at section closing time, as these may be
shared with other definitions from the same section which can impose constraints on them.

Flag: Auto Template Polymorphism
This flag, enabled by default, makes every inductive type declared at level Type (without annotations or hiding it
behind a definition) template polymorphic if possible.

This can be prevented using the universes (notemplate) attribute.

Warning: Automatically declaring ident as template polymorphic.
Warning auto-template can be used to find which types are implicitly declared template polymorphic by
Auto Template Polymorphism.

An inductive type can be forced to be template polymorphic using the universes (template) attribute: it
should then fulfill the criterion to be template polymorphic or an error is raised.

Error: Inductive ident cannot be made template polymorphic.
This error is raised when the # [universes (template)] attribute is on but the inductive cannot be made
polymorphic on any universe or be inferred to live in Prop or Set.

Template polymorphism and universe polymorphism (see Chapter Polymorphic Universes) are incompatible, so
if the later is enabled it will prevail over automatic template polymorphism and cause an error when using the
universes (template) attribute.

210 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

Flag: Template Check

This flag is on by default. Turning it off disables the check of locality of the sorts when abstracting the inductive
over its parameters. This is a deprecated and unsafe flag that can introduce inconsistencies, it is only meant to help
users incrementally update code from Coq versions < 8.10 which did not implement this check. The Cog89.v
compatibility file sets this flag globally. A global -no-template-check command line option is also available.
Use at your own risk. Use of this flag is recorded in the typing flags associated to a definition but is not supported by
the Coq checker (cogchk). It will appear in Print Assumptions and About @ident output involving
inductive declarations that were (potentially unsoundly) assumed to be template polymorphic.

In practice, the rule Ind-Family is used by Coq only when all the inductive types of the inductive definition are declared
with an arity whose sort is in the Type hierarchy. Then, the polymorphism is over the parameters whose type is an arity
of sort in the Type hierarchy. The sorts s; are chosen canonically so that each s; is minimal with respect to the hierarchy
Prop C Set, C Type where Set,, is predicative Set. More precisely, an empty or small singleton inductive definition
(i.e. an inductive definition of which all inductive types are singleton — see Section Destructors) is set in Prop, a small
non-singleton inductive type is set in Set (even in case Set is impredicative — see Section The-Calculus-of-Inductive-
Construction-with-impredicative-Set), and otherwise in the Type hierarchy.

Note that the side-condition about allowed elimination sorts in the rule Ind-Family avoids to recompute the allowed
elimination sorts at each instance of a pattern matching (see Section Destructors). As an example, let us consider the
following definition:

Example
Inductive option (A:Type) : Type :=
| None : option A

| Some : A —> option A.

As the definition is set in the Type hierarchy, it is used polymorphically over its parameters whose types are arities of a
sort in the Type hierarchy. Here, the parameter A has this property, hence, if option is applied to a type in Set, the
result is in Set. Note that if opt ion is applied to a type in Prop, then, the result is not set in Prop but in Set still. This
is because option is not a singleton type (see Section Destructors) and it would lose the elimination to Set and Type if
set in Prop.

Example

Check (fun A:Set => option A).
fun A : Set => option A
Set —> Set

Check (fun A:Prop => option A).
fun A : Prop => option A
Prop —> Set

Here is another example.

Example

Inductive prod (A B:Type) : Type := pair : A —> B —> prod A B.

As prod is a singleton type, it will be in Prop if applied twice to propositions, in Set if applied twice to at least one type
in Set and none in Type, and in Type otherwise. In all cases, the three kind of eliminations schemes are allowed.

4.4. Calculus of Inductive Constructions 211

The Coq Reference Manual, Release 8.11.2

Example

Check (fun A:Set => prod A).
fun A : Set => prod A
Set -> Type —> Type

Check (fun A:Prop => prod A A).
fun A : Prop => prod A A
Prop —> Prop

Check (fun (A:Prop) (B:Set) => prod A B).
fun (A : Prop) (B : Set) => prod A B
Prop —> Set —> Set

Check (fun (A:Type) (B:Prop) => prod A B).
fun (A : Type) (B : Prop) => prod A B
Type —> Prop —> Type

Note: Template polymorphism used to be called “sort-polymorphism of inductive types” before universe polymorphism
(see Chapter Polymorphic Universes) was introduced.

Destructors

The specification of inductive definitions with arities and constructors is quite natural. But we still have to say how to use
an object in an inductive type.

This problem is rather delicate. There are actually several different ways to do that. Some of them are logically equivalent
but not always equivalent from the computational point of view or from the user point of view.

From the computational point of view, we want to be able to define a function whose domain is an inductively defined
type by using a combination of case analysis over the possible constructors of the object and recursion.

Because we need to keep a consistent theory and also we prefer to keep a strongly normalizing reduction, we cannot
accept any sort of recursion (even terminating). So the basic idea is to restrict ourselves to primitive recursive functions
and functionals.

For instance, assuming a parameter A : Set exists in the local context, we want to build a function length of type list A —
nat which computes the length of the list, such that (length (nil A)) = O and (length (cons A a 1)) = (S (length 1)).
We want these equalities to be recognized implicitly and taken into account in the conversion rule.

From the logical point of view, we have built a type family by giving a set of constructors. We want to capture the fact
that we do not have any other way to build an object in this type. So when trying to prove a property about an object m
in an inductive type it is enough to enumerate all the cases where m starts with a different constructor.

In case the inductive definition is effectively a recursive one, we want to capture the extra property that we have built
the smallest fixed point of this recursive equation. This says that we are only manipulating finite objects. This analysis
provides induction principles. For instance, in order to prove VI : list A, (has_length A [(length [)) it is enough to
prove:

* (has_length A (nil A) (length (nil A)))
* Va: A, Vi:list A, (has_length A (lengthl)) — (has_length A (cons A al) (length (cons A al)))
which given the conversion equalities satisfied by length is the same as proving:

* (has_length A (nil A) O)

212 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

e Va: A, Vi:list A, (has_length Al (lengthl)) — (has_length A (cons A al) (S (lengthl)))

One conceptually simple way to do that, following the basic scheme proposed by Martin-Lof in his Intuitionistic Type
Theory, is to introduce for each inductive definition an elimination operator. At the logical level it is a proof of the usual
induction principle and at the computational level it implements a generic operator for doing primitive recursion over the
structure.

But this operator is rather tedious to implement and use. We choose in this version of Coq to factorize the operator for
primitive recursion into two more primitive operations as was first suggested by Th. Coquand in [Cog92]. One is the
definition by pattern matching. The second one is a definition by guarded fixpoints.

The match ... with ... end construction

The basic idea of this operator is that we have an object m in an inductive type I and we want to prove a property which
possibly depends on m. For this, it is enough to prove the property for m = (c; uy ...upi) for each constructor of I. The
Coq term for this proof will be written:

match m with (¢; zyy...2q,,) = fil-..[(c,, p1--2py,) = £, €N
In this expression, if m eventually happens to evaluate to (c; u;...u,) then the expression will behave as specified in its

i-th branch and it will reduce to f; where the ;;...x;, are replaced by the u...u, according to the \-reduction.

Actually, for type checking a match...with...end expression we also need to know the predicate P to be proved by
case analysis. In the general case where I is an inductively defined n-ary relation, P is a predicate over n + 1 argu-
ments: the n first ones correspond to the arguments of I (parameters excluded), and the last one corresponds to object
m. Coq can sometimes infer this predicate but sometimes not. The concrete syntax for describing this predicate uses
the as...in...return construction. For instance, let us assume that I is an unary predicate with one parameter and one
argument. The predicate is made explicit using the syntax:

match m as zin I _areturn P with (¢, y;...2y,,) = f1l..|(¢, Ty,) = f, end

The as part can be omitted if either the result type does not depend on m (non-dependent elimination) or m is a variable
(in this case, m can occur in P where it is considered a bound variable). The in part can be omitted if the result type
does not depend on the arguments of /. Note that the arguments of I corresponding to parameters must be _, because
the result type is not generalized to all possible values of the parameters. The other arguments of I (sometimes called
indices in the literature) have to be variables (a above) and these variables can occur in P. The expression after in must
be seen as an inductive type pattern. Notice that expansion of implicit arguments and notations apply to this pattern. For
the purpose of presenting the inference rules, we use a more compact notation:

case(m, (Aax.P),Axyy...x1, - f1 || ATy, f)

Allowed elimination sorts. An important question for building the typing rule for match is what can be the type of
Aazx. P with respect to the type of m. If m : [and I : A and Aax.P : B then by [I : A|B] we mean that one can use
Aax. P with m in the above match-construct.

Notations. The [: A|B] is defined as the smallest relation satisfying the following rules: We write [I|B] for [I : A|B|
where A is the type of I.

The case of inductive types in sorts Set or Type is simple. There is no restriction on the sort of the predicate to be
eliminated.

Prod

(I 2) - A'|B]
[I:Vx: A A|Vz: A, B

4.4. Calculus of Inductive Constructions 213

The Coq Reference Manual, Release 8.11.2

Set & Type

s, € {Set, Type(j)} S9 €S
[1:89]1 — 85)

The case of Inductive definitions of sort Prop is a bit more complicated, because of our interpretation of this sort. The
only harmless allowed eliminations, are the ones when predicate P is also of sort Prop or is of the morally smaller sort
SProp.

Prop

s € {SProp, Prop}
[I : Prop|I — s]

Prop is the type of logical propositions, the proofs of properties P in Prop could not be used for computation and are
consequently ignored by the extraction mechanism. Assume A and B are two propositions, and the logical disjunction
AV B is defined inductively by:

Example
Inductive or (A B:Prop) : Prop :=
or_introl : A -> or A B | or_intror : B -> or A B.

The following definition which computes a boolean value by case over the proof of or A B is not accepted:

Example

Fail Definition choice (A B: Prop) (x:or A B) :=
match x with or_introl = _ a => true | or_intror _ _ b => false end.
The command has indeed failed with message:
Incorrect elimination of "x" in the inductive type "or":
the return type has sort "Set" while it should be "SProp" or "Prop".
Elimination of an inductive object of sort Prop
is not allowed on a predicate in sort Set
because proofs can be eliminated only to build proofs.

From the computational point of view, the structure of the proof of (or A B) in this term is needed for computing the
boolean value.

In general, if I has type Prop then P cannot have type I — Set, because it will mean to build an informative proof of
type (P m) doing a case analysis over a non-computational object that will disappear in the extracted program. But the
other way is safe with respect to our interpretation we can have I a computational object and P a non-computational one,
it just corresponds to proving a logical property of a computational object.

In the same spirit, elimination on P of type I — Type cannot be allowed because it trivially implies the elimination on
P of type I — Set by cumulativity. It also implies that there are two proofs of the same property which are provably
different, contradicting the proof-irrelevance property which is sometimes a useful axiom:

Example

Axiom proof_irrelevance : forall (P : Prop) (xy : P), x=y.
proof_irrelevance is declared

214 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

The elimination of an inductive type of sort Prop on a predicate P of type I — Type leads to a paradox when applied
to impredicative inductive definition like the second-order existential quantifier exProp defined above, because it gives
access to the two projections on this type.

Empty and singleton elimination. There are special inductive definitions in Prop for which more eliminations are
allowed.

Prop-extended

I is an empty or singleton definition ses
[I : Prop|I — s]

A singleton definition has only one constructor and all the arguments of this constructor have type Prop. In that case, there
is a canonical way to interpret the informative extraction on an object in that type, such that the elimination on any sort s
is legal. Typical examples are the conjunction of non-informative propositions and the equality. If there is a hypothesis
h : a = b in the local context, it can be used for rewriting not only in logical propositions but also in any type.

Example

Print eq_rec.
eqg_rec =
fun (A : Type) (x : A) (P : A —> Set) => eq_rect x P
forall (A : Type) (x : A) (P : A —> Set),
P x —-> forall y : A, x =y —-> Py

Arguments eq_rec [A]%type_scope _ _S%$function_scope

Require Extraction.
[Loading ML file extraction_plugin.cmxs ... done]

Extraction eq_rec.
(** val eq_rec : 'al —-> 'az2 -> 'al -> 'a2 **)

let eq_rec _ £ _ =
f

An empty definition has no constructors, in that case also, elimination on any sort is allowed.
Inductive types in SProp must have no constructors (i.e. be empty) to be eliminated to produce relevant values.

Note that thanks to proof irrelevance elimination functions can be produced for other types, for instance the elimination
for a unit type is the identity.

Type of branches. Let ¢ be a term of type C, we assume C' is a type of constructor for an inductive type I. Let P
be a term that represents the property to be proved. We assume 7 is the number of parameters and s is the number of
arguments.

We define a new type {c : C'}¥ which represents the type of the branch corresponding to the ¢ : C' constructor.

{c:(Iq..qut; .t)} =(Pt,..t,c)
{c:Vz:T, C}F =Vo:T, {(cx): C}F

We write {c}* for {c : C}¥ with C the type of c.

Example

The following term in concrete syntax:

4.4. Calculus of Inductive Constructions 215

The Coq Reference Manual, Release 8.11.2

match t as 1 return P' with

| nil _ => t1
| cons _ hd tl => t2
end

can be represented in abstract syntax as

Case(t,P, f1|f2)

where
P = M. P
fi = 6
fo = A(hd:nat). A(tl : list nat). ¢,
According to the definition:
{(nil nat)}¥ = {(nil nat) : (list nat)}* = (P (nil nat))

{(cons nat)}* = {(cons nat) : (nat — list nat — list nat)}*
= Vn : nat, {(cons natn) : (list nat — list nat)}*
= Vn :nat, VI : list nat, {(cons natn) : (list nat)}”
= Vn:nat, Vi:listnat, (P (consnatnl)).

Given some P then {(nil nat)}* represents the expected type of f;, and {(cons nat)}*" represents the expected type of

fo-

Typing rule. Our very general destructor for inductive definition enjoys the following typing rule

match

El)Fc:(Iqq...q t;...t,)

ET-P:B

(I 4,---q,)| B]

(E[F] = fis {(Cp,i ql"'Qr)}P)i:L,.l
E[IF case(c, P, f1]...1f;) : (P tq...t5 ¢)

provided I is an inductive type in a definition Ind [r] (I'; := T'p) withT's = [¢; : C; .5 ¢
the only constructors of I.

:Cyland ¢, ...c, are

n Pr

Example
Below is a typing rule for the term shown in the previous example:

list example

E[T] -t : (list nat)

El-P:B

[(list nat)| B]

E[T)F £, : {(nil nat)}?

E[T]F fy : {(cons nat)}*
EIF case(t, P, f1|fs) : (Pt)

Definition of -reduction. We still have to define the 1-reduction in the general case.

216 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

An -redex is a term of the following form:

case((cpi GGy Q1 ---Qp)s Py 1l f)
with ¢, the i-th constructor of the inductive type I with r parameters.

The 1-contraction of this term is (f; a;...a,,) leading to the general reduction rule:

Case((cpi qy---qy al"'anL)a Pv fl||fl) l>1, (fz a’l"'am)

Fixpoint definitions

The second operator for elimination is fixpoint definition. This fixpoint may involve several mutually recursive definitions.
The basic concrete syntax for a recursive set of mutually recursive declarations is (with I'; contexts):

fix f1(I'y) = Ay :=t; with...with f,(T",)) : A,, :=¢

n n

The terms are obtained by projections from this set of declarations and are written
fix f1(T'y) : A; :=t; with..with f,(T,,) : 4,, := ¢, for f;
In the inference rules, we represent such a term by
Fix fy{fy ¢ A =t fy s Al = 1))
with ¢/ (resp. A) representing the term ¢, abstracted (resp. generalized) with respect to the bindings in the context I';,

namely t; = A\I';.t; and A = VI';, A;.

Typing rule

The typing rule is the expected one for a fixpoint.
Fix
(BT F A 8i)im1m (B[f1: Ay o ot Al E i Ay
ETEFix fi{fy: Ay =ty ft Ay =1} 2 A

Any fixpoint definition cannot be accepted because non-normalizing terms allow proofs of absurdity. The basic scheme
of recursion that should be allowed is the one needed for defining primitive recursive functionals. In that case the fixpoint
enjoys a special syntactic restriction, namely one of the arguments belongs to an inductive type, the function starts with a
case analysis and recursive calls are done on variables coming from patterns and representing subterms. For instance in
the case of natural numbers, a proof of the induction principle of type

VP :nat — Prop, (PO) = (Vn:nat, (Pn) — (P (Sn))) — Vn:nat, (Pn)
can be represented by the term:

AP :nat — Prop. Af : (PO). Ag: (Vn:nat, (Pn)— (P (Sn))).
Fix h{h : Vn:nat, (P n):= An:nat. case(n, P, fl]Ap: nat. (g p (hp)))}

Before accepting a fixpoint definition as being correctly typed, we check that the definition is “guarded”. A precise analysis
of this notion can be found in [Gimenez94]. The first stage is to precise on which argument the fixpoint will be decreasing.
The type of this argument should be an inductive type. For doing this, the syntax of fixpoints is extended and becomes

Fix fz{fl/kl :Al = tlfn/kn : An = tn}

4.4. Calculus of Inductive Constructions 217

The Coq Reference Manual, Release 8.11.2

where k; are positive integers. Each k, represents the index of parameter of f;, on which f; is decreasing. Each A; should
be a type (reducible to a term) starting with at least k; products Yy, : By, VY, By, Al and B %, an inductive type.

Now in the definition ¢;, if f; occurs then it should be applied to at least k; arguments and the k;-th argument should be
syntactically recognized as structurally smaller than y k-

The definition of being structurally smaller is a bit technical. One needs first to define the notion of recursive arguments
of a constructor. For an inductive definition Ind [r] (T'; := T'), if the type of a constructor ¢ has the form Vp, :
Py, .Vp,: P, Voy : Ty, Nz, : T, (I; py..p, t;...L,), then the recursive arguments will correspond to 7} in
which one of the I; occurs.

The main rules for being structurally smaller are the following. Given a variable y of an inductively defined type in a
declaration Ind [r] (I'; := T'p) where I'; is [I; = Ay; .5 I, + Ag],and T is [¢; = Cy; .. ¢, : C,], the terms
structurally smaller than y are:

* (tw)and \x : U. t when ¢ is structurally smaller than y.

 case(c, P, fi...f,,) when each f; is structurally smaller than y. If ¢ is y or is structurally smaller than y, its type is
an inductive type /, part of the inductive definition corresponding to y. Each f; corresponds to a type of constructor
C,=Vp : P, .,Vp, : P, Yy, : By, .Yy, + B, (I, py..p, t;...t;) and can consequently be written
Ay + By Ay, + By, g;. (B is obtained from B, by substituting parameters for variables) the variables y;
occurring in g; corresponding to recursive arguments B; (the ones in which one of the I; occurs) are structurally
smaller than y.

The following definitions are correct, we enter them using the i xpoint command and show the internal representation.

Example

Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| O =>m
| S p=>9S (plus p m)
end.
plus is defined
plus is recursively defined (decreasing on 1lst argument)

Print plus.
plus =
fix plus (n m : nat) {struct n} : nat :=

match n with
| 0 =>m
| S p =>S (plus p m)
end
nat -> nat -> nat

Arguments plus (_ _) %nat_scope

Fixpoint lgth (A:Set) (l:1ist A) {struct 1} : nat :=
match 1 with

[nil => 0O
| cons _ a 1' => S (lgth A 1")
end.

lgth is defined
lgth is recursively defined (decreasing on 2nd argument)

Print lgth.
lgth
fix 1lgth (A : Set) (1 : list A) {struct 1} : nat :=

(continues on next page)

218 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

(continued from previous page)
match 1 with

| nil => 0
| cons _ _ 1" => S (lgth A 1")
end

forall A : Set, list A -> nat
Arguments lgth _%type_scope

Fixpoint sizet (t:tree) : nat := let (f) := t in S (sizef f)
with sizef (f:forest) : nat :=
match f with
| emptyf => O
| consf t f => plus (sizet t) (sizef f)
end.
sizet is defined
sizef is defined
sizet, sizef are recursively defined (decreasing respectively on 1st,
1st arguments)

Print sizet.

sizet =
fix sizet (t : tree) : nat := let (f) := t in S (sizef f)
with sizef (f : forest) : nat :=

match f with
| emptyf => 0
| consf t f0 => plus (sizet t) (sizef £0)
end
for sizet
tree —-> nat

Reduction rule

Let F be the set of declarations: f;/ky : A; :=ty...f,,/k,, : A,, :=t,. The reduction for fixpoints is:
(Fix f{F} ay..ay,) B>, t{fi/FIX fild F}}ica g a0y,

when a,, starts with a constructor. This last restriction is needed in order to keep strong normalization and corresponds
to the reduction for primitive recursive operators. The following reductions are now possible:

plus (S(SO))(SO) D, S(plus(SO)(SO))
>, S(S(plusO(S0O)))
>, S(S(S0))

Mutual induction

The principles of mutual induction can be automatically generated using the Scheme command described in Section
Generation of induction principles with Scheme.

4.4.6 Admissible rules for global environments

From the original rules of the type system, one can show the admissibility of rules which change the local context of defi-
nition of objects in the global environment. We show here the admissible rules that are used in the discharge mechanism
at the end of a section.

4.4. Calculus of Inductive Constructions 219

The Coq Reference Manual, Release 8.11.2

Abstraction. One can modify a global declaration by generalizing it over a previously assumed constant c¢. For doing
that, we need to modify the reference to the global declaration in the subsequent global environment and local context by
explicitly applying this constant to the constant c.

Below, if T' is a context of the form [y, : Ay .5y, = A,], we write Vo : U, I'{c/x} to mean
[y, = VYo : U, A{c/z}; .5y, + Yo = U, A,{c/x}] and E{|T'|/|T'|c} to mean the parallel substitution
Edy1/ (1)} Ayn/ (Y ©)}-

First abstracting property:

WF(E; ¢c:U; E'; ¢/ :=1:T; E")[T]
WF(E; ¢c:U; E'; ¢ ==X x:U.t{c/x} : Ve : U, T{c/x}; E"{c’/(c')}[T{c'/(c' ¢)}]

WF(E; ¢c:U; E'; ¢/ : T; E”)[T
W (B; ¢ Us E; ¢ = Va - U, T{c/ay; E'{¢ /(¢ oD/ o)}]
W (B; ¢+ U; E's Ind [p) (T, := T¢); BT
WF (E; ¢:U; B Ind [p+ 1] (Vo : U, T'j{c/a} := Vo : U, T{c/z}); E"{IT;Tcl/IT1T¢lc})
[M{ITrTel/ITp Tele}]
One can similarly modify a global declaration by generalizing it over a previously defined constant c. Below, if I' is a
context of the form [y, : Ay; ...; v, : 4,,], we write I'{c/u} to mean [y, : A;{c/u}; ...; y,, : A, {c/u}].

Second abstracting property:

WF(E; ci=u:U; E'; ¢/ :==t:T; E")[I]
W‘?(E, C:uU, _E‘/7 c = (Iet[l? =u:U1In t{C/J}}) . T{C/’LL}, E”)[F]

WF(E; c:=u:U; E'; ¢ :T; E")[I]
WF(E; c:=u:U; E'; ¢ : T{c/u}; E")[T]
WF (E; c:=u:U; E'; Ind [p] (') := I'c); E”)[L]
W (E; c+=u: U; B Ind [p] (T, {c/u} = Tele/u)); BT
Pruning the local context. If one abstracts or substitutes constants with the above rules then it may happen that some

declared or defined constant does not occur any more in the subsequent global environment and in the local context. One
can consequently derive the following property.

First pruning property:

WF(E; c:U; E')[I] ¢ does not occur in E” and T’
W7 (E; E')[T]
Second pruning property:
WF(E; c:=u:U; B[] ¢ does not occur in E and T’
WF(E; E")[I]

4.4.7 Co-inductive types

The implementation contains also co-inductive definitions, which are types inhabited by infinite objects. More information
on co-inductive definitions can be found in [Gimenez95][Gimenez98][GimenezCasteran(05].

220 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

4.4.8 The Calculus of Inductive Constructions with impredicative Set

Coq can be used as a type checker for the Calculus of Inductive Constructions with an impredicative sort Set by using
the compiler option ~impredicative-set. For example, using the ordinary cogt op command, the following is
rejected,

Example

Fail Definition id: Set := forall X:Set, X—>X.
The command has indeed failed with message:
The term "forall X : Set, X —-> X" has type "Type"
while it is expected to have type "Set" (universe inconsistency) .

while it will type check, if one uses instead the cogtop —impredicative—-set option..

The major change in the theory concerns the rule for product formation in the sort Set, which is extended to a domain in
any sort:

ProdImp

EFT:s ses El':(x:T)|FU: Set
EQ|FVa:T, U Set

This extension has consequences on the inductive definitions which are allowed. In the impredicative system, one can
build so-called large inductive definitions like the example of second-order existential quantifier (exSet).

There should be restrictions on the eliminations which can be performed on such definitions. The elimination rules in the
impredicative system for sort Set become:

Setl
s € {Prop, Set}
[I: Set|] — s]
Set2
I is a small inductive definition s € {Type(i)}
[I:Set|] — s

4.5 The Module System

The module system extends the Calculus of Inductive Constructions providing a convenient way to structure large devel-
opments as well as a means of massive abstraction.

4.5.1 Modules and module types
Access path. An access path is denoted by p and can be either a module variable X or, if p’ is an access path and id an
identifier, then p’.id is an access path.

Structure element. A structure element is denoted by e and is either a definition of a constant, an assumption, a definition
of an inductive, a definition of a module, an alias of a module or a module type abbreviation.

Structure expression. A structure expression is denoted by .S and can be:

* an access path p

4.5. The Module System 221

The Coq Reference Manual, Release 8.11.2

* a plain structure Struct e; ...; e End
« a functor Functor(X : S) S, where X is a module variable, S and S’ are structure expressions
* an application S p, where S is a structure expression and p an access path

« arefined structure S with p := p” or S with p := ¢ : T where S is a structure expression, p and p’ are access paths,
tis aterm and T is the type of t.

Module definition. A module definition is written Mod(X : S [:= S’]) and consists of a module variable X, a module
type .S which can be any structure expression and optionally a module implementation S” which can be any structure
expression except a refined structure.

Module alias. A module alias is written MOdA(X == p) and consists of a module variable X and a module path p.

Module type abbreviation. A module type abbreviation is written ModType(Y := S), where Y is an identifier and S
is any structure expression .

4.5.2 Typing Modules

In order to introduce the typing system we first slightly extend the syntactic class of terms and environments given in
section The terms. The environments, apart from definitions of constants and inductive types now also hold any other
structure elements. Terms, apart from variables, constants and complex terms, include also access paths.

We also need additional typing judgments:

F p: S, denoting that the module pointed by p has type S in environment F.

b = &

[
[
[[F S — S, denoting that a structure S is evaluated to a structure S in weak head normal form.
[|F Sy <: S, , denoting that a structure .S, is a subtype of a structure S,.

[

The rules for forming structures are the following:

WF-STR

W (E; E')]]
E[] - W (Struct E’ End)

WF-FUN

E;Mod(X : S)[] F WF(F)
E[] - W7 (Functor(X : S) ")

Evaluation of structures to weak head normal form:

WEVAL-APP
E[JF S — Functor(X : S;) S, E[FS, — 5,

E[lFp:S; E[FS; <5
E[] - Sp — SQ{p/thl/pl'Cla "'atn/pn'cn}

In the last rule, {¢,/p;.c1, ..., t,,/Dy-C,, } is the resulting substitution from the inlining mechanism. We substitute in S
the inlined fields p;.c; from Mod(X : S) by the corresponding delta- reduced term ¢, in p.

222 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

WEVAL-WITH-MOD
E[|F- S — Structe;;...;e;;Mod(X = S));€;,5;...; €, End

Eiep;..ie[]F S — S E[lFp: S,
Eiep;.pef]F Sy < 8)
E[JF Swithz :=p —
Structe;;...;e;; ModA(X == p);e,; o{p/X};...;e,{p/X} End

WEVAL-WITH-MOD-REC

E;eq;..;e;[] B Sy withp :=p; — S,
E[[F Swith X,.p = p, —
Structey; ... e;; Mod(X = Sy); €;19{p1/Xy.p}; -5 €,{p1/ X1 .p} End

E[| =S — Structe;;...;e;;Mod(X : Sy); ;4955 €, End

WEVAL-WITH-DEF
E[l|FS — Structe;;...;e;; Assum()(c : 1)); €;,0; ... €, End
E;eq;..;e;[]F Def()(c:=1:T) <: Assum()(c: 1)
E[JFSwithc:=¢:T —
Structe;;...;e;;Def()(c:=1t:T);e;,0;...;¢, End

WEVAL-WITH-DEF-REC
E[] =S — Structe;;...;e;;Mod(X : Sy)5 ;4955 €, End

e
E;eq;..;e;[| F Sy withp :=p; — S,
ElFSwithX,p:=t:T —

Struct e;;...;e;;Mod(X = S5); €;40; ... €, End

-5 €45

WEVAL-PATH-MOD1
EfJFp— Structey;...;e;;Mod(X = S [:= Si]); €495 .5 €, End
E;eq;..;e[]FS— S
EFpX — S

WEVAL-PATH-MOD2
WF (E)|] Mod(X : S[:=S,]) € E EJFS— S

WEVAL-PATH-ALIAS1
Ef|Fp— Structey;...;e;; ModA(X == py);e; 95 6, End
E;eq;..5e[]Fpp — S
E[FpX — S

WEVAL-PATH-ALIAS2

WF (E)[] ModA(X ==p,) € E ElFp, — S
EJFX — S

WEVAL-PATH-TYPE1
Ef|Fp— Structey;...;e;;ModType(Y := S);e;,9;...; €, End
E;eq;..;e[]FS— S
EJFpY — S

4.5. The Module System 223

The Coq Reference Manual, Release 8.11.2

WEVAL-PATH-TYPE2

WF(E)] ModType(Y := S) € F E|-S—S
EFY — S
Rules for typing module:
MT-EVAL
ElFp—S
ElFp:S
MT-STR
EllFp: S
Ellkp:S/p

The last rule, called strengthening is used to make all module fields manifestly equal to themselves. The notation .S /p has
the following meaning:

» if S — Structe,;...;e, Endthen S/p = Structe, /p;...;e,,/p End where e/p is defined as follows (note that
opaque definitions are processed as assumptions):

- Def()(c:=t:T)/p=Def()(c:=t:T)
Assum()(c: U)/p = Def()(c :=p.c: U)

Mod(X : S)/p = ModA(X == p.X)

ModA(X ==p’)/p = ModA(X == p’)
Ind[l'p](C¢ :=T)/p = Ind,O[U'p](Pc :=T)
Ind,, O[Tp](T'e :==T;)/p=Ind, O[I'p](Tc:=T)
e if S — Functor(X : S”) S” then S/p = S

The notation Ind,,()[T"p](I'c := T';) denotes an inductive definition that is definitionally equal to the inductive defi-
nition in the module denoted by the path p. All rules which have Ind[T'p)(T' := I';) as premises are also valid for
Ind,()[T'p)(T'c == I'y). We give the formation rule for Ind,()[I's](I'c := I';) below as well as the equality rules on
inductive types and constructors.

The module subtyping rules:

MSUB-STR
Eiegs.ge,[] Feyq < ejfori=1.m
o:{l..m} — {1...n} injective
E[] F Structey;...;e,, End <: Structef;...; e/, End
MSUB-FUN

E[FS] <5 E;Mod(X:S)[F5, <5
E[] + Functor(X : 5,)S, <: Functor(X : 57])S%

Structure element subtyping rules:
ASSUM-ASSUM

Bl FT <gsicn To
E[] - Assum()(c: T}) <: Assum()(c : Ty)

224 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

DEF-ASSUM

ASSUM-DEF

DEF-DEF

IND-IND

INDP-IND

INDP-INDP

MOD-MOD

ALIAS-MOD

MOD-ALIAS

ALIAS-ALIAS

EH t Tl gﬁ&(n T2
E[| - Def()(c:=t:T;) <: Assum()(c : Ty)

EH F Tl Sﬁ&(n T2 E[] Fe =B6uCn t2
E[] - Assum()(c: T}) <: Def()(c :=1ty : T})

E[[FT) <gsien Ts E[l =ty =gscn ta
E[| - Def()(c:=t; : Ty) <: Def()(c :=ty : Ty)

E[l-Tp =B5u¢n I'p Elp]FT¢ =pBsucn I'c Elp; Tl F Ty =B5u¢n 7

E[ltInd [[p](Ty := T';) <:Ind [[p] (T = TY)

E[lFTp =Bouln FQD El'p] T =Béuln F/c Elp; Tl F Ty =Bsutn F/I

E[JF Ind,O[p](T'e :=Ty) <: Ind [[] (I == T7)

E[JFTp =BsuCn 'y E[lp]-T¢ =Bsuln I'c
Elp;To]F Ty =Bsuln Iy Ellp =psutn P
EF Ind, ([T (T = T,) < Ind,, ([T](T; =17

E[JF S, <: S5,
E[JFMod(X : S;) <: Mod(X : S,)

EllFp:S; E|F S, <: S,
E[] - ModA(X == p) <: Mod(X : S,)

E[]l_pSQ E[]l_Sl <:SQ E[]l_X:B(SL{np
E[F Mod(X : 5,) <: ModA(X == p)

E[l - py =Bsu¢n P2
E[] - ModA(X == p,) <: ModA(X == p,)

MODTYPE-MODTYPE

E[JF S <: S, E[JF S, <: S,
E[] F ModType(Y := S,) <: ModType(Y := S,)

4.5. The Module System 225

The Coq Reference Manual, Release 8.11.2

New environment formation rules

WF-MOD1
WF(E)|] E[| - WF(S)
WE(E;Mod(X : 9))[]
WF-MOD2
E[JF S, <: 5 WF(E)[] E[| - WF(S;) E[| - WF(S,)
W (E;Mod(X : Sy [:= S,]))]]
WF-ALIAS
W (E)] ElFp:S
W (E, ModA(X == p))]]
WF-MODTYPE
W (E)]] E[| F WF(S)

WF(E,ModType(Y :=9))][]

WF-IND

WF(E;Ind [Up] (Ue == Tp))[]
E[|Fp: Structey;...;e,;Ind [I'p] (T == T');... End

E[J*FInd [[] (T, =) <: Ind [[] (T, = T,)
W7 (E;Ind,()[L'p](Le :=T))]]

Component access rules
ACC-TYPE1
E[l)F p: Structey;...;e;; Assum()(c: T);... End

-5 €45

E[Fpc: T

ACC-TYPE2
El|Fp: Structey;...;e;; Def()(c:=t:T);... End

<5645

E[Fpc: T

Notice that the following rule extends the delta rule defined in section Conversion rules
ACC-DELTA

E[l]+p: Structey;...;e;; Def()(c:=t: U);... End
ETTF pcDyt

In the rules below we assume I'p is [p; : Py;..;p, = P, Tyis [I; : Ay I, s Ay],and T is [e : C; e ¢, 2 C)-
ACC-IND1
E[l)Fp: Structey;...;e;;Ind [T'p] (T := Ty);... End

<5645

ElEpd;:(py: Py).(pp: P

ACC-IND2
E[l)Fp: Structey;...;e;;Ind [T'p] (T := Ty);... End

<5645

E[F] '_pcm : (pl : Pl)(pr : Pr)Cij(Ig pl"‘pr)jzlmk

226 Chapter 4. The language

The Coq Reference Manual, Release 8.11.2

ACC-INDP1
E[JFp: Structe;...;e;5Ind, O[T p](Fe :=T'); ... End

%)

E[lFpI >sp' 1

ACC-INDP2
EfJFp: Structey;...;e;5Ind, ()[T'p](I'¢ :=T'p); ... End
E[lFpe;Dsp'c

4.5. The Module System 227

CHAPTER
FIVE

THE PROOF ENGINE

5.1 Vernacular commands

5.1.1 Displaying

Command: Print qualid
This command displays on the screen information about the declared or defined object referred by qualid.

Error messages:

Error: qualid not a defined object.

Error: Universe instance should have length num.
Error: This object does not support universe names.

Variant: Print Term qualid
This is a synonym of Print qualidwhen qualid denotes a global constant.

?
Variant: Print Term qualid@name
This locally renames the polymorphic universes of gualid. Anunderscore means the usual name is printed.

Command: About qualid
This displays various information about the object denoted by qualid: its kind (module, constant, assumption,

inductive, constructor, abbreviation, ...), long name, type, implicit arguments and argument scopes. It does not
print the body of definitions or proofs.

Variant: About qualid@name
This locally renames the polymorphic universes of gualid. Anunderscore means the usual name is printed.

Command: Print All
This command displays information about the current state of the environment, including sections and modules.

Variant: Inspect num
This command displays the num last objects of the current environment, including sections and modules.

Variant: Print Section ident

The name ident should correspond to a currently open section, this command displays the objects defined
since the beginning of this section.

5.1.2 Flags, Options and Tables

Coq has many settings to control its behavior. Setting types include flags, options and tables:

¢ A flag has a boolean value, such as Asymmetric Patterns.

228

The Coq Reference Manual, Release 8.11.2

* An option generally has a numeric or string value, such as Firstorder Depth.
* A table contains a set of strings or qualids.

* In addition, some commands provide settings, such as Extraction Language.

Flags, options and tables are identified by a series of identifiers, each with an initial capital letter.

?
Command: Local | Global | Export Set flag
Sets £1ag on. Scoping qualifiers are described /ere.

?
Command: Local | Global | Export Unset flag

Sets £ 1ag off. Scoping qualifiers are described /ere.

Command: Test flag
Prints the current value of f1ag.

i
Command: Local ‘ Global ‘ Export Set option num string

Sets option to the specified value. Scoping qualifiers are described /ere.

2
Command: Local | Global | Export Unset option

Sets option to its default value. Scoping qualifiers are described /ere.

Command: Test option
Prints the current value of opt ion.

Command: Print Options
Prints the current value of all flags and options, and the names of all tables.

Command: Add table string | qualid
Adds the specified value to table.

Command: Remove table string ‘ qualid
Removes the specified value from table.

Command: Test table for string | gualid
Reports whether tab1e contains the specified value.

Command: Print Table table
Prints the values in table.

Command: Test table
A synonym for Print Table @table.

Command: Print Tables
A synonym for Print Options.

Scope qualifiers for set and Unset

?
Local ‘ Global ‘ Export

Flag and option settings can be global in scope or local to nested scopes created by Module and Sect ion commands.

There are four alternatives:

* no qualifier: the original setting is not restored at the end of the current module or section.

¢ Local: the setting is applied within the current scope. The original value of the option or flag is restored at the end

of the current module or section.

¢ Global: similar to no qualifier, the original setting is not restored at the end of the current module or section. In

addition, if the value is set in a file, then Requ i re-ing the file sets the option.

