The following example concerns the crossed module
\(\partial\colon G\rightarrow Aut(G), g\mapsto (x\mapsto gxg^{-1})\)
associated to the dihedral group \(G\) of order \(16\). This crossed module represents, up to homotopy type, a connected space \(X\) with \(\pi_iX=0\) for \(i\ge 3\), \(\pi_2X=Z(G)\), \(\pi_1X = Aut(G)/Inn(G)\). The space \(X\) can be represented, up to homotopy, by a simplicial group. That simplicial group is used in the example to compute
\(H_1(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2\),
\(H_2(X,\mathbb Z)= \mathbb Z_2 \),
\(H_3(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2\),
\(H_4(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2\),
\(H_5(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2\oplus \mathbb Z_2\oplus \mathbb Z_2\).
The simplicial group is obtained by viewing the crossed module as a crossed complex and using a nonabelian version of the Dold-Kan theorem.
gap> C:=AutomorphismGroupAsCatOneGroup(DihedralGroup(16)); Cat-1-group with underlying group Group( [ f1, f2, f3, f4, f5, f6, f7, f8, f9 ] ) . gap> Size(C); 512 gap> Q:=QuasiIsomorph(C); Cat-1-group with underlying group Group( [ f9, f8, f1, f2*f3, f5 ] ) . gap> Size(Q); 32 gap> N:=NerveOfCatOneGroup(Q,6); Simplicial group of length 6 gap> K:=ChainComplexOfSimplicialGroup(N); Chain complex of length 6 in characteristic 0 . gap> Homology(K,1); [ 2, 2 ] gap> Homology(K,2); [ 2 ] gap> Homology(K,3); [ 2, 2, 2 ] gap> Homology(K,4); [ 2, 2, 2 ] gap> Homology(K,5); [ 2, 2, 2, 2, 2, 2 ]
The following example concerns the Eilenberg-MacLane space \(X=K(\mathbb Z,3)\) which is a path-connected space with \(\pi_3X=\mathbb Z\), \(\pi_iX=0\) for \(3\ne i\ge 1\). This space is represented by a simplicial group, and perturbation techniques are used to compute
\(H_7(X,\mathbb Z)=\mathbb Z_3\).
gap> A:=AbelianPcpGroup([0]);;AbelianInvariants(A); [ 0 ] gap> K:=EilenbergMacLaneSimplicialGroup(A,3,8); Simplicial group of length 8 gap> C:=ChainComplexOfSimplicialGroup(K); Chain complex of length 8 in characteristic 0 . gap> Homology(C,7); [ 3 ]
generated by GAPDoc2HTML