The example below computes the two lines that meet four given lines in 3-spaces.
To verify the first intersection condition, we concatenate the first input plane with the first output plane. The determinant of the concatenated matrix should have real and imaginary parts of the same magnitude as the machine precision.
i1 : (ipt, otp) := PieriHomotopies(2,2); |
i2 : print ipt {| -.378914 .0143078 |, | -.0406802 -.771705 |, | -.202557 -.48006 |, | -.205564 -.0885202 |} | -.204915 -.194005 | | -.06954 -.565402 | | .884776 -.245425 | | .629768 -.757175 | | -.791523 -.43746 | | .868679 .0766639 | | -.0982694 -.837138 | | .681055 .469347 | | -.433504 .877944 | | .48878 -.280919 | | .408026 .0922517 | | .311929 .445604 | |
i3 : print otp {| 1 0 |, | 1 0 |} | 76.6411 1 | | .769083 1 | | 19.0424 .225339 | | 2.01685 -28.3204 | | 0 -.0202375 | | 0 -12.8936 | |
i4 : in0 = ipt_0 o4 = | -.378914 .0143078 | | -.204915 -.194005 | | -.791523 -.43746 | | -.433504 .877944 | 4 2 o4 : Matrix CC <--- CC 53 53 |
i5 : out0 = otp_0 o5 = | 1 0 | | 76.6411 1 | | 19.0424 .225339 | | 0 -.0202375 | 4 2 o5 : Matrix CC <--- CC 53 53 |
i6 : m = in0|out0 o6 = | -.378914 .0143078 1 0 | | -.204915 -.194005 76.6411 1 | | -.791523 -.43746 19.0424 .225339 | | -.433504 .877944 0 -.0202375 | 4 4 o6 : Matrix CC <--- CC 53 53 |
i7 : det m o7 = 1.21947052028595e-14-9.5005518152328e-49*ii o7 : CC (of precision 53) |