5.1. Vernacular commands

229

The Coq Reference Manual, Release 8.11.2

¢ Export: similar to Local, the original value of the option or flag is restored at the end of the current module or
section. In addition, if the value is set in a file, then Impo rt-ing the file sets the option.

Newly opened scopes inherit the current settings.

5.1.3 Requests to the environment

Command: Check term
This command displays the type of term. When called in proof mode, the term is checked in the local context of
the current subgoal.

Variant: selector: Check term
This variant specifies on which subgoal to perform typing (see Section Invocation of tactics).

Command: Eval redexpr in term
This command performs the specified reduction on t e rm, and displays the resulting term with its type. The term
to be reduced may depend on hypothesis introduced in the first subgoal (if a proof is in progress).

See also:
Section Performing computations.

Command: Compute term
This command performs a call-by-value evaluation of term by using the bytecode-based virtual machine. It is a
shortcut for Eval vm_compute in term.

See also:
Section Performing computations.

Command: Print Assumptions qualid
This commands display all the assumptions (axioms, parameters and variables) a theorem or definition depends on.
Especially, it informs on the assumptions with respect to which the validity of a theorem relies.

Variant: Print Opaque Dependencies qualid
Displays the set of opaque constants gua 1 id relies on in addition to the assumptions.

Variant: Print Transparent Dependencies qualid
Displays the set of transparent constants gua 1 i d relies on in addition to the assumptions.

Variant: Print All Dependencies qualid
Displays all assumptions and constants gua I id relies on.

Command: Search qualid
This command displays the name and type of all objects (hypothesis of the current goal, theorems, axioms, etc) of
the current context whose statement contains qua ! i d. This command is useful to remind the user of the name of
library lemmas.

Error: The reference qualid was not found in the current environment.
There is no constant in the environment named qualid.

Variant: Search string
If stringis a valid identifier, this command displays the name and type of all objects (theorems, axioms,
etc) of the current context whose name contains string. If string is a notation’s string denoting some reference
qualid (referred to by its main symbol as in "+" or by its notation’s stringasin "_ + _"or"_ 'U’'
_", see Section Notations), the command works like Search qualid.

Variant: Search string%ident
The string string must be a notation or the main symbol of a notation which is then interpreted in the scope
bound to the delimiting key i dent (see Section Local interpretation rules for notations).

230 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Variant: Search term pattern
This searches for all statements or types of definition that contains a subterm that matches the pattern
term_pattern (holes of the pattern are either denoted by _ or by ? ident when non linear patterns
are expected).

+
Variant: Search |- 7 term pattern_string
where term_pattern_stringisa term_pattern, a string, or a string followed by a scope delimiting key
$key. This generalization of Search searches for all objects whose statement or type contains a subterm
matching term_pattern (or qualidif stringis the notation for a reference qualid) and whose name
contains all string of the request that correspond to valid identifiers. If a term_pattern or a string is prefixed
by —, the search excludes the objects that mention that term_pattern or that string.

+
Variant: Search - 7 term pattern_string inside |qualid
This restricts the search to constructions defined in the modules named by the given qualid sequence.

+
Variant: Search |- 7 term pattern_string | outside |qualid
This restricts the search to constructions not defined in the modules named by the given qualid sequence.

+
Variant: selector: Search |- - term pattern_string
This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Example

Require Import ZArith.

Search Z.mul Z.add "distr".

Z.mul_add_distr_1: forall nmp : Z, (n * (m + p))%Z = (n *m + n * p)%Z
Z.mul_add_distr_r: forall nmp : Z, ((n +m) * p)%Z = (n * p +m * p)S%Z
fast_Zmult_plus_distr_1:
forall (nmp : Z) (P : Z —> Prop),
P (n*p+m*p)sZ2 —>P ((n +m * p)3Z
Search "+"%Z "*"%Z "distr" -positive -Prop.
Z.mul_add_distr_1: forall nmp : Z, (n * (m + p))%Z = (n *m + n * p)S%Z
Z.mul_add_distr_r: forall nmp : Z, ((n +m) * p)%Z = (n * p + m * p)%Z
Search (?x * _ + ?x * _)%Z outside Omegalemmas.
Z.mul_add_distr_1: forall nmp : Z, (n * (m + p))%Z = (n *m + n * p)%Z

Variant: SearchAbout
Deprecated since version 8.5.

Up to Coq version 8.4, Search had the behavior of current SearchHead and the behavior of cur-
rent Search was obtained with command SearchAbout. For compatibility, the deprecated name
SearchAbout can still be used as a synonym of Search. For compatibility, the list of objects to search
when using SearchAbout may also be enclosed by optional [] delimiters.

Command: SearchHead term
This command displays the name and type of all hypothesis of the current goal (if any) and theorems of the current
context whose statement’s conclusion has the form (term t1 .. tn). This command is useful to remind the
user of the name of library lemmas.

5.1. Vernacular commands 231

The Coq Reference Manual, Release 8.11.2

Example

SearchHead le.

le_n: forall n nat, n <= n
le_0_n: forall n nat, 0 <= n
le_S: forall nm nat, n <= m -> n <= S m
le_pred: forall n m nat, n <= m -> Nat.pred n
le_n_S: forall n m nat, n <=m -> S n <= S m
le_S_n: forall nm nat, S n <= S m > n <=m
SearchHead (leq bool).

andb_true_intro:

forall bl b2 bool, bl = true /\ b2 = true -

<= Nat.pred m

> true

(bl && b2) $bool

+
Variant: SearchHead term inside qualid

This restricts the search to constructions defined in the modules named by the given qualid sequence.

+
Variant: SearchHead term outside qualid

This restricts the search to constructions not defined in the modules named by the given qualid sequence.

Error: Module/section qualid not found.

No module guaid has been required (see Section Compiled files).

Variant: selector: SearchHead term

This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Note: Up to Coq version 8.4, SearchHead was named Search.

Command: SearchPattern term

This command displays the name and type of all hypothesis of the current goal (if any) and theorems of the current
context whose statement’s conclusion or last hypothesis and conclusion matches the expressionterm where holes
in the latter are denoted by _. It is a variant of Search term pattern that does not look for subterms but
searches for statements whose conclusion has exactly the expected form, or whose statement finishes by the given

series of hypothesis/conclusion.

Example

Require Import Arith.

SearchPattern (_ + _ = _ + _).

Nat.add_comm: forall n m nat, n + m=m + n
plus_Snm_nSm: forall n m nat, S n +m=n + S
Nat.add_succ_comm: forall n m nat, S n + m =
Nat.add_shuffle3: forall n m p nat, n + (m +
plus_assoc_reverse: forall n m p : nat, n + m +
Nat.add_assoc: forall n m p nat, n + (m + p)
Nat.add_shuffleO: forall n m p nat, n + m + p
f_equal2_plus:

forall x1 yl1 x2 y2 nat, x1 =yl —> x2 = y2
Nat.add_shuffle2: forall n m p g : nat, n + m +
Nat.add_shufflel: forall nm p g nat, n + m +

=n + p +m
-> x1 + x2 = vyl + y2

(p +) n+ g+ (m+ p)
(p+ g =n+p + (m+ g

(continues on next page)

232

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

SearchPattern (nat —-> bool).
Nat.odd: nat —-> bool
Init.Nat.odd: nat —-> bool
Nat.even: nat -> bool
Init.Nat.even: nat -> bool
Init.Nat.testbit: nat —-> nat -> bool
Nat.leb: nat -> nat —-> bool
Nat.egb: nat —-> nat —> bool
Init.Nat.egb: nat -> nat —-> bool
Nat.ltb: nat -> nat -> bool
Nat.testbit: nat -> nat -> bool
Init.Nat.leb: nat -> nat —-> bool
Init.Nat.ltb: nat -> nat —-> bool
BinNat.N.testbit_nat: BinNums.N —-> nat —-> bool
BinPosDef.Pos.testbit_nat: BinNums.positive —-> nat -> bool
BinPos.Pos.testbit_nat: BinNums.positive —-> nat -> bool
BinNatDef.N.testbit_nat: BinNums.N —-> nat —-> bool

SearchPattern (forall 1 : list _, _
List.incl_refl: forall (A : Type
List.lel_refl: forall (A : Type) (

11).
) (1 : list A), List.incl 1 1
1 list A), List.lel 1 1

Patterns need not be linear: you can express that the same expression must occur in two places by using pattern
variables ?ident.

Example
SearchPattern (?X1 + _ = _ + ?2X1).
Nat.add_comm: forall nm : nat, n + m = m + n

Variant: SearchPattern term inside qualid
This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: SearchPattern term outside qualid
This restricts the search to constructions not defined in the modules named by the given qualid sequence.

Variant: selector: SearchPattern term
This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Command: SearchRewrite term
This command displays the name and type of all hypothesis of the current goal (if any) and theorems of the current
context whose statement’s conclusion is an equality of which one side matches the expression term. Holes in term
are denoted by “_”

Example

Require Import Arith.

SearchRewrite (_ + _ + _).
Nat.add_shuffle0: forall nmp : nat, n + m+ p =n + p + m
plus_assoc_reverse: forall nmp : nat, n + m + p =n + (m + p)
(continues on next page)

5.1. Vernacular commands 233

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

Nat.add_assoc: forall nmp : nat, n + (m + p) = n + m + p
Nat.add_shufflel: forall nmp g : nat, n + m+ (p + g = n + p + (m + q)
Nat.add_shuffle2: forall nmp g : nat, n + m + (p + g) = n + g + (m + p)

Nat.add_carry_div2:
forall (a b : nat) (cO : bool),
(a + b + Nat.b2n c0) / 2 =
a/ 2+b/ 2+
Nat .b2n
(Nat.testbit a 0 && Nat.testbit b 0
[cO0 && (Nat.testbit a 0 || Nat.testbit b 0))

Variant: SearchRewrite term inside qualid
This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: SearchRewrite term outside qualid
This restricts the search to constructions not defined in the modules named by the given qualid sequence.

Variant: selector: SearchRewrite term
This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Note:

Table: Search Blacklist string
Specifies a set of strings used to exclude lemmas from the results of Search, SearchHead, SearchPattern
and SearchRewrite queries. A lemma whose fully-qualified name contains any of the strings will be excluded
from the search results. The default blacklisted substrings are _subterm, _subproof and Private_.

Use the Add @table and Remove @table commands to update the set of blacklisted strings.

Command: Locate qualid
This command displays the full name of objects whose name is a prefix of the qualified identifier gua 1 i d, and con-
sequently the Coq module in which they are defined. It searches for objects from the different qualified namespaces
of Coq: terms, modules, Ltac, etc.

Example

Locate nat.
Inductive Cog.Init.Datatypes.nat

Locate Datatypes.O.
Constructor Cog.Init.Datatypes.O
(shorter name to refer to it in current context is 0O)

Locate Init.Datatypes.O.
Constructor Cog.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Locate Cog.Init.Datatypes.O.
Constructor Coqg.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Locate I.Dont.Exist.
No object of suffix I.Dont.Exist

234 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Variant: Locate Term qualid
As Locate but restricted to terms.

Variant: Locate Module qualid
As Locate but restricted to modules.

Variant: Locate Ltac qualid
As Locate but restricted to tactics.

See also:

Section Locating notations

5.1.4 Printing flags

Flag: Fast Name Printing
When turned on, Coq uses an asymptotically faster algorithm for the generation of unambiguous names of bound
variables while printing terms. While faster, it is also less clever and results in a typically less elegant display, e.g.
it will generate more names rather than reusing certain names across subterms. This flag is not enabled by default,
because as Ltac observes bound names, turning it on can break existing proof scripts.

5.1.5 Loading files

Coq offers the possibility of loading different parts of a whole development stored in separate files. Their contents will be
loaded as if they were entered from the keyboard. This means that the loaded files are ASCII files containing sequences
of commands for Coq’s toplevel. This kind of file is called a script for Coq. The standard (and default) extension of Coq’s
script files is .v.

Command: Load ident
This command loads the file named ident.v, searching successively in each of the directories specified in the
loadpath. (see Section Libraries and filesysten)

Files loaded this way cannot leave proofs open, and the Load command cannot be used inside a proof either.

Variant: Load string
Loads the file denoted by the string st ring, where string is any complete filename. Then the ~ and ..
abbreviations are allowed as well as shell variables. If no extension is specified, Coq will use the default
extension . v.

Variant: Load Verbose ident
Variant: Load Verbose string
Display, while loading, the answers of Coq to each command (including tactics) contained in the loaded file.

See also:

Section Controlling display.
Error: Can’t find file ident on loadpath.
Error: Load is not supported inside proofs.

Error: Files processed by Load cannot leave open proofs.

5.1. Vernacular commands 235

The Coq Reference Manual, Release 8.11.2

5.1.6 Compiled files

This section describes the commands used to load compiled files (see Chapter The Coq commands for documentation on
how to compile a file). A compiled file is a particular case of module called library file.

Command: Require qualid

This command looks in the loadpath for a file containing module gualid and adds the corresponding module
to the environment of Coq. As library files have dependencies in other library files, the command Require
qua1idrecursively requires all library files the module qualid depends on and adds the corresponding modules to
the environment of Coq too. Coq assumes that the compiled files have been produced by a valid Coq compiler and
their contents are then not replayed nor rechecked.

To locate the file in the file system, gua 1 i dis decomposed under the form dirpath. ident and thefile i dent.

vo is searched in the physical directory of the file system that is mapped in Coq loadpath to the logical path dirpath
(see Section Libraries and filesystem). The mapping between physical directories and logical names at the time of
requiring the file must be consistent with the mapping used to compile the file. If several files match, one of them
is picked in an unspecified fashion.

Variant: Require Import qualid
This loads and declares the module gua 1id and its dependencies then imports the contents of qualid as
described here. It does not import the modules on which qualid depends unless these modules were themselves
required in module qua1idusing Require Export,asdescribed below, or recursively required through
a sequence of Require Export. If the module required has already been loaded, Require Import
qualid simply imports it, as Tmport qualid would.

Variant: Require Export qualid
This command acts as Require Import qualid,butif a further module, say A, contains a command
Require Export B,then the command Require Import A alsoimports the module B.

Variant: Require Import | Export gqualid ¥
This loads the modules named by the qualid sequence and their recursive dependencies. If Import or
Export is given, it also imports these modules and all the recursive dependencies that were marked or
transitively marked as Export.

Variant: From dirpath Require qualid

This command acts as Require, but picks any library whose absolute name is of the form dirpath.

dirpath’.qualidforsome dirpath’. This is useful to ensure that the qualid library comes from
a given package by making explicit its absolute root.

Error: Cannot load qualid: no physical path bound to dirpath.

Error: Cannot find library foo in loadpath.
The command did not find the file foo.vo. Either foo.v exists but is not compiled or foo.vo is in a directory
which is not in your LoadPath (see Section Libraries and filesystem).

Error: Compiled library ident.vo makes inconsistent assumptions over library
The command tried to load library file i dent.vo that depends on some specific version of library qualid
which is not the one already loaded in the current Coq session. Probably i dent . v was not properly recom-
piled with the last version of the file containing module qualid.

Error: Bad magic number.
The file ident.vo was found but either it is not a Coq compiled module, or it was compiled with an
incompatible version of Coq.

qualid.

Error: The file :n: ident.vo’ contains library dirpath and not library dirpath’.

The library file dirpath’ is indirectly required by the Require command but it is bound in the current
loadpath to the file ident.vo which was bound to a different library name dirpath at the time it was
compiled.

236

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Error: Require is not allowed inside a module or a module type.
This command is not allowed inside a module or a module type being defined. It is meant to describe a
dependency between compilation units. Note however that the commands Import and Export alone can
be used inside modules (see Section Import).

See also:
Chapter The Coq commands

Command: Print Libraries
This command displays the list of library files loaded in the current Coq session.

+
Command: Declare ML Module string

This commands loads the OCaml compiled files with names given by the st ring sequence (dynamic link). It is
mainly used to load tactics dynamically. The files are searched into the current OCaml loadpath (see the command
Add ML Path). Loading of OCaml files is only possible under the bytecode version of cogtop (i.e. cogtop
called with option ~byte, see chapter The Cog commands), or when Coq has been compiled with a version of
OCaml that supports native Dynlink (= 3.11).

+
Variant: Local Declare ML Module string
This variant is not exported to the modules that import the module where they occur, even if outside a section.

Error: File not found on loadpath: string.
Error: Loading of ML object file forbidden in a native Coq.

Command: Print ML Modules
This prints the name of all OCaml modules loaded with Declare ML Module. To know from where these
module were loaded, the user should use the command Locate File.

5.1.7 Loadpath

Loadpaths are preferably managed using Coq command line options (see Section 1ibraries-and-filesystem)
but there remain vernacular commands to manage them for practical purposes. Such commands are only meant to be
issued in the toplevel, and using them in source files is discouraged.

Command: Pwd
This command displays the current working directory.

Command: Cd string
This command changes the current directory according to st ring which can be any valid path.

Variant: Cd
Is equivalent to Pwd.

Command: Add LoadPath string as dirpath
This command is equivalent to the command line option -Q string dirpath. It adds the physical directory
string to the current Coq loadpath and maps it to the logical directory dirpath.

Variant: Add LoadPath string
Performs as Add LoadPath string dirpath butfor the empty directory path.

Command: Add Rec LoadPath string as dirpath
This command is equivalent to the command line option -R string dirpath. It adds the physical directory
string and all its subdirectories to the current Coq loadpath.

Variant: Add Rec LoadPath string
Works as Add Rec LoadPath string as dirpath butfor the empty logical directory path.

5.1. Vernacular commands 237

The Coq Reference Manual, Release 8.11.2

Command: Remove LoadPath string
This command removes the path st ring from the current Coq loadpath.

Command: Print LoadPath
This command displays the current Coq loadpath.

Variant: Print LoadPath dirpath
Works as Print LoadPath but displays only the paths that extend the di rpath prefix.

Command: Add ML Path string
This command adds the path string to the current OCaml loadpath (see the command Declare ML
Module" in Section Compiled files).

Command: Add Rec ML Path string
This command adds the directory st ring and all its subdirectories to the current OCaml loadpath (see the com-
mand Declare ML Module).

Command: Print ML Path string
This command displays the current OCaml loadpath. This command makes sense only under the bytecode version
of cogtop, i.e. using option —byte (see the command Declare ML Module in Section Compiled files).

Command: Locate File string

This command displays the location of file string in the current loadpath. Typically, stringisa . cmo or . vo or .v
file.

Command: Locate Library dirpath
This command gives the status of the Coq module dirpath. It tells if the module is loaded and if not searches in the
load path for a module of logical name dirpath.

5.1.8 Backtracking

The backtracking commands described in this section can only be used interactively, they cannot be part of a vernacular
file loaded via Load or compiled by cogc.

Command: Reset ident
This command removes all the objects in the environment since i dent was introduced, including i dent. ident
may be the name of a defined or declared object as well as the name of a section. One cannot reset over the name
of a module or of an object inside a module.

Error: ident: no such entry.

Variant: Reset Initial
Goes back to the initial state, just after the start of the interactive session.

Command: Back
This command undoes all the effects of the last vernacular command. Commands read from a vernacular file via a
Load are considered as a single command. Proof management commands are also handled by this command (see
Chapter Proof handling). For that, Back may have to undo more than one command in order to reach a state where
the proof management information is available. For instance, when the last command is a Oed, the management
information about the closed proof has been discarded. In this case, Back will then undo all the proof steps up to
the statement of this proof.

Variant: Back num
Undo num vernacular commands. As for Back, some extra commands may be undone in order to reach an
adequate state. For instance Back num will not re-enter a closed proof, but rather go just before that proof.

Error: Invalid backtrack.
The user wants to undo more commands than available in the history.

238 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Command: BackTo num
This command brings back the system to the state labeled num, forgetting the effect of all commands executed after
this state. The state label is an integer which grows after each successful command. It is displayed in the prompt
when in -emacs mode. Just as Back (see above), the BackTo command now handles proof states. For that, it
may have to undo some extra commands and end on a state num’ < num if necessary.

5.1.9 Quitting and debugging

Command: Quit
This command permits to quit Coq.

Command: Drop
This is used mostly as a debug facility by Coq’s implementers and does not concern the casual user. This command
permits to leave Coq temporarily and enter the OCaml toplevel. The OCaml command:

#use "include";;

adds the right loadpaths and loads some toplevel printers for all abstract types of Coq- section_path, identifiers,
terms, judgments, You can also use the file base_include instead, that loads only the pretty-printers for sec-
tion_paths and identifiers. You can return back to Coq with the command:

go()ij
Warning:
1. It only works with the bytecode version of Coq (i.e. cogtop.byte, see Section

interactive-use).

2. You must have compiled Coq from the source package and set the environment variable COQTOP to the
root of your copy of the sources (see Section customization-by-environment-variables).

Command: Time command
This command executes the vernacular command command and displays the time needed to execute it.

Command: Redirect string command
This command executes the vernacular command command, redirecting its output to ”st ring.out”.

Command: Timeout num command
This command executes the vernacular command command. If the command has not terminated after the time
specified by the num (time expressed in seconds), then it is interrupted and an error message is displayed.

Option: Default Timeout num
This option controls a default timeout for subsequent commands, as if they were passed to a Timeout
command. Commands already starting by a Timeout are unaffected.

Command: Fail command
For debugging scripts, sometimes it is desirable to know whether a command or a tactic fails. If the given command
fails, then Fail command succeeds (excepts in the case of critical errors, like a “stack overflow”), without
changing the proof state, and in interactive mode, the system prints a message confirming the failure.

Error: The command has not failed!
If the given command succeeds, then Fail command fails with this error message.

5.1. Vernacular commands 239

The Coq Reference Manual, Release 8.11.2

5.1.10 Controlling display

Flag: Silent
This flag controls the normal displaying.

+
?

Option: Warnings " - | + | ident "

r

This option configures the display of warnings. It is experimental, and expects, between quotes, a comma-separated
list of warning names or categories. Adding - in front of a warning or category disables it, adding + makes it an error.
It is possible to use the special categories all and default, the latter containing the warnings enabled by default. The
flags are interpreted from left to right, so in case of an overlap, the flags on the right have higher priority, meaning
that A, —A is equivalent to —A.

Flag: Search Output Name Only
This flag restricts the output of search commands to identifier names; turning it on causes invocations of Search,
SearchHead, SearchPattern, SearchRewrite etc. to omit types from their output, printing only iden-
tifiers.

Option: Printing Width num
This command sets which left-aligned part of the width of the screen is used for display. At the time of writing
this documentation, the default value is 78.

Option: Printing Depth num
This option controls the nesting depth of the formatter used for pretty- printing. Beyond this depth, display of
subterms is replaced by dots. At the time of writing this documentation, the default value is 50.

Flag: Printing Compact Contexts
This flag controls the compact display mode for goals contexts. When on, the printer tries to reduce the vertical
size of goals contexts by putting several variables (even if of different types) on the same line provided it does not
exceed the printing width (see Printing Width). At the time of writing this documentation, it is off by default.

Flag: Printing Unfocused
This flag controls whether unfocused goals are displayed. Such goals are created by focusing other goals with bullets
(see Bullets or curly braces). It is off by default.

Flag: Printing Dependent Evars Line
This flag controls the printing of the “(dependent evars: ...)” information after each tactic. The information is used
by the Prooftree tool in Proof General. (https://askra.de/software/prooftree)

5.1.11 Controlling the reduction strategies and the conversion algorithm

Coq provides reduction strategies that the tactics can invoke and two different algorithms to check the convertibility of
types. The first conversion algorithm lazily compares applicative terms while the other is a brute-force but efficient algo-
rithm that first normalizes the terms before comparing them. The second algorithm is based on a bytecode representation
of terms similar to the bytecode representation used in the ZINC virtual machine [Ler90]. It is especially useful for
intensive computation of algebraic values, such as numbers, and for reflection-based tactics. The commands to fine- tune
the reduction strategies and the lazy conversion algorithm are described first.

Command: Opaque qualid T
This command has an effect on unfoldable constants, i.e. on constants defined by Definition or Let (with an
explicit body), or by a command assimilated to a definition such as i xpoint, Program Definition, etc,
or by a proof ended by Defined. The command tells not to unfold the constants in the qualid sequence in
tactics using d-conversion (unfolding a constant is replacing it by its definition).

Opague has also an effect on the conversion algorithm of Coq, telling it to delay the unfolding of a constant as
much as possible when Coq has to check the conversion (see Section Conversion rules) of two distinct applied

240 Chapter 5. The proof engine

https://askra.de/software/prooftree

The Coq Reference Manual, Release 8.11.2

constants.

+
Variant: Global Opaque qualid
The scope of Opague is limited to the current section, or current file, unless the variant G1obal Opaque
is used.

See also:
Sections Performing computations, Automating, Switching on/off the proof editing mode

Error: The reference qualid was not found in the current environment.
There is no constant referred by gua 11 d in the environment. Nevertheless, if you asked Opaque foo bar
and if bar does not exist, foo is set opaque.

+
Command: Transparent qualid
This command is the converse of Opague and it applies on unfoldable constants to restore their unfoldability after
an Opaque command.

Note in particular that constants defined by a proof ended by Qed are not unfoldable and Transparent has no effect
on them. This is to keep with the usual mathematical practice of proof irrelevance: what matters in a mathematical
development is the sequence of lemma statements, not their actual proofs. This distinguishes lemmas from the
usual defined constants, whose actual values are of course relevant in general.

Variant: Global Transparent qualid
The scope of Transparent is limited to the current section, or current file, unless the variant G1lobal
Transparent is used.

Error: The reference qualid was not found in the current environment.
There is no constant referred by gua 1 id in the environment.

See also:

Sections Performing computations, Automating, Switching on/off the proof editing mode

Command: Strategy level [gualid ¥]
This command generalizes the behavior of Opaque and Transparent commands. It is used to fine-tune the strategy
for unfolding constants, both at the tactic level and at the kernel level. This command associates a level to the
qualified names in the qua I i d sequence. Whenever two expressions with two distinct head constants are compared
(for instance, this comparison can be triggered by a type cast), the one with lower level is expanded first. In case
of a tie, the second one (appearing in the cast type) is expanded.

level ::= opaque ‘ num ‘ expand
Levels can be one of the following (higher to lower):

* opaque : level of opaque constants. They cannot be expanded by tactics (behaves like +o0o, see
next item).

e num : levels indexed by an integer. Level O corresponds to the default behavior, which corre-
sponds to transparent constants. This level can also be referred to as transparent. Negative levels
correspond to constants to be expanded before normal transparent constants, while positive levels
correspond to constants to be expanded after normal transparent constants.

e expand : level of constants that should be expanded first (behaves like —co)

Variant: Local Strategy level [qualid ¥]
These directives survive section and module closure, unless the command is prefixed by Local. In
the latter case, the behavior regarding sections and modules is the same as for the Transparent
and Opaque commands.

5.1. Vernacular commands 241

The Coq Reference Manual, Release 8.11.2

Command: Print Strategy qualid

This command prints the strategy currently associated to qua 1 1 d. Itfails if gua 11 disnot an unfoldable reference,
that is, neither a variable nor a constant.

Error: The reference is not unfoldable.

Variant: Print Strategies
Print all the currently non-transparent strategies.

Command: Declare Reduction ident := redexpr

This command allows giving a short name to a reduction expression, for instance lazy beta delta [foo
bar]. This short name can then be used in Eval ident in or eval directives. This command accepts the
Local modifier, for discarding this reduction name at the end of the file or module. For the moment, the name
is not qualified. In particular declaring the same name in several modules or in several functor applications will be
rejected if these declarations are not local. The name i dent cannot be used directly as an Ltac tactic, but nothing
prevents the user from also performinga Ltac ident := redexpr.

See also:

Performing computations

5.1.12 Controlling the locality of commands

Command: Local command
Command: Global command

Some commands support a Local or Global prefix modifier to control the scope of their effect. There are four kinds
of commands:

* Commands whose default is to extend their effect both outside the section and the module or library file they
occur in. For these commands, the Local modifier limits the effect of the command to the current section or
module it occurs in. As an example, the Coercionand St rategy commands belong to this category.

¢ Commands whose default behavior is to stop their effect at the end of the section they occur in but to extend
their effect outside the module or library file they occur in. For these commands, the Local modifier limits
the effect of the command to the current module if the command does not occur in a section and the Global
modifier extends the effect outside the current sections and current module if the command occurs in a section.
As an example, the Arguments, Ltac or Notat ion commands belong to this category. Notice that a
subclass of these commands do not support extension of their scope outside sections at all and the Global
modifier is not applicable to them.

* Commands whose default behavior is to stop their effect at the end of the section or module they occur in.
For these commands, the G1obal modifier extends their effect outside the sections and modules they occur
in. The Transparent and Opaque (see Section Controlling the reduction strategies and the conversion
algorithm) commands belong to this category.

* Commands whose default behavior is to extend their effect outside sections but not outside modules when they
occur in a section and to extend their effect outside the module or library file they occur in when no section
contains them. For these commands, the Local modifier limits the effect to the current section or module
while the Global modifier extends the effect outside the module even when the command occurs in a section.
The Set and Unset commands belong to this category.

5.1.13 Controlling Typing Flags

Flag: Guard Checking

This flag can be used to enable/disable the guard checking of fixpoints. Warning: this can break the consistency of
the system, use at your own risk. Decreasing argument can still be specified: the decrease is not checked anymore
but it still affects the reduction of the term. Unchecked fixpoints are printed by Print Assumptions.

242

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Flag: Positivity Checking
This flag can be used to enable/disable the positivity checking of inductive types and the productivity checking
of coinductive types. Warning: this can break the consistency of the system, use at your own risk. Unchecked
(co)inductive types are printed by Print Assumptions.

Flag: Universe Checking
This flag can be used to enable/disable the checking of universes, providing a form of “type in type”. Warning:
this breaks the consistency of the system, use at your own risk. Constants relying on “type in type” are printed by
Print Assumptions. Ithas the same effect as —t ype—in-type command line argument (see By command
line options).

Command: Print Typing Flags
Print the status of the three typing flags: guard checking, positivity checking and universe checking.

Example

Unset Guard Checking.

Print Typing Flags.
check_guarded: false
check_positive: true
check_universes: true

Fixpoint f (n : nat) : False
:= £ n.
f is defined
f is recursively defined (decreasing on lst argument)

Fixpoint ackermann (m n : nat) {struct m} : nat :=
match m with
| 0 =>Sn
[S m =>
match n with
| 0 => ackermann m 1
| S n => ackermann m (ackermann (S m) n)
end
end.
ackermann is defined
ackermann is recursively defined (decreasing on lst argument)

Print Assumptions ackermann.
Axioms:
ackermann is assumed to be guarded.

Note that the proper way to define the Ackermann function is to use an inner fixpoint:

Fixpoint ack m :=

fix ackm n :=

match m with

| 0 => S n

| S m' =>
match n with
| 0 => ack m' 1
| S n' => ack m' (ackm n')
end

end.
ack is defined
ack is recursively defined (decreasing on 1st argument)

5.1. Vernacular commands 243

The Coq Reference Manual, Release 8.11.2

5.1.14 Internal registration commands

Due to their internal nature, the commands that are presented in this section are not for general use. They are meant to
appear only in standard libraries and in support libraries of plug-ins.

Exposing constants to OCaml libraries

Command: Register qualid;, as qualid,
This command exposes the constant gualid, to OCaml libraries under the name gualid,. This constant can
then be dynamically located calling Coglib.lib_ref "qualid,";i.e., there is no need to known where is
the constant defined (file, module, library, etc.).

As a special case, when the first segment of qualid, is kernel, the constant is exposed to the kernel. For
instance, the Int 63 module features the following declaration:

Register bool as kernel.ind_bool.

This makes the kernel aware of what is the type of boolean values. This information is used for instance to define
the return type of the #int 63_eq primitive.

See also:

Primitive Integers

Inlining hints for the fast reduction machines

Command: Register Inline qualid
This command gives as a hint to the reduction machines (VM and native) that the body of the constant qualid
should be inlined in the generated code.

Registering primitive operations

Command: Primitive ident; := #ident,.
Declares ident, as the primitive operator # ident,. When running this command, the type of the primitive
should be already known by the kernel (this is achieved through this command for primitive types and through the
Register command with the kernel name-space for other types).

5.2 Proof handling

In Coq’s proof editing mode all top-level commands documented in Chapter Vernacular commands remain available and
the user has access to specialized commands dealing with proof development pragmas documented in this section. They
can also use some other specialized commands called factics. They are the very tools allowing the user to deal with logical
reasoning. They are documented in Chapter Tactics.

Coq user interfaces usually have a way of marking whether the user has switched to proof editing mode. For instance,
in coqtop the prompt Cog < is changed into ident < where ident is the declared name of the theorem currently
edited.

At each stage of a proof development, one has a list of goals to prove. Initially, the list consists only in the theorem itself.
After having applied some tactics, the list of goals contains the subgoals generated by the tactics.

244 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

To each subgoal is associated a number of hypotheses called the local context of the goal. Initially, the local context
contains the local variables and hypotheses of the current section (see Section Assumptions) and the local variables and
hypotheses of the theorem statement. It is enriched by the use of certain tactics (see e.g. intro).

When a proof is completed, the message Proof completed isdisplayed. One can then register this proof as a defined
constant in the environment. Because there exists a correspondence between proofs and terms of A-calculus, known as
the Curry-Howard isomorphism [How80][Bar81][GLT89][Hue89], Coq stores proofs as terms of Cic. Those terms are
called proof terms.

Error: No focused proof.
Coq raises this error message when one attempts to use a proof editing command out of the proof editing mode.

5.2.1 Switching on/off the proof editing mode

The proof editing mode is entered by asserting a statement, which typically is the assertion of a theorem using an assertion
command like Theorem. The list of assertion commands is given in Assertions and proofs. The command Goal can
also be used.

Command: Goal form
This is intended for quick assertion of statements, without knowing in advance which name to give to the assertion,
typically for quick testing of the provability of a statement. If the proof of the statement is eventually completed
and validated, the statement is then bound to the name Unnamed_thm (or a variant of this name not already used
for another statement).

Command: Qed
This command is available in interactive editing proof mode when the proof is completed. Then Oed extracts
a proof term from the proof script, switches back to Coq top-level and attaches the extracted proof term to the
declared name of the original goal. This name is added to the environment as an opaque constant.

Error: Attempt to save an incomplete proof.

Note: Sometimes an error occurs when building the proof term, because tactics do not enforce completely the
term construction constraints.

The user should also be aware of the fact that since the proof term is completely rechecked at this point, one may
have to wait a while when the proof is large. In some exceptional cases one may even incur a memory overflow.

Variant: Defined
Same as Oed but the proof is then declared transparent, which means that its content can be explicitly used
for type checking and that it can be unfolded in conversion tactics (see Performing computations, Opaque,
Transparent).

Variant: Save ident
Forces the name of the original goal to be ident. This command (and the following ones) can only be used
if the original goal has been opened using the Goa I command.

Command: Admitted
This command is available in interactive editing mode to give up the current proof and declare the initial goal as
an axiom.

Command: Abort
This command cancels the current proof development, switching back to the previous proof development, or to the
Coq toplevel if no other proof was edited.

Error: No focused proof (No proof-editing in progress).

5.2. Proof handling 245

The Coq Reference Manual, Release 8.11.2

Variant: Abort ident
Aborts the editing of the proof named ident (in case you have nested proofs).

See also:
Nested Proofs Allowed

Variant: Abort All
Aborts all current goals.

Command: Proof term
This command applies in proof editing mode. It is equivalent to exact term. Qed. Thatis, you have to give
the full proof in one gulp, as a proof term (see Section Applying theorems).

Command: Proof
Is a no-op which is useful to delimit the sequence of tactic commands which start a proof, after a Theorem
command. It is a good practice to use Proof as an opening parenthesis, closed in the script with a closing Oed.

See also:

Proof with

Command: Proof using |ident
This command applies in proof editing mode. It declares the set of section variables (see Assumptions) used by the
proof. At Oed time, the system will assert that the set of section variables actually used in the proof is a subset of
the declared one.

The set of declared variables is closed under type dependency. For example, if T is a variable and a is a variable
of type T, then the commands Proof using aand Proof using T a are equivalent.

+
Variant: Proof using ident with tactic
Combines in a single line Proof withand Proof using.

See also:
Setting implicit automation tactics

Variant: Proof using All
Use all section variables.

?
Variant: Proof using Type

Use only section variables occurring in the statement.

Variant: Proof using Type*
The * operator computes the forward transitive closure. E.g. if the variable Hhastypep < 5thenHisinp*
since p occurs in the type of H. Type* is the forward transitive closure of the entire set of section variables
occurring in the statement.

+
Variant: Proof using - (ident |)
Use all section variables except the list of ident.

Variant: Proof using collection,; + collection,
Use section variables from the union of both collections. See Name a set of section hypotheses for Proof using
to know how to form a named collection.

Variant: Proof using collection, — collection,
Use section variables which are in the first collection but not in the second one.

+
Variant: Proof using collection — (ident |)
Use section variables which are in the first collection but not in the list of i dent.

246 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Variant: Proof using collection *
Use section variables in the forward transitive closure of the collection. The * operator binds stronger than +
and —.

Proof using options

The following options modify the behavior of Proof using.

Option: Default Proof Using "collection"
Use collection as the default Proof using value. E.g. Set Default Proof Using "a b" will
complete all Proof commands not followed by a using part with using a b.

Flag: Suggest Proof Using
When Oed is performed, suggest a using annotation if the user did not provide one.

Name a set of section hypotheses for Proof using

Command: Collection ident := collection
This can be used to name a set of section hypotheses, with the purpose of making Proof using annotations
more compact.

Example

Define the collection named Some containing x, y and z:

Collection Some := x y z.

Define the collection named Fewer containing only x and y:

Collection Fewer := Some — z

Define the collection named Many containing the set union or set difference of Fewer and Some:

Collection Many := Fewer + Some
Collection Many := Fewer - Some

Define the collection named Many containing the set difference of Fewer and the unnamed collection x y:

Collection Many := Fewer - (x V)

Command: Existential num := term
This command instantiates an existential variable. num is an index in the list of uninstantiated existential variables
displayed by Show Existentials.

This command is intended to be used to instantiate existential variables when the proof is completed but some
uninstantiated existential variables remain. To instantiate existential variables during proof edition, you should use
the tactic instantiate.

Command: Grab Existential Variables
This command can be run when a proof has no more goal to be solved but has remaining uninstantiated existential
variables. It takes every uninstantiated existential variable and turns it into a goal.

5.2. Proof handling 247

The Coq Reference Manual, Release 8.11.2

Proof modes

When entering proof mode through commands such as Goa 1 and Proof, Coq picks by default the L,,, mode. Nonethe-
less, there exist other proof modes shipped in the standard Coq installation, and furthermore some plugins define their
own proof modes. The default proof mode used when opening a proof can be changed using the following option.

