next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
GradedLieAlgebras :: maxDeg

maxDeg -- determines the number of variables in the internal ring of representation, lieRing

Synopsis

Description

The key maxDeg is by default 5. If computeLie n is executed for n>L.cache.maxDeg, then the program changes the key to n+5. The value of maxDeg defines the internal representation of Lie elements in the polynomial ring "L.cache.lieRing", which cannot be used by the user but can be looked upon by writing "L.cache.lieRing". The Lie monomials are represented as commutative monomials in this ring.

i1 : L=lieAlgebra({a,b},{[a,a,a,b],[b,b,b,a]})

o1 = L

o1 : LieAlgebra
i2 : computeLie 4

o2 = {2, 1, 2, 1}

o2 : List
i3 : peek L.cache

o3 = CacheTable{bas => MutableHashTable{...5...}                                        }
                deglist => MutableHashTable{...4...}
                diffl => false
                dims => MutableHashTable{...5...}
                gr => MutableHashTable{...4...}
                lieRing => QQ[aR , aR , aR , aR , aR , aR , aR , aR , aR , aR ]
                                0    1    2    3    4    5    6    7    8    9
                maxDeg => 5
                mbRing => QQ[mb      , mb      , mb      , mb      , mb      , mb      ]
                               {1, 0}    {1, 1}    {2, 0}    {3, 0}    {3, 1}    {4, 0}
                opL => MutableHashTable{}
i4 : L.cache.lieRing

o4 = QQ[aR , aR , aR , aR , aR , aR , aR , aR , aR , aR ]
          0    1    2    3    4    5    6    7    8    9

o4 : PolynomialRing
i5 : computeLie 6

o5 = {2, 1, 2, 1, 2, 1}

o5 : List
i6 : L.cache.maxDeg

o6 = 11
i7 : L.cache.lieRing

o7 = QQ[aR , aR , aR , aR , aR , aR , aR , aR , aR , aR , aR  , aR  , aR  , aR  , aR  , aR  , aR  , aR  , aR  , aR  , aR  , aR  ]
          0    1    2    3    4    5    6    7    8    9    10    11    12    13    14    15    16    17    18    19    20    21

o7 : PolynomialRing

For the programmer

The object maxDeg is a symbol.