Option: Default Proof Mode string
Select the proof mode to use when starting a proof. Depending on the proof mode, various syntactic constructs are
allowed when writing an interactive proof. The possible option values are listed below.

e “Classic”: this is the default. It activates the L.
commands.

wc 1anguage to interact with the proof, and also allows vernacular

* ”Noedit”: this proof mode only allows vernacular commands. No tactic language is activated at all. This is
the default when the prelude is not loaded, e.g. through the —-noinit option for cogc.

e ”Ltac2”: this proof mode is made available when requiring the Ltac?2 library, and is set to be the default when
it is imported. It allows to use the Ltac2 language, as well as vernacular commands.

» Some external plugins also define their own proof mode, which can be activated via this command.

5.2.2 Navigation in the proof tree
Command: Undo
This command cancels the effect of the last command. Thus, it backtracks one step.

Variant: Undo num
Repeats Undo num times.

Variant: Restart
This command restores the proof editing process to the original goal.

Error: No focused proof to restart.

Command: Focus
This focuses the attention on the first subgoal to prove and the printing of the other subgoals is suspended until the
focused subgoal is solved or unfocused. This is useful when there are many current subgoals which clutter your
screen.

Deprecated since version 8.8: Prefer the use of bullets or focusing brackets (see below).

Variant: Focus num
This focuses the attention on the num th subgoal to prove.

Deprecated since version 8.8: Prefer the use of focusing brackets with a goal selector (see below).

Command: Unfocus
This command restores to focus the goal that were suspended by the last Focus command.

Deprecated since version 8.8.

Command: Unfocused
Succeeds if the proof is fully unfocused, fails if there are some goals out of focus.

Command: { | }

The command { (without a terminating period) focuses on the first goal, much like Focus does, how-
ever, the subproof can only be unfocused when it has been fully solved (i.e. when there is no focused
goal left). Unfocusing is then handled by } (again, without a terminating period). See also an example
in the next section.

248 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Note that when a focused goal is proved a message is displayed together with a suggestion about the
right bullet or } to unfocus it or focus the next one.

Variant: num: {
This focuses on the num-th subgoal to prove.

Variant: [ident]: {
This focuses on the named goal ident.

Note: Goals are just existential variables and existential variables do not get a name by default.
You can give a name to a goal by using refine ?[ident]. You may also wrap this in an
Ltac-definition like:

Ltac name_goal name := refine 7?[name].

See also:

Existential variables

Example

This first example uses the Ltac definition above, and the named goals only serve for documentation.

Goal forall n, n + 0 = n.
1 subgoal
forall n : nat, n + 0 = n
Proof.
induction n; [name_goal base | name_goal step].
2 subgoals
0+0=0

subgoal 2 is:
Sn+ 0=2Sn

[base]: {
1 subgoal

reflexivity.
This subproof is complete, but there are some unfocused goals.
Try unfocusing with "}".

1 subgoal

subgoal 1 is:
Sn+ 0=3Sn

5.2. Proof handling 249

The Coq Reference Manual, Release 8.11.2

[step]: {
1 subgoal

simpl.
1 subgoal

S (n + 0) S n
f_equal.
1 subgoal
n nat

assumption.
No more subgoals.

}
Qed.
No more subgoals.

This can also be a way of focusing on a shelved goal, for instance:

Goal exists n : nat, n = n.
1 subgoal

eexists ?[x].
1 focused subgoal
(shelved: 1)

reflexivity.
All the remaining goals are on the shelf.

1 subgoal

subgoal 1 is:
nat

[x]: exact O.
No more subgoals.

Qed.

250 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Error: This proof is focused, but cannot be unfocused this way.
You are trying to use } but the current subproof has not been fully solved.

Error: No such goal (num).
Error: No such goal (ident).

Error: Brackets do not support multi-goal selectors.
Brackets are used to focus on a single goal given either by its position or by its name if it has one.

See also:

The error messages about bullets below.

Bullets

Alternatively to { and }, proofs can be structured with bullets. The use of a bullet b for the first time focuses on the first
goal g, the same bullet cannot be used again until the proof of g is completed, then it is mandatory to focus the next goal
with b. The consequence is that g and all goals present when g was focused are focused with the same bullet b. See the
example below.

Different bullets can be used to nest levels. The scope of bullet does not go beyond enclosing { and }, so bullets can be
reused as further nesting levels provided they are delimited by these. Bullets are made of repeated —, + or * symbols:

+ + +
bullet ::= |- + i
Note again that when a focused goal is proved a message is displayed together with a suggestion about the right bullet or

} to unfocus it or focus the next one.

Note: In Proof General (Emacs interface to Coq), you must use bullets with the priority ordering shown above to have
a correct indentation. For example — must be the outer bullet and * * the inner one in the example below.

The following example script illustrates all these features:

Example
Goal (((True /\ True) /\ True) /\ True) /\ True.
1 subgoal
(((True /\ True) /\ True) /\ True) /\ True
Proof.
split.
2 subgoals

((True /\ True) /\ True) /\ True

subgoal 2 is:
True

- split.
1 subgoal

(continues on next page)

5.2. Proof handling 251

The Coq Reference Manual, Release 8.11.2

((True /\ True) /\ True) /\ True

2 subgoals

(True /\ True) /\ True

subgoal 2 is:
True

+ split.
1 subgoal

(True /\ True) /\ True

2 subgoals

subgoal 2 is:
True

** { split.
1 subgoal

True /\ True

2 subgoals

subgoal 2 is:
True

- trivial.
1 subgoal

This subproof is complete, but there are some unfocused goals.

Focus next goal with bullet -.
4 subgoals

subgoal 1 is:

(continued from previous page)

(continues on next page)

252

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

True

subgoal 2 is:

True
subgoal 3 is:

True
subgoal 4 is:

True

- trivial.
1 subgoal

This subproof is complete, but there are some unfocused goals.
Try unfocusing with "}".

3 subgoals

subgoal 1 is:
True
subgoal 2 is:
True

subgoal 3 is:
True

}

** trivial.
This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet **.

3 subgoals

subgoal 1 is:
True

subgoal 2 is:
True

subgoal 3 is:
True

1 subgoal

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet +.

2 subgoals

subgoal 1 is:
True

subgoal 2 is:
True

+ trivial.
1 subgoal
(continues on next page)

5.2. Proof handling 253

The Coq Reference Manual, Release 8.11.2

This subproof is complete, but
Focus next goal with bullet -.

1 subgoal

subgoal 1 is:
True

— assert True.
1 subgoal

subgoal 2 is:
True

{ trivial.
1 subgoal

there are

This subproof is complete, but there are

Try unfocusing with "}".
1 subgoal

subgoal 1 is:
True

}
assumption.
1 subgoal

No more subgoals.

Qed.

some unfocused goals.

some unfocused goals.

(continued from previous page)

Error: Wrong bullet bullet;: Current bullet bullet, is not finished.
Before using bullet bullet, again, you should first finish proving the current focused goal. Note that bullet,

and bullet, may be the same.

254

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Error: Wrong bullet bullet;: Bullet bullet, is mandatory here.
You must put bullet, to focus on the next goal. No other bullet is allowed here.

Error: No such goal. Focus next goal with bullet bullet.
You tried to apply a tactic but no goals were under focus. Using hullet is mandatory here.

Error: No such goal. Try unfocusing with }.
You just finished a goal focused by {, you must unfocus it with }.

Mandatory Bullets

Using Default Goal Selector withthe ! selector forces tactic scripts to keep focus to exactly one goal (e.g. using
bullets) or use explicit goal selectors.

Set Bullet Behavior

Option: Bullet Behavior "None" ‘ "Strict Subproofs"
This option controls the bullet behavior and can take two possible values:

¢ ”None”: this makes bullets inactive.

¢ ”Strict Subproofs”: this makes bullets active (this is the default behavior).

5.2.3 Requesting information
Command: Show
This command displays the current goals.
Error: No focused proof.

Variant: Show num
Displays only the num-th subgoal.

Error: No such goal.

Variant: Show ident
Displays the named goal ident. This is useful in particular to display a shelved goal but only works if the
corresponding existential variable has been named by the user (see Existential variables) as in the following
example.

Example

Goal exists n, n = 0.
1 subgoal

eexists ?[n].
1 focused subgoal
(shelved: 1)

(continues on next page)

5.2. Proof handling 255

The Coq Reference Manual, Release 8.11.2

(continued from previous page)
Show n.
subgoal n is:

)
Variant: Show Proof Diffs removed

Displays the proof term generated by the tactics that have been applied so far. If the proof is incomplete,
the term will contain holes, which correspond to subterms which are still to be constructed. Each hole is an
existential variable, which appears as a question mark followed by an identifier.

Experimental: Specifying “Diffs” highlights the difference between the current and previous proof step. By
default, the command shows the output once with additions highlighted. Including “removed” shows the
output twice: once showing removals and once showing additions. It does not examine the Di £ fs option.
See Showing differences between proof steps.

Variant: Show Conjectures
It prints the list of the names of all the theorems that are currently being proved. As it is possible to start
proving a previous lemma during the proof of a theorem, this list may contain several names.

Variant: Show Intro
If the current goal begins by at least one product, this command prints the name of the first product, as it would
be generated by an anonymous int ro. The aim of this command is to ease the writing of more robust scripts.
For example, with an appropriate Proof General macro, it is possible to transform any anonymous intro
into a qualified one such as intro y13. In the case of a non-product goal, it prints nothing.

Variant: Show Intros
This command is similar to the previous one, it simulates the naming process of an intros.

Variant: Show Existentials

Displays all open goals / existential variables in the current proof along with the type and the context of each
variable.

Variant: Show Match ident
This variant displays a template of the Gallina match construct with a branch for each constructor of the
type ident

Example

Show Match nat.
match # with
| O =>
[S x =>
end

Error: Unknown inductive type.

Variant: Show Universes

It displays the set of all universe constraints and its normalized form at the current stage of the proof, useful
for debugging universe inconsistencies.

Variant: Show Goal num at num

This command is only available in coqtop. Displays a goal at a proof state using the goal ID number and the

256

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

proof state ID number. It is primarily for use by tools such as Prooftree that need to fetch goal history in this
way. Prooftree is a tool for visualizing a proof as a tree that runs in Proof General.

Command: Guarded
Some tactics (e.g. refine)allow to build proofs using fixpoint or co-fixpoint constructions. Due to the incremental
nature of interactive proof construction, the check of the termination (or guardedness) of the recursive calls in the
fixpoint or cofixpoint constructions is postponed to the time of the completion of the proof.

The command Guarded allows checking if the guard condition for fixpoint and cofixpoint is violated at some
time of the construction of the proof without having to wait the completion of the proof.

5.2.4 Showing differences between proof steps

Coq can automatically highlight the differences between successive proof steps and between values in some error messages.
Also, as an experimental feature, Coq can also highlight differences between proof steps shown in the Show Proof
command, but only, for now, when using coqtop and Proof General.

For example, the following screenshots of CoqIDE and coqtop show the application of the same intros tactic. The
tactic creates two new hypotheses, highlighted in green. The conclusion is entirely in pale green because although it’s
changed, no tokens were added to it. The second screenshot uses the “removed” option, so it shows the conclusion a
second time with the old text, with deletions marked in red. Also, since the hypotheses are new, no line of old text is
shown for them.

E : evnmn

(1/1)

exists k : nat, n = double k

(1/1)

Ze=s3i =t mes, ev = > exists k : nat, n = double k
exists k : nat, n = double k

This image shows an error message with diff highlighting in CoqIDE:

Unable to mnify
"(if p a then 1 else 0) + (count p B2 + count p £2)"

"(if p a then 1 else 0) + (count p £2 + count p £1)".

How to enable diffs

Option: Diffs "on" | "off" | "removed"
The “on” setting highlights added tokens in green, while the “removed” setting additionally reprints items with
removed tokens in red. Unchanged tokens in modified items are shown with pale green or red. Diffs in error
messages use red and green for the compared values; they appear regardless of the setting. (Colors are user-
configurable.)

For coqtop, showing diffs can be enabled when starting coqtop with the ~diffs on|off|removed command-line
option or by setting the Di s option within Coq. You will need to provide the —~color on|auto command-line
option when you start coqtop in either case.

Colors for coqtop can be configured by setting the COQ_COLORS environment variable. See section By environment
variables. Diffs use the tags diff.added, diff.added.bg,diff.removedand diff.removed.bg.

In CoqIDE, diffs should be enabled from the View menu. Don’t use the Set Diffs command in CoqIDE. You
can change the background colors shown for diffs from the Edit | Preferences | Tags panel by changing the

5.2. Proof handling 257

The Coq Reference Manual, Release 8.11.2

settings for the diff.added, diff.added.bg,diff.removedand diff.removed.bg tags. This panel also
lets you control other attributes of the highlights, such as the foreground color, bold, italic, underline and strikeout.

As of June 2019, Proof General can also display Coq-generated proof diffs automatically. Please see the PG documenta-
tion section "Showing Proof Diffs”?%%) for details.

How diffs are calculated

Diffs are calculated as follows:

1. Select the old proof state to compare to, which is the proof state before the last tactic that changed the proof.
Changes that only affect the view of the proof, suchas all: swap 1 2, are ignored.

2. For each goal in the new proof state, determine what old goal to compare it to—the one it is derived from or is the
same as. Match the hypotheses by name (order is ignored), handling compacted items specially.

3. For each hypothesis and conclusion (the “items”) in each goal, pass them as strings to the lexer to break them into
tokens. Then apply the Myers diff algorithm [Mye86] on the tokens and add appropriate highlighting.

Notes:
* Aside from the highlights, output for the “on” option should be identical to the undiffed output.
¢ Goals completed in the last proof step will not be shown even with the “removed” setting.

This screen shot shows the result of applying a sp1it tactic that replaces one goal with 2 goals. Notice that the goal P
1 is not highlighted at all after the split because it has not changed.

3 subgoals
(1/3)

P1
(2/3)

P2
(3/3)

P 3

This is how diffs may appear after applying a i nt ro tactic that results in compacted hypotheses:

1 subgoal
n, m : nat
(1/1)

5.2.5 Controlling the effect of proof editing commands

Option: Hyps Limit num
This option controls the maximum number of hypotheses displayed in goals after the application of a tactic. All
the hypotheses remain usable in the proof development. When unset, it goes back to the default mode which is to
print all available hypotheses.

Flag: Nested Proofs Allowed
When turned on (it is off by default), this flag enables support for nested proofs: a new assertion command can be
inserted before the current proof is finished, in which case Coq will temporarily switch to the proof of this nested
lemma. When the proof of the nested lemma is finished (with Oed or Defined), its statement will be made
available (as if it had been proved before starting the previous proof) and Coq will switch back to the proof of the
previous assertion.

5.2.6 Controlling memory usage

When experiencing high memory usage the following commands can be used to force Coq to optimize some of its internal
data structures.

295 https://proofgeneral.github.io/doc/master/userman/Cog- Proof- General#Showing- Proof- Diffs

258 Chapter 5. The proof engine

https://proofgeneral.github.io/doc/master/userman/Coq-Proof-General#Showing-Proof-Diffs

The Coq Reference Manual, Release 8.11.2

Command: Optimize Proof
This command forces Coq to shrink the data structure used to represent the ongoing proof.

Command: Optimize Heap
This command forces the OCaml runtime to perform a heap compaction. This is in general an expensive operation.
See: OCaml Gc??® There is also an analogous tactic opt imize_heap.

5.3 Tactics

A deduction rule is a link between some (unique) formula, that we call the conclusion and (several) formulas that we call
the premises. A deduction rule can be read in two ways. The first one says: “if I know this and this then I can deduce
this”. For instance, if I have a proof of A and a proof of B then I have a proof of A A B. This is forward reasoning from
premises to conclusion. The other way says: “to prove this I have to prove this and this”. For instance, to prove A A
B, I have to prove A and I have to prove B. This is backward reasoning from conclusion to premises. We say that the
conclusion is the goal to prove and premises are the subgoals. The tactics implement backward reasoning. When applied
to a goal, a tactic replaces this goal with the subgoals it generates. We say that a tactic reduces a goal to its subgoal(s).

Each (sub)goal is denoted with a number. The current goal is numbered 1. By default, a tactic is applied to the current
goal, but one can address a particular goal in the list by writing n:tactic which means “apply tactic tactic to goal number
n”. We can show the list of subgoals by typing Show (see Section Requesting information).

Since not every rule applies to a given statement, not every tactic can be used to reduce a given goal. In other words,
before applying a tactic to a given goal, the system checks that some preconditions are satisfied. If it is not the case, the
tactic raises an error message.

Tactics are built from atomic tactics and tactic expressions (which extends the folklore notion of tactical) to combine those
atomic tactics. This chapter is devoted to atomic tactics. The tactic language will be described in Chapter Lrac.

5.3.1 Common elements of tactics

Invocation of tactics

A tactic is applied as an ordinary command. It may be preceded by a goal selector (see Section Semantics). If no selector
is specified, the default selector is used.

tactic_invocation = toplevel_selector : tactic.
tactic.

Option: Default Goal Selector "toplevel selector"
This option controls the default selector, used when no selector is specified when applying a tactic. The initial value
is 1, hence the tactics are, by default, applied to the first goal.

Using value a11 will make it so that tactics are, by default, applied to every goal simultaneously. Then, to apply a
tactic tac to the first goal only, you can write 1:tac.

Using value ! enforces that all tactics are used either on a single focused goal or with a local selector ("strict focusing
mode”).

Although more selectors are available, only al1, ! or a single natural number are valid default goal selectors.

29 http://caml.inria.fr/pub/docs/manual-ocaml/libref/Ge.html#V ALcompact

5.3. Tactics 259

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Gc.html#VALcompact

The Coq Reference Manual, Release 8.11.2

Bindings list

Tactics that take a term as an argument may also support a bindings list to instantiate some parameters of the term
by name or position. The general form of a term with a bindings list is term with bindings_1ist where
bindings_11ist can take two different forms:

ref n= ident
num

bindings_list = (ref := term) (ref := term)
term term

In a bindings list of the form | (ref:= term) ¥ , ref is either an ident or a num. The references are deter-
mined according to the type of term. If ref is an identifier, this identifier has to be bound in the type of term
and the binding provides the tactic with an instance for the parameter of this name. If re £ is a number n, it refers
to the n-th non dependent premise of the t e rm, as determined by the type of term.

Error: No such binder.

A bindings list can also be a simple list of terms term > In that case the references to which these terms
correspond are determined by the tactic. In case of induction, destruct, elim and case, the terms
have to provide instances for all the dependent products in the type of term while in the case of apply, or of
constructor and its variants, only instances for the dependent products that are not bound in the conclusion of
the type are required.

Error: Not the right number of missing arguments.

Intro patterns

Intro patterns let you specify the name to assign to variables and hypotheses introduced by tactics. They also let you
split an introduced hypothesis into multiple hypotheses or subgoals. Common tactics that accept intro patterns include

assert, intros and destruct.

intropattern_list

empty

intropattern

simple_intropattern

simple_intropattern_closed

naming_intropattern

or_and_intropattern

rewriting_intropattern

intropattern intropattern

empty

*

* %

simple_intropattern

simple_intropattern_closed [% term ... % term]
naming_intropattern

or_and_intropattern

rewriting intropattern

injection_intropattern

ident

?

?ident

[intropattern_list | ... | intropattern_list 1]

(simple_intropattern , ... , simple_intropattern)
(simple_intropattern & & simple_intropattern)
->

<—

260

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

injection_intropattern
or_

[= intropattern_list]
and_intropattern_loc = or_and_intropattern
ident

Note that the intro pattern syntax varies between tactics. Most tactics use simple_intropattern in the grammar.
destruct, edestruct, induction, einduction, case, ecase and the various inversion tactics use
or_and_intropattern_loc,while introsand eintrosuse intropattern_list. The egn: construct
in various tactics uses naming_intropattern.

Naming patterns

Use these elementary patterns to specify a name:

ident — use the specified name

? — let Coq choose a name

? ident — generate a name that begins with ident

_ — discard the matched part (unless it is required for another hypothesis)

if a disjunction pattern omits a name, such as [| H2], Coq will choose a name

Splitting patterns

The most common splitting patterns are:

split a hypothesis in the form 2 /\ B into two hypotheses H1: A and H2: B using the pattern (H1 & H2) or
(H1, H2) or [H1 H2]. Example. This also works on A <-> B, which is just a notation representing (A —>
B) /\ (B —-> A).

split a hypothesis in the form A \/ B into two subgoals using the pattern [H1 | H2]. The first subgoal will have
the hypothesis H1 : A and the second subgoal will have the hypothesis H2 : B. Example

split a hypothesis in either of the forms A /\ BorA \/ B using the pattern [].

Patterns can be nested: [[Ha|Hb] H] can be used tosplit (A \/ B) /\ C.

Note that there is no equivalent to intro patterns for goals. Foragoal 2 /\ B, use the spl it tactic to replace the current
goal with subgoals A and B. For a goal 2 \/ B, use left to replace the current goal with A, or right to replace the
current goal with B.

+
(\simple_intropattern |)— matches a product over an inductive type with a single constructor. If the
number of patterns equals the number of constructor arguments, then it applies the patterns only to the arguments,

& +
and (|simple_ intropattern) isequivalentto [simple intropattern |].If the number of

patterns equals the number of constructor arguments plus the number of 1et-ins, the patterns are applied to the
arguments and let—in variables.

+ . .
(|simple_intropattern) — matches a right-hand nested term that consists of one or more nested
&

binary inductive types such as al OP1 a2 OP2 ... (where the OPn are right-associative). (If the OPn are
left-associative, additional parentheses will be needed to make the term right-hand nested, suchas a1l OP1 (a2
OP2 ...).) The splitting pattern can have more than 2 names, for example (H1 & H2 & H3) matches2 /\
B /\ C. The inductive types must have a single constructor with two parameters. Example

+
[|intropattern_1list | 1 — splits an inductive type that has multiple constructors such as A \/ B into

multiple subgoals. The number of intropattern_1list must be the same as the number of constructors for
the matched part.

5.3. Tactics 261

The Coq Reference Manual, Release 8.11.2

+
[|intropattern] — splits an inductive type that has a single constructor with multiple parameters such
as A /\ B into multiple hypotheses. Use [H1 [H2 H3]] tomatchA /\ B /\ C.

[1 — splits an inductive type: If the inductive type has multiple constructors, suchas 2 \/ B, create one subgoal
for each constructor. If the inductive type has a single constructor with multiple parameters, suchas A /\ B, split
it into multiple hypotheses.

Equality patterns

These patterns can be used when the hypothesis is an equality:

—> — replaces the right-hand side of the hypothesis with the left-hand side of the hypothesis in the conclusion of
the goal; the hypothesis is cleared; if the left-hand side of the hypothesis is a variable, it is substituted everywhere
in the context and the variable is removed. Example

<— — similar to —>, but replaces the left-hand side of the hypothesis with the right-hand side of the hypothesis.

*
[= |intropattern] — If the product is over an equality type, applies either injection or

4

discriminate. If injection is applicable, the intropattern is used on the hypotheses generated by
injection. If the number of patterns is smaller than the number of hypotheses generated, the pattern ? is
used to complete the list. Example

Other patterns

Flag:

* — introduces one or more quantified variables from the result until there are no more quantified variables. Ex-
ample

** — introduces one or more quantified variables or hypotheses from the result until there are no more quantified
variables or implications (—>). intros ** isequivalent to intros. Example

* . .
simple_intropattern_closed |$ term | —firstapplies each of the terms withthe apply ... in
tactic on the hypothesis to be introduced, then it uses simple intropattern_closed. Example

Bracketing Last Introduction Pattern

For intros intropattern_1list, controls how to handle a conjunctive pattern that doesn’t give enough
simple patterns to match all the arguments in the constructor. If set (the default), Coq generates additional names
to match the number of arguments. Unsetting the flag will put the additional hypotheses in the goal instead, behavior
that is more similar to SSReflect’s intro patterns.

Deprecated since version 8.10.

Note:

A \/ BandA /\ Buse infix notation to refer to the inductive types or and and. or has multiple constructors

(or_introland or_intror), while and has a single constructor (con j) with multiple parameters (A and B). These
are defined in theories/Init/Logic.v. The "where” clauses define the infix notation for “or” and ”and”.

Inductive or (A B:Prop) : Prop :=

or_introl : A —> A \/ B
or_intror : B -> A \/ B

where "A \/ B" := (or A B) : type_scope.
Inductive and (A B:Prop) : Prop :=
conj : A ->B ->A /\ B
where "A /\ B" := (and A B) : type_scope.
Note: intros [p *is not always equivalent to intros p; ... ; intros p if some of the p are _. In the

first form, all erasures are done at once, while they’re done sequentially for each tactic in the second form. If the second

262

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

matched term depends on the first matched term and the pattern for both is _ (i.e., both will be erased), the first intros
in the second form will fail because the second matched term still has the dependency on the first.

Examples:

Example: intro pattern for A\

1 subgoal

A, B : Prop

destruct H as (HA & HB).
1 subgoal

A, B : Prop

HA : A
HB B
True

Example: intro pattern for V

1 subgoal

destruct H as [HA|HB].
2 subgoals

A, B : Prop

subgoal 2 is:
True

all: swap 1 2.
2 subgoals

subgoal 2 is:
True

5.3. Tactics 263

The Coq Reference Manual, Release 8.11.2

Example: -> intro pattern

1 subgoal
X, YV, z : nat
H: x =y
y =2z > X =2

intros ->.

1 subgoal
X, zZ nat
H X = 2z
X = z

Example: [=] intro pattern

Thefirst intros [=] uses injectiontostrip (S ...) from both sides of the matched equality. The
second uses discriminate on the contradiction 1 = 2 (internally represented as (S O) = (S (S
0))) to complete the goal.

1 subgoal

intros [= H].
1 subgoal

1 = 2 -> False

intros [=].
No more subgoals.

Example: (A & B & ...) intro pattern
1 subgoal

A /\ (exists x : nat, B x /\ C) —-> True

intros (a & x & b & c).

1 subgoal
a : A
X : nat

(continues on next page)

264 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

b B x
l¢] C
True

Example: * intro pattern

1 subgoal

intros *.
1 subgoal

Example: ** pattern (intros **” is equivalent to "’intros”)

1 subgoal

forall A B : Prop, A —> B

intros **.
1 subgoal

Example: compound intro pattern

1 subgoal

forall AB C : Prop, A \/ B /N C > (A ->C) —> C

intros * [a | (_,c)] f.
2 subgoals

a A
f A —> C
C

(continues on next page)

5.3. Tactics 265

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

subgoal 2 is:
c

all: swap 1 2.
2 subgoals

c C
f A —> C
C

subgoal 2 is:
C

Example: combined intro pattern using [=] -> and %

1 subgoal

A : Type
xs, ys : list A

S (length ys)

1 —> xs ++ ys = xs

intros [=->%length_zero_iff nil].

1 subgoal

xs ++ nil = xs
e introswouldaddH : S (length ys) = 1
e intros [=] would additionally apply injectionto H to yield HO

e intros [=->%length_zero_iff_nil] applies the theorem, making H the equality 1=nil,
which is then applied as for —>.

length ys = 0

Theorem length_zero_iff nil (1

list A):
length 1 0 <=> 1=nil.

The example is based on Tej Chajed’s coq-tricks*’

Occurrence sets and occurrence clauses

An occurrence clause is a modifier to some tactics that obeys the following syntax:

occurrence_clause =

in goal_occurrences

297 https://github.com/tchajed/cog-tricks/blob/8e6efe497 1ed828ac8bdb5512¢ 1615d7d6269 1 e/src/IntroPatterns.v

266

Chapter 5. The proof engine

https://github.com/tchajed/coq-tricks/blob/8e6efe4971ed828ac8bdb5512c1f615d7d62691e/src/IntroPatterns.v

The Coq Reference Manual, Release 8.11.2

goal_occurrences

[ident [at_occurrences], ... , 1ident [at_occurrences]
|-= [* [at_occurrences]]

at_occurrences L= at occurrences
occurrences = [-] num ... num

The role of an occurrence clause is to select a set of occurrences of a term in a goal. In the first case, the ident
?
* . . . ,
at |num parts indicate that occurrences have to be selected in the hypotheses named i dent. If no numbers are
given for hypothesis i dent, then all the occurrences of term in the hypothesis are selected. If numbers are given, they
refer to occurrences of term when the term is printed using the Printing Al1 flag, counting from left to right. In

particular, occurrences of term in implicit arguments (see Implicit arguments) or coercions (see Coercions) are counted.

If a minus sign is given between at and the list of occurrences, it negates the condition so that the clause denotes all the
occurrences except the ones explicitly mentioned after the minus sign.

As an exception to the left-to-right order, the occurrences in the return subexpression of a match are considered before
the occurrences in the matched term.

In the second case, the * on the left of | — means that all occurrences of term are selected in every hypothesis.

In the first and second case, if * is mentioned on the right of | —, the occurrences of the conclusion of the goal have to
be selected. If some numbers are given, then only the occurrences denoted by these numbers are selected. If no numbers
are given, all occurrences of term in the goal are selected.

Finally, the last notation is an abbreviation for * | — *. Note also that | — is optional in the first case when no * is given.

Here are some tactics that understand occurrence clauses: set, remember, induction, destruct.
See also:

Managing the local context, Case analysis and induction, Printing constructions in full.

5.3.2 Applying theorems

exact term

This tactic applies to any goal. It gives directly the exact proof term of the goal. Let T be our goal, let p be a term
of type U then exact p succeeds iff T and U are convertible (see Conversion rules).

Error: Not an exact proof.

Variant: eexact term.
This tactic behaves like exact but is able to handle terms and goals with existential variables.

assumption
This tactic looks in the local context for a hypothesis whose type is convertible to the goal. If it is the case, the
subgoal is proved. Otherwise, it fails.

Error: No such assumption.

Variant: eassumption
This tactic behaves like assumpt i on but is able to handle goals with existential variables.

refine term
This tactic applies to any goal. It behaves like exact with a big difference: the user can leave some holes (denoted

by _or (_ : type))in the term. refine will generate as many subgoals as there are remaining holes in
the elaborated term. The type of holes must be either synthesized by the system or declared by an explicit cast
like (_ : nat —> Prop). Any subgoal that occurs in other subgoals is automatically shelved, as if calling

shelve_unifiable. The produced subgoals (shelved or not) are not candidates for typeclass resolution, even

5.3. Tactics 267

The Coq Reference Manual, Release 8.11.2

if they have a type-class type as conclusion, letting the user control when and how typeclass resolution is launched
on them. This low-level tactic can be useful to advanced users.

Example

Inductive Option : Set :=

| Fail : Option

| Ok : bool -> Option.
Option is defined
Option_rect is defined
Option_ind is defined
Option_rec is defined
Option_sind is defined

Definition get : forall x:Option, x <> Fail -> bool.
1 subgoal

forall x : Option, x <> Fail —-> bool

refine
(fun x:0ption =>
match x return x <> Fail —-> bool with

| Fail => _
| Ok b => fun _ => Db
end) .

1 subgoal

Fail <> Fail -> bool

intros; absurd (Fail = Fail); trivial.
No more subgoals.

Defined.

Error: Invalid argument.
The tactic refine does not know what to do with the term you gave.

Error: Refine passed ill-formed term.
The term you gave is not a valid proof (not easy to debug in general). This message may also occur in higher-
level tactics that call refine internally.

Error: Cannot infer a term for this placeholder.
There is a hole in the term you gave whose type cannot be inferred. Put a cast around it.

Variant: simple refine term
This tactic behaves like refine, but it does not shelve any subgoal. It does not perform any beta-reduction
either.

Variant: notypeclasses refine term
This tactic behaves like re £ine except it performs type checking without resolution of typeclasses.

Variant: simple notypeclasses refine term
This tactic behaves like the combination of simple refine and notypeclasses refine: it per-
forms type checking without resolution of typeclasses, does not perform beta reductions or shelve the subgoals.

268

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Flag: Debug Unification
Enables printing traces of unification steps used during elaboration/typechecking and the re fine tactic.

apply term
This tactic applies to any goal. The argument term is a term well-formed in the local context. The tactic apply
tries to match the current goal against the conclusion of the type of term. If it succeeds, then the tactic returns as
many subgoals as the number of non-dependent premises of the type of term. If the conclusion of the type of term
does not match the goal and the conclusion is an inductive type isomorphic to a tuple type, then each component
of the tuple is recursively matched to the goal in the left-to-right order.

The tactic app 1y relies on first-order unification with dependent types unless the conclusion of the type of term
isof theform P (t, ... t,) with P to be instantiated. In the latter case, the behavior depends on the form
of the goal. If the goal is of the form (fun x => Q) wu; ... u,andthet, and u; unify, then P is taken to
be (fun x => Q). Otherwise, apply tries to define P by abstractingover t_1 ... t__n in the goal. See
pattern to transform the goal so that it gets the form (fun x => Q) u, ... u

Error: Unable to unify term with term.

The apply tactic failed to match the conclusion of term and the current goal. You can help the apply
tactic by transforming your goal with the change or pattern tactics.

Error: Unable to find an instance for the variables ident
This occurs when some instantiations of the premises of term are not deducible from the unification. This
is the case, for instance, when you want to apply a transitivity property. In this case, you have to use one of
the variants below:

+
Variant: apply term with term
Provides apply with explicit instantiations for all dependent premises of the type of term that do not occur in

. +
the conclusion and consequently cannot be found by unification. Notice that the collection | term | must be
given according to the order of these dependent premises of the type of term.

Error: Not the right number of missing arguments.

Variant: apply term with bindings_list
This also provides apply with values for instantiating premises. Here, variables are referred by names and
non-dependent products by increasing numbers (see bindings list).

+
Variant: apply term

This is a shortcut for apply term;; [.. | ... ; [.. | apply term,] ...],ie. for
the successive applications of term,,, on the last subgoal generated by apply term, , starting from the
application of term,.

Variant: eapply term
The tactic eapply behaves like app 1y but it does not fail when no instantiations are deducible for some
variables in the premises. Rather, it turns these variables into existential variables which are variables still to
instantiate (see Existential variables). The instantiation is intended to be found later in the proof.

Variant: simple apply term.
This behaves like app 1y but it reasons modulo conversion only on subterms that contain no variables to
instantiate. For instance, the following example does not succeed because it would require the conversion of
id ?fooandO.

Example

Definition id (x : nat) := x.
id is defined

(continues on next page)

5.3. Tactics 269

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

Parameter H : forall y, idy = vy.
H is declared

Goal O = O.
1 subgoal

Fail simple apply H.
The command has indeed failed with message:
Unable to unify "id ?M160 = ?M160" with "0 = 0".

Because it reasons modulo a limited amount of conversion, simple apply fails quicker than app Iy and
it is then well-suited for uses in user-defined tactics that backtrack often. Moreover, it does not traverse tuples
as apply does.

+
? ?

Variant: simple = apply term with bindings_list

? ?
Variant: simple eapply term with bindings_list

This summarizes the different syntaxes for apply and eapply.

Variant: lapply term
This tactic applies to any goal, say G. The argument term has to be well-formed in the current context, its type
being reducible to a non-dependent product A -> B with B possibly containing products. Then it generates
two subgoals B—>G and A. Applying lapply H (where H has type A—>B and B does not start with a product)
does the same as giving the sequence cut B. 2:apply H. where cut is described below.

Warning: When term contains more than one non dependent product the tactic lapply on

Example
Assume we have a transitive relation R on nat:

Parameter R : nat —-> nat —-> Prop.

Axiom Rtrans : forall x y z:nat, Rxy > Ry z —> R x z.
Parameters n m p : nat.

Axjiom Rnm : R n m.

Axiom Rmp : R m p.

Consider the goal (R n p) provable using the transitivity of R:

Goal R n p.

The direct application of Rt rans with apply fails because no value for v in Rt rans is found by apply:

apply Rtrans.
Toplevel input, characters 0-12:
> apply Rtrans.

S AAAAAAAAAAAN

Error: Unable to find an instance for the variable y.

A solution is to apply (Rtrans n m p) or (Rtrans n m).

270 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

apply (Rtrans n m p).
2 subgoals

subgoal 2 is:
Rmp

Note that n can be inferred from the goal, so the following would work too.

apply (Rtrans _ m).

More elegantly, apply Rtrans with (y:=m) allows only mentioning the unknown m:

apply Rtrans with (y := m).

Another solution is to mention the proof of (R x y) in Rtrans

apply Rtrans with (1 := Rnm).
1 subgoal

... or the proof of (R v z).

apply Rtrans with (2
1 subgoal

I
o)
3

o]

On the opposite, one can use eapply which postpones the problem of finding m. Then one can apply the hypotheses
Rnm and Rmp. This instantiates the existential variable and completes the proof.

eapply Rtrans.
2 focused subgoals
(shelved: 1)

subgoal 2 is:
R 2y p

apply Rnm.
1 subgoal

apply Rmp.
No more subgoals.

Note: When the conclusion of the type of the term to apply is an inductive type isomorphic to a tuple type and

5.3. Tactics 271

The Coq Reference Manual, Release 8.11.2

apply looks recursively whether a component of the tuple matches the goal, it excludes components whose statement
would result in applying an universal lemma of the form forall A, ... —-> A.Excluding this kind of lemma can
be avoided by setting the following flag:

Flag: Universal Lemma Under Conjunction
This flag, which preserves compatibility with versions of Coq prior to 8.4 is also available for apply term in
ident (see apply ... 1in).

apply term in ident

This tactic applies to any goal. The argument term is a term well-formed in the local context and the argument
ident is an hypothesis of the context. The tactic apply term in ident tries to match the conclusion of
the type of ident against a non-dependent premise of the type of term, trying them from right to left. If it
succeeds, the statement of hypothesis i dent is replaced by the conclusion of the type of term. The tactic also
returns as many subgoals as the number of other non-dependent premises in the type of term and of the non-
dependent premises of the type of ident. If the conclusion of the type of ¢ erm does not match the goal and the
conclusion is an inductive type isomorphic to a tuple type, then the tuple is (recursively) decomposed and the first
component of the tuple of which a non-dependent premise matches the conclusion of the type of ident. Tuples
are decomposed in a width-first left-to-right order (for instance if the type of H1 is A <-> B and the type of H2
is A then apply H1 in H2 transforms the type of H2 into B). The tactic app 1y relies on first-order pattern
matching with dependent types.

Error: Statement without assumptions.
This happens if the type of term has no non-dependent premise.

Error: Unable to apply.
This happens if the conclusion of ident does not match any of the non-dependent premises of the type of
term.

+
Variant: apply |term . in ident

This applies each term in sequence in ident.

+
Variant: apply term with bindings list in ident

This does the same but uses the bindings in each (ident := term) to instantiate the parameters of the
corresponding type of term (see bindings list).

+
?

Variant: eapply term with bindings list in ident
This works as apply ... in but turns unresolved bindings into existential variables, if any, instead of
failing.

+
?

Variant: apply term with bindings list | in ident as simple_intropattern

4

This works as apply ... 1inthen appliesthe simple_intropattern to the hypothesis ident.

Variant: simple apply term in ident
This behaves like apply ... 1in butitreasons modulo conversion only on subterms that contain no vari-
ables to instantiate. For instance, if id := fun x:nat => xandH: forall y, idy =y —>
True and HO : O = O then simple apply H in HO does not succeed because it would require
the conversion of 1d ?x and O where ?x is an existential variable to instantiate. Tactic simple apply
term in ident does not either traverse tuples as apply term in ident does.

+
? ?

? 2 ?
Variant: simple apply term with bindings_list in ident |as simple_intropattern

272 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

+
2 ? 2
Variant: simple eapply term with bindings_ list in ident |as simple_intropattern

This summarizes the different syntactic variants of apply term in ident and eapply term in
ident.

constructor num
This tactic applies to a goal such that its conclusion is an inductive type (say I). The argument num must be less
or equal to the numbers of constructor(s) of I. Let c; be the i-th constructor of I, then constructor 1iis
equivalent to intros; apply c;.

Error: Not an inductive product.
Error: Not enough constructors.

Variant: constructor
This tries constructor 1 then constructor 2, .., then constructor n where n is the number
of constructors of the head of the goal.

Variant: constructor num with bindings_list
Let c be the i-th constructor of I, then constructor i1 with bindings_1list is equivalent to
intros; apply c with bindings list.

Warning: The terms in the bindings_11ist are checked in the context where constructor is executed
and not in the context where app 1y is executed (the introductions are not taken into account).

?
Variant: split with bindings_list

This applies only if I has a single constructor. It is then equivalent to constructor 1
2. . . o
with bindings_list | . Itistypically used in the case of a conjunction A A B.

Variant: exists bindings list
This applies only if T has a single constructor. It is then equivalent to intros; constructor 1
with bindings_1ist. Itis typically used in the case of an existential quantification 3z, P(x).

Variant: exists bindings_list

’

This iteratively applies exists bindings_ Ilist.

Error: Not an inductive goal with 1 constructor.
?
Variant: left with bindings_list

?
Variant: right with bindings_list

These tactics apply only if T has two constructors, for instance in the case of a disjunction A VV B. Then, they
?
are respectively equivalent to constructor 1 with bindings list | and constructor 2

?
with bindings_1list

Error: Not an inductive goal with 2 constructors.

Variant: econstructor

Variant: eexists

Variant: esplit

Variant: eleft

Variant: eright
These tactics and their variants behave like constructor, exists, split, left, right and their
variants but they introduce existential variables instead of failing when the instantiation of a variable cannot
be found (cf. eapply and apply).

5.3. Tactics 273

The Coq Reference Manual, Release 8.11.2

Flag: Debug Tactic Unification
Enables printing traces of unification steps in tactic unification. Tactic unification is used in tactics such as app 1y
and rewrite.

5.3.3 Managing the local context

intro
This tactic applies to a goal that is either a product or starts with a let-binder. If the goal is a product, the tactic
implements the “Lam” rule given in Typing rules'. If the goal starts with a let-binder, then the tactic implements a
mix of the "Let” and "Conv”.

If the current goal is a dependent product forall x:T, U (resp let x:=t in U)then introputs x:T
(resp x : =t) in the local context. The new subgoal is U.

If the goal is a non-dependent product 7' — U, then it puts in the local context either Hn: T (if T is of type Set
or Prop) or Xn: T (if the type of T is Type). The optional index n is such that Hn or Xn is a fresh identifier. In
both cases, the new subgoal is U.

If the goal is an existential variable, i nt ro forces the resolution of the existential variable into a dependent product
V x:?X, ?Y,puts x:?X in the local context and leaves ?Y as a new subgoal allowed to depend on x.

The tactic int ro applies the tactic hnf until i nt ro can be applied or the goal is not head-reducible.
Error: No product even after head-reduction.

Variant: intro ident
This applies int ro but forces i dent to be the name of the introduced hypothesis.

Error: ident is already used.

Note: If a name used by intro hides the base name of a global constant then the latter can still be referred to by a
qualified name (see Qualified names).

Variant: intros
This repeats int ro until it meets the head-constant. It never reduces head-constants and it never fails.

Variant: intros ident
This is equivalent to the composed tactic intro ident; ... ; intro ident.

Variant: intros until ident
This repeats intro until it meets a premise of the goal having the form (ident : type) and discharges
the variable named ident of the current goal.

Error: No such hypothesis in current goal.

Variant: intros until num
This repeats int ro until the num-th non-dependent product.

Example

Onthesubgoal forall x v : nat, x = y -> y = xthetacticintros until 1 isequivalent
tointros x y Hyasx = y —> y = xis the first non-dependent product.

! Actually, only the second subgoal will be generated since the other one can be automatically checked.

274 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

On the subgoal forall x y z : nat, x = y -> y = xthetactic intros until 1 isequiv-
alentto intros x y =z asthe product on z can be rewritten as a non-dependent product: forall x y
: nat, nat > x =y -> vy = X.

Error: No such hypothesis in current goal.
This happens when num is 0 or is greater than the number of non-dependent products of the goal.
?
Variant: intro ident, after ident,

?
Variant: intro ident, | before ident,

?
Variant: intro |ident, at top

?
Variant: intro ident, at bottom

?
These tactics apply intro ident, | and move the freshly introduced hypothesis respectively after the

hypothesis ident ., before the hypothesis ident ., at the top of the local context, or at the bottom of
the local context. All hypotheses on which the new hypothesis depends are moved too so as to respect the

? .
order of dependencies between hypotheses. It is equivalentto intro | ident, | followed by the appropri-
ate call to move ... after ...,move ... before ...,move ... at top,or move
at bottom.

Note: intro at bottomisasynonym for intro with no argument.

Error: No such hypothesis: ident.

intros intropattern_list
Introduces one or more variables or hypotheses from the goal by matching the intro patterns. See the description
in Intro patterns.

eintros intropattern_list
Works just like intros ... except that it creates existential variables for any unresolved variables rather than
failing.

clear ident
This tactic erases the hypothesis named i dent in the local context of the current goal. As a consequence, ident
is no more displayed and no more usable in the proof development.

Error: No such hypothesis.
Error: ident is used in the conclusion.
Error: ident is used in the hypothesis ident.
Variant: clear ident

This is equivalent to clear ident. ... clear ident.
Variant: clear - |ident

+
This variant clears all the hypotheses except the ones depending in the hypotheses named | i dent | and in
the goal.

Variant: clear
This variants clears all the hypotheses except the ones the goal depends on.

Variant: clear dependent ident
This clears the hypothesis i dent and all the hypotheses that depend on it.

5.3. Tactics 275

The Coq Reference Manual, Release 8.11.2

Variant: clearbody ident

This tactic expects | ident | to be local definitions and clears their respective bodies. In other words, it
turns the given definitions into assumptions.

Error: ident is not a local definition.

revert ident

+
This applies to any goal with variables | 1 dent | . It moves the hypotheses (possibly defined) to the goal, if this
respects dependencies. This tactic is the inverse of intro.

Error: No such hypothesis.
Error: ident; is used in the hypothesis ident,.

Variant: revert dependent ident
This moves to the goal the hypothesis i dent and all the hypotheses that depend on it.

move ident, after ident,

5

This moves the hypothesis named i dent , in the local context after the hypothesis named i dent ,, where “after’
is in reference to the direction of the move. The proof term is not changed.

If ident, comes before ident , in the order of dependencies, then all the hypotheses between ident; and
ident, that (possibly indirectly) depend on i dent , are moved too, and all of them are thus moved after i dent
in the order of dependencies.

If ident, comes after ident, in the order of dependencies, then all the hypotheses between ident, and
ident , that (possibly indirectly) occur in the type of ident ; are moved too, and all of them are thus moved
before ident, in the order of dependencies.

Variant: move ident, before ident,
This moves ident , towards and just before the hypothesis named ident . As for move ... after
. . ., dependencies over ident, (when ident , comes before ident , in the order of dependencies) or in
the type of ident, (when ident, comes after ident , in the order of dependencies) are moved too.

Variant: move ident at top
This moves ident at the top of the local context (at the beginning of the context).

Variant: move ident at bottom
This moves ident at the bottom of the local context (at the end of the context).

Error: No such hypothesis.
Error: Cannot move ident, after ident,: it occurs in the type of ident,.

Error: Cannot move ident; after ident,: it depends on ident,.

Example

Goal forall x :nat, x = 0 -> forall z y:nat, y=y-> 0=x.
1 subgoal

forall x : nat, x = 0 -> nat -> forall y : nat, vy =y —> 0 = x

intros x H z y HO.

1 subgoal
X nat
H x = 0

(continues on next page)

276

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

move x after HO.
1 subgoal

X nat
H x = 0
0 = x
Undo.

1 subgoal
X nat
H x =0
z, y : nat
HO y =y
0 = x

move x before HO.

1 subgoal
Z, Y, X
H: x=20
HO y =y
0 = x

Undo.

1 subgoal
X nat
H x = 0
z, Yy : nat
HO y =V
0 = x

move HO after H.
1 subgoal

(continued from previous page)

H x =0
z nat
0 = x
Undo.
1 subgoal
(continues on next page)
5.3. Tactics 277

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

X nat

H x =0
z, y : nat
HO : y =y
0 = x

move HO before H.

1 subgoal
X nat
H x = 0
v nat
HO : y =y
Z nat
0 = x

rename ident; into ident,

set

This renames hypothesis i dent, into ident , in the current context. The name of the hypothesis in the proof-
term, however, is left unchanged.

Variant: rename ident; into ident;

I

This renames the variables i dent ; into ident ; in parallel. In particular, the target identifiers may contain
identifiers that exist in the source context, as long as the latter are also renamed by the same tactic.

Error: No such hypothesis.
Error: ident is already used.

(ident := term)
This replaces t ermby ident in the conclusion of the current goal and adds the new definition i dent := term
to the local context.

[Tt

If termhasholes (i.e. subexpressions of the form “_"), the tactic first checks that all subterms matching the pattern
are compatible before doing the replacement using the leftmost subterm matching the pattern.

Error: The variable ident is already defined.

Variant: set (ident := term) in goal_occurrences
This notation allows specifying which occurrences of term have to be substituted in the context. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior are described in goal
occurrences.
?
Variant: set (ident binders := term) |in goal_occurrences
5
This is equivalent to set (ident := fun binders => term) |in goal occurrences
?
Variant: set term |in goal_occurrences
?

This behaves as set (ident := term) |in goal occurrences | but ident is generated by
Cogq.
? ?
Variant: eset (ident binders := term) |in goal_occurrences

?
Variant: eset term in goal_ occurrences

While the different variants of set expect that no existential variables are generated by the tactic, eset

278

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

removes this constraint. In practice, this is relevant only when eset is used as a synonym of epose, i.e.
when the term does not occur in the goal.
2
remember term as ident; |eqn:naming intropattern
This behavesas set (ident := term) in *,usingalogical (Leibniz’s) equality instead of alocal definition.
Use naming_intropattern toname or split up the new equation.

Variant: remember term as ident; eqn:naming intropattern 2 in goal_occurrences
This is a more general form of remembe r that remembers the occurrences of term specified by an occur-
rence set.
? ?
Variant: eremember term as ident; leqn:naming intropattern in goal_occurrences
While the different variants of remember expect that no existential variables are generated by the tactic,

eremember removes this constraint.

pose (ident := term)

This adds the local definition i dent := termto the current context without performing any replacement in the
goal or in the hypotheses. It is equivalent to set (ident := term) in |-.
Variant: pose (ident binders := term)

This is equivalent to pose (ident := fun binders => term).
Variant: pose term

This behaves as pose (ident := term) but ident is generated by Coq.

?

Variant: epose (ident binders := term)

Variant: epose term
While the different variants of pose expect that no existential variables are generated by the tactic, epose

removes this constraint.

+
decompose [gualid |] term
This tactic recursively decomposes a complex proposition in order to obtain atomic ones.

Example

Goal forall A B C:Prop, A /\ B /\ C \/ B /\NC\/ C /\ A —> C.
1 subgoal

intros A B C H; decompose [and or] H.
3 subgoals

A, B, C : Prop
H:A/\NB/\NC\N/ B/NC\N/ C/\A

H1 A
HO B
H3 C
C

subgoal 2 is:
C
subgoal 3 is:
C

(continues on next page)

5.3. Tactics 279

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

all: assumption.
No more subgoals.

Qed.

Note: decompose does not work on right-hand sides of implications or products.

Variant: decompose sum term
This decomposes sum types (like or).

Variant: decompose record term
This decomposes record types (inductive types with one constructor, like and and exi st s and those defined
with the Record command.

5.3.4 Controlling the proof flow

assert (ident : type)
This tactic applies to any goal. assert (H : U) adds a new hypothesis of name H asserting U to the current
goal and opens a new subgoal U”. The subgoal U comes first in the list of subgoals remaining to prove.

Error: Not a proposition or a type.
Arises when the argument t ype is neither of type Prop, Set nor Type.

Variant: assert type
This behaves as assert (ident : type) but ident is generated by Coq.

Variant: assert type by tactic
This tactic behaves like assert but applies tactic to solve the subgoals generated by assert.

Error: Proof is not complete.

Variant: assert type as simple_intropattern
If simple_intropattern is an intro pattern (see Intro patterns), the hypothesis is named after this
introduction pattern (in particular, if simple_intropatternis ident, the tactic behaves like assert
(ident : type)). If simple_intropattern is an action introduction pattern, the tactic behaves
like assert type followed by the action done by this introduction pattern.

Variant: assert type as simple_intropattern by tactic
This combines the two previous variants of assert.

Variant: assert (ident := term)
This behaves as assert (ident : type) by exact termwhere typeisthetypeof term. This
is equivalent to using pose proof. If the head of term is i dent, the tactic behaves as specialize.

Error: Variable ident is already declared.

Variant: eassert type as simple_intropattern by tactic
While the different variants of assert expect that no existential variables are generated by the tactic, eassert
removes this constraint. This lets you avoid specifying the asserted statement completely before starting to prove
it.
?
Variant: pose proof term as simple_intropattern
This tactic behaves like assert type |las simple intropattern z by exact term where

2 This corresponds to the cut rule of sequent calculus.

280 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

type is the type of term. In particular, pose proof term as ident behaves as assert
(ident := term) and pose proof term as simple_intropattern isthe same as applying the
simple_intropatternto term.
?
Variant: epose proof term as simple intropattern
While pose proof expects that no existential variables are generated by the tactic, epose proof removes
this constraint.

Variant: enough (ident : type)
This adds a new hypothesis of name ident asserting t ype to the goal the tactic enough is applied to. A new
subgoal stating t ype is inserted after the initial goal rather than before it as assert would do.

Variant: enough type
This behaves like enough (ident : type) with the name ident of the hypothesis generated by Coq.

Variant: enough type as simple_intropattern
This behaves like enough type using simple_intropattern toname or destruct the new hypothesis.
Variant: enough (ident : type) by tactic

?
Variant: enough type as simple intropattern by tactic

This behaves as above but with t act ic expected to solve the initial goal after the extra assumption t ype is added
and possibly destructed. If the as simple_ intropattern clause generates more than one subgoal, tactic
is applied to all of them.
? ?
Variant: eenough type as simple intropattern by tactic

?
Variant: eenough (ident : type) by tactic

While the different variants of enough expect that no existential variables are generated by the tactic, eenough
removes this constraint.

Variant: cut type
This tactic applies to any goal. It implements the non-dependent case of the “App” rule given in T'yping rules. (This
is Modus Ponens inference rule.) cut U transforms the current goal T into the two following subgoals: U —> T
and U. The subgoal U —> T comes first in the list of remaining subgoal to prove.
* ?
Variant: specialize (ident term |) |las simple_ intropattern

?
Variant: specialize ident with bindings_list las simple intropattern

This tactic works on local hypothesis i dent. The premises of this hypothesis (either universal quantifications or
*
non-dependent implications) are instantiated by concrete terms coming either from arguments | term | or from a
*
bindings list. In the first form the application to | term | can be partial. The first form is equivalent to assert
*

(ident := ident |term |). Inthe second form, instantiation elements can also be partial. In this case the
uninstantiated arguments are inferred by unification if possible or left quantified in the hypothesis otherwise. With
the as clause, the local hypothesis i dent is left unchanged and instead, the modified hypothesis is introduced as
specified by the simple_intropattern. The name ident can also refer to a global lemma or hypothesis.
In this case, for compatibility reasons, the behavior of specialize is close to that of generalize: the
instantiated statement becomes an additional premise of the goal. The as clause is especially useful in this case to
immediately introduce the instantiated statement as a local hypothesis.

Error: ident is used in hypothesis ident.
Error: ident is used in conclusion.

generalize term
This tactic applies to any goal. It generalizes the conclusion with respect to some term.

5.3. Tactics 281

The Coq Reference Manual, Release 8.11.2

Example

Show.
1 subgoal

generalize (x + vy + V).
1 subgoal

If the goal is G and t is a subterm of type T in the goal, then generalize t replacesthe goal by forall (x:T),
G’ where G’ is obtained from G by replacing all occurrences of t by x. The name of the variable (here n) is chosen
based on T.

Variant: generalize term
This is equivalent to generalize term; ... ; generalize term. Note that the sequence of term ;
’s are processed from n to 1.

Variant: generalize term at |[num *
Thisisequivalentto generalize termbutitgeneralizesonly over the specified occurrences of ¢ erm (counting
from left to right on the expression printed using the Printing A1l flag).

Variant: generalize term as ident
This is equivalent to generalize termbutituses ident to name the generalized hypothesis.

+
. . + .
Variant: generalize term at num as ident

4

This is the most general form of generalize that combines the previous behaviors.

Variant: generalize dependent term
This generalizes term but also all hypotheses that depend on t e rm. It clears the generalized hypotheses.

evar (ident : term)
The evar tactic creates a new local definition named ident with type term in the context. The body of this
binding is a fresh existential variable.

instantiate (ident := term)
The instantiate tactic refines (see refine) an existential variable i dent with the term term. It is equivalent to
only [ident]: refine term (preferred alternative).

Note: To be able to refer to an existential variable by name, the user must have given the name explicitly (see
Existential variables).

Note: When you are referring to hypotheses which you did not name explicitly, be aware that Coq may make a
different decision on how to name the variable in the current goal and in the context of the existential variable. This
can lead to surprising behaviors.

282 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Variant: instantiate (num := term)
This variant allows to refer to an existential variable which was not named by the user. The num argument is the
position of the existential variable from right to left in the goal. Because this variant is not robust to slight changes
in the goal, its use is strongly discouraged.

Variant: instantiate (num term) in ident

Variant: instantiate (num := term) in (value of ident)

Variant: instantiate (num := term) in (type of ident)
These allow to refer respectively to existential variables occurring in a hypothesis or in the body or the type of a
local definition.

Variant: instantiate
Without argument, the instantiate tactic tries to solve as many existential variables as possible, using information
gathered from other tactics in the same tactical. This is automatically done after each complete tactic (i.e. after a
dot in proof mode), but not, for example, between each tactic when they are sequenced by semicolons.

admit
This tactic allows temporarily skipping a subgoal so as to progress further in the rest of the proof. A proof containing
admitted goals cannot be closed with Oed but only with Admitted.

Variant: give_up
Synonym of admit.

absurd term
This tactic applies to any goal. The argument term is any proposition P of type Prop. This tactic applies False
elimination, that is it deduces the current goal from False, and generates as subgoals ~P and P. It is very useful in
proofs by cases, where some cases are impossible. In most cases, P or ~P is one of the hypotheses of the local
context.

contradiction
This tactic applies to any goal. The contradiction tactic attempts to find in the current context (after all intros) a
hypothesis that is equivalent to an empty inductive type (e.g. False), to the negation of a singleton inductive type
(e.g. True or x=x), or two contradictory hypotheses.

Error: No such assumption.

Variant: contradiction ident
The proof of False is searched in the hypothesis named ident.

contradict ident
This tactic allows manipulating negated hypothesis and goals. The name i dent should correspond to a hypothesis.
With contradict H, the current goal and context is transformed in the following way:

e H:-A + B becomes — A
e H:=A —-B becomes H: B~ A
* H: A+ B becomes -+ —A
e H: A+ —B becomes H: B — —A

exfalso
This tactic implements the “ex falso quodlibet” logical principle: an elimination of False is performed on the current
goal, and the user is then required to prove that False is indeed provable in the current context. This tactic is a macro
forelimtype False.

5.3.5 Case analysis and induction

The tactics presented in this section implement induction or case analysis on inductive or co-inductive objects (see Inductive
Definitions).

5.3. Tactics 283

The Coq Reference Manual, Release 8.11.2

destruct term

This tactic applies to any goal. The argument term must be of inductive or co-inductive type and the tactic
generates subgoals, one for each possible form of term, i.e. one for each constructor of the inductive or co-
inductive type. Unlike induct ion, no induction hypothesis is generated by dest ruct.

Variant: destruct ident
If ident denotes a quantified variable of the conclusion of the goal, then destruct ident behaves as
intros until ident; destruct ident. If ident is not anymore dependent in the goal after
application of destruct, it is erased (to avoid erasure, use parentheses, as in destruct (ident)).

If ident is a hypothesis of the context, and i dent is not anymore dependent in the goal after application
of destruct, itis erased (to avoid erasure, use parentheses, as in destruct (ident)).

Variant: destruct num

destruct numbehaves as intros until num followed by destruct applied to the last in-
troduced hypothesis.

Note: For destruction of a numeral, use syntax destruct (num) (not very interesting anyway).

Variant: destruct pattern
The argument of destruct can also be a pattern of which holes are denoted by “_”. In this case, the
tactic checks that all subterms matching the pattern in the conclusion and the hypotheses are compatible and
performs case analysis using this subterm.

@

+
Variant: destruct (term .

This is a shortcut for destruct term; ...; destruct term.

Variant: destruct term as or_and_intropattern_loc

This behaves as destruct term but uses the names in or_and_intropattern_loc to name the
variables introduced in the context. The or_and_intropattern_Ioc must have the form [p11

pin | ... | pml ... pmn] with m being the number of constructors of the type of term. Each
variable introduced by de st ruct in the context of the i-th goal gets its name from the listpil ... pin
in order. If there are not enough names, de st ruct invents names for the remaining variables to introduce.
More generally, the pi j can be any introduction pattern (see int ros). This provides a concise notation for
chaining destruction of a hypothesis.

Variant: destruct term eqn:naming intropattern
This behaves as destruct term but adds an equation between term and the value that it takes in each
of the possible cases. The name of the equation is specified by naming_intropattern (see intros),
in particular ? can be used to let Coq generate a fresh name.

Variant: destruct term with bindings_ list
This behaves like destruct term providing explicit instances for the dependent premises of the type of
term.

Variant: edestruct term
This tactic behaves like destruct termexcept that it does not fail if the instance of a dependent premises
of the type of term is not inferable. Instead, the unresolved instances are left as existential variables to be
inferred later, in the same way as eapp 1y does.
?
Variant: destruct term using term with bindings list
?
This is synonym of induction term using term with bindings Ilist
Variant: destruct term in goal_ occurrences
This syntax is used for selecting which occurrences of term the case analysis has to be done on. The in

284

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

goal_occurrences clause is an occurrence clause whose syntax and behavior is described in occurrences
sets.

? ?
Variant: destruct term with bindings_list as or_and_intropattern loc eqn:naming_int:

? ?
Variant: edestruct term with bindings list as or_and_intropattern loc eqn: naming_ini
These are the general forms of destruct and edestruct. They combine the effects of the with, as,
eqn:, using, and in clauses.

case term
The tactic case is a more basic tactic to perform case analysis without recursion. It behaves as elim term but
using a case-analysis elimination principle and not a recursive one.

Variant: case term with bindings list
Analogous to elim term with bindings_1ist above.
?
Variant: ecase term with bindings_list
In case the type of term has dependent premises, or dependent premises whose values are not inferable from the
with bindings_11ist clause, ecase turns them into existential variables to be resolved later on.

Variant: simple destruct ident
This tactic behaves as intros until ident; case ident when ident is a quantified variable of the
goal.

Variant: simple destruct num
This tactic behaves as intros until num; case ident where ident is the name given by intros
until numto the num -th non-dependent premise of the goal.

Variant: case_eq term
The tactic case_eq is a variant of the case tactic that allows to perform case analysis on a term without com-
pletely forgetting its original form. This is done by generating equalities between the original form of the term and
the outcomes of the case analysis.

induction term
This tactic applies to any goal. The argument t e rm must be of inductive type and the tactic induct ion generates
subgoals, one for each possible form of term, i.e. one for each constructor of the inductive type.

If the argument is dependent in either the conclusion or some hypotheses of the goal, the argument is replaced by
the appropriate constructor form in each of the resulting subgoals and induction hypotheses are added to the local
context using names whose prefix is TH.

There are particular cases:

« If term is an identifier i dent denoting a quantified variable of the conclusion of the goal, then inductionident
behavesas intros until ident; induction ident. If ident isnotanymore dependent in the
goal after application of induction, it is erased (to avoid erasure, use parentheses, as in induction

(ident)).

e If termisa num, then induction numbehaves as intros until num followed by induction
applied to the last introduced hypothesis.

Note: For simple induction on a numeral, use syntax induction (num) (not very interesting anyway).

* In case term is a hypothesis i dent of the context, and ident is not anymore dependent in the goal after
application of induction, itis erased (to avoid erasure, use parentheses, as in induction (ident)).

5.3. Tactics 285

The Coq Reference Manual, Release 8.11.2

* The argument e rm can also be a pattern of which holes are denoted by “_”. In this case, the tactic checks
that all subterms matching the pattern in the conclusion and the hypotheses are compatible and performs
induction using this subterm.

Example

Lemma induction_test : forall n:nat, n = n -> n <= n.
1 subgoal

intros n H.
1 subgoal

induction n.
2 subgoals

exact (le_n 0).
1 subgoal

Error: Not an inductive product.

Error: Unable to find an instance for the wvariables ident ... ident.
Use in this case the variant eI1im ... with below.

Variant: induction term as or_and_ intropattern_ loc

This behaves as induction but uses the names in or _and_intropattern_loc to name the variables
introduced in the context. The or _and intropattern_ loc must typically be of theform [p; ... p
m! «++« | Pmi --- Pmn] with m being the number of constructors of the type of term. Each variable
introduced by induction in the context of the i-th goal gets its name from the list p;; . . . p;, in order. If there are
not enough names, induction invents names for the remaining variables to introduce. More generally, the p;; can
be any disjunctive/conjunctive introduction pattern (see intros . ..). For instance, for an inductive type with
one constructor, the pattern notation (p; , ... , P,) canbeusedinsteadof [p; ... p,].

Variant: induction term with bindings list
This behaves like induct ion providing explicit instances for the premises of the type of term (see bindings
list).

286 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Variant: einduction term
This tactic behaves like i nduction except that it does not fail if some dependent premise of the type of term
is not inferable. Instead, the unresolved premises are posed as existential variables to be inferred later, in the same
way as eapply does.

Variant: induction term using term
This behaves as i nduct ion but using term as induction scheme. It does not expect the conclusion of the type
of the first £ e rm to be inductive.

Variant: induction term using term with bindings list
This behaves as induction ... using ... butalso providing instances for the premises of the type of the
second term.

+
Variant: induction term ' using gqualid

This syntax is used for the case gua I 1id denotes an induction principle with complex predicates as the induction
principles generated by Function or Functional Scheme may be.

Variant: induction term in goal_occurrences
This syntax is used for selecting which occurrences of term the induction has to be carried on. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior is described in occurrences
sets. If variables or hypotheses not mentioning ¢ erm in their type are listed in goal_occurrences, those are
generalized as well in the statement to prove.

Example

Lemma comm X Vv : X + Yy =y + X.
1 subgoal

induction y in x |- *
2 subgoals

subgoal 2 is:
X+ Sy =8y +x

Show 2.
subgoal 2 is:

X, Y : nat

Variant: induction term with bindings_list as or_and_intropattern_loc using term with binding
Variant: einduction term with bindings list as or_and_intropattern_loc using term with bindin

These are the most general forms of induction and einduction. It combines the effects of the with, as,
using, and in clauses.

Variant: elim term
This is a more basic induction tactic. Again, the type of the argument term must be an inductive type. Then,

5.3. Tactics 287

The Coq Reference Manual, Release 8.11.2

according to the type of the goal, the tactic e1im chooses the appropriate destructor and applies it as the tactic
apply would do. For instance, if the proof context contains n: nat and the current goal is T of type Prop, then
elim nisequivalentto apply nat_ind with (n:=n). The tactic e1lim does not modify the context of
the goal, neither introduces the induction loading into the context of hypotheses. More generally, elim term
also works when the type of term is a statement with premises and whose conclusion is inductive. In that case
the tactic performs induction on the conclusion of the type of ¢ erm and leaves the non-dependent premises of the
type as subgoals. In the case of dependent products, the tactic tries to find an instance for which the elimination
lemma applies and fails otherwise.

Variant: elim term with bindings list
Allows to give explicit instances to the premises of the type of term (see bindings list).

Variant: eelim term
In case the type of term has dependent premises, this turns them into existential variables to be resolved later on.

Variant: elim term using term

Variant: elim term using term with bindings_list
Allows the user to give explicitly an induction principle term that is not the standard one for the underlying
inductive type of term. The bindings_11ist clause allows instantiating premises of the type of term.

Variant: elim term with bindings list using term with bindings list

Variant: eelim term with bindings_list using term with bindings_list
These are the most general forms of e1im and eelim. It combines the effects of the using clause and of the
two uses of the with clause.

Variant: elimtype type
The argument t ype must be inductively defined. elimtype I isequivalenttocut I. intro Hn; elim
Hn; clear Hn. Therefore the hypothesis Hn will not appear in the context(s) of the subgoal(s). Conversely, if
t isa term of (inductive) type I that does not occur in the goal, then elim t is equivalentto elimtype I;
2:exact t.

Variant: simple induction ident
This tactic behaves as intros until ident; elim ident when ident is a quantified variable of the
goal.

Variant: simple induction num
This tactic behaves as intros until num; elim ident where ident is the name given by intros
until numto the num-th non-dependent premise of the goal.

double induction ident ident
This tactic is deprecated and should be replaced by induction ident; induction ident (or
induction ident ; destruct ident depending on the exact needs).

Variant: double induction num; num,
This tactic is deprecated and should be replaced by induction numl; induction num3 where num3 is
the result of num2 - numl

dependent induction ident
The experimental tactic dependent induction performs induction- inversion on an instantiated inductive predicate.
One needs to first require the Coq.Program.Equality module to use this tactic. The tactic is based on the BasicElim
tactic by Conor McBride [McBO00] and the work of Cristina Cornes around inversion [CT95]. From an instantiated
inductive predicate and a goal, it generates an equivalent goal where the hypothesis has been generalized over its
indexes which are then constrained by equalities to be the right instances. This permits to state lemmas without
resorting to manually adding these equalities and still get enough information in the proofs.

Example

288 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Lemma 1lt_1_r : forall n:nat, n < 1 -> n = 0.
1 subgoal

forall n : nat, n < 1 -> n = 0

intros n H ; induction H.

2 subgoals
n nat
n =0

subgoal 2 is:
n=20

Here we did not get any information on the indexes to help fulfill this proof. The problem is that, when we use the
induction tactic, we lose information on the hypothesis instance, notably that the second argument is 1 here. Depen-
dent induction solves this problem by adding the corresponding equality to the context.

Require Import Cog.Program.Equality.

Lemma 1t_1_r : forall n:nat, n < 1 -> n = 0.
1 subgoal
forall n nat, n < 1 -> n = 0

intros n H ; dependent induction H.
2 subgoals

subgoal 2 is:
n =0

The subgoal is cleaned up as the tactic tries to automatically simplify the subgoals with respect to the generated equalities.
In this enriched context, it becomes possible to solve this subgoal.

reflexivity.
1 subgoal

Now we are in a contradictory context and the proof can be solved.

inversion H.
No more subgoals.

This technique works with any inductive predicate. In fact, the dependent induction tactic is just a wrapper
around the induction tactic. One can make its own variant by just writing a new tactic based on the definition found
in Cogq.Program.Equality.

5.3. Tactics 289

The Coq Reference Manual, Release 8.11.2

Variant: dependent induction ident generalizing ident
This performs dependent induction on the hypothesis i dent but first generalizes the goal by the given variables
so that they are universally quantified in the goal. This is generally what one wants to do with the variables that are
inside some constructors in the induction hypothesis. The other ones need not be further generalized.

Variant: dependent destruction ident
This performs the generalization of the instance i dent but uses destruct instead of induction on the general-
ized hypothesis. This gives results equivalent to inversion or dependent inversion if the hypothesis is
dependent.

See also the larger example of dependent induction and an explanation of the underlying technique.

function induction (qualid term *)
The tactic functional induction performs case analysis and induction following the definition of a function. It makes
use of a principle generated by Function (see Advanced recursive functions) or Functional Scheme (see
Generation of induction principles with Functional Scheme). Note that this tactic is only available after a Require
Import FunInd.

Example

Require Import FunInd.

[Loading ML file extraction_plugin.cmxs ... done]
[Loading ML file recdef_plugin.cmxs ... done]
Functional Scheme minus_ind := Induction for minus Sort Prop.

sub_equation is defined
minus_ind is defined

Check minus_ind.
minus_ind
forall P : nat —> nat -> nat —-> Prop,
(forall nm : nat, n = 0 —> P 0 m n) —>
(forall n mk : nat, n =S k -—>m =0 -> P (S k) 0 n) —>
(forall n m k : nat,

n=3Sk —>
forall 1 : nat, m =S 1 ->P k1 (k - 1) -—>P (S k) (1) (k- 1)) —>
forall nm : nat, Pnm (n — m)
Lemma le_minus (n m:nat) : n — m <= n.
1 subgoal
n, m nat

functional induction (minus n m) using minus_ind; simpl; auto.
No more subgoals.

Qed.

+ . . o
Note: (gqualid [term |) must be a correct full application of qualid. In particular, the rules for implicit argu-
ments are the same as usual. For example use qua1id if you want to write implicit arguments explicitly.

290 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

+ .
Note: Parentheses around qualid term | are not mandatory and can be skipped.

Note: functional induction (f x1 x2 x3) isactually a wrapper for induction x1, x2, x3, (f
x1 %2 x3) using qualid followed by a cleaning phase, where qua 11 d is the induction principle registered for
f (by the Function (see Advanced recursive functions) or Functional Scheme (see Generation of induction prin-
ciples with Functional Scheme) command) corresponding to the sort of the goal. Therefore functional induction
may fail if the induction scheme qualid is not defined. See also Advanced recursive functions for the function terms
accepted by Function.

Note: There is a difference between obtaining an induction scheme for a function by using Function (see Advanced
recursive functions) and by using Functional Scheme after a normal definition using Fixpoint orDefinition.
See Advanced recursive functions for details.

See also:
Advanced recursive functions, Generation of induction principles with Functional Scheme and inversion
Error: Cannot find induction information on qualid.

Error: Not the right number of induction arguments.

Variant: functional induction (qualid term i) as simple_intropattern using term with binding:
Similarly to induction and elim, this allows giving explicitly the name of the introduced variables, the induc-
tion principle, and the values of dependent premises of the elimination scheme, including predicates for mutual
induction when qua 11d is part of a mutually recursive definition.

discriminate term
This tactic proves any goal from an assumption stating that two structurally different ¢ e rms of an inductive set are
equal. For example, from (S (S 0))=(S 0O) we can derive by absurdity any proposition.

The argument term is assumed to be a proof of a statement of conclusion term = term with the two terms
being elements of an inductive set. To build the proof, the tactic traverses the normal forms® of the terms looking
for a couple of subterms u and w (u subterm of the normal form of term and w subterm of the normal form of
term), placed at the same positions and whose head symbols are two different constructors. If such a couple of
subterms exists, then the proof of the current goal is completed, otherwise the tactic fails.

Note: The syntax discriminate ident can be used to refer to a hypothesis quantified in the goal. In this case,
the quantified hypothesis whose name is i dent is first introduced in the local context using intros until ident.

Error: No primitive equality found.
Error: Not a discriminable equality.

Variant: discriminate num
This does the same thingas intros until numfollowed by discriminate ident where ident isthe
identifier for the last introduced hypothesis.

Variant: discriminate term with bindings_list
This does the same thing as discriminate term but using the given bindings to instantiate parameters or
hypotheses of term.

3 Reminder: opaque constants will not be expanded by & reductions.

5.3. Tactics 291

The Coq Reference Manual, Release 8.11.2

Variant: ediscriminate num

?

Variant: ediscriminate term with bindings_list

This works the same as discriminate but if the type of term, or the type of the hypothesis referred to by
num, has uninstantiated parameters, these parameters are left as existential variables.

Variant: discriminate

This behaves like discriminate ident if identis the name of an hypothesis to which discriminate isap-
plicable; if the current goal is of the form term <> term,thisbehavesas intro ident; discriminate
ident.

Error: No discriminable equalities.

injection term

The injection tactic exploits the property that constructors of inductive types are injective, i.e. that if c is a con-
structor of an inductive type and ¢ t; and ¢ t, are equal then t, and t, are equal too.

If termis a proof of a statement of conclusion term = term, then injection applies the injectivity of
constructors as deep as possible to derive the equality of all the subterms of term and term at positions where
the terms start to differ. For example, from (S p, S n) = (g, S (S m)) wemayderive S p = gand
n = S m. For this tactic to work, the terms should be typed with an inductive type and they should be neither
convertible, nor having a different head constructor. If these conditions are satisfied, the tactic derives the equality
of all the subterms at positions where they differ and adds them as antecedents to the conclusion of the current goal.

Example
Consider the following goal:

Inductive list : Set :=

| nil : 1list
| cons : nat -> list —-> list.
Parameter P : list -> Prop.

Goal forall 1 n, P nil -> cons n 1 = cons 0O nil -> P 1.

intros.
1 subgoal
1 : list
n : nat
H : P nil
HO : cons n 1 = cons 0 nil
P 1

injection HO.

1 subgoal
1 : list
n : nat
H : P nil
HO : cons n 1 = cons 0 nil

Beware that injection yields an equality in a sigma type whenever the injected object has a dependent type P with
its two instances in different types (P t; ... t,) and (P u; ... u,). If t; and u; are the same and have for
type an inductive type for which a decidable equality has been declared using the command Scheme Equality
(see Generation of induction principles with Scheme), the use of a sigma type is avoided.

292

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Note: If some quantified hypothesis of the goal is named i dent, then injection ident firstintroduces the
hypothesis in the local context using intros until ident.

Error: Not a projectable equality but a discriminable one.

Error: Nothing to do, it is an equality between convertible terms.
Error: Not a primitive equality.

Error: Nothing to inject.

Variant: injection num
This does the same thing as intros until num followed by injection ident where ident is
the identifier for the last introduced hypothesis.

Variant: injection term with bindings_list
This does the same as injection termbutusing the given bindings to instantiate parameters or hypothe-
ses of term.

Variant: einjection num
?
Variant: einjection term with bindings_list

This works the same as injection but if the type of term, or the type of the hypothesis referred to by
num, has uninstantiated parameters, these parameters are left as existential variables.

Variant: injection
If the current goal is of the form term <> term , this behaves as intro ident; injection
ident.

Error: goal does not satisfy the expected preconditions.

?
Variant: injection term with bindings_ list as |simple_intropattern

Variant: injection num as simple_intropattern

Variant: injection as simple intropattern

?
Variant: einjection term with bindings_list as |simple_ intropattern

Variant: einjection num as simple intropattern
Variant: einjection as simple intropattern

These variants apply intros |simple intropattern ¥ after the call to injection or
einjection so that all equalities generated are moved in the context of hypotheses. The number of
simple intropattern must not exceed the number of equalities newly generated. If it is smaller,
fresh names are automatically generated to adjust the list of simple intropattern to the number of
new equalities. The original equality is erased if it corresponds to a hypothesis.
Variant: injection term with bindings list 7 as injection_ intropattern
Variant: injection num as injection_intropattern

Variant: injection as injection_intropattern
?
Variant: einjection term |with bindings_ list as injection_intropattern

Variant: einjection num as injection_intropattern
Variant: einjection as injection_ intropattern
These are equivalent to the previous variants but using instead the syntax injection_intropattern

. . . . +
which intros uses. In particular as [= simple intropattern |] behaves the same as as

simple_intropattern

5.3. Tactics 293

The Coq Reference Manual, Release 8.11.2

Flag: Structural Injection
This flag ensures that injection term erases the original hypothesis and leaves the generated equalities
in the context rather than putting them as antecedents of the current goal, as if giving injection term
as (with an empty list of names). This flag is off by default.

Flag: Keep Proof Equalities
By default, injection only creates new equalities between terms whose type is in sort Type or Set,
thus implementing a special behavior for objects that are proofs of a statement in Prop. This flag controls
this behavior.

inversion ident
Let the type of ident in the local context be (I t), where I is a (co)inductive predicate. Then, inversion
applied to ident derives for each possible constructor ¢ i of (I t), all the necessary conditions that should
hold for the instance (I t) to be proved by c 1.

Note: If ident does not denote a hypothesis in the local context but refers to a hypothesis quantified in the goal, then
the latter is first introduced in the local context using intros until ident.

Note: As inversion proofs may be large in size, we recommend the user to stock the lemmas whenever the same
instance needs to be inverted several times. See Generation of inversion principles with Derive Inversion.

Note: Part of the behavior of the inversion tactic is to generate equalities between expressions that appeared in the
hypothesis that is being processed. By default, no equalities are generated if they relate two proofs (i.e. equalities between
terms whose type is in sort Prop). This behavior can be turned off by using the Keep Proof Equalities setting.

Variant: inversion num
This does the same thing as intros until numthen inversion ident where ident is the identifier
for the last introduced hypothesis.

Variant: inversion_clear ident
This behaves as inversion and then erases i dent from the context.

Variant: inversion ident as or_and_intropattern_loc

This generally behaves as inversion but using names in or_and_intropattern_loc for naming hypotheses.
The or_and_intropattern_loc must have the form [py; ... Py, |+« | Ppy -+ Pmpn) Withm
being the number of constructors of the type of ident. Be careful that the list must be of length m even if
inversion discards some cases (which is precisely one of its roles): for the discarded cases, just use an empty
list (.e. n = 0).The arguments of the i-th constructor and the equalities that inversion introduces in the
context of the goal corresponding to the i-th constructor, if it exists, get their names from the list p;; ... p;, in
order. If there are not enough names, inversion invents names for the remaining variables to introduce. In case
an equation splits into several equations (because inversion applies inject ion on the equalities it generates),
the corresponding name pj; in the list must be replaced by a sublist of the form [pj; . .. pjjq] (or, equivalently,
(Piji » - - -+ Dijq)) Where qis the number of subequalities obtained from splitting the original equation. Here is
an example. The inversion ... as variantof inversion generally behaves in a slightly more expectable
way than inversion (no artificial duplication of some hypotheses referring to other hypotheses). To take benefit
of these improvements, it is enough to use inversion ... as [], letting the names being finally chosen by
Coq.

Example

294 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Inductive containsO : list nat —-> Prop :=
| in_hd : forall 1, containsO (0 :: 1)
| in_tl : forall 1 b, containsO 1 -> containsO0 (b :: 1).

contains0 is defined
contains0_ind is defined
contains0_sind is defined

Goal forall 1:1ist nat, containsO (1 :: 1) —-> containsO 1.
1 subgoal
forall 1 : list nat, containsO (1 :: 1) —-> containsO 1
intros 1 H; inversion H as [| 1' p H1' [Heqgp Heqgl']].
1 subgoal

1 : list nat

H : containsO (1 :: 1)
1' : list nat

p : nat

H1' : containsO 1
Hegp : p =1

Heqgl' 1" =1

contains0 1

Variant: inversion num as or_and intropattern_loc
This allows naming the hypotheses introduced by inversion numin the context.

Variant: inversion_clear ident as or_and_intropattern_loc
This allows naming the hypotheses introduced by inversion_clear in the context. Notice that hypothesis
names can be provided as if inversion were called, even though the inversion_clear will eventually
erase the hypotheses.

Variant: inversion ident in |ident

+ +

Let ident | be identifiers in the local context. This tactic behaves as generalizing | ident |, and then per-
forming inversion.

Variant: inversion ident as or_and_intropattern_loc in ident

This allows naming the hypotheses introduced in the context by inversion ident in |ident

Variant: inversion_clear ident in |ident
+ +
Let ident | be identifiers in the local context. This tactic behaves as generalizing ident |, and then per-
forming inversion_clear.
Variant: inversion_clear ident as or_and_ intropattern loc in |ident
This allows naming the hypotheses introduced in the context by inversion_clear ident in |ident

Variant: dependent inversion ident
That must be used when i dent appears in the current goal. It acts like inversion and then substitutes i dent
for the corresponding @t e rm in the goal.

Variant: dependent inversion ident as or_ and intropattern_loc
This allows naming the hypotheses introduced in the context by dependent inversion ident.

5.3. Tactics 295

The Coq Reference Manual, Release 8.11.2

Variant: dependent inversion_clear ident
Like dependent inversion, except that i dent is cleared from the local context.

Variant: dependent inversion_clear ident as or_and_intropattern_loc
This allows naming the hypotheses introduced in the context by dependent inversion_clear ident.

Variant: dependent inversion ident with term
This variant allows you to specify the generalization of the goal. It is useful when the system fails to generalize the
goal automatically. If ident hastype (I t) and I hastype forall (x:T), s,then termmustbe of type
I:forall (x:T), I x —> s' wheres' isthe type of the goal.

Variant: dependent inversion ident as or_and_intropattern_loc with term
This allows naming the hypotheses introduced in the context by dependent inversion ident with
term.

Variant: dependent inversion_clear ident with term
Like dependent inversion ... with ... withbutclears ident from the local context.

Variant: dependent inversion_clear ident as or_and_intropattern_loc with term
This allows naming the hypotheses introduced in the context by dependent inversion_clear ident
with term.

Variant: simple inversion ident
It is a very primitive inversion tactic that derives all the necessary equalities but it does not simplify the constraints
as inversion does.

Variant: simple inversion ident as or_and_intropattern_loc
This allows naming the hypotheses introduced in the context by simple inversion.

Variant: inversion ident using ident
Let ident havetype (I t) (I aninductive predicate) in the local context, and i dent be a (dependent) inversion
lemma. Then, this tactic refines the current goal with the specified lemma.

Variant: inversion ident using ident in ident
This tactic behaves as generalizing | i dent |, then doing inversion ident using ident.

Variant: inversion_sigma

This tactic turns equalities of dependent pairs (e.g., existT P x p = existT P y g, frequently left over
by inversion on a dependent type family) into pairs of equalities (e.g., a hypothesis H : x = y and a hypoth-
esis of type rew H in p = q); these hypotheses can subsequently be simplified using subst, without ever
invoking any kind of axiom asserting uniqueness of identity proofs. If you want to explicitly specify the hypoth-
esis to be inverted, or name the generated hypotheses, you can invoke induction H as [H1 H2] using
eq_sigT_rect. This tactic also works for sig, s1gT2, and sig2, and there are similareq_sig ***_rect
induction lemmas.

Example
Non-dependent inversion.

Let us consider the relation Le over natural numbers:

Inductive Le : nat -> nat —-> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le nm -> Le (S n) (S m).

Let us consider the following goal:

296 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

1 subgoal
P : nat -> nat -> Prop
Q : forall nm : nat, Le n m —> Prop
n, m : nat

To prove the goal, we may need to reason by cases on H and to derive that m is necessarily of the form (S m0) for certain
m0 and that (Le n mO). Deriving these conditions corresponds to proving that the only possible constructor of (Le
(S n) m) is LeS and that we can invert the arrow in the type of LeS. This inversion is possible because Le is the
smallest set closed by the constructors LeO and LeS.

inversion_clear H.
1 subgoal

P : nat -> nat -> Prop
Q : forall nm : nat, Le n m —> Prop
n, m, mO : nat

Note that m has been substituted in the goal for (S m0) and that the hypothesis (Le n mO) has been added to the
context.

Sometimes it is interesting to have the equality m = (S mO0) in the context to use it after. In that case we can use
inversion that does not clear the equalities:

inversion H.

1 subgoal
P : nat —-> nat -> Prop
Q : forall nm : nat, Le n m —> Prop
n, m : nat
H: Le (S n)m
n0, mO : nat

H1 : Le n mO

Example
Dependent inversion.

Let us consider the following goal:

1 subgoal
P : nat —-> nat —-> Prop
Q : forall nm : nat, Le n m —> Prop
n, m : nat

H: Le (S n)m

(continues on next page)

5.3. Tactics 297

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

As H occurs in the goal, we may want to reason by cases on its structure and so, we would like inversion tactics to
substitute H by the corresponding @term in constructor form. Neither inversionnor inversion_clear dosuch
a substitution. To have such a behavior we use the dependent inversion tactics:

dependent inversion_clear H.

1 subgoal
P : nat —-> nat -> Prop
Q : forall nm : nat, Le n m —> Prop
n, m, mO : nat

1 : Le n mO

Note that H has been substituted by (LeS n m0 1) andmby (S mO0).

Example
Using inversion_sigma.
Let us consider the following inductive type of length-indexed lists, and a lemma about inverting equality of cons:

Require Import Cog.Logic.Egdep_dec.
Inductive vec A : nat -> Type :=
| nil : vec A O
| cons {n} (x : A) (Xs : vec A n) : vec A (S n).
vec is defined
vec_rect is defined
vec_ind is defined
vec_rec is defined
vec_sind is defined

Lemma invert_cons : forall A n X XS y VS,
@cons A n x xs = @cons A n vy ys
-> XS = ys.
1 subgoal

forall (A : Type) (n : nat) (x : A) (xs : vec A n) (y : A) (ys : vec A n),

cons A X XS = cons Ay ys —> Xs = yS
Proof.
intros A n x xs y ys H.

1 subgoal

A : Type

n : nat

x © A

Xs : vec A n

y A

ys : vec A n
H : cons A x Xxs = cons Ay ys

(continues on next page)

298 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

After performing inversion, we are left with an equality of existTs:

inversion H.

1 subgoal
A : Type
n : nat
X : A
Xs : vec A n
y : A
ys : vec A n
H : cons A x Xxs = cons A y ys
H1 : x =y
H2 : existT (fun n : nat => vec A n) n xs =

existT (fun n : nat => vec A n) n ys

We can turn this equality into a usable form with inversion_sigma:

inversion_sigma.

1 subgoal
A : Type
n : nat
X A
Xs : vec A n
% A
ys : vec A n
H : cons A x Xxs = cons Ay ys
Hl : x =y
HO n =n
H3 : eg_rect n (fun a : nat => vec A a) xs n HO = ys
Xs = ys

To finish cleaning up the proof, we will need to use the fact that that all proofs of n = n for n a nat are eq_refl:

let H := match goal with H : n =n |- _ => H end in
pose proof (Eqdep_dec.UIP_refl _nat _ H); subst H.
1 subgoal

A : Type

n : nat

x : A

Xs : vec A n

y : A

ys : vec A n

H : cons A x Xxs = cons A y ys

H1 : x =y

H3 : eq_rect n (fun a : nat => vec A a) xs n eq_refl = ys

XS = ys

(continues on next page)

5.3. Tactics 299

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

simpl in *.

1 subgoal
A : Type
n : nat
x : A
Xs : vec A n
y A
VS vec A n
H cons A X Xs = cons Ay ys
H1 X =y

Finally, we can finish the proof:

assumption.
No more subgoals.

Qed.

fix ident num
This tactic is a primitive tactic to start a proof by induction. In general, it is easier to rely on higher-level induction
tactics such as the ones described in i nduction.

In the syntax of the tactic, the identifier i dent is the name given to the induction hypothesis. The natural number
num tells on which premise of the current goal the induction acts, starting from 1, counting both dependent and
non dependent products, but skipping local definitions. Especially, the current lemma must be composed of at least
num products.

Like in a fix expression, the induction hypotheses have to be used on structurally smaller arguments. The verification
that inductive proof arguments are correct is done only at the time of registering the lemma in the environment. To
know if the use of induction hypotheses is correct at some time of the interactive development of a proof, use the
command Guarded (see Section Requesting information).

Variant: £ix ident num with | (ident binder ¥ [{struct ident}] : type)
This starts a proof by mutual induction. The statements to be simultaneously proved are respectively forall
binder ... binder, type. The identifiers ident are the names of the induction hypotheses. The iden-
tifiers i dent are the respective names of the premises on which the induction is performed in the statements to
be simultaneously proved (if not given, the system tries to guess itself what they are).

cofix ident
This tactic starts a proof by coinduction. The identifier i dent is the name given to the coinduction hypothesis.
Like in a cofix expression, the use of induction hypotheses have to guarded by a constructor. The verification that
the use of co-inductive hypotheses is correct is done only at the time of registering the lemma in the environment.
To know if the use of coinduction hypotheses is correct at some time of the interactive development of a proof, use
the command Guarded (see Section Requesting information).

+
Variant: cofix ident with (ident binder : type)
This starts a proof by mutual coinduction. The statements to be simultaneously proved are respectively forall
binder ... binder, type The identifiers ident are the names of the coinduction hypotheses.

300 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

5.3.6 Rewriting expressions

These tactics use the equality eq: forall A:Type, A->A->Prop defined in file Logic.v (see Logic). The no-
tation for eq T t uis simply t=u dropping the implicit type of t and u.

rewrite term
This tactic applies to any goal. The type of term must have the form

forall (x;:A;) ... (x,:A,), eg term term, .
where eq is the Leibniz equality or a registered setoid equality.

Then rewrite term finds the first subterm matching term,; in the goal, resulting in instances term;” and
term,’ and then replaces every occurrence of term;’ by term,’. Hence, some of the variables x; are solved by
unification, and some of the types 2,, ..., A, become new subgoals.

Error: The term provided does not end with an equation.
Error: Tactic generated a subgoal identical to the original goal. This happens if term d

Variant: rewrite —> term
Is equivalent to rewrite term

Variant: rewrite <- term
Uses the equality term; = term, from right to left

Variant: rewrite term in goal_occurrences
Analogous to rewrite term but rewriting is done following the clause goal_occurrences. For
instance:

* rewrite H in H' will rewrite H in the hypothesis H' instead of the current goal.

e rewrite H in H' at 1, H'' at - 2 |- * means rewrite H; rewrite H in
H' at 1; rewrite H in H'' at - 2. In particular a failure will happen if any of these
three simpler tactics fails.

e rewrite H in * |-willdorewrite H in H' for all hypotheses H' different from H. A suc-
cess will happen as soon as at least one of these simpler tactics succeeds.

e rewrite H in *isacombination of rewrite Hand rewrite H in * |- that succeeds if
at least one of these two tactics succeeds.

Orientation —> or <— can be inserted before the term to rewrite.

Variant: rewrite term at occurrences
Rewrite only the given occurrences of term. Occurrences are specified from left to right as for pattern
(pattern). The rewrite is always performed using setoid rewriting, even for Leibniz’s equality, so one has
to Import Setoid to use this variant.

Variant: rewrite term by tactic
Use tactic to completely solve the side-conditions arising from the rewrite.

+ ?
Variant: rewrite orientation term in ident
r

. . . , + .
Is equivalent to the n successive tactics rewrite term ., each one working on the first subgoal generated

’

by the previous one. An orientation —> or <— can be inserted before each ¢ ermto rewrite. One unique
clause can be added at the end after the keyword in; it will then affect all rewrite operations.

In all forms of rewrite described above, a term to rewrite can be immediately prefixed by one of the following
modifiers:

e 2 : the tactic rewrite ?term performs the rewrite of term as many times as possible (perhaps zero
time). This form never fails.

5.3. Tactics 301

The Coq Reference Manual, Release 8.11.2

e num? : works similarly, except that it will do at most num rewrites.
e | : works as ?, except that at least one rewrite should succeed, otherwise the tactic fails.

e num! (or simply num) : precisely numrewrites of t erm will be done, leading to failure if these num rewrites
are not possible.

Variant: erewrite term
This tactic works as rewrite term but turning unresolved bindings into existential variables, if any, in-
stead of failing. It has the same variants as rewrite has.

Flag: Keyed Unification
Makes higher-order unification used by rewrite rely on a set of keys to drive unification. The subterms,
considered as rewriting candidates, must start with the same key as the left- or right-hand side of the lemma
given to rewrite, and the arguments are then unified up to full reduction.

replace term with term’
This tactic applies to any goal. It replaces all free occurrences of term in the current goal with term’ and
generates an equality term = term’ as a subgoal. This equality is automatically solved if it occurs among
the assumptions, or if its symmetric form occurs. It is equivalent to cut term = term’; [intro H, ;
rewrite <- H,; clear H,|| assumption || symmetry; try assumption].

Error: Terms do not have convertible types.

Variant: replace term with term’ by tactic
This acts as replace term with term’ butapplies tactic tosolve the generated subgoal term =
term’.

Variant: replace term
Replaces t e rmwith term’ using the first assumption whose type has the form term = term’ or term’
= term.

Variant: replace -> term
Replaces term with term’ using the first assumption whose type has the form term = term’

Variant: replace <- term
Replaces t erm with term’ using the first assumption whose type has the form term’ = term
? ?
Variant: replace term with term in goal_occurrences by tactic
Variant: replace —-> term in goal_occurrences
Variant: replace <- term in goal_occurrences
Acts as before but the replacements take place in the specified clauses (goal_occurrences) (see Per-
forming computations) and not only in the conclusion of the goal. The clause argument must not contain any
type ofnorvalue of.

Variant: cutrewrite <- (term = term’)
Deprecated since version 8.5: This tactic can be replaced by enough (term

term’) as <-.

Variant: cutrewrite -> (term = term’)
Deprecated since version 8.5: This tactic can be replaced by enough (term = term’) as —>.

subst ident
This tactic applies to a goal that has i dent in its context and (at least) one hypothesis, say H, of type ident =
tort = ident with ident not occurring in t. Then it replaces i dent by t everywhere in the goal (in the
hypotheses and in the conclusion) and clears i dent and H from the context.

If ident is alocal definition of the form i dent := t, itis also unfolded and cleared.

Note:

* When several hypotheses have the form ident = tort = ident, the first one is used.

302 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

» If His itself dependent in the goal, it is replaced by the proof of reflexivity of equality.

+
Variant: subst |ident
This is equivalent to subst ident;; ...; subst ident,.

Variant: subst
This applies subst repeatedly from top to bottom to all identifiers of the context for which an equality of the
form ident = tort = identor ident := t exists, with ident not occurring in t.

Flag: Regular Subst Tactic
This flag controls the behavior of subst. When it is activated (it is by default), subst also deals with the
following corner cases:

* A context with ordered hypotheses ident, = ident,and ident,= t,ort’ = ident,witht’
not a variable, and no other hypotheses of the form ident, = uoru = ident,; without the flag, a
second call to subst would be necessary to replace ident, by t or t ’ respectively.

» The presence of a recursive equation which without the flag would be a cause of failure of subst.

* A context with cyclic dependencies as with hypotheses ident, = £ ident, and ident, = g
1ident, which without the flag would be a cause of failure of subst.

Additionally, it prevents a local definition such as ident := t to be unfolded which otherwise it would
exceptionally unfold in configurations containing hypotheses of the form ident = u,oru’ = ident
with u’ not a variable. Finally, it preserves the initial order of hypotheses, which without the flag it may
break. default.

stepl term
This tactic is for chaining rewriting steps. It assumes a goal of the form R term termwhere R is a binary relation
and relies on a database of lemmas of the form forall x y z, R x y -> eq x z —> R z y where
eq is typically a setoid equality. The application of stepl termthen replacesthe goalby R term termand
adds a new goal stating eq term term.

Command: Declare Left Step term
Adds termto the database used by stepl.

This tactic is especially useful for parametric setoids which are not accepted as regular setoids for rewrite and
setoid_replace (see Generalized rewriting).

Variant: stepl term by tactic
This applies stepl termthen applies tactic to the second goal.

Variant: stepr term by tactic
This behaves as st ep1 but on the right-hand-side of the binary relation. Lemmas are expected to be of the
form forall x vy z, Rxy —> eqy z —> R x z.

Command: Declare Right Step term
Adds termto the database used by stepr.

change term
This tactic applies to any goal. It implements the rule Conv given in Subtyping rules. change U replaces the
current goal T with U providing that U is well-formed and that T and U are convertible.

Error: Not convertible.

Variant: change term with term’
This replaces the occurrences of termby term’ in the current goal. The term termand term’ must be
convertible.

5.3. Tactics 303

The Coq Reference Manual, Release 8.11.2

. + .
Variant: change term at |num with term’
. + .
This replaces the occurrences numbered [num | of termby term’ in the current goal. The terms term
and term’ must be convertible.

Error: Too few occurrences.

Variant: change term at |num * with term in ident

This applies the change tactic not to the goal but to the hypothesis i dent.

Variant: now_show term
This is a synonym of change term. It can be used to make some proof steps explicit when refactoring a
proof script to make it readable.

See also:

Performing computations

5.3.7 Performing computations

This set of tactics implements different specialized usages of the tactic change.

All conversion tactics (including change) can be parameterized by the parts of the goal where the conversion can occur.
This is done using goal clauses which consists in a list of hypotheses and, optionally, of a reference to the conclusion of
the goal. For defined hypothesis it is possible to specify if the conversion should occur on the type part, the body part or
both (default).

Goal clauses are written after a conversion tactic (tactics set, rewrite, replace and autorewrite also use goal
clauses) and are introduced by the keyword in. If no goal clause is provided, the default is to perform the conversion
only in the conclusion.

The syntax and description of the various goal clauses is the following:
+ .
e in |ident | — only in hypotheses | ident

+ . , + . .
e in |ident | — * in hypotheses | ident | and in the conclusion
e in * |- inevery hypothesis
e in * (equivalenttoin * |- *)everywhere

e in (type of ident) (value of ident) ... |- in type part of ident, in the value part of
ident, etc.

+
For backward compeatibility, the notation in | ident | performs the conversion in hypotheses | i dent

*

cbv flag

*

lazy flag
These parameterized reduction tactics apply to any goal and perform the normalization of the goal according to the
specified flags. In correspondence with the kinds of reduction considered in Coq namely 3 (reduction of functional
application), d (unfolding of transparent constants, see Controlling the reduction strategies and the conversion algo-
rithm), ¢ (reduction of pattern matching over a constructed term, and unfolding of £ix and cofix expressions)
and ((contraction of local definitions), the flags are either beta, delta, match, fix, cofix, iota or zeta.
The iota flag is a shorthand for match, fix and cofix. The delta flag itself can be refined into delta

+ +
[|qualid] ordelta - [|qualid], restricting in the first case the constants to unfold to the
constants listed, and restricting in the second case the constant to unfold to all but the ones explicitly mentioned.

304 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Notice that the delta flag does not apply to variables bound by a let-in construction inside the term itself (use
here the zeta flag). In any cases, opaque constants are not unfolded (see Controlling the reduction strategies and
the conversion algorithm).

Normalization according to the flags is done by first evaluating the head of the expression into a weak-head normal
form, i.e. until the evaluation is blocked by a variable (or an opaque constant, or an axiom), as e.g. in x ul

un, ormatch x with ... end,or (fix f x {struct x} := ...) x,orisa constructed form
(a A-expression, a constructor, a cofixpoint, an inductive type, a product type, a sort), or is a redex that the flags
prevent to reduce. Once a weak-head normal form is obtained, subterms are recursively reduced using the same
strategy.

Reduction to weak-head normal form can be done using two strategies: lazy (1azy tactic), or call-by-value (cbv
tactic). The lazy strategy is a call-by-need strategy, with sharing of reductions: the arguments of a function call are
weakly evaluated only when necessary, and if an argument is used several times then it is weakly computed only
once. This reduction is efficient for reducing expressions with dead code. For instance, the proofs of a proposition
exists x. P (x) reduce to a pair of a witness t, and a proof that t satisfies the predicate P. Most of the time,
t may be computed without computing the proof of P (t), thanks to the lazy strategy.

The call-by-value strategy is the one used in ML languages: the arguments of a function call are systematically
weakly evaluated first. Despite the lazy strategy always performs fewer reductions than the call-by-value strategy,
the latter is generally more efficient for evaluating purely computational expressions (i.e. with little dead code).

Variant: compute
Variant: cbv
These are synonyms for cbv beta delta iota zeta.

Variant: lazy
This is a synonym for lazy beta delta iota =zeta.

+
Variant: compute [qualid]
+
Variant: cbv [qualid 1

+
These are synonyms of cbv beta delta qualid iota zeta.

+
Variant: compute - [qualid]
+
Variant: cbv - [qualid 1

+
These are synonyms of cbv beta delta - qualid | iota zeta.

+
Variant: lazy [qualid 1
+
Variant: lazy - [qualid)
These are respectively synonyms of lazy beta delta qualid

+
delta —qualid iota zeta.

Variant: vim_compute

iota zeta and lazy beta

This tactic evaluates the goal using the optimized call-by-value evaluation bytecode-based virtual machine described
in [GregoireL02]. This algorithm is dramatically more efficient than the algorithm used for the chv tactic, but it
cannot be fine-tuned. It is especially interesting for full evaluation of algebraic objects. This includes the case of
reflection-based tactics.

Variant: native_compute

This tactic evaluates the goal by compilation to OCaml as described in [BDenesGregoirel 1]. If Coq is running in
native code, it can be typically two to five times faster than vin_compute. Note however that the compilation cost
is higher, so it is worth using only for intensive computations.

5.3. Tactics 305

The Coq Reference Manual, Release 8.11.2

Flag:

red

Flag: NativeCompute Profiling
On Linux, if you have the perf profiler installed, this flag makes it possible to profile native_compute
evaluations.

Option: NativeCompute Profile Filename string
This option specifies the profile output; the default is native_compute_profile.data. The actual
filename used will contain extra characters to avoid overwriting an existing file; that filename is reported to
the user. That means you can individually profile multiple uses of native_compute in a script. From the
Linux command line, run perf report on the profile file to see the results. Consult the per f documen-
tation for more details.

Debug Cbv
This flag makes cbv (and its derivative compute) print information about the constants it encounters and the
unfolding decisions it makes.

This tactic applies to a goal that has the form:

forall (x:T1) ... (xk:Tk), T
with T Si(-reducingto ¢ t, ... t,and c a constant. If c is transparent then it replaces c with its definition
(say t) and then reduces (t t; ... t,) according to Si(-reduction rules.

Error: Not reducible.

Error: No head constant to reduce.

hnf

This tactic applies to any goal. It replaces the current goal with its head normal form according to the S§.(-reduction
rules, i.e. it reduces the head of the goal until it becomes a product or an irreducible term. All inner Si-redexes
are also reduced.

Example: The term fun n : nat => S n + S nisnotreduced by hnf.

Note:

The 6 rule only applies to transparent constants (see Controlling the reduction strategies and the conversion algorithm

on transparency and opacity).

cbn

simpl

These tactics apply to any goal. They try to reduce a term to something still readable instead of fully normalizing
it. They perform a sort of strong normalization with two key differences:

* They unfold a constant if and only if it leads to a ¢-reduction, i.e. reducing a match or unfolding a fixpoint.

¢ While reducing a constant unfolding to (co)fixpoints, the tactics use the name of the constant the (co)fixpoint
comes from instead of the (co)fixpoint definition in recursive calls.

The chbn tactic is claimed to be a more principled, faster and more predictable replacement for simp1.

The cbn tactic accepts the same flags as cbv and 1azy. The behavior of both simpl and chn can be tuned
using the Arguments vernacular command as follows:

* A constant can be marked to be never unfolded by chn or simpI:

Example

Arguments minus n m : simpl never.

306

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

After that command an expression like (minus (S x) y) is left untouched by the tactics chn and
simpl.

¢ A constant can be marked to be unfolded only if applied to enough arguments. The number of arguments
required can be specified using the / symbol in the argument list of the Argument s vernacular command.

Example

Definition fcomp AB C £ (g : A -—> B) (x ¢ A) : C :=£f (g x).
fcomp is defined

Arguments fcomp {A B C} f g x /.
Notation "f \o g" := (fcomp f g) (at level 50).

After that command the expression (f \o g) is left untouched by simpl while ((f \o g) t) is
reducedto (£ (g t)). Thesame mechanism can be used to make a constant volatile, i.e. always unfolded.

Example

Definition volatile := fun x : nat => x.
volatile is defined

Arguments volatile / x.

* A constant can be marked to be unfolded only if an entire set of arguments evaluates to a constructor. The !
symbol can be used to mark such arguments.

Example

Arguments minus !n !m.

After that command, the expression (minus (S x) vy) isleftuntouched by simpl, while (minus (S
x) (S y)) isreduced to (minus x y).

A special heuristic to determine if a constant has to be unfolded can be activated with the following command:

Example

Arguments minus n m : simpl nomatch.

The heuristic avoids to perform a simplification step that would expose a match construct in head position.
For example the expression (minus (S (S x)) (S y)) issimplified to (minus (S x) y) even
if an extra simplification is possible.

In detail, the tactic simp] first applies Si-reduction. Then, it expands transparent constants and tries to reduce
further using Se-reduction. But, when no ¢ rule is applied after unfolding then J-reductions are not applied. For
instance trying touse simpl on (plus n O) = n changes nothing.

Notice that only transparent constants whose name can be reused in the recursive calls are possibly unfolded by
simpl. For instance a constant defined by plus' := plus is possibly unfolded and reused in the recursive

5.3. Tactics 307

The Coq Reference Manual, Release 8.11.2

calls, but a constant such as succ := plus (S 0) is never unfolded. This is the main difference between
simpl and cbn. The tactic cbn reduces whenever it will be able to reuse it or not: succ t isreducedto S t.

+
Variant: cbn [qualid 1
+
Variant: cbn - [|qualid 1
+
These are respectively synonyms of cbn beta delta [qualid] iota zeta and cbn beta

+
delta - [|qualid] iota zeta (see cbn).

Variant: simpl pattern
This applies simpl only to the subterms matching pat tern in the current goal.

. . +
Variant: simpl pattern at |[num
. . , + . .
This applies simpl only to the | num | occurrences of the subterms matching pat tern in the current goal.
Error: Too few occurrences.

Variant: simpl qualid

Variant: simpl string
This applies simpl only to the applicative subterms whose head occurrence is the unfoldable constant qualid
(the constant can be referred to by its notation using st ring if such a notation exists).

Variant: simpl qualid at |[num +
Variant: simpl string at |[num +
This applies simpl only to the | num i applicative subterms whose head occurrence is qualid (or st ring).

Flag: Debug RAKAM
This flag makes chn print various debugging information. RAKAM is the Refolding Algebraic Krivine Abstract
Machine.

unfold qualid
This tactic applies to any goal. The argument qualid must denote a defined transparent constant or local definition
(see Definitions and Controlling the reduction strategies and the conversion algorithm). The tactic unfold applies
the J rule to each occurrence of the constant to which gua 17 d refers in the current goal and then replaces it with
its Sc¢-normal form. Use the general reduction tactics if you want to avoid this final reduction, for instance cbv
delta [qualid].

Error: Cannot coerce gqualid to an evaluable reference.
This error is frequent when trying to unfold something that has defined as an inductive type (or constructor)
and not as a definition.

Example

Goal 0 <= 1.

1 subgoal
0 <=1
unfold le.

Toplevel input, characters 0-10:
> unfold le.

S AAAAAAAAAN

Error: Cannot coerce le to an evaluable reference.

308 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

This error can also be raised if you are trying to unfold something that has been marked as opaque.

Example

Opaque Nat.add.
Goal 1 + 0 = 1.
1 subgoal

unfold Nat.add.
Toplevel input, characters 0-15:
> unfold Nat.add.

S AAAAAAAAAAANAAN

Error: Cannot coerce Nat.add to an evaluable reference.

Variant: unfold qualid in goal_occurrences
Replaces gualid in hypothesis (or hypotheses) designated by goal_ occurrences with its definition
and replaces the hypothesis with its S normal form.

+
Variant: unfold qualid

+
Replaces | qualid | with their definitions and replaces the current goal with its 3¢ normal form.

+
Variant: unfold qualid at occurrences

The list occurrences specify the occurrences of gualid to be unfolded. Occurrences are located from
left to right.

Error: Bad occurrence number of qualid.
Error: gualid does not occur.

Variant: unfold string
If st ring denotes the discriminating symbol of a notation (e.g. ”+”) or an expression defining a notation
(e.g. "_ + _"), and this notation denotes an application whose head symbol is an unfoldable constant, then
the tactic unfolds it.

Variant: unfold string%ident
This is variant of unfold string where string gets its interpretation from the scope bound to the
delimiting key i dent instead of its default interpretation (see Local interpretation rules for notations).
+

? ? ?
Variant: unfold | gqualid string %$ident at occurrences in goal_occurrences

This is the most general form.

fold term
This tactic applies to any goal. The term ¢ erm is reduced using the red tactic. Every occurrence of the resulting
termin the goal is then replaced by term. This tactic is particularly useful when a fixpoint definition has been
wrongfully unfolded, making the goal very hard to read. On the other hand, when an unfolded function applied to
its argument has been reduced, the fo1d tactic won’t do anything.

Example

5.3. Tactics 309

The Coq Reference Manual, Release 8.11.2

Goal ~0=0.
1 subgoal

unfold not.
1 subgoal

0 =0 —-> False

Fail progress fold not.
The command has indeed failed with message:
Failed to progress.

pattern (0 = 0).
1 subgoal

fold not.
1 subgoal

+
Variant: fold term
Equivalent to fold term ; ... ; fold term.

pattern term
This command applies to any goal. The argument ¢ e rm must be a free subterm of the current goal. The command
pattern performs [S-expansion (the inverse of S-reduction) of the current goal (say T) by

* replacing all occurrences of termin T with a fresh variable
e abstracting this variable
* applying the abstracted goal to term

For instance, if the current goal T is expressible as ¢ (t) where the notation captures all the instances of t in
@ (t), then pattern t transforms it into (fun x:A => ¢ (x)) t. This tactic can be used, for instance,
when the tactic apply fails on matching.

. +
Variant: pattern term at |num
+ . . .
Only the occurrences | num | of termare considered for S-expansion. Occurrences are located from left to right.

Variant: pattern term at - [num *

. + . .
All occurrences except the occurrences of indexes [num |~ of term are considered for S-expansion. Occurrences
are located from left to right.

+
Variant: pattern term |
Starting from a goal ¢ (t; ... t,),thetactic pattern t,, ..., t, generatesthe equivalent goal (fun
(x1:2)) ... (x‘m (AL) =>¢ (X] + o Xy)) ty ... ty. Ift;occurs in one of the generated types A;
these occurrences will also be considered and possibly abstracted.

310 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

+

Variant: pattern term at |num *

r
This behaves as above but processing only the occurrences | num Flof term starting from ¢ e rm.

+
?

Variant: pattern term at - ?! [num

14

r

This is the most general syntax that combines the different variants.
Conversion tactics applied to hypotheses

+
tactic in |ident L

Applies tactic (any of the conversion tactics listed in this section) to the hypotheses | i dent

If ident is alocal definition, then i dent can be replaced by type of ident toaddress not the body but the
type of the local definition.

Example: unfold not in (type of H1) (type of H3).

Error: No such hypothesis: ident.

5.3.8 Automation

auto
This tactic implements a Prolog-like resolution procedure to solve the current goal. It first tries to solve the goal
using the assumpt ion tactic, then it reduces the goal to an atomic one using int ros and introduces the newly
generated hypotheses as hints. Then it looks at the list of tactics associated to the head symbol of the goal and tries
to apply one of them (starting from the tactics with lower cost). This process is recursively applied to the generated
subgoals.

By default, aut o only uses the hypotheses of the current goal and the hints of the database named core.

Warning: auto uses a weaker version of apply thatis closer to simple apply so itis expected that
sometimes aut o will fail even if applying manually one of the hints would succeed.

Variant: auto num
Forces the search depth to be num. The maximal search depth is 5 by default.

Variant: auto with ident

+
Uses the hint databases | i dent | in addition to the database core.

Note: Use the fake database nocore if you want to not use the core database.

Variant: auto with *
Uses all existing hint databases. Using this variant is highly discouraged in finished scripts since it is both
slower and less robust than the variant where the required databases are explicitly listed.

See also:

5.3. Tactics 311

The Coq Reference Manual, Release 8.11.2

The Hints Databases for auto and eauto for the list of pre-defined databases and the way to create or extend a
database.

+ +
Variant: auto using qualid, with ident
Uses lemmas gualid. in addition to hints. If gualid is an inductive type, it is the collection of its
constructors which are added as hints.

Note: The hints passed through the using clause are used in the same way as if they were passed through
a hint database. Consequently, they use a weaker version of apply and auto using qualid may fail
where apply qualid succeeds.

Given that this can be seen as counter-intuitive, it could be useful to have an option to use full-blown app 1y
for lemmas passed through the using clause. Contributions welcome!

Variant: info_auto
Behaves like aut o but shows the tactics it uses to solve the goal. This variant is very useful for getting a
better understanding of automation, or to know what lemmas/assumptions were used.

Variant: debug auto
Behaves like aut o but shows the tactics it tries to solve the goal, including failing paths.
? ?

? ? +
Variant: info_ | auto [num & |using qualid with ident

This is the most general form, combining the various options.

Variant: trivial
This tactic is a restriction of auto that is not recursive and tries only hints that cost 0. Typically it solves trivial
equalities like X=X.

Variant: trivial with | ident
Variant: trivial with *

Variant: trivial using qualid
Variant: debug trivial
Variant: info_trivial

2 +
Variant: info_ | trivial using qualid with ident

Note: autoand trivial either solve completely the goal or else succeed without changing the goal. Use solve
[auto]and solve [trivial] if you would prefer these tactics to fail when they do not manage to solve the
goal.

Flag: Info Auto
Flag: Debug Auto
Flag: Info Trivial
Flag: Debug Trivial
These flags enable printing of informative or debug information for the autoand t rivial tactics.

eauto
This tactic generalizes auto. While aut o does not try resolution hints which would leave existential variables in
the goal, eaut o does try them (informally speaking, it internally uses a tactic close to simple eapply instead
of a tactic close to simple apply inthe case of auto). As a consequence, eaut o can solve such a goal:

Example

312 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Hint Resolve ex_intro : core.
The hint ex_intro will only be used by eauto, because applying ex_intro would
leave variable x as unresolved existential variable.

Goal forall P:nat -> Prop, P 0 —> exists n, P n.
1 subgoal

forall P : nat —> Prop, P 0 —> exists n : nat, P n

eauto.
No more subgoals.

Note that ex_ int ro should be declared as a hint.

i ? +
Variant: info_ | eauto [num =~ |using qualid with | ident

The various options for eaut o are the same as for auto.
eauto also obeys the following flags:

Flag: Info Eauto
Flag: Debug Eauto

See also:
The Hints Databases for auto and eauto

+
autounfold with ident
This tactic unfolds constants that were declared through a 7int Unfold in the given databases.

+
Variant: autounfold with | ident in goal_occurrences
Performs the unfolding in the given clause (goal_occurrences).

Variant: autounfold with *
Uses the unfold hints declared in all the hint databases.

autorewrite with ident
This tactic carries out rewritings according to the rewriting rule bases ident

Each rewriting rule from the base i dent is applied to the main subgoal until it fails. Once all the rules have been
processed, if the main subgoal has progressed (e.g., if it is distinct from the initial main goal) then the rules of this
base are processed again. If the main subgoal has not progressed then the next base is processed. For the bases,
the behavior is exactly similar to the processing of the rewriting rules.

The rewriting rule bases are built with the #int Rewrite command.

Warning: This tactic may loop if you build non terminating rewriting systems.

+
Variant: autorewrite with ident using tactic
+
Performs, in the same way, all the rewritings of the bases i dent | applying tactic to the main subgoal after each

rewriting step.

+
Variant: autorewrite with ident in gualid
Performs all the rewritings in hypothesis qualid.

5.3. Tactics 313

The Coq Reference Manual, Release 8.11.2

+
Variant: autorewrite with ident in qualid using tactic
Performs all the rewritings in hypothesis qua 1 id applying t act i c to the main subgoal after each rewriting step.

+
Variant: autorewrite with ident in goal_occurrences
Performs all the rewriting in the clause goal occurrences.

See also:

Hint-Rewrite for feeding the database of lemmas used by autorewrite and autorewrite for examples showing
the use of this tactic.

easy
This tactic tries to solve the current goal by a number of standard closing steps. In particular, it tries to close
the current goal using the closing tactics trivial, reflexivity, symmetry, contradiction and
inversion of hypothesis. If this fails, it tries introducing variables and splitting and-hypotheses, using the
closing tactics afterwards, and splitting the goal using sp it and recursing.

This tactic solves goals that belong to many common classes; in particular, many cases of unsatisfiable hypotheses,
and simple equality goals are usually solved by this tactic.

Variant: now tactic
Run tactic followed by easy. This is a notation for tactic; easy.

5.3.9 Controlling automation

The hints databases for auto and eauto

The hints for auto and eauto are stored in databases. Each database maps head symbols to a list of hints.

Command: Print Hint ident
Use this command to display the hints associated to the head symbol i dent (see Print Hint). Each hint has a cost
that is a nonnegative integer, and an optional pattern. The hints with lower cost are tried first. A hint is tried by
auto when the conclusion of the current goal matches its pattern or when it has no pattern.

Creating Hint databases

One can optionally declare a hint database using the command Create HintDb. If a hint is added to an unknown
database, it will be automatically created.
?

Command: Create HintDb ident discriminated
This command creates a new database named i dent. The database is implemented by a Discrimination Tree (DT)
that serves as an index of all the lemmas. The DT can use transparency information to decide if a constant should
be indexed or not (c.f. The hints databases for auto and eauto), making the retrieval more efficient. The legacy
implementation (the default one for new databases) uses the DT only on goals without existentials (i.e., aut o goals),
for non-Immediate hints and does not make use of transparency hints, putting more work on the unification that is
run after retrieval (it keeps a list of the lemmas in case the DT is not used). The new implementation enabled by
the discriminated option makes use of DTs in all cases and takes transparency information into account. However,
the order in which hints are retrieved from the DT may differ from the order in which they were inserted, making
this implementation observationally different from the legacy one.

Command: Hint hint_definition : |ident

+
The general command to add a hint to some databases | i dent | . The various possible hint_definitions
are given below.

314 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Variant: Hint hint_definition
No database name is given: the hint is registered in the core database.

Deprecated since version 8.10.

Variant: Local Hint hint_definition : |ident
This is used to declare hints that must not be exported to the other modules that require and import the current
module. Inside a section, the flag Local is useless since hints do not survive anyway to the closure of sections.
?

? 4
Variant: Hint Resolve term | num | pattern : ident

This command adds simple apply term to the hint list with the head symbol of the type of term.
The cost of that hint is the number of subgoals generated by simple apply termor num if specified.
The associated pattern is inferred from the conclusion of the type of term or the given pattern if
specified. In case the inferred type of ¢erm does not start with a product the tactic added in the hint list is
exact term. Incase this type can however be reduced to a type starting with a product, the tactic simple
apply termisalso stored in the hints list. If the inferred type of ¢ e rm contains a dependent quantification
on a variable which occurs only in the premisses of the type and not in its conclusion, no instance could be
inferred for the variable by unification with the goal. In this case, the hint is added to the hint list of eauto
instead of the hint list of auto and a warning is printed. A typical example of a hint that is used only by
eauto is a transitivity lemma.

Error: term cannot be used as a hint

The head symbol of the type of termis a bound variable such that this tactic cannot be associated to a
constant.

+
Variant: Hint Resolve term : ident
Adds each Hint Resolve term.

Variant: Hint Resolve -> term : ident
Adds the left-to-right implication of an equivalence as a hint (informally the hint will be used as apply <-
t erm, although as mentioned before, the tactic actually used is a restricted version of app1y).

Variant: Hint Resolve <- term
Adds the right-to-left implication of an equivalence as a hint.

Variant: Hint Immediate term : ident
This command adds simple apply term; trivial to the hint list associated with the head symbol
of the type of ident in the given database. This tactic will fail if all the subgoals generated by simple
apply termare not solved immediately by the ¢ rivial tactic (which only tries tactics with cost 0).This
command is useful for theorems such as the symmetry of equality or n+1=m+1 —> n=m that we may like
to introduce with a limited use in order to avoid useless proof-search. The cost of this tactic (which never
generates subgoals) is always 1, so that it is not used by t rivial itself.

Error: term cannot be used as a hint

+
Variant: Hint Immediate term : ident
Adds each Hint Immediate term.

Variant: Hint Constructors qualid : ident
If qualid is an inductive type, this command adds all its constructors as hints of type Resolve. Then,
when the conclusion of current goal has the form (qualid ...), auto will try to apply each constructor.

Error: qgualid is not an inductive type

+
Variant: Hint Constructors gqualid : ident
Extends the previous command for several inductive types.

5.3. Tactics 315

The Coq Reference Manual, Release 8.11.2

Variant: Hint Unfold qualid : ident
This adds the tactic unfold qualid to the hint list that will only be used when the head constant of the
goal is qualid. Its costis 4.

+
Variant: Hint Unfold qualid
Extends the previous command for several defined constants.

+
Variant: Hint Transparent qualid : ident

Variant: Hint Opaque qualid T : ident
This adds transparency hints to the database, making gua 1 id transparent or opaque constants during reso-
lution. This information is used during unification of the goal with any lemma in the database and inside the
discrimination network to relax or constrain it in the case of discriminated databases.

Variant: Hint Variables Transparent | Opaque : ident

Variant: Hint Constants Transparent ‘ Opaque : ident
This sets the transparency flag used during unification of hints in the database for all constants or all variables,
overwriting the existing settings of opacity. It is advised to use this just aftera Create HintDbcommand.

?
Variant: Hint Extern num pattern => tactic : ident
This hint type is to extend aut o with tactics other than apply and unfold. For that, we must specify a

cost, an optional patternanda tactic to execute.

Example

Hint Extern 4 (~(_ = _)) => discriminate : core.

Now, when the head of the goal is a disequality, aut o will try discriminate if it does not manage to solve the
goal with hints with a cost less than 4.

One can even use some sub-patterns of the pattern in the tactic script. A sub-pattern is a question mark
followed by an identifier, like ?X1 or ?X2. Here is an example:

Example

Require Import List.
Hint Extern 5 ({?X1 = ?X2} + {?X1 <> ?X2}) => generalize X1, X2; decide.
sequality : eqgdec.
Goal forall a b:list (nat * nat), {a = b} + {a <> b}.
1 subgoal

forall a b : list (nat * nat), {a = b} + {a <> b}

Info 1 auto with egdec.
<ltac_plugin::autol0> eqgdec
No more subgoals.

Variant: Hint Cut regexp : ident

Warning: These hints currently only apply to typeclass proof search and the t ypeclasses eauto
tactic.

316

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

This command can be used to cut the proof-search tree according to a regular expression matching paths to
be cut. The grammar for regular expressions is the following. Beware, there is no operator precedence during
parsing, one can check with Print HintDb to verify the current cut expression:

regexp = ident (hint or instance identifier)
_ (any hint)
regexp | regexp (disjunction)
regexp regexp (sequence)
regexp * (Kleene star)
emp (empty)
eps (epsilon)
(regexp)

The emp regexp does not match any search path while eps matches the empty path. During proof search,
the path of successive successful hints on a search branch is recorded, as a list of identifiers for the hints (note
that Hint Extern’sdonothave an associated identifier). Before applying any hint i dent the current path
p extended with i dent is matched against the current cut expression c associated to the hint database. If
matching succeeds, the hint is not applied. The semantics of Hint Cut regexpisto set the cut expression
toc | regexp, the initial cut expression being emp.

Variant: Hint Mode qualid + | ! | - 7. ident

This sets an optional mode of use of the identifier gua 1 i d. When proof-search faces a goal that ends in an
application of qualidtoarguments term ... term,the mode tells if the hints associated to qualid
can be applied or not. A mode specification is a list of n +, ! or — items that specify if an argument of the
identifier is to be treated as an input (+), if its head only is an input (!) or an output (-) of the identifier. For
a mode to match a list of arguments, input terms and input heads must not contain existential variables or be
existential variables respectively, while outputs can be any term. Multiple modes can be declared for a single
identifier, in that case only one mode needs to match the arguments for the hints to be applied. The head of a
term is understood here as the applicative head, or the match or projection scrutinee’s head, recursively, casts
being ignored. Hint Mode is especially useful for typeclasses, when one does not want to support default
instances and avoid ambiguity in general. Setting a parameter of a class as an input forces proof-search to be
driven by that index of the class, with ! giving more flexibility by allowing existentials to still appear deeper
in the index but not at its head.

Note:

* One can use a Hint Extern with no pattern to do pattern matching on hypotheses using match goal
with inside the tactic.

* If you want to add hints such as Hint Transparent, Hint Cut,or Hint Mode, for typeclass reso-
lution, do not forget to put them in the t ypeclass_instances hint database.

Hint databases defined in the Coq standard library

Several hint databases are defined in the Coq standard library. The actual content of a database is the collection of hints
declared to belong to this database in each of the various modules currently loaded. Especially, requiring new modules
may extend the database. At Coq startup, only the core database is nonempty and can be used.

core This special database is automatically used by aut o, except when pseudo-database nocore is given
to auto. The core database contains only basic lemmas about negation, conjunction, and so on. Most
of the hints in this database come from the Init and Logic directories.

arith This database contains all lemmas about Peano’s arithmetic proved in the directories Init and Arith.

5.3. Tactics 317

The Coq Reference Manual, Release 8.11.2

zarith contains lemmas about binary signed integers from the directories theories/ZArith. When required,
the module Omega also extends the database zarith with a high-cost hint that calls omega on equations
and inequalities in nat or Z.

bool contains lemmas about booleans, mostly from directory theories/Bool.
datatypes is for lemmas about lists, streams and so on that are mainly proved in the Lists subdirectory.
sets contains lemmas about sets and relations from the directories Sets and Relations.

typeclass_instances contains all the typeclass instances declared in the environment, including those used
for setoid_rewrite, from the Classes directory.

fset internal database for the implementation of the FSet s library.

ordered_type lemmas about ordered types (as defined in the legacy OrderedType module), mainly used
in the FSets and FMaps libraries.

You are advised not to put your own hints in the core database, but use one or several databases specific to your develop-
ment.

+
Command: Remove Hints term : |ident

. . . +| . , +
This command removes the hints associated to terms | term | in databases | ident

Command: Print Hint
This command displays all hints that apply to the current goal. It fails if no proof is being edited, while the two
variants can be used at every moment.

Variants:

Command: Print Hint ident
This command displays only tactics associated with i dent in the hints list. This is independent of the goal being
edited, so this command will not fail if no goal is being edited.

Command: Print Hint *
This command displays all declared hints.

Command: Print HintDb ident
This command displays all hints from database ident.
. . + :
Command: Hint Rewrite term : |ident
This vernacular command adds the terms |term | (their types must be equalities) in the rewriting bases

+
ident | with the default orientation (left to right). Notice that the rewriting bases are distinct from the auto
hint bases and that aut o does not take them into account.

This command is synchronous with the section mechanism (see Section mechanism): when closing a section,
all aliases created by Hint Rewrite in that section are lost. Conversely, when loading a module, all Hint
Rewrite declarations at the global level of that module are loaded.

Variants:
. . + -
Command: Hint Rewrite -> term : |ident
This is strictly equivalent to the command above (we only make explicit the orientation which otherwise defaults to
->).
. . + :
Command: Hint Rewrite <- term : |ident

Adds the rewriting rules | term | with a right-to-left orientation in the bases | ident

318 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

+
Command: Hint Rewrite term using tactic : ident

+ +
When the rewriting rules | term | in| ident | will be used, the tactic tactic will be applied to the generated
subgoals, the main subgoal excluded.

Command: Print Rewrite HintDb ident
This command displays all rewrite hints contained in ident.

Hint locality

Hints provided by the Hint commands are erased when closing a section. Conversely, all hints of a module A that are
not defined inside a section (and not defined with option Local) become available when the module A is imported (using
e.g. Require Import A.).

As of today, hints only have a binary behavior regarding locality, as described above: either they disappear at the end of a
section scope, or they remain global forever. This causes a scalability issue, because hints coming from an unrelated part
of the code may badly influence another development. It can be mitigated to some extent thanks to the Remove Hints
command, but this is a mere workaround and has some limitations (for instance, external hints cannot be removed).

A proper way to fix this issue is to bind the hints to their module scope, as for most of the other objects Coq uses. Hints
should only be made available when the module they are defined in is imported, not just required. It is very difficult to
change the historical behavior, as it would break a lot of scripts. We propose a smooth transitional path by providing the
Loose Hint Behavior option which accepts three flags allowing for a fine-grained handling of non-imported hints.

Option: Loose Hint Behavior "Lax" | "Warn" | "Strict"
This option accepts three values, which control the behavior of hints w.r.t. Tmport:

e ”Lax”: this is the default, and corresponds to the historical behavior, that is, hints defined outside of a section
have a global scope.

e ”"Warn”: outputs a warning when a non-imported hint is used. Note that this is an over-approximation, because
a hint may be triggered by a run that will eventually fail and backtrack, resulting in the hint not being actually
useful for the proof.

» “Strict”: changes the behavior of an unloaded hint to a immediate fail tactic, allowing to emulate an import-
scoped hint mechanism.

Setting implicit automation tactics

Command: Proof with tactic
This command may be used to start a proof. It defines a default tactic to be used each time a tactic command
tactic;isendedby Inthis case the tactic command typed by the user is equivalentto tactic; ; tactic.

See also:

Proof in Switching on/off the proof editing mode.

Variant: Proof with tactic using ident
Combines in a single line Proof with and Proof using, see Switching on/off the proof editing mode

+
Variant: Proof using ident with tactic
Combines in a single line Proof withand Proof using, see Switching on/off the proof editing mode

5.3. Tactics 319

The Coq Reference Manual, Release 8.11.2

5.3.10 Decision procedures

tauto
This tactic implements a decision procedure for intuitionistic propositional calculus based on the contraction-free
sequent calculi LJT* of Roy Dyckhoff [Dyc92]. Note that tauto succeeds on any instance of an intuitionistic
tautological proposition. taut o unfolds negations and logical equivalence but does not unfold any other definition.

Example

The following goal can be proved by t aut o whereas aut o would fail:

Goal forall (x:nat) (P:nat -> Prop), x = 0 \/ P x —> x <> 0 —> P x.
1 subgoal
forall (x : nat) (P : nat -> Prop), x = 0 \/ P x —> x <> 0 —> P x
intros.
1 subgoal
X : nat

P : nat -> Prop
H: x=0\/Px
HO : x <> 0

tauto.
No more subgoals.

Moreover, if it has nothing else to do, tauto performs introductions. Therefore, the use of intros in the previous
proof is unnecessary. tauto can for instance for:

Example
Goal forall (A:Prop) (P:nat -> Prop), A \/ (forall x:nat, ~ A -> P x) —> forall x:nat,

o ~ A —> P x.
1 subgoal

forall (A : Prop) (P : nat —-> Prop),
A \/ (forall x : nat, ~ A -> P x) -> forall x : nat, ~ A —> P x

tauto.
No more subgoals.

Note: In contrast, tauto cannot solve the following goal Goal forall (A:Prop) (P:nat -> Prop),
A \/ (forall x:nat, ~ A -> P x) —-> forall x:nat, ~ ~ (A \/ P x). because (forall
x:nat, ~ A —-> P x) cannot be treated as atomic and an instantiation of x is necessary.

Variant: dtauto
While taut o recognizes inductively defined connectives isomorphic to the standard connectives and, prod, or,

320 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

sum, False, Empty_set, unit, True, dtauto also recognizes all inductive types with one constructor and
no indices, i.e. record-style connectives.

intuition tactic
The tactic intuition takes advantage of the search-tree built by the decision procedure involved in the tactic
tauto. It uses this information to generate a set of subgoals equivalent to the original one (but simpler than it)
and applies the tactic tact i c to them [Mun94]. If this tactic fails on some goals then intuition fails. In fact,
tautoissimply intuition fail.

Example

For instance, the tactic intuition auto applied to the goal:

(forall (x:nat), P x) /\ B —-> (forall (y:nat), Py) /\ P O\N/ B /\ PO

internally replaces it by the equivalent one:

(forall (x:nat), P x), B |- P O

and then uses aut o which completes the proof.

Originally due to César Mufioz, these tactics (tauto and intuition) have been completely re-engineered by David
Delahaye using mainly the tactic language (see Ltac). The code is now much shorter and a significant increase in perfor-
mance has been noticed. The general behavior with respect to dependent types, unfolding and introductions has slightly
changed to get clearer semantics. This may lead to some incompatibilities.

Variant: intuition
Is equivalent to intuition auto with *.

Variant: dintuition
While intuitionrecognizes inductively defined connectives isomorphic to the standard connectives and, prod,
or, sum, False, Empty_set, unit, True, dintuition also recognizes all inductive types with one con-
structor and no indices, i.e. record-style connectives.

Flag: Intuition Negation Unfolding
Controls whether intuition unfolds inner negations which do not need to be unfolded. This flag is on by default.

rtauto
The rtaut o tactic solves propositional tautologies similarly to what t aut o does. The main difference is that the
proof term is built using a reflection scheme applied to a sequent calculus proof of the goal. The search procedure
is also implemented using a different technique.

Users should be aware that this difference may result in faster proof-search but slower proof-checking, and rtauto
might not solve goals that ¢ aut o would be able to solve (e.g. goals involving universal quantifiers).

Note that this tactic is only available after a Require Import Rtauto.

firstorder
The tactic £1irstorder is an experimental extension of tauto to first- order reasoning, written by Pierre Cor-
bineau. It is not restricted to usual logical connectives but instead may reason about any first-order class inductive
definition.

Option: Firstorder Solver tactic
The default tactic used by i rstorder whennorule appliesis auto with *,itcan be resetlocally or globally
using this option.

Command: Print Firstorder Solver
Prints the default tactic used by i rstorder when no rule applies.

5.3. Tactics 321

The Coq Reference Manual, Release 8.11.2

Variant: firstorder tactic
Tries to solve the goal with tact i ¢ when no logical rule may apply.

Variant: firstorder using qualid
Deprecated since version 8.3: Use the syntax below instead (with commas).

+
Variant: firstorder using qualid

+
Adds lemmas | gualid | to the proof-search environment. If gualid refers to an inductive type, it is the

collection of its constructors which are added to the proof-search environment.

+
Variant: firstorder with ident

. + .
Adds lemmas from aut o hint bases | ident | to the proof-search environment.

+ +
Variant: firstorder tactic using qualid | with |ident
This combines the effects of the different variants of £irstorder.

Option: Firstorder Depth num
This option controls the proof-search depth bound.

congruence
The tactic congruence, by Pierre Corbineau, implements the standard Nelson and Oppen congruence closure
algorithm, which is a decision procedure for ground equalities with uninterpreted symbols. It also includes con-
structor theory (see injectionand discriminate). If the goal is a non-quantified equality, congruence tries
to prove it with non-quantified equalities in the context. Otherwise it tries to infer a discriminable equality from
those in the context. Alternatively, congruence tries to prove that a hypothesis is equal to the goal or to the negation
of another hypothesis.

congruence is also able to take advantage of hypotheses stating quantified equalities, but you have to provide a
bound for the number of extra equalities generated that way. Please note that one of the sides of the equality must
contain all the quantified variables in order for congruence to match against it.

Example
Theorem T (A:Type) (f:A -> A) (g: A -> A —> A) a b: a=(f a) —> (gb (f a))=(f (£ a)) —>
(gab=(f (gba)) —> (gab)=a.
1 subgoal
A : Type
f : A > A
g : A ->A -—>A
a, b A
a=fa->gb (fa =f (fa) —>gab=f (gba) ->gab-=a
intros.
1 subgoal
A : Type
f : A -—>A
g A —> A —> A
a, b : A
H a=1f a
HO gb (fa =1£f (fa)
H1 gab=1f (gba)

(continues on next page)

322 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

congruence.
No more subgoals.

Qed.
Theorem inj (A:Type) (f:A -> A * A) (a c d: A) : f = pair a —> Some (f c) = Some (f_
~d) —-> c=d.
1 subgoal
A Type
f A > A * A
a, c, d : A
f = pair a -> Some (f c) = Some (f d) -> c = d
intros.
1 subgoal
A : Type
f : A -—>A * A
a, ¢, d : A
H : f = pair a
HO : Some (f c) = Some (f d)
c =d
congruence.

No more subgoals.

Qed.

Variant: congruence num
Tries to add at most num instances of hypotheses stating quantified equalities to the problem in order to solve it.
A bigger value of num does not make success slower, only failure. You might consider adding some lemmas as
hypotheses using assert in order for congruence to use them.

Variant: congruence with term

+
Adds | term | to the pool of terms used by congruence. This helps in case you have partially applied con-
structors in your goal.

Error: I don’t know how to handle dependent equality.
The decision procedure managed to find a proof of the goal or of a discriminable equality but this proof could not
be built in Coq because of dependently-typed functions.

Error: Goal is solvable by congruence but some arguments are missing. Try congruence with
The decision procedure could solve the goal with the provision that additional arguments are supplied for some
partially applied constructors. Any term of an appropriate type will allow the tactic to successfully solve the goal.
Those additional arguments can be given to congruence by filling in the holes in the terms given in the error message,
using the congruence with variant described above.

Flag: Congruence Verbose
This flag makes congruence print debug information.

5.3. Tactics 323

The Coq Reference Manual, Release 8.11.2

5.3.11 Checking properties of terms

Each of the following tactics acts as the identity if the check succeeds, and results in an error otherwise.

constr_eq term term
This tactic checks whether its arguments are equal modulo alpha conversion, casts and universe constraints. It may
unify universes.

Error: Not equal.
Error: Not equal (due to universes).

constr_eq_strict term term
This tactic checks whether its arguments are equal modulo alpha conversion, casts and universe constraints. It does
not add new constraints.

Error: Not equal.
Error: Not equal (due to universes).

unify term term
This tactic checks whether its arguments are unifiable, potentially instantiating existential variables.

Error: Unable to unify term with term.

Variant: unify term term with ident
Unification takes the transparency information defined in the hint database ident into account (see the hints
databases for auto and eauto).

is_evar term
This tactic checks whether its argument is a current existential variable. Existential variables are uninstantiated
variables generated by eapp 1y and some other tactics.

Error: Not an evar.

has_evar term
This tactic checks whether its argument has an existential variable as a subterm. Unlike context patterns combined
with is_evar, this tactic scans all subterms, including those under binders.

Error: No evars.

is_var term
This tactic checks whether its argument is a variable or hypothesis in the current goal context or in the opened
sections.

Error: Not a variable or hypothesis.

5.3.12 Equality

f_equal
This tactic applies to a goal of the form £ a; ... a, = f£’a’; ... a’,. Using £ _equal on such a goal
leads to subgoals f=f’ and a; =a’, andsoonuptoa, = a’,. Amongst these subgoals, the simple ones (e.g.

provable by reflexivity or congruence) are automatically solved by £_equal.

reflexivity
This tactic applies to a goal that has the form t=u. It checks that t and u are convertible and then solves the goal.
It is equivalent to apply refl_equal.

Error: The conclusion is not a substitutive equation.

Error: Unable to unify ... with

324 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

symmetry
This tactic applies to a goal that has the form t =u and changes it into u=t.

Variant: symmetry in ident
If the statement of the hypothesis ident has the form t=u, the tactic changes it to u=t.

transitivity term
This tactic applies to a goal that has the form t=u and transforms it into the two subgoals t=termand term=u.

Variant: etransitivity
This tactic behaves like t ransitivity, using a fresh evar instead of a concrete term.

5.3.13 Equality and inductive sets

We describe in this section some special purpose tactics dealing with equality and inductive sets or types. These tactics
use the equality eq: forall (A:Type), A->A->Prop,simply written with the infix symbol =.

decide equality
This tactic solves a goal of the form forall x v : R, {x = y} + {~ x = y},whereRisan inductive
type such that its constructors do not take proofs or functions as arguments, nor objects in dependent types. It solves
goals of the form {x = y} + {~ x = y} aswell

compare term term
This tactic compares two given objects t ermand t erm of an inductive datatype. If G is the current goal, it leaves
the sub- goals term =term -> Gand ~ term = term —> G.The type of termand term must satisfy
the same restrictions as in the tactic decide equality.

simplify eq term
Let term be the proof of a statement of conclusion term = term. If term and term are structurally
different (in the sense described for the tactic discriminate), then the tactic simplify_eq behaves as
discriminate term, otherwise it behaves as injection term.

Note: If some quantified hypothesis of the goal is named ident, then simplify_eq ident first introduces the
hypothesis in the local context using intros until ident.

Variant: simplify_eq num
This does the same thingas intros until numthen simplify_eq ident where ident is the identifier
for the last introduced hypothesis.

Variant: simplify eq term with bindings_list
This does the same as simplify_eq termbutusing the given bindings to instantiate parameters or hypotheses
of term.

Variant: esimplify_eq num

?
Variant: esimplify_eq term with bindings_list

This works the same as simplify_eq butif the type of term, or the type of the hypothesis referred to by num,
has uninstantiated parameters, these parameters are left as existential variables.

Variant: simplify_eq
If the current goal has form t 1 <> t2,itbehavesas intro ident; simplify_eq ident.

dependent rewrite -> ident
This tactic applies to any goal. If ident has type (existT B a b)=(existT B a' b') in the local
context (i.e. each term of the equality has a sigma type { a:A & (B a) }) this tactic rewrites a into a ' and
b into b' in the current goal. This tactic works even if B is also a sigma type. This kind of equalities between
dependent pairs may be derived by the injectionand inversion tactics.

5.3. Tactics 325

The Coq Reference Manual, Release 8.11.2

Variant: dependent rewrite <- ident
Analogous to dependent rewrite -—>butuses the equality from right to left.

5.3.14 Inversion

functional inversion ident
functional inversion is a tactic that performs inversion on hypothesis ident of the form qualid

+ +) .
term = termor term = qualid term | where gualid must have been defined using Function
(see Advanced recursive functions). Note that this tactic is only available after a Require Import FunInd.

Error: Hypothesis ident must contain at least one Function.

Error: Cannot find inversion information for hypothesis ident.
This error may be raised when some inversion lemma failed to be generated by Function.

Variant: functional inversion num
This does the same thing as intros until num followed by functional inversion ident
where ident is the identifier for the last introduced hypothesis.

Variant: functional inversion ident qualid
Variant: functional inversion num gqualid

. + +
If the hypothesis ident (or num) has a type of the form qualid, |term; = qualid, |term;

where qualid, and qualid, are valid candidates to functional inversion, this variant allows choosing
which qualid is inverted.

5.3.15 Classical tactics

In order to ease the proving process, when the Classical module is loaded, a few more tactics are available. Make
sure to load the module using the Require Import command.

classical_left

classical_right
These tactics are the analog of 1eft and right but using classical logic. They can only be used for disjunctions.
Use classical_left toprove the left part of the disjunction with the assumption that the negation of right part
holds. Use classical_right to prove the right part of the disjunction with the assumption that the negation
of left part holds.

5.3.16 Automating

btauto
The tactic bt aut o implements a reflexive solver for boolean tautologies. It solves goals of the form t = u where
t and u are constructed over the following grammar:

btauto_term = ident
true
false
orb btauto_term btauto_term
andb btauto_term btauto_term
xorb btauto_term btauto_term
negb btauto_term
if btauto_term then btauto_term else btauto_term

326 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Whenever the formula supplied is not a tautology, it also provides a counter-example.
Internally, it uses a system very similar to the one of the ring tactic.
Note that this tactic is only available after a Require Import Btauto.

Error: Cannot recognize a boolean equality.
The goal is not of the form t = u. Especially note that bt aut o doesn’t introduce variables into the context
on its own.

omega
The tactic omega, due to Pierre Crégut, is an automatic decision procedure for Presburger arithmetic. It solves
quantifier-free formulas built with ~, \ /, /\, —> on top of equalities, inequalities and disequalities on both the
type nat of natural numbers and Z of binary integers. This tactic must be loaded by the command Require
Import Omega. See the additional documentation about omega (see Chapter Omega: a solver for quantifier-free
problems in Presburger Arithmetic).

ring
This tactic solves equations upon polynomial expressions of a ring (or semiring) structure. It proceeds by normal-
izing both hand sides of the equation (w.r.t. associativity, commutativity and distributivity, constant propagation)
and comparing syntactically the results.

*
ring_simplify | term

This tactic applies the normalization procedure described above to the given terms. The tactic then replaces all
occurrences of the terms given in the conclusion of the goal by their normal forms. If no term is given, then the
conclusion should be an equation and both hand sides are normalized.

See The ring and field tactic families for more information on the tactic and how to declare new ring structures. All
declared field structures can be printed with the Print Rings command.

field
*
field_simplify term
field_simplify_eq
The field tactic is built on the same ideas as ring: this is a reflexive tactic that solves or simplifies equations in a field

structure. The main idea is to reduce a field expression (which is an extension of ring expressions with the inverse
and division operations) to a fraction made of two polynomial expressions.

. + .
Tactic £ield is used to solve subgoals, whereas field simplify |term | replaces the provided terms by
their reduced fraction. field_simplify_eq applies when the conclusion is an equation: it simplifies both
hand sides and multiplies so as to cancel denominators. So it produces an equation without division nor inverse.

All of these 3 tactics may generate a subgoal in order to prove that denominators are different from zero.

See The ring and field tactic families for more information on the tactic and how to declare new field structures. All
declared field structures can be printed with the Print Fields command.

Example

Require Import Reals.

[Loading ML file newring_plugin.cmxs ... done]
[Loading ML file r_syntax_plugin.cmxs ... done]
[Loading ML file zify_plugin.cmxs ... done]
[Loading ML file micromega_plugin.cmxs ... done]

Goal forall x y:R,

(x * y > 0)%R —>

(x * (1 / x +x / (x +y)))SR =

((=1 /y) *y * (-—x* (x/ (x+y)) - 1))%R.

(continues on next page)

5.3. Tactics 327

The Coq Reference Manual, Release 8.11.2

1 subgoal

forall x y : R,
(x *y > 0)%R —>
(x * (1 / x+x/ (x+y)))SR = (-1 /vy *y* (-

intros; field.

1 subgoal
X, Vv R
H: (x *y > 0)%R

(x + y)%R <> 0%R /\ y <> 0%R /\ x <> 0%R

(continued from previous page)

See also:

File plugins/setoid_ring/RealField.v for an example of instantiation, theory theories/Reals for many examples of use of

field.

5.3.17 Non-logical tactics

cycle num

This tactic puts the num first goals at the end of the list of goals. If num is negative, it will put the last [num| goals

at the beginning of the list.

Example

Goal P 1 /\ P2 /NP3 /\P4/\PS5.
1 subgoal

P1/\NP2/\P3/\NP4/\P5

repeat split.
5 subgoals

subgoal 2 is:
P 2
subgoal 3 is:
P 3
subgoal 4 is:
P 4
subgoal 5 is:
P 5

all: cycle 2.
5 subgoals

(continues on next page)

328

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

subgoal 2
P 4
subgoal 3
P 5
subgoal 4
P 1
subgoal 5
P 2

all: cycle -3.
5 subgoals

is:

is:

is:

is:

subgoal 2
P 1
subgoal 3
P 2
subgoal 4
P 3
subgoal 5
P 4

is:

is:

is:

is:

(continued from previous page)

swap num num

This tactic switches the position of the goals of indices num and num. If either num or num is negative then goals
are counted from the end of the focused goal list. Goals are indexed from 1, there is no goal with position 0.

Example

Goal P 1 /NP 2 /\P 3 /\P 4 /\PS5.

1 subgoal

P1 /NP2 /NP3 /\NP4/\PS5

repeat split.
5 subgoals

subgoal 2
P 2
subgoal 3
P 3
subgoal 4
P 4
subgoal 5
P 5

all: swap 1 3.
5 subgoals

is:

is:

is:

is:

(continues on next page)

5.3. Tactics

329

The Coq Reference Manual, Release 8.11.2

subgoal
P 2
subgoal
P 1
subgoal
P 4
subgoal
P 5

all: swap 1

-1.

5 subgoals

(continued from previous page)

revgoals

This tactics reverses the list of the focused goals.

Example

Goal P 1 /\P 2 /\NP 3 /\P4/\PS5.
1 subgoal

P1 /NP2 /NP3 /\P4/\P5

repeat split.
5 subgoals

subgoal
P 2
subgoal
P 3
subgoal
P 4
subgoal
P 5

all: revgoals.
5 subgoals

is:

is:

is:

is:

(continues on next page)

330

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

shelve
This tactic moves all goals under focus to a shelf. While on the shelf, goals will not be focused on. They can be
solved by unification, or they can be called back into focus with the command Unshelve.

Variant: shelve_unifiable
Shelves only the goals under focus that are mentioned in other goals. Goals that appear in the type of other
goals can be solved by unification.

Example

Goal exists n, n=0.
1 subgoal

refine (ex_intro _ _).
1 focused subgoal
(shelved: 1)

all: shelve_unifiable.
reflexivity.
No more subgoals.

Command: Unshelve
This command moves all the goals on the shelf (see shelve) from the shelf into focus, by appending them to the
end of the current list of focused goals.

unshelve tactic
Performs t act i c, then unshelves existential variables added to the shelf by the execution of tact i c, prepending
them to the current goal.

give_up
This tactic removes the focused goals from the proof. They are not solved, and cannot be solved later in the proof.
As the goals are not solved, the proof cannot be closed.

The give_up tactic can be used while editing a proof, to choose to write the proof script in a non-sequential
order.

5.3. Tactics 331

The Coq Reference Manual, Release 8.11.2

5.3.18 Delaying solving unification constraints

solve_constraints

Flag: Solve Unification Constraints
By default, after each tactic application, postponed typechecking unification problems are resolved using heuris-
tics. Unsetting this flag disables this behavior, allowing tactics to leave unification constraints unsolved. Use the
solve_constraints tactic at any point to solve the constraints.

5.3.19 Proof maintenance

Experimental. Many tactics, such as int ros, can automatically generate names, such as "HO” or "H1” for a new hypoth-
esis introduced from a goal. Subsequent proof steps may explicitly refer to these names. However, future versions of Coq
may not assign names exactly the same way, which could cause the proof to fail because the new names don’t match the
explicit references in the proof.

The following "Mangle Names” settings let users find all the places where proofs rely on automatically generated names,
which can then be named explicitly to avoid any incompatibility. These settings cause Coq to generate different names,
producing errors for references to automatically generated names.

Flag: Mangle Names
When set, generated names use the prefix specified in the following option instead of the default prefix.

Option: Mangle Names Prefix string
Specifies the prefix to use when generating names.

5.3.20 Performance-oriented tactic variants

change_no_check term
For advanced usage. Similar to change term, but as an optimization, it skips checking that ¢t e rmis convertible
to the goal.

Recall that the Coq kernel typechecks proofs again when they are concluded to ensure safety. Hence, using change
checks convertibility twice overall, while change_no_ check can produce ill-typed terms, but checks convert-
ibility only once. Hence, change_no_ check can be useful to speed up certain proof scripts, especially if one
knows by construction that the argument is indeed convertible to the goal.

In the following example, change_no_check replaces False by True, but Qed then rejects the proof, en-
suring consistency.

Example

Goal False.
1 subgoal

change_no_check True.
1 subgoal

(continues on next page)

332 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

No more subgoals.

Fail Qed.
The command has indeed failed with message:
The term "I" has type "True" while it is expected to have type "False".

change_no_check supports all of change’s variants.

Variant: change_no_check term with term’

Variant: change_no_check term at |[num ¥ with term’

Variant: change_no_check term | at |num * with term in ident

Example

Goal True -> False.
1 subgoal

True —-> False

intro H.
1 subgoal

change_no_check False in H.
1 subgoal

exact H.
No more subgoals.

Fail Qed.
The command has indeed failed with message:
The term "fun H : True => H" has type "True —-> True"
while it is expected to have type "True —-> False".

Variant: convert_concl_no_check term
Deprecated since version 8.11.

Deprecated old name for change_no_check. Does not support any of its variants.

exact_no_check term
For advanced usage. Similar to exact term, but as an optimization, it skips checking that ¢ e rm has the goal’s
type, relying on the kernel check instead. See change_no_ check for more explanations.

5.3. Tactics 333

The Coq Reference Manual, Release 8.11.2

Example

Goal False.
1 subgoal

exact_no_check I.
No more subgoals.

Fail Qed.
The command has indeed failed with message:
The term "I" has type "True" while it is expected to have type "False".

Variant: vim_cast_no_check term
For advanced usage. Similar to exact_no_check term, but additionally instructs the kernel to use
vm_compute to compare the goal’s type with the t e rn’s type.

Example

Goal False.
1 subgoal

vm_cast_no_check I.
No more subgoals.

Fail Qed.
The command has indeed failed with message:
The term "I" has type "True" while it is expected to have type "False".

Variant: native_cast_no_check term
for advanced usage. similar to exact_no_check term, but additionally instructs the kernel to use
native_compute to compare the goal’s type with the ¢ erm’s type.

Example

Goal False.
1 subgoal

native_cast_no_check I.
No more subgoals.

Fail Qed.
The command has indeed failed with message:
The term "I" has type "True" while it is expected to have type "False".

334 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

5.4 Ltac

This chapter documents the tactic language L.

We start by giving the syntax, and next, we present the informal semantics. To learn more about the language and especially
about its foundations, please refer to [Del00].

Example: Basic tactic macros

Here are some examples of simple tactic macros that the language lets you write.

Ltac reduce_and_try_to_solve := simpl; intros; auto.

Ltac destruct_bool_and_rewrite b H1 H2 :=
destruct b; [rewrite H1l; eauto | rewrite H2; eauto].

See Section Examples of using Ltac for more advanced examples.

5.4.1 Syntax

The syntax of the tactic language is given below. See Chapter The Gallina specification language for a description of the
BNF metasyntax used in these grammar rules. Various already defined entries will be used in this chapter: entries num,
int, ident qualid, term, cpatternand tactic represent respectively natural and integer numbers, identifiers,
qualified names, Coq terms, patterns and the atomic tactics described in Chapter 7Tactics.

The syntax of cpattern is the same as that of terms, but it is extended with pattern matching metavariables. In
cpattern, a pattern matching metavariable is represented with the syntax ? i dent. The notation _ can also be used to
denote metavariable whose instance is irrelevant. In the notation ? i dent, the identifier allows us to keep instantiations
and to make constraints whereas __ shows that we are not interested in what will be matched. On the right hand side of
pattern matching clauses, the named metavariables are used without the question mark prefix. There is also a special
notation for second-order pattern matching problems: in an applicative pattern of the form $@?ident ident,
ident , the variable ident matches any complex expression with (possible) dependencies in the variables ident ;
and returns a functional term of the form fun ident, .. ident, => term

The main entry of the grammar is 1 tac_expr. This language is used in proof mode but it can also be used in toplevel
definitions as shown below.

Note:

¢ The infix tacticals ... || .., .. + ..,and .. ; .. are associative.

Example

If you want that tactic,; tactic, be fully run on the first subgoal generated by tactic,, before running
on the other subgoals, then you should not write tactic,; (tactic,; tactic,) butrather tactic,;
[> tactic,; tactic; ..].

e In tacarg, there is an overlap between qualid as a direct tactic argument and qua 1 id as a particular case of
term. The resolution is done by first looking for a reference of the tactic language and if it fails, for a reference
to a term. To force the resolution as a reference of the tactic language, use the form 1tac: (qualid). To force
the resolution as a reference to a term, use the syntax (qualid).

5.4. Ltac 335

The Coq Reference Manual, Release 8.11.2

* Asshown by the figure, tactical ... | | .. binds more than the prefix tacticals t ry, repeat, doand abstract
which themselves bind more than the postfix tactical ... ; [..] which binds at the same level as ... ;
Example

. . . . + .
try repeat tactic; || tactic,; tacticy; [|tactic 1; tacticy

is understood as:

+
((try (repeat (tactic, || tactic,)); tacticy); [|tactic | 1); tacticy
ltac_expr L= ltac_expr ; ltac_expr
[> Itac_expr | ... | ltac_expr]
ltac_expr ; [ltac_expr | ... | ltac_expr]

ltac_expr3

ltac_expr3 = do (natural | ident) ltac_expr3

progress ltac_expr3

repeat ltac_expr3

try ltac_expr3

once ltac_expr3

exactly_once ltac_expr3

timeout (natural | ident) ltac_expr3
time [string] ltac_expr3

only selector: ltac_expr3

ltac_expr2

ltac_expr2 = ltac_exprl || ltac_expr3

ltac_exprl + l1ltac_expr3
tryif ltac_exprl then ltac_exprl else ltac_exprl
ltac_exprl

ltac_exprl = fun name ... name => atom
let [rec] let_clause with ... with let_clause in atom
match goal with context_rule | ... | context_rule end
match reverse goal with context_rule | ... | context_rule end
match Itac_expr with match_rule | ... | match_rule end
lazymatch goal with context_rule | ... | context_rule end
lazymatch reverse goal with context_rule | ... | context_rule end
lazymatch ltac_expr with match_rule | ... | match_rule end
multimatch goal with context_rule | ... | context_rule end
multimatch reverse goal with context_rule | ... | context_rule enc
multimatch Itac_expr with match_rule | ... | match_rule end

abstract atom
abstract atom using ident

first [ltac_expr | ... | ltac_expr]

solve [ltac_expr | ... | 1ltac_expr]

idtac [message_token ... message_token]

fail [natural] [message_token ... message_token]
gfail [natural] [message_token ... message_token]
fresh [component .. component]

context ident [term]
eval redexpr in term
type of term

336

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

constr : term
uconstr : term
type_term term
numgoals

guard test
assert_fails ltac_expr3
assert_succeeds ltac_expr3
tactic
qualid tacarg ... tacarg
atom
atom n= qualid
()
int
(ltac_expr)
component n= string | qualid
message_token string | ident | int
tacarg n= qualid
()
ltac : atom
term

let_clause = ident [name ... name]l := ltac_expr
context_rule = context_hyp, ..., context_hyp |- cpattern => ltac_expr
cpattern => ltac_expr
|- cpattern => ltac_expr
_ => l1ltac_expr
context_hyp = name : cpattern
name := cpattern [: cpattern]
match_rule L= cpattern => ltac_expr
context [ident] [cpattern] => ltac_expr
_ => l1ltac_expr
test n= int = int
int (< | <= | > | >=) 1int
selector L= [ident]
int
(int | int - int), ..., (int | int - int)
selector
all

par
I

toplevel_selector

top RES [Local] Ltac ltac_def with ... with Itac_def
ltac_def ident [ident ... ident] := ltac_expr
qualid [ident ... ident] ::= ltac_expr

5.4.2 Semantics
Tactic expressions can only be applied in the context of a proof. The evaluation yields either a term, an integer or a tactic.
Intermediate results can be terms or integers but the final result must be a tactic which is then applied to the focused goals.

There is a special case for match goal expressions of which the clauses evaluate to tactics. Such expressions can only
be used as end result of a tactic expression (never as argument of a non-recursive local definition or of an application).

5.4. Ltac 337

The Coq Reference Manual, Release 8.11.2

The rest of this section explains the semantics of every construction of L.

Sequence

A sequence is an expression of the following form:

ltac_expr, ; ltac_expr,
The expression 1tac_expr, is evaluated to v,, which must be a tactic value. The tactic v, is applied to the
current goal, possibly producing more goals. Then Itac_expr, is evaluated to produce v,, which must be a
tactic value. The tactic v, is applied to all the goals produced by the prior application. Sequence is associative.

Local application of tactics

Different tactics can be applied to the different goals using the following form:

*
[> |ltac_expr | 1

The expressions I tac_expr. are evaluated to v, fori=1, ..., n and all have to be tactics. The v, is applied to
the i-th goal, fori =1, ..., n. It fails if the number of focused goals is not exactly n.

Note: If no tactic is given for the i-th goal, it behaves as if the tactic idtac were given. For instance, [> | auto]
is a shortcut for [> idtac | auto].

* *
Variant: [> ltac_exprl-I | ltac_expr .. | |ltac_expr; |]

In this variant, I1tac_expr is used for each goal coming after those covered by the list of 1tac_expr;
but before those covered by the list of 1t a c_expr;.

* *
Variant: [> |I1tac_expr | .. | |1ltac_expr | 1]

In this variant, idtac is used for the goals not covered by the two lists of 1tac _expr.

Variant: [> ltac_expr ..]
In this variant, the tactic 1tac_expr is applied independently to each of the goals, rather than globally. In
particular, if there are no goals, the tactic is not run at all. A tactic which expects multiple goals, such as
swap, would act as if a single goal is focused.

*

Variant: 1tac_expr, ; [ltac expr, | 1
This variant of local tactic application is paired with a sequence. In this variant, there must be as many
ltac_expr,; as goals generated by the application of 1tac_expr, to each of the individual goals inde-
pendently. All the above variants work in this form too. Formally, 1tac_expr ; [...] isequivalent
to[> ltac_expr ; [> ... 1 .. 1.

Goal selectors

We can restrict the application of a tactic to a subset of the currently focused goals with:

toplevel_selector : ltac_expr
We can also use selectors as a tactical, which allows to use them nested in a tactic expression, by using the keyword
only:

Variant: only selector : ltac_expr
When selecting several goals, the tactic I1tac_expr is applied globally to all selected goals.

338 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Variant: [ident] : ltac_expr
In this variant, I1tac_expr is applied locally to a goal previously named by the user (see Existential vari-
ables).

Variant: num : ltac_expr
In this variant, I tac_expr is applied locally to the num-th goal.

. +
Variant: | num—num — : ltac_expr

In this variant, 1t ac_expr is applied globally to the subset of goals described by the given ranges. You can
write a single n as a shortcut for n—n when specifying multiple ranges.

Variant: all: ltac_expr
In this variant, 1 tac_expr is applied to all focused goals. al1l: can only be used at the toplevel of a tactic
expression.

Variant: !: Iltac_expr
In this variant, if exactly one goal is focused, I tac_expr is applied to it. Otherwise the tactic fails. ! : can
only be used at the toplevel of a tactic expression.

Variant: par: ltac_expr
In this variant, 1 tac_expr is applied to all focused goals in parallel. The number of workers can be con-
trolled via the command line option —async-proofs—tac—7 taking as argument the desired number of
workers. Limitations: par: only works on goals containing no existential variables and 1 tac_expr must
either solve the goal completely or do nothing (i.e. it cannot make some progress). par: can only be used
at the toplevel of a tactic expression.

Error: No such goal.

For loop

There is a for loop that repeats a tactic num times:

do num ltac_expr
ltac_expr is evaluated to v which must be a tactic value. This tactic value v is applied num times. Supposing
num > 1, after the first application of v, v is applied, at least once, to the generated subgoals and so on. It fails if
the application of v fails before the num applications have been completed.

Repeat loop

We have a repeat loop with:

repeat ltac expr
ltac_expr is evaluated to v. If v denotes a tactic, this tactic is applied to each focused goal independently. If
the application succeeds, the tactic is applied recursively to all the generated subgoals until it eventually fails. The
recursion stops in a subgoal when the tactic has failed 7o make progress. The tactic repeat Itac expr itself
never fails.

Error catching

‘We can catch the tactic errors with:

try ltac _expr
Itac_expr is evaluated to v which must be a tactic value. The tactic value v is applied to each focused goal
independently. If the application of v fails in a goal, it catches the error and leaves the goal unchanged. If the level
of the exception is positive, then the exception is re-raised with its level decremented.

5.4. Ltac 339

The Coq Reference Manual, Release 8.11.2

Detecting progress

We can check if a tactic made progress with:

progress ltac_expr
ltac_expr is evaluated to v which must be a tactic value. The tactic value v is applied to each focused subgoal
independently. If the application of v to one of the focused subgoal produced subgoals equal to the initial goals (up
to syntactical equality), then an error of level O is raised.

Error: Failed to progress.

Backtracking branching

We can branch with the following structure:

ltac_expr, + ltac_expr,
ltac _expr,and Itac expr, are evaluated respectively to v, and v, which must be tactic values. The tactic
value v, is applied to each focused goal independently and if it fails or a later tactic fails, then the proof backtracks
to the current goal and v, is applied.

Tactics can be seen as having several successes. When a tactic fails it asks for more successes of the prior
tactics. Iltac _expr, + ltac_expr, has all the successes of v, followed by all the successes of v,.
Algebraically, (I1tac_expr, + ltac expr,); ltac expr, = (ltac_expr,; ltac_expr,) +
(ltac_expr,; ltac_expr;s).

Branching is left-associative.

First tactic to work

Backtracking branching may be too expensive. In this case we may restrict to a local, left biased, branching and consider
the first tactic to work (i.e. which does not fail) among a panel of tactics:

*
first [|1tac_expr I 1

The I1tac_expr; are evaluated to v, and v, must be tactic values fori = 1, ..., n. Supposingn > 1, first

[ltac_expr, | ... | ltac_expr,] applies v, in each focused goal independently and stops if it suc-
ceeds; otherwise it tries to apply v, and so on. It fails when there is no applicable tactic. In other words, first
[ltac _expr; | ... | ltac_expr,] behaves, in each goal, as the first v, to have at least one success.

Error: No applicable tactic.

Variant: first Iltac_expr
This is an Ly, alias that gives a primitive access to the first tactical as an L, definition without going through
a parsing rule. It expects to be given a list of tactics through a Tactic Notation, allowing to write
notations of the following form:

Example

Tactic Notation "foo" tactic_list (tacs) := first tacs.

Left-biased branching

Yet another way of branching without backtracking is the following structure:

340 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

ltac_expr; || ltac_expr,
ltac_expr,and I1tac_expr, are evaluated respectively to v, and v, which must be tactic values. The tactic
value v, is applied in each subgoal independently and if it fails fo progress then v, is applied. Itac_expr,
|| ltac_expr,isequivalentto first [progress ltac expr, | Iltac_expr,] (exceptthatif
it fails, it fails like v,). Branching is left-associative.

Generalized biased branching

The tactic

tryif Itac expr; then ltac expr, else ltac_expr;
is a generalization of the biased-branching tactics above. The expression 1 tac_expr, is evaluated to v, which is
then applied to each subgoal independently. For each goal where v, succeeds at least once, 1tac_expr, is evalu-
ated to v, which is then applied collectively to the generated subgoals. The v, tactic can trigger backtracking points
in v,: where v, succeeds at least once, tryif Itac _expr, then Itac _expr, else ltac_expr,
is equivalent to v, ; v,. In each of the goals where v, does not succeed at least once, 1 tac_expr, is evaluated
in v which is is then applied to the goal.

Soft cut

Another way of restricting backtracking is to restrict a tactic to a single success a posteriori:

once ltac expr
Itac_expr is evaluated to v which must be a tactic value. The tactic value v is applied but only its first success
is used. If v fails, once Itac_expr fails like v. If v has at least one success, once Itac_expr succeeds
once, but cannot produce more successes.

Checking the successes

Coq provides an experimental way to check that a tactic has exactly one success:

exactly_once Iltac_ expr
ltac_expr is evaluated to v which must be a tactic value. The tactic value v is applied if it has at most one
success. If v fails, exactly_once Itac_expr fails like v. If v has a exactly one success, exactly_once
Itac_expr succeeds like v. If v has two or more successes, exactly_once Iltac_expr fails.

Warning: The experimental status of this tactic pertains to the fact if v performs side effects, they may occur
in an unpredictable way. Indeed, normally v would only be executed up to the first success until backtracking is
needed, however exactly_once needs to look ahead to see whether a second success exists, and may run further
effects immediately.

Error: This tactic has more than one success.

Checking the failure

Coq provides a derived tactic to check that a tactic fails:

assert_fails ltac_expr
This behaves like idtac if 1tac expr fails, and behaves like fail 0 Itac expr "succeeds" if
ltac_expr has at least one success.

5.4. Ltac 341

The Coq Reference Manual, Release 8.11.2

Checking the success

Coq provides a derived tactic to check that a tactic has at least one success:

assert_succeeds Iltac_expr
This behaves like tryif (assert_fails Itac_expr) then fail 0 Itac_expr "fails"
else idtac.

Solving

We may consider the first to solve (i.e. which generates no subgoal) among a panel of tactics:
*
solve [ltac_expr I]
The Itac_expr; are evaluated to v, and v, must be tactic values, fori=1, ..., n. Supposingn > 1, solve

[ltac _expr; | ... | ltac_expr,] applies v, to each goal independently and stops if it succeeds; oth-
erwise it tries to apply v, and so on. It fails if there is no solving tactic.

Error: Cannot solve the goal.

Variant: solve ltac_expr

This is an L, alias that gives a primitive access to the solve: tactical. See the £irst tactical for more
information.

Identity

The constant idtac is the identity tactic: it leaves any goal unchanged but it appears in the proof script.

*
idtac |message_token

This prints the given tokens. Strings and integers are printed literally. If a (term) variable is given, its contents are
printed.

Failing

fail
This is the always-failing tactic: it does not solve any goal. It is useful for defining other tacticals since it can be
caught by try, repeat, match goal, or the branching tacticals.

Variant: fail num
The number is the failure level. If no level is specified, it defaults to 0. The level is used by try, repeat,
match goal and the branching tacticals. If 0, it makes mat ch goal consider the next clause (backtrack-
ing). If nonzero, the current match goal block, try, repeat, or branching command is aborted and
the level is decremented. In the case of +, a nonzero level skips the first backtrack point, even if the call to
fail numis notenclosed in a + command, respecting the algebraic identity.

*
Variant: fail message token

The given tokens are used for printing the failure message.

*
Variant: fail num message token

This is a combination of the previous variants.

Variant: gfail
This variant fails even when used after ; and there are no goals left. Similarly, gfail fails even when used
after all: and there are no goals left. See the example for clarification.

342 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

*
Variant: gfail message_token

*
Variant: gfail num message_token

These variants fail with an error message or an error level even if there are no goals left. Be careful however
if Coq terms have to be printed as part of the failure: term construction always forces the tactic into the goals,
meaning that if there are no goals when it is evaluated, a tactic calllike 1et x := H in fail 0 xwill
succeed.

Error: Tactic Failure message (level num).

Error: No such goal.

Example

Goal True.
1 subgoal

Proof.

fail.
Toplevel input, characters 0-5:
> fail.

S AAAAA

Error: Tactic failure.

Abort.
Goal True.
1 subgoal

Proof.
trivial; fail.
No more subgoals.

Qed.
Goal True.
1 subgoal

Proof.
trivial.
No more subgoals.

fail.
Toplevel input, characters 0-5:
> fail.

S AAAAA

Error: No such goal.

Abort.
Goal True.

1 subgoal
(continues on next page)

5.4. Ltac 343

The Coq Reference Manual, Release 8.11.2

Proof.
trivial.
No more subgoals.

all: fail.
Qed.
Goal True.

1 subgoal

Proof.
gfail.

Toplevel input, characters 0-6:

> gfail.

S AAAAAA

Error: Tactic failure.

Abort.
Goal True.
1 subgoal

Proof.
trivial; gfail.

Toplevel input, characters 0-7:

> trivial; gfail.

S AAAAAAA

Error: Tactic failure.

Abort.
Goal True.
1 subgoal

Proof.
trivial.
No more subgoals.

gfail.

Toplevel input, characters 0-6:

> gfail.

S AAAAAA

Error: No such goal.

Abort.
Goal True.
1 subgoal

(continued from previous page)

(continues on next page)

344

Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

Proof.
trivial.
No more subgoals.

all: gfail.
Toplevel input, characters 0-11:
> all: gfail.

S AAAAAAAAAAN

Error: Tactic failure.

Abort.

Timeout

We can force a tactic to stop if it has not finished after a certain amount of time:

timeout num Itac_expr

ltac_expr is evaluated to v which must be a tactic value. The tactic value v is applied normally, except that it
is interrupted after num seconds if it is still running. In this case the outcome is a failure.

Warning: For the moment, timeout is based on elapsed time in seconds, which is very machine-dependent:
a script that works on a quick machine may fail on a slow one. The converse is even possible if you combine
a timeout with some other tacticals. This tactical is hence proposed only for convenience during debugging or
other development phases, we strongly advise you to not leave any timeout in final scripts. Note also that this
tactical isn’t available on the native Windows port of Coq.

Timing a tactic

A tactic execution can be timed:

time string ltac_expr
evaluates 1 tac_expr and displays the running time of the tactic expression, whether it fails or succeeds. In case
of several successes, the time for each successive run is displayed. Time is in seconds and is machine-dependent.
The st ring argument is optional. When provided, it is used to identify this particular occurrence of time.

Timing a tactic that evaluates to a term

Tactic expressions that produce terms can be timed with the experimental tactic

time_constr Iltac_ expr

which evaluates 1 tac_expr () and displays the time the tactic expression evaluated, assuming successful eval-
uation. Time is in seconds and is machine-dependent.

This tactic currently does not support nesting, and will report times based on the innermost execution. This is due
to the fact that it is implemented using the following internal tactics:

5.4. Ltac 345

The Coq Reference Manual, Release 8.11.2

restart_timer string
Reset a timer
?
finish_timing (string) string
Display an optionally named timer. The parenthesized string argument is also optional, and determines the
label associated with the timer for printing.

By copying the definition of t ime_ const r from the standard library, users can achieve support for a fixed pattern
of nesting by passing different st ring parameters to restart_timer and finish_timing ateach level
of nesting.

Example

Ltac time_constrl tac :=
let eval_early := match goal with _ => restart_timer " (depth 1)" end in
let ret tac () in
let eval_early := match goal with _ => finish_timing ("Tactic evaluation")
<" (depth 1)" end in
ret.
time_constrl is defined

Goal True.

1 subgoal
True
let v := time_constr
ltac: (fun _ =>
let x := time_constrl ltac: (fun _ => constr: (10 * 10)) in
let y := time_constrl ltac: (fun _ => eval compute in x) in
y) in
pose V.
Tactic evaluation (depth 1) ran for 0. secs (0.u,0.s)
Tactic evaluation (depth 1) ran for 0. secs (0.u,0.s)
Tactic evaluation ran for 0.001 secs (0.u,0.s)
1 subgoal
n := 100 nat
True
Local definitions
Local definitions can be done as follows:
*
let ident, := ltac_expr; |with ident; := ltac_expr; in Iltac_expr

each 1tac_expr, is evaluated to v, then, Itac_expr is evaluated by substituting v, to each occurrence of
ident,, fori=1, .., n. There are no dependencies between the 1 tac_expr. and the ident..

Local definitions can be made recursive by using let rec instead of 1let. In this latter case, the definitions are
evaluated lazily so that the rec keyword can be used also in non-recursive cases so as to avoid the eager evaluation
of local definitions.

346 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Application

An application is an expression of the following form:
. +

qualid |tacarg
The reference qualid must be bound to some defined tactic definition expecting at least as many arguments as
the provided tacarg. The expressions I tac_expr; are evaluated to v, fori=1, ..., n.

Function construction

A parameterized tactic can be built anonymously (without resorting to local definitions) with:

+
fun ident => ltac_expr
Indeed, local definitions of functions are a syntactic sugar for binding a fun tactic to an identifier.

Pattern matching on terms

We can carry out pattern matching on terms with:

+
match ltac_expr with |cpattern; => ltac expr; | end
The expression 1tac_expr is evaluated and should yield a term which is matched against coattern;. The
matching is non-linear: if a metavariable occurs more than once, it should match the same expression every time.
It is first-order except on the variables of the form @?1id that occur in head position of an application. For these
variables, the matching is second-order and returns a functional term.

Alternatively, when a metavariable of the form ?1id occurs under binders, say x,, .., x, and the expression
matches, the metavariable is instantiated by a term which can then be used in any context which also binds the
variables x,, .., x, with same types. This provides with a primitive form of matching under context which does
not require manipulating a functional term.

If the matching with cpattern, succeeds, then 1tac expr, is evaluated into some value by substituting the
pattern matching instantiations to the metavariables. If 1tac_expr, evaluates to a tactic and the match expression
is in position to be applied to a goal (e.g. it is not bound to a variable by a 1et 1in), then this tactic is applied.
If the tactic succeeds, the list of resulting subgoals is the result of the match expression. If I1tac_expr, does
not evaluate to a tactic or if the match expression is not in position to be applied to a goal, then the result of the
evaluation of 1tac_expr, is the result of the match expression.

If the matching with cpattern, fails, or if it succeeds but the evaluation of 1tac_expr, fails, or if the evalua-
tion of 1tac_expr, succeeds but returns a tactic in execution position whose execution fails, then cpattern,
is used and so on. The pattern _ matches any term and shadows all remaining patterns if any. If all clauses fail (in
particular, there is no pattern _) then a no-matching-clause error is raised.

Failures in subsequent tactics do not cause backtracking to select new branches or inside the right-hand side of the
selected branch even if it has backtracking points.

Error: No matching clauses for match.
No pattern can be used and, in particular, there is no __ pattern.

Error: Argument of match does not evaluate to a term.
This happens when 1tac_expr does not denote a term.
+
Variant: multimatch ltac expr with cpattern; => ltac_expr, end
Using multimatch instead of match will allow subsequent tactics to backtrack into a right-hand side tactic
which has backtracking points left and trigger the selection of a new matching branch when all the backtrack-
ing points of the right-hand side have been consumed.

5.4. Ltac 347

The Coq Reference Manual, Release 8.11.2

The syntax match .. is, in fact, a shorthand for once multimatch ...

+
Variant: lazymatch ltac_expr with cpattern; => ltac expr; I end
Using lazymatch instead of match will perform the same pattern matching procedure but will commit to the
first matching branch rather than trying a new matching if the right-hand side fails. If the right-hand side of
the selected branch is a tactic with backtracking points, then subsequent failures cause this tactic to backtrack.

Variant: context ident [cpattern]
This special form of patterns matches any term with a subterm matching cpattern. If there is a match, the
optional i dent is assigned the “matched context”, i.e. the initial term where the matched subterm is replaced
by a hole. The example below will show how to use such term contexts.

If the evaluation of the right-hand-side of a valid match fails, the next matching subterm is tried. If no further
subterm matches, the next clause is tried. Matching subterms are considered top-bottom and from left to right
(with respect to the raw printing obtained by setting the Printing A1l flag).

Example

Ltac f x :=
match x with
context £ [S ?X] =>

idtac X; (* To display the evaluation order *)

assert (p := eq_refl 1 : X=1); (* To filter the case X=1 *)

let x:= context f£[0O] in assert (x=0) (* To observe the context *)
end.

f is defined

Goal True.
1 subgoal

Pattern matching on goals

We can perform pattern matching on goals using the following expression:
+

+
match goal with context_ hyp |- cpattern => ltac_expr | _ => ltac_expr end

I
If each hypothesis pattern hyp, ;, withi =1, ..., m; is matched (non-linear first-order unification) by a hypothesis
of the goal and if cpattern_1 is matched by the conclusion of the goal, then I1tac_expr, is evaluated to
v, by substituting the pattern matching to the metavariables and the real hypothesis names bound to the possible

348 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

hypothesis names occurring in the hypothesis patterns. If v, is a tactic value, then it is applied to the goal. If
this application fails, then another combination of hypotheses is tried with the same proof context pattern. If
there is no other combination of hypotheses then the second proof context pattern is tried and so on. If the next
to last proof context pattern fails then the last 1tac_expr is evaluated to v and v is applied. Note also that
matching against subterms (using the context ident [cpattern 1) is available and is also subject to
yielding several matchings.

Failures in subsequent tactics do not cause backtracking to select new branches or combinations of hypotheses, or
inside the right-hand side of the selected branch even if it has backtracking points.

Error: No matching clauses for match goal.
No clause succeeds, i.e. all matching patterns, if any, fail at the application of the right-hand-side.

Note: It is important to know that each hypothesis of the goal can be matched by at most one hypothesis pattern.
The order of matching is the following: hypothesis patterns are examined from right to left (i.e. hyp; ;- before
hyp; ;). For each hypothesis pattern, the goal hypotheses are matched in order (newest first), but it possible to
reverse this order (oldest first) with the match reverse goal with variant.

+

+
Variant: multimatch goal with context_ hyp |- cpattern => ltac_expr | _ => ltac_expr

I
Using multimatch instead of match will allow subsequent tactics to backtrack into a right-hand side
tactic which has backtracking points left and trigger the selection of a new matching branch or combination

of hypotheses when all the backtracking points of the right-hand side have been consumed.
The syntax match [reverse] goal .. is, in fact, a shorthand for once multimatch
[reverse] goal ..
¥
Variant: lazymatch goal with context_hypt |- cpattern => ltac_expr | _ => ltac_expr e

I
Using lazymatch instead of match will perform the same pattern matching procedure but will commit to the

first matching branch with the first matching combination of hypotheses rather than trying a new matching
if the right-hand side fails. If the right-hand side of the selected branch is a tactic with backtracking points,
then subsequent failures cause this tactic to backtrack.

Filling a term context
The following expression is not a tactic in the sense that it does not produce subgoals but generates a term to be used in
tactic expressions:

context ident [ltac_expr]
ident must denote a context variable bound by a context pattern of a match expression. This expression evaluates
replaces the hole of the value of ident by the value of 1tac_expr.

Error: Not a context variable.

Error: Unbound context identifier ident.

Generating fresh hypothesis nhames

Tactics sometimes have to generate new names for hypothesis. Letting the system decide a name with the intro tactic is
not so good since it is very awkward to retrieve the name the system gave. The following expression returns an identifier:

5.4. Ltac 349

The Coq Reference Manual, Release 8.11.2

*
fresh component

It evaluates to an identifier unbound in the goal. This fresh identifier is obtained by concatenating the value of the
components (each of them is, either a qua I id which has to refer to a (unqualified) name, or directly a name
denoted by a st ring).

If the resulting name is already used, it is padded with a number so that it becomes fresh. If no component is given,
the name is a fresh derivative of the name H.

Computing in a constr

Evaluation of a term can be performed with:

eval redexpr in term
where redexpr is a reduction tactic among red, hnf, compute, simpl, cbv, lazy, unfold, fold,
pattern.

Recovering the type of a term

type of term
This tactic returns the type of term.

Manipulating untyped terms

uconstr : term
The terms built in L, are well-typed by default. It may not be appropriate for building large terms using a recursive
L, function: the term has to be entirely type checked at each step, resulting in potentially very slow behavior. It

is possible to build untyped terms using L, with the uconstr : termsyntax.

type_term term
Anuntyped term, in L,,., can contain references to hypotheses or to L, variables containing typed or untyped terms.
An untyped term can be type checked using the function type_term whose argument is parsed as an untyped term
and returns a well-typed term which can be used in tactics.

Untyped terms built using uconstr : can also be used as arguments to the refine tactic. In that case the untyped
term is type checked against the conclusion of the goal, and the holes which are not solved by the typing procedure are
turned into new subgoals.

Counting the goals

numgoals
The number of goals under focus can be recovered using the numgoals function. Combined with the guard
command below, it can be used to branch over the number of goals produced by previous tactics.

Example

Ltac pr_numgoals := let n := numgoals in idtac "There are" n "goals".
Goal True /\ True /\ True.
split; [|split].

all:pr_numgoals.
There are 3 goals

350 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Testing boolean expressions

guard test
The gua rd tactic tests a boolean expression, and fails if the expression evaluates to false. If the expression evaluates
to true, it succeeds without affecting the proof.

The accepted tests are simple integer comparisons.

Example

Goal True /\ True /\ True.
split; [|split].

all:let n:= numgoals in guard n<4.

Fail all:let n:= numgoals in guard n=2.
The command has indeed failed with message:
Condition not satisfied: 3=2

Error: Condition not satisfied.

Proving a subgoal as a separate lemma

abstract ltac expr
From the outside, abstract Itac_expristhesameas solve Iltac_expr. Internally it saves an auxiliary
lemma called ident_subproofn where ident is the name of the current goal and n is chosen so that this is
a fresh name. Such an auxiliary lemma is inlined in the final proof term.

This tactical is useful with tactics such as omega or discriminate that generate huge proof terms. With that
tool the user can avoid the explosion at time of the Save command without having to cut manually the proof in
smaller lemmas.

It may be useful to generate lemmas minimal w.r.t. the assumptions they depend on. This can be obtained thanks
to the option below.

Warning: The abstract tactic, while very useful, still has some known limitations, see https://github.com/coq/
coq/issues/9146 for more details. Thus we recommend using it caution in some “non-standard” contexts. In
particular, abstract won’t properly work when used inside quotations 1tac: (.. .), or if used as part of
typeclass resolution, it may produce wrong terms when in universe polymorphic mode.

Variant: abstract ltac_expr using ident
Give explicitly the name of the auxiliary lemma.

Warning: Use this feature at your own risk; explicitly named and reused subterms don’t play well with
asynchronous proofs.

Variant: transparent_abstract Itac expr
Save the subproof in a transparent lemma rather than an opaque one.

Warning: Use this feature at your own risk; building computationally relevant terms with tactics is
fragile.

5.4. Ltac 351

https://github.com/coq/coq/issues/9146
https://github.com/coq/coq/issues/9146

The Coq Reference Manual, Release 8.11.2

Variant: transparent_abstract ltac_expr using ident
Give explicitly the name of the auxiliary transparent lemma.

Warning: Use this feature at your own risk; building computationally relevant terms with tactics is
fragile, and explicitly named and reused subterms don’t play well with asynchronous proofs.

Error: Proof is not complete.

5.4.3 Tactic toplevel definitions
Defining L, functions

Basically, L, toplevel definitions are made as follows:

tac

? *
Command: Local Ltac ident |ident := ltac_expr

This defines a new L,,. function that can be used in any tactic script or new L, toplevel definition.

If preceded by the keyword Local, the tactic definition will not be exported outside the current module.

Note: The preceding definition can equivalently be written:

+
Ltac ident := fun |ident => ltac_expr

* *
Variant: Ltac ident ident with ident |ident := ltac_expr

This syntax allows recursive and mutual recursive function definitions.

*
Variant: Ltac qualid ident ::= ltac_expr
This syntax redefines an existing user-defined tactic.

A previous definition of qualid must exist in the environment. The new definition will always be used instead
of the old one and it goes across module boundaries.

Printing 1., tactics

Command: Print Ltac qualid
Defined L, functions can be displayed using this command.

Command: Print Ltac Signatures
This command displays a list of all user-defined tactics, with their arguments.

5.4.4 Examples of using L,

Proof that the natural numbers have at least two elements

Example: Proof that the natural numbers have at least two elements

The first example shows how to use pattern matching over the proof context to prove that natural numbers have at least
two elements. This can be done as follows:

352 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Lemma card_nat

~ exists x y : nat, forall z:nat, x =z \/ y = z.
1 subgoal
~ (exists x y : nat, forall z : nat, x = z \/ y = z2)
Proof.
intros (x & y & Hz).
1 subgoal
X, Vv nat

destruct (Hz 0), (Hz 1), (Hz 2).
8 subgoals

X, Y : nat

HO x =1
H1 X = 2
False

At this point, the congruence tactic would finish the job:

all: congruence.
No more subgoals.

But for the purpose of the example, let’s craft our own custom tactic to solve this:

all: match goal with

[?a ?b, _ : ?a = ?c |- _ => assert (b = c) by now transitivity a
end.
8 subgoals

X, Yy : nat

Hz : forall z : nat, x =z \/ y = z

H: x =20

HO : x =1

(continues on next page)

5.4. Ltac 353

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

H1 =2
H2 1 =2
False

all: discriminate.
No more subgoals.

Notice that all the (very similar) cases coming from the three eliminations (with three distinct natural numbers) are
successfully solved by amatch goal structure and, in particular, with only one pattern (use of non-linear matching).

Proving that a list is a permutation of a second list

Example: Proving that a list is a permutation of a second list

Let’s first define the permutation predicate:

Section Sort.
Variable A : Set.
Inductive perm : list A -> list A -> Prop :=
| perm_refl : forall 1, perm 1 1
| perm_cons : forall a 10 11, perm 10 11 -> perm (a :: 10) (a :: 11)
| perm_append : forall a 1, perm (a :: 1) (1 ++ a :: nil)
| perm_trans : forall 10 11 12, perm 10 11 —-> perm 11 12 -> perm 10 12.
End Sort.

Next we define an auxiliary tactic perm_aux which takes an argument used to control the recursion depth. This tactic
works as follows: If the lists are identical (i.e. convertible), it completes the proof. Otherwise, if the lists have identical
heads, it looks at their tails. Finally, if the lists have different heads, it rotates the first list by putting its head at the end.

Every time we perform a rotation, we decrement n. When n drops down to 1, we stop performing rotations and we fail.
The idea is to give the length of the list as the initial value of n. This way of counting the number of rotations will avoid
going back to a head that had been considered before.

From Section Syntax we know that Ltac has a primitive notion of integers, but they are only used as arguments for primitive
tactics and we cannot make computations with them. Thus, instead, we use Coq’s natural number type nat.

Ltac perm_aux n :=
match goal with
(continues on next page)

354 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

[|- (perm _ 2?1 ?1) => apply perm_refl

| |- (perm _ (?a :: ?11) (?a :: ?12)) =>
let newn := eval compute in (length 11) in
(apply perm_cons; perm_aux newn)
| |- (perm ?A (?a :: ?11) ?212) =>
match eval compute in n with
| 1 => fail
| =>
let 11' := constr: (11 ++ a :: nil) in
(apply (perm_trans A (a :: 11) 11' 12);
[apply perm_append | compute; perm_aux (pred n))
end
end.

The main tactic is solve_perm. It computes the lengths of the two lists and uses them as arguments to call perm_aux
if the lengths are equal. (If they aren’t, the lists cannot be permutations of each other.)

Ltac solve_perm :=
match goal with
| |- (perm _ 211 ?212) =>
match eval compute in (length 11 = length 12) with
[(?n = ?n) => perm_aux n
end
end.

And now, here is how we can use the tactic solve_perm:
1 subgoal

perm nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil)

solve_perm.
No more subgoals.

1 subgoal
perm nat (0 :: 1 :: 2 :: 3 :: 4 :: 5 6 7 2 8 :: 9 :: nil)
(0 ::2 2 24 26 28 29 27 25 23 21 :: nil)

solve_perm.
No more subgoals.

Deciding intuitionistic propositional logic

Pattern matching on goals allows powerful backtracking when returning tactic values. An interesting application is the
problem of deciding intuitionistic propositional logic. Considering the contraction-free sequent calculi LJT* of Roy
Dyckhoff [Dyc92], it is quite natural to code such a tactic using the tactic language as shown below.

Ltac basic :=
match goal with
| |- True => trivial
(continues on next page)

5.4. Ltac 355

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

| _ : False |- _ => contradiction
| _ ¢ ?A |- ?A => assumption
end.

Ltac simplify :=
repeat (intros;
match goal with

| H: ~ _ |- _ => red in H
| H : _ /\ _ |- _ =>
elim H; do 2 intro; clear H
| H : _\/ _ |- _ =>
elim H; intro; clear H
| H : ?2A /\ ?B -> 2C |- _ =>

cut (A -—> B —> C);
[intro | intros; apply H; split; assumption]
| H: ?2A \/ ?B -> 2C |- _ =>
cut (B —> C);
[cut (A —> C);
[intros; clear H
| intro; apply H; left; assumption]
| intro; apply H; right; assumption]

| HO : ?A -> 2B, H1 : ?A |- _ =>

cut B; [intro; clear HO | apply HO; assumption |
| |- _ /\ _ => split
| |- ~ _ => red

end) .

Ltac my_tauto :=
simplify; basic |
match goal with
| H: (?A —> ?B) —-> 2C
cut (B —> C);
[intro; cut (A -> B);
[intro; cut C;
[intro; clear H | apply H; assumption]

=>

| eclear H]
| intro; apply H; intro; assumption]; my_tauto
| H : ~ ?A —> ?B |- _ =>

cut (False —-> B);
[intro; cut (A -> False);
[intro; cut B;
[intro; clear H | apply H; assumption]

| clear H]
| intro; apply H; red; intro; assumption]; my_tauto
| |- _ \/ _ => (left; my_tauto) || (right; my_tauto)

The tactic basic tries to reason using simple rules involving truth, falsity and available assumptions. The tactic
simplify applies all the reversible rules of Dyckhoft’s system. Finally, the tactic my_tauto (the main tactic to
be called) simplifies with simplify, tries to conclude with basic and tries several paths using the backtracking rules
(one of the four Dyckhoff’s rules for the left implication to get rid of the contraction and the right or).

Having defined my_taut o, we can prove tautologies like these:

Lemma my_tauto_exl
forall A B : Prop, A /\ B —> A \/ B.
(continues on next page)

356 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

Proof.
my_tauto.
Qed.

Lemma my_tauto_ex2
forall A B : Prop, (~ ~B ->B) -> (A -> B) -—> ~ ~ A —> B.
Proof.
my_tauto.
Qed.

Deciding type isomorphisms
A trickier problem is to decide equalities between types modulo isomorphisms. Here, we choose to use the isomorphisms

of the simply typed A-calculus with Cartesian product and unit type (see, for example, [dC95]). The axioms of this
A-calculus are given below.

Open Scope type_scope.
Section Iso_axioms.
Variables A B C : Set.

Axiom Com * B =B * A.
(

A
Axiom Ass : A * (B * C) = A * B * C.
Axiom Cur (A *B —>C) = (A ->B —>C).
Axiom Dis (A -—>B *C) = (A ->B) * (A —>20C).
Axiom P_unit : A * unit = A.
Axiom AR _unit : (A —-> unit) = unit.
Axiom AIL_unit : (unit -> A) = A.

Lemma Cons : B =C -> A * B =A * C.
Proof.

intro Heq; rewrite Heq; reflexivity.
Qed.

End Iso_axioms.

Ltac simplify_type ty :=
match ty with
| ?A * ?B * 2C =>
rewrite <- (Ass A B C); try simplify_type_eq
| ?A * ?B —> 2C =>
rewrite (Cur A B C); try simplify_type_eq
| ?A —> ?B * 2C =>
rewrite (Dis A B C); try simplify_type_eq
[?A * unit =>
rewrite (P_unit A); try simplify_type_eqg
| unit * ?B =>
rewrite (Com unit B); try simplify_type_eq
[?A —> unit =>
rewrite (AR_unit A); try simplify_type_eq
| unit -> ?B =>
rewrite (AL_unit B); try simplify_type_eq
(continues on next page)

5.4. Ltac 357

The Coq Reference Manual, Release 8.11.2

(continued from previous page)
| ?A * 2B =>
(simplify_type A; try simplify_type_eq) |
(simplify_type B; try simplify_type_eq)
| ?A —-> ?B =>
(simplify_type A; try simplify_type_eq) |
(simplify_type B; try simplify_type_eq)
end
with simplify_type_eq :=
match goal with
[|- ?A = ?B => try simplify_type A; try simplify_type B
end.

Ltac len trm :=

match trm with
| _ * ?B => let succ := len B in constr: (S succ)
| _ => constr: (1)

end.

Ltac assoc := repeat rewrite <- Ass.

Ltac solve_type_eg n :=
match goal with

| |- ?A = ?A => reflexivity
[|- ?A * ?B = ?A * ?C =>
apply Cons; let newn := len B in solve_type_eqg newn

| |- ?A * ?B = 2C =>
match eval compute in n with
| 1 => fail
| =>
pattern (A * B) at 1; rewrite Com; assoc; solve_type_eq (pred n)
end
end.

Ltac compare_structure :=
match goal with
| |= ?A = ?B =>

let 11 := len A
with 12 := len B in
match eval compute in (11 = 12) with
| ?n = ?n => solve_type_eqg n
end
end.
Ltac solve_iso := simplify_type_eq; compare_structure.

The tactic to judge equalities modulo this axiomatization is shown above. The algorithm is quite simple. First types
are simplified using axioms that can be oriented (this is done by simplify_type and simplify_type_eq). The
normal forms are sequences of Cartesian products without a Cartesian product in the left component. These normal
forms are then compared modulo permutation of the components by the tactic compare_structure. If they have
the same length, the tactic solve_type_eq attempts to prove that the types are equal. The main tactic that puts all
these components together is solve_iso.

Here are examples of what can be solved by solve_iso.

358 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Lemma solve_iso_exl
forall A B : Set, A * unit * B = B * (unit * A).
Proof.
intros; solve_iso.
Qed.

Lemma solve_iso_ex?2
forall A B C : Set,
(A * unit -> B * (C * unit)) =
(A * unit -> (C -> unit) * C) * (unit -> A -> B).
Proof.
intros; solve_iso.
Qed.

5.4.5 Debugging L., tactics

Backtraces

Flag: Ltac Backtrace
Setting this flag displays a backtrace on Ltac failures that can be useful to find out what went wrong. It is disabled
by default for performance reasons.

Info trace

Command: Info num ltac_expr
This command can be used to print the trace of the path eventually taken by an L. script. That is, the list of
executed tactics, discarding all the branches which have failed. To that end the Tnfo command can be used with
the following syntax.

The number num is the unfolding level of tactics in the trace. At level 0, the trace contains a sequence of tactics in
the actual script, at level 1, the trace will be the concatenation of the traces of these tactics, etc...

Example

Ltac t x := exists x; reflexivity.
Goal exists n, n=0.

Info 0O t 1]t O.
exists with 0;<ltac_plugin::reflexivity@0>
No more subgoals.

Undo.

Info 1 t 1]t O.
<ltac_plugin::exists@l> with 0;simple refine ?X12; <unknown>
No more subgoals.

The trace produced by Tn fo tries its best to be a reparsable L
So some of the output traces will contain oddities.

wac SCript, but this goal is not achievable in all generality.

5.4. Ltac 359

The Coq Reference Manual, Release 8.11.2

As an additional help for debugging, the trace produced by Info contains (in comments) the messages produced
by the idtac tactical at the right position in the script. In particular, the calls to idtac in branches which failed are
not printed.

Option: Info Level num
This option is an alternative to the Tnfo command.

This will automatically print the same trace as Info num at each tactic call. The unfolding level can be
overridden by a call to the Tnfo command.

Interactive debugger
Flag: Ltac Debug
This flag governs the step-by-step debugger that comes with the L, interpreter.

When the debugger is activated, it stops at every step of the evaluation of the current L, expression and prints information
on what it is doing. The debugger stops, prompting for a command which can be one of the following:

simple newline: | go to the next step

h: get help

X: exit current evaluation

s: continue current evaluation without stopping
rn: advance n steps further

r string: advance up to the next call to “idtac string”

Error: Debug mode not available in the IDE
A non-interactive mode for the debugger is available via the flag:

Flag: Ltac Batch Debug
This flag has the effect of presenting a newline at every prompt, when the debugger is on. The debug log thus
created, which does not require user input to generate when this flag is set, can then be run through external tools
such as diff.

Profiling L, tactics

It is possible to measure the time spent in invocations of primitive tactics as well as tactics defined in L, and their inner
invocations. The primary use is the development of complex tactics, which can sometimes be so slow as to impede
interactive usage. The reasons for the performance degradation can be intricate, like a slowly performing L, match or a
sub-tactic whose performance only degrades in certain situations. The profiler generates a call tree and indicates the time
spent in a tactic depending on its calling context. Thus it allows to locate the part of a tactic definition that contains the
performance issue.

Flag: Ltac Profiling
This flag enables and disables the profiler.

Command: Show Ltac Profile
Prints the profile

Variant: Show Ltac Profile string
Prints a profile for all tactics that start with st ring. Append a period (.) to the string if you only want
exactly that name.

Command: Reset Ltac Profile
Resets the profile, that is, deletes all accumulated information.

360 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Warning: Backtracking across a Reset Ltac Profile will not restore the information.

Require Import Cog.omega.Omega.

Ltac mytauto := tauto.
Ltac tac := intros; repeat split; omega || mytauto.
Notation max x y := (x + (y - x)) (only parsing).
Goal forall x y zABCDEFGHIJKLMNOPQRSTUVWIXY Z,
max x (max y z) = max (max x y) z /\ max x (max y z) = max (max x y) z
/\
(A /\B/NC/\ND/NE/\NF /NG /NH /NI /NI /NVK/NL /N M/
N/NO/NPJ/NQ/NR/NS/NT /NU/NV/NW /X /NY /N2
->
z /Ny /NX/Nw/Nv/NU/NT /NS /NR/NQ /NP /N O /NN /\
M/\NL /\NK/\NJ /NI /\NH/\NG/\NF/NE/\ND/\C/\B/\ A).
Proof.
Set Ltac Profiling.
tac.
No more subgoals.
Show Ltac Profile.
total time: 4.599s
tactic local total calls max
\ l I |
-tac ~——————————— = 0.4% 100.0% 1 4.599s
—<Cog.Init.Tauto.with_uniform_flags> ——- 0.0% 79.0% 26 0.347s
—<Coqg.Init.Tauto.tauto_gen> —-—————---———- 0.0% 78.9% 26 0.347s
—<Cog.Init.Tauto.tauto_intuitionistic> - 0.0% 78.9% 26 0.347s
—t_tauto_intuit - 0.1% 78.8% 26 0.347s
—<Coqg.Init.Tauto.simplif> ——————-----——- 53.6% 71.3% 26 0.342s
—omega ——— - - ——— o 20.4% 20.4% 28 0.369s
—<Cog.Init.Tauto.is_conj> —————————————- 10.9% 10.9% 28756 0.019s
—<Cog.Init.Tauto.axioms> —-—————————————— 7.0% 7.5% 0 0.242s
—elim id - ——— 4.2% 4.2% 650 0.039s
tactic local total calls max
| I | |
—-tac -~———-"""""——— = 0.4% 100.0% 1 4.599s
[—<Coq.Init.Tauto.with_uniform_ flags> - 0.0% 79.0% 26 0.347s
| L<Cog.Init.Tauto.tauto_gen> —-———————- 0.0% 78.9% 26 0.347s
| l<Cog.Init.Tauto.tauto_intuitionistic> 0.0% 78.9% 26 0.347s
| Le_tauto_intuit ——————————mmmm 0.1% 78.8% 26 0.347s
| F<Cog.Init.Tauto.simplif> —————————— 53.6% 71.3% 26 0.342s
| | F<Cog.Init.Tauto.is_conj> ———————-— 10.9% 10.9% 28756 0.019s
| | Lelim id ———————————m 4.2% 4.2% 650 0.039s
| L—<Coq.Init.Tauto.axioms> ——————————- 7.0% 7.5% 0 0.242s
Lomega ————————————— 20.4% 20.4% 28 0.369s
Show Ltac Profile "omega".
total time: 4.599s
tactic local total calls max
| | | |
—omega ———- - oo oo 20.4% 20.4% 28 0.369s
(continues on next page)
5.4. Ltac 361

The Coq Reference Manual, Release 8.11.2

(continued from previous page)

tactic local total calls max

Abort.
Unset Ltac Profiling.

start ltac profiling
This tactic behaves like i dtac but enables the profiler.

stop ltac profiling
Similarly to start Iltac profiling, this tactic behaves like idtac. Together, they allow you to exclude
parts of a proof script from profiling.

reset ltac profile
This tactic behaves like the corresponding vernacular command and allow displaying and resetting the profile from
tactic scripts for benchmarking purposes.

show ltac profile
This tactic behaves like the corresponding vernacular command and allow displaying and resetting the profile from
tactic scripts for benchmarking purposes.

show ltac profile string
This tactic behaves like the corresponding vernacular command and allow displaying and resetting the profile from
tactic scripts for benchmarking purposes.

You can also pass the -profile-1tac command line option to cogc, which turns the Ltac Profiling flagon
at the beginning of each document, and performs a Show Ltac Profile atthe end.

Warning: Note that the profiler currently does not handle backtracking into multi-success tactics, and issues a
warning to this effect in many cases when such backtracking occurs.

Run-time optimization tactic

optimize_heap
This tactic behaves like idtac, except that running it compacts the heap in the OCaml run-time system. It is
analogous to the Vernacular command Optimize Heap.

5.5 Ltac2

The Ltac tactic language is probably one of the ingredients of the success of Coq, yet it is at the same time its Achilles’
heel. Indeed, Ltac:

* has often unclear semantics

* is very non-uniform due to organic growth

* lacks expressivity (data structures, combinators, types, ...)
* is slow

* is error-prone and fragile

* has an intricate implementation

Following the need of users who are developing huge projects relying critically on Ltac, we believe that we should offer a
proper modern language that features at least the following:

362 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

* at least informal, predictable semantics
* atype system
* standard programming facilities (e.g., datatypes)

This new language, called Ltac2, is described in this chapter. It is still experimental but we nonetheless encourage users to
start testing it, especially wherever an advanced tactic language is needed. The previous implementation of Ltac, described
in the previous chapter, will be referred to as Ltacl.

5.5.1 General design
There are various alternatives to Ltacl, such as Mtac or Rtac for instance. While those alternatives can be quite different
from Ltacl, we designed Ltac2 to be as close as reasonably possible to Ltacl, while fixing the aforementioned defects.
In particular, Ltac?2 is:
* a member of the ML family of languages, i.e.
— a call-by-value functional language
— with effects
— together with the Hindley-Milner type system
* alanguage featuring meta-programming facilities for the manipulation of Coq-side terms
* alanguage featuring notation facilities to help write palatable scripts

We describe more in details each point in the remainder of this document.

5.5.2 ML component
Overview

Ltac2 is a member of the ML family of languages, in the sense that it is an effectful call-by-value functional language, with
static typing a la Hindley-Milner (see [DM82]). It is commonly accepted that ML constitutes a sweet spot in PL design,
as it is relatively expressive while not being either too lax (unlike dynamic typing) nor too strict (unlike, say, dependent
types).

The main goal of Ltac2 is to serve as a meta-language for Coq. As such, it naturally fits in the ML lineage, just as the
historical ML was designed as the tactic language for the LCF prover. It can also be seen as a general-purpose language,
by simply forgetting about the Coq-specific features.

Sticking to a standard ML type system can be considered somewhat weak for a meta-language designed to manipulate
Coq terms. In particular, there is no way to statically guarantee that a Coq term resulting from an Ltac2 computation will
be well-typed. This is actually a design choice, motivated by backward compatibility with Ltacl. Instead, well-typedness
is deferred to dynamic checks, allowing many primitive functions to fail whenever they are provided with an ill-typed
term.

The language is naturally effectful as it manipulates the global state of the proof engine. This allows to think of proof-
modifying primitives as effects in a straightforward way. Semantically, proof manipulation lives in a monad, which allows
to ensure that Ltac2 satisfies the same equations as a generic ML with unspecified effects would do, e.g. function reduction
is substitution by a value.

To import Ltac2, use the following command:

From Ltac2 Require Import Ltac2.

5.5. Ltac2 363

The Coq Reference Manual, Release 8.11.2

Type Syntax

At the level of terms, we simply elaborate on Ltac1 syntax, which is quite close to OCaml. Types follow the simply-typed
syntax of OCaml.

The non-terminal 1ident designates identifiers starting with a lowercase.

ltac2_type = (1tac2_type, ... , ltac2 type) ltacZ_typeconst
(ltac2 _type * ... * ltac2_type)
ltac2_type —> ltac2_type
ltac2_typevar

ltac2_typeconst = (modpath .)* lident

ltac2_typevar n= 'lident

ltac2_typeparams (ltac2_typevar, ... , ltacZ_typevar)

The set of base types can be extended thanks to the usual ML type declarations such as algebraic datatypes and records.
Built-in types include:

* int, machine integers (size not specified, in practice inherited from OCaml)

* string, mutable strings

* 'a array, mutable arrays

* exn, exceptions

e constr, kernel-side terms

* pattern, term patterns

¢ ident, well-formed identifiers

Type declarations

One can define new types with the following commands.
?
Command: Ltac2 Type ltac2_ typeparams lident
This command defines an abstract type. It has no use for the end user and is dedicated to types representing data
coming from the OCaml world.
? 2
Variant: Ltac2 Type |[rec | |ltac2 typeparams lident := ltac2_typedef
This command defines a type with a manifest. There are four possible kinds of such definitions: alias, variant,
record and open variant types.

ltac2_typedef = ltacZ_type
[Itac2 constructordef | ... | ltac2_constructordef]
{ ltac2 fielddef ; ... ; ltac2_ fielddef }
[..]

ltac2_constructordef = uident [(ltacZ_type , ... , ltac2 type)]

ltac?2_fielddef [mutable] ident : 1tacZ_type

Aliases are just a name for a given type expression and are transparently unfoldable to it. They cannot be recursive.
The non-terminal uident designates identifiers starting with an uppercase.

Variants are sum types defined by constructors and eliminated by pattern-matching. They can be recursive, but the

364 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

rec flag must be explicitly set. Pattern matching must be exhaustive.

Records are product types with named fields and eliminated by projection. Likewise they can be recursive if the

rec flag is set.

Variant: Ltac2 Type ltac2 typeparams

?

ltac2 _qualid

::= [ltac2_constructordef]

Open variants are a special kind of variant types whose constructors are not statically defined, but can instead
be extended dynamically. A typical example is the standard exn type. Pattern matching on open variants
must always include a catch-all clause. They can be extended with this command.

Term Syntax

The syntax of the functional fragment is very close to the one of Ltacl, except that it adds a true pattern-matching feature,
as well as a few standard constructs from ML.

ltac2_var
ltac2_qualid
ltac2_constructor
ltac2_term

ltac2_branch
ltac2_pattern

ltac2_field

lident

(modpath
uident

ltac2 _qualid
ltac2_constructor
ltac2 _term ltac2_term
fun ltac2_var => ltacZ _term

)* lident

ltacZ2_term

let l1tacZ2_var := ltacZ term in ltacZ_term

let rec ltac2 var := ltac2 term in l1ltac2_ term
match Itac2_term with ItacZ2_branch ltac2_branch end
int

string

ltacZ2_term ; ltac2_term

[| 1tacZ2_term ; ... ; ltacZ_term |]

(ltacZ2_term , ... , ltacZ term)

{ ltac2 _field ltacZ2 field ltac2_field }
ltac2 _term . (ltac2_qualid)

ltac2_term . (ltacZ2 _qualid) := ltac2_term
[; ltacZ2_term ; ... ; ltac2 term]

ltac2_term ltacZ_term
ltac2_pattern => ltacZ_term
ltacZ2_var

(ltac2 _pattern , ... ,

[]
ltac2_pattern
ltac2_qualid := 1ltacZ_term

ltac2_pattern

ltacZ_pattern)
ltacZ _constructor ltacZ pattern

ltac2_pattern

In practice, there is some additional syntactic sugar that allows e.g. to bind a variable and match on it at the same time,

in the usual ML style.

There is dedicated syntax for list and array literals.

Note: For now, deep pattern matching is not implemented.

5.5. Ltac2

365

The Coq Reference Manual, Release 8.11.2

Ltac Definitions

2 ?
Command: Ltac2 mutable rec'| lident := ltac2_ term

This command defines a new global Ltac2 value.

For semantic reasons, the body of the Ltac2 definition must be a syntactical value, that is, a function, a constant or
a pure constructor recursively applied to values.

If rec is set, the tactic is expanded into a recursive binding.
If mutable is set, the definition can be redefined at a later stage (see below).

Command: Ltac2 Set qualid := ltac2_ term
This command redefines a previous mutable definition. Mutable definitions act like dynamic binding, i.e. at
runtime, the last defined value for this entry is chosen. This is useful for global flags and the like.

Reduction

We use the usual ML call-by-value reduction, with an otherwise unspecified evaluation order. This is a design choice
making it compatible with OCaml, if ever we implement native compilation. The expected equations are as follows:

(fun x => t) V = t{x := V} (Bv)
let x := V in t = t{x := V} (let)
match C Vy, ... V@ with ... | C x, ... x@ =>t | ... end = t {x[@ := V@} (1)

(t any term, V values, C constructor)

Note that call-by-value reduction is already a departure from Ltacl which uses heuristics to decide when to evaluate an
expression. For instance, the following expressions do not evaluate the same way in Ltacl1.

foo (idtac; let x := 0 in bar)

foo (let x := 0 in bar)

Instead of relying on the idtac idiom, we would now require an explicit thunk to not compute the argument, and foo
would have e.g. type (unit -> unit) -> unit.

foo (fun () => let x := 0 in bar)

Typing
Typing is strict and follows the Hindley-Milner system. Unlike Ltac1, there are no type casts at runtime, and one has to
resort to conversion functions. See notations though to make things more palatable.

In this setting, all the usual argument-free tactics have type unit —> unit, but one can return a value of type t thanks
to terms of type unit —> t, or take additional arguments.

Effects

Effects in Ltac2 are straightforward, except that instead of using the standard IO monad as the ambient effectful world,
Ltac2 is has a tactic monad.

Note that the order of evaluation of application is not specified and is implementation-dependent, as in OCaml.

366 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

We recall that the Proofview.tactic monad is essentially a IO monad together with backtracking state representing
the proof state.

Intuitively a thunk of type unit -> 'a can do the following:
¢ It can perform non-backtracking 10 like printing and setting mutable variables
e It can fail in a non-recoverable way

e It can use first-class backtracking. One way to think about this is that thunks are isomorphic to this type: (unit
-> 'a) ~ (unit -> exn + ('a * (exn —> 'a))) i.e. thunks can produce a lazy list of results
where each tail is waiting for a continuation exception.

* It can access a backtracking proof state, consisting among other things of the current evar assignation and the list
of goals under focus.

We now describe more thoroughly the various effects in Ltac2.

Standard 10

The Ltac2 language features non-backtracking IO, notably mutable data and printing operations.

Mutable fields of records can be modified using the set syntax. Likewise, built-in types like st ring and array feature
imperative assignment. See modules St ring and Array respectively.

A few printing primitives are provided in the Me s sage module, allowing to display information to the user.

Fatal errors

The Ltac2 language provides non-backtracking exceptions, also known as panics, through the following primitive in mod-
ule Control:

val throw : exn -> 'a

Unlike backtracking exceptions from the next section, this kind of error is never caught by backtracking primitives, that
is, throwing an exception destroys the stack. This is codified by the following equation, where E is an evaluation context:

E[throw e] = throw e

(e value)

There is currently no way to catch such an exception, which is a deliberate design choice. Eventually there might be a way
to catch it and destroy all backtrack and return values.

Backtracking

In Ltac2, we have the following backtracking primitives, defined in the Cont rol module:

Ltac2 Type 'a result := [Val ('a) | Err (exn)].
val zero : exn —-> 'a

val plus : (unit -> 'a) -> (exn -> 'a) -> 'a

val case : (unit -> 'a) -> ('a * (exn —-> 'a)) result

5.5. Ltac2 367

The Coq Reference Manual, Release 8.11.2

If one views thunks as lazy lists, then zero is the empty list and plus is list concatenation, while case is pattern-
matching.

The backtracking is first-class, i.e. one can write plus (fun () => "x") (fun _ => "y") : stringpro-
ducing a backtracking string.

These operations are expected to satisfy a few equations, most notably that they form a monoid compatible with sequen-
tialization.:

plus t zero = t ()
plus (fun () => zero e) £ = f e
plus (plus t f) g = plus t (fun e => plus (f e) qg)

case (fun () => zero e) = Err e

case (fun () => plus (fun () => t) £f) = val (t,f)

let x := zero e in u = zero e

let x := plus t £ in u = plus (fun () => let x := t in u) (fun e => let x := f e in u)

(t, u, £, g, e values)

Goals

A goal is given by the data of its conclusion and hypotheses, i.e. it can be represented as [T - A].

The tactic monad naturally operates over the whole proofview, which may represent several goals, including none. Thus,
there is no such thing as the current goal. Goals are naturally ordered, though.

It is natural to do the same in Ltac2, but we must provide a way to get access to a given goal. This is the role of the enter
primitive, which applies a tactic to each currently focused goal in turn:

val enter : (unit —-> unit) —> unit
It is guaranteed that when evaluating enter £, £ is called with exactly one goal under focus. Note that £ may be called
several times, or never, depending on the number of goals under focus before the call to enter.

Accessing the goal data is then implicit in the Ltac2 primitives, and may panic if the invariants are not respected. The
two essential functions for observing goals are given below.:

val hyp : ident -> constr
val goal : unit -> constr

The two above functions panic if there is not exactly one goal under focus. In addition, hyp may also fail if there is no
hypothesis with the corresponding name.

5.5.3 Meta-programming
Overview

One of the major implementation issues of Ltacl is the fact that it is never clear whether an object refers to the object
world or the meta-world. This is an incredible source of slowness, as the interpretation must be aware of bound variables
and must use heuristics to decide whether a variable is a proper one or referring to something in the Ltac context.

Likewise, in Ltac1, constr parsing is implicit, so that foo 0 is not foo applied to the Ltac integer expression O (Ltac
does have a notion of integers, though it is not first-class), but rather the Coq term Datatypes.O.

368 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

The implicit parsing is confusing to users and often gives unexpected results. Ltac2 makes these explicit using quoting
and unquoting notation, although there are notations to do it in a short and elegant way so as not to be too cumbersome
to the user.

Generic Syntax for Quotations

In general, quotations can be introduced in terms using the following syntax, where quotentry is some parsing entry.

ltac2_term += ident : (quotentry)

Built-in quotations

The current implementation recognizes the following built-in quotations:
¢ ident, which parses identifiers (type Init.ident).
e constr, which parses Coq terms and produces an-evar free term at runtime (type Init.constr).

* open_constr, which parses Coq terms and produces a term potentially with holes at runtime (type Init.
constr as well).

e pattern, which parses Coq patterns and produces a pattern used for term matching (type Init .pattern).

* reference, which parses either a qualidor &ident. Qualified names are globalized at internalization into
the corresponding global reference, while &id is turned into Std.VarRef id. This produces at runtime a
Std.reference. There shall be no white space between the ampersand symbol (&) and the identifier (i dent).

The following syntactic sugar is provided for two common cases.
e @idisthe same as ident: (id)

e 't is the same as open_constr: (t)

Strict vs. non-strict mode

Depending on the context, quotation-producing terms (i.e. constr or open_constr) are not internalized in the same
way. There are two possible modes, the strict and the non-strict mode.

* In strict mode, all simple identifiers appearing in a term quotation are required to be resolvable statically. That is,
they must be the short name of a declaration which is defined globally, excluding section variables and hypotheses.
If this doesn’t hold, internalization will fail. To work around this error, one has to specifically use the & notation.

¢ In non-strict mode, any simple identifier appearing in a term quotation which is not bound in the global context is
turned into a dynamic reference to a hypothesis. That is to say, internalization will succeed, but the evaluation of
the term at runtime will fail if there is no such variable in the dynamic context.

Strict mode is enforced by default, such as for all Ltac2 definitions. Non-strict mode is only set when evaluating Ltac2
snippets in interactive proof mode. The rationale is that it is cumbersome to explicitly add & interactively, while it is
expected that global tactics enforce more invariants on their code.

Term Antiquotations

Syntax

One can also insert Ltac2 code into Coq terms, similarly to what is possible in Ltacl.

5.5. Ltac2 369

The Coq Reference Manual, Release 8.11.2

term += ltac2:(ltac2 term)

Antiquoted terms are expected to have type unit, as they are only evaluated for their side-effects.

Semantics

A quoted Coq term is interpreted in two phases, internalization and evaluation.
* Internalization is part of the static semantics, that is, it is done at Ltac2 typing time.
* Evaluation is part of the dynamic semantics, that is, it is done when a term gets effectively computed by Ltac2.

Note that typing of Coq terms is a dynamic process occurring at Ltac2 evaluation time, and not at Ltac2 typing time.

Static semantics

During internalization, Coq variables are resolved and antiquotations are type-checked as Ltac2 terms, effectively pro-
ducing a glob_constr in Coq implementation terminology. Note that although it went through the type-checking of
Ltac2, the resulting term has not been fully computed and is potentially ill-typed as a runtime Coq term.

Example
The following term is valid (with type unit —-> constr), but will fail at runtime:

Ltac2 myconstr () := constr: (nat -> 0).

Term antiquotations are type-checked in the enclosing Ltac2 typing context of the corresponding term expression.

Example
The following will type-check, with type constr.

let x := 'O in constr: (1 + ltac2: (exact x))

Beware that the typing environment of antiquotations is not expanded by the Coq binders from the term.

Example
The following Ltac2 expression will not type-check:

‘constr: (fun x : nat => ltac2: (exact x))°
" (* Error: Unbound variable 'x' *)°

There is a simple reason for that, which is that the following expression would not make sense in general.
constr: (fun x : nat => ltac2: (clear @x; exact x))
Indeed, a hypothesis can suddenly disappear from the runtime context if some other tactic pulls the rug from under you.

Rather, the tactic writer has to resort to the dynamic goal environment, and must write instead explicitly that she is
accessing a hypothesis, typically as follows.

constr: (fun x : nat => ltac2: (exact (hyp @x)))

This pattern is so common that we provide dedicated Ltac2 and Coq term notations for it.

370 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

* &x as an Ltac2 expression expands to hyp @x.
* &x as a Coq constr expression expands to 1tac2: (Control.refine (fun () => hyp @x)).

In the special case where Ltac2 antiquotations appear inside a Coq term notation, the notation variables are systematically
bound in the body of the tactic expression with type Ltac2.Init . preterm. Such a type represents untyped syntactic
Coq expressions, which can by typed in the current context using the Ltac2.Constr.pretype function.

Example

The following notation is essentially the identity.

Notation "[x |]" := ltac2:(let x := Ltac2.Constr.pretype x in exact $x) (only parsing).

Dynamic semantics

During evaluation, a quoted term is fully evaluated to a kernel term, and is in particular type-checked in the current
environment.

Evaluation of a quoted term goes as follows.
» The quoted term is first evaluated by the pretyper.

¢ Antiquotations are then evaluated in a context where there is exactly one goal under focus, with the hypotheses
coming from the current environment extended with the bound variables of the term, and the resulting term is fed
into the quoted term.

Relative orders of evaluation of antiquotations and quoted term are not specified.

For instance, in the following example, t ac will be evaluated in a context with exactly one goal under focus, whose last
hypothesis is H : nat. The whole expression will thus evaluate to the term fun H : nat => H.

let tac () := hyp @H in constr: (fun H : nat => ltac2:(tac ()))

Many standard tactics perform type-checking of their argument before going further. It is your duty to ensure that terms
are well-typed when calling such tactics. Failure to do so will result in non-recoverable exceptions.

Trivial Term Antiquotations

It is possible to refer to a variable of type constr in the Ltac2 environment through a specific syntax consistent with the
antiquotations presented in the notation section.

term += $lident

In a Coq term, writing $x is semantically equivalent to 1tac2: (Control.refine (fun () => x)),upto
re-typechecking. It allows to insert in a concise way an Ltac2 variable of type constr into a Coq term.

Match over terms

Ltac2 features a construction similar to Ltacl mat ch over terms, although in a less hard-wired way.

ltac2_term n= match! Itac2_term with constrmatching .. constrmatching end
lazy_match! ItacZ2_term with constrmatching .. constrmatching end
multi_match! ItacZ2_term with constrmatching .. constrmatching end
constrmatching = | constrpattern => ltacZ_ term

5.5. Ltac2 371

The Coq Reference Manual, Release 8.11.2

constrpattern n= term
context [term]
context lident [term]

This construction is not primitive and is desugared at parsing time into calls to term matching functions from the Pattern
module. Internally, it is implemented thanks to a specific scope accepting the const rmatching syntax.

Variables from the constrpattern are statically bound in the body of the branch, to values of type constr for the
variables from the t e rm pattern and to a value of type Pattern.context for the variable 1 ident.

Note that unlike Ltac, only lowercase identifiers are valid as Ltac2 bindings, so that there will be a syntax error if one of
the bound variables starts with an uppercase character.

The semantics of this construction is otherwise the same as the corresponding one from Ltac1, except that it requires the
goal to be focused.

Match over goals

Similarly, there is a way to match over goals in an elegant way, which is just a notation desugared at parsing time.

ltac2_term n= match! [reverse] goal with goalmatching ... goalmatching end
lazy_match! [reverse] goal with goalmatching ... goalmatching end
multi_match! [reverse] goal with goalmatching ... goalmatching end
goalmatching = | [hypmatching ... hypmatching |- constrpattern] => I1tacZ term
hypmatching = lident : constrpattern
constrpattern

Variables from hypmatchingand constrpattern are bound in the body of the branch. Their types are:
* constr for pattern variables appearing ina term
* Pattern.context for variables binding a context
e ident for variables binding a hypothesis name.

The same identifier caveat as in the case of matching over constr applies, and this features has the same semantics as in
Ltacl. In particular, a reverse flag can be specified to match hypotheses from the more recently introduced to the least
recently introduced one.

5.5.4 Notations

Notations are the crux of the usability of Ltacl. We should be able to recover a feeling similar to the old implementation
by using and abusing notations.

Scopes

A scope is a name given to a grammar entry used to produce some Ltac2 expression at parsing time. Scopes are described
using a form of S-expression.

+
lident (/ltac2_scope 1)

’

ltac2_scope ::= |string int

A few scopes contain antiquotation features. For the sake of uniformity, all antiquotations are introduced by the syntax
$lident.

372 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

The following scopes are built-in.
* constr:
— parses ¢ = termand produces constr: (c)

This scope can be parameterized by a list of delimiting keys of interpretation scopes (as described in Local inter-
pretation rules for notations), describing how to interpret the parsed term. For instance, constr (A, B) parses
c termand produces constr: (c%$A%B).

¢ ident:
— parses id = ident and produces ident: (id)
— parses $ (x = ident) and produces the variable x
e listO(ltac2_scope):

- if Itac2 scope parses quotentry, thenit parses (quotentry,, ..., quotentry,) and pro-
duces [quotentry,; ...; quotentry,].

* list0(ltacZ scope, sep = string,,):

- if 1tac2 scope parses quotentry, then it parses (quotentry, string., ... string.,
guotentry,) and produce [quotentry,; ...; quotentry,].

. . + . &
e listl:sameas 1istO (with or without separator) but parses guotentry | instead of quotentry

* opt (IltacZ_scope)
?
— if Itac2_scope parses quotentry, parses quotentry | and produces either None or Some x
where x is the parsed expression.
* self:
— parses a Ltac2 expression at the current level and returns it as is.
* next:
— parses a Ltac2 expression at the next level and returns it as is.
* tactic(n = int):
— parses a Ltac2 expression at the provided level n and returns it as is.
e thunk (ltac2_scope):
— parses the same as scope, and if e is the parsed expression, returns fun () => e.
¢ STRING:
— parses the corresponding string as an identifier and returns () .
e keyword(s = string):
— parses the string s as a keyword and returns () .
e terminal (s = string):
— parses the string s as a keyword, if it is already a keyword, otherwise as an i dent. Returns ().
* seq(ltac2_scope;, ..., ltacZ2_scope,):

— parses scope,, ..., scope, in this order, and produces a tuple made out of the parsed values in the same
order. As an optimization, all subscopes of the form STRING are left out of the returned tuple, instead of
returning a useless unit value. It is forbidden for the various subscopes to refer to the global entry using self
or next.

5.5. Ltac2 373

The Coq Reference Manual, Release 8.11.2

A few other specific scopes exist to handle Ltac1-like syntax, but their use is discouraged and they are thus not documented.

For now there is no way to declare new scopes from Ltac2 side, but this is planned.

Notations

The Ltac2 parser can be extended with syntactic notations.
+ ?
Command: Ltac2 Notation | lident (ltac2_scope) ‘ string : int := ltac2_term
A Ltac2 notation adds a parsing rule to the Ltac2 grammar, which is expanded to the provided body where every
token from the notation is let-bound to the corresponding generated expression.

Example

Assume we perform:

Ltac2 Notation "foo" c(thunk (constr)) ids(listO(ident)) := Bar.f c ids.

Then the following expression
let y := @X in foo (nat -> nat) x Sy
will expand at parsing time to

let y := @X in let c¢ := fun () => constr:(nat —-> nat) with ids := [@x; V]
in Bar.f c ids

Beware that the order of evaluation of multiple let-bindings is not specified, so that you may have to resort to
thunking to ensure that side-effects are performed at the right time.

Abbreviations

Variant: Ltac2 Notation lident := ltac2_ term
This command introduces a special kind of notation, called an abbreviation, that is designed so that it does not add
any parsing rules. It is similar in spirit to Coq abbreviations, insofar as its main purpose is to give an absolute name
to a piece of pure syntax, which can be transparently referred to by this name as if it were a proper definition.

The abbreviation can then be manipulated just as a normal Ltac2 definition, except that it is expanded at internal-
ization time into the given expression. Furthermore, in order to make this kind of construction useful in practice
in an effectful language such as Ltac2, any syntactic argument to an abbreviation is thunked on-the-fly during its
expansion.

For instance, suppose that we define the following.

Ltac2 Notation foo := fun x => x ().
Then we have the following expansion at internalization time.
foo 0 » (fun x => x ()) (fun _ => 0)

Note that abbreviations are not typechecked at all, and may result in typing errors after expansion.

5.5.5 Evaluation

Ltac?2 features a toplevel loop that can be used to evaluate expressions.

374 Chapter 5. The proof engine

The Coq Reference Manual, Release 8.11.2

Command: Ltac2 Eval ltac2_term
This command evaluates the term in the current proof if there is one, or in the global environment otherwise, and
displays the resulting value to the user together with its type. This command is pure in the sense that it does not
modify the state of the proof, and in particular all side-effects are discarded.

5.5.6 Debug

Flag: Ltac2 Backtrace
When this flag is set, toplevel failu