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Chapter 1

Introduction

1.1 Introduction to the GUAVA package

This is the manual of the GAP package GUAVA. GUAVA contains many functions that allow one
to perform computations relevant to the theory of error-correcting codes. This version of GUAVA
requires GAP 4.4.5 or later. The current version of GUAVA (3.13) was updated to work with GAP
4.7.9.

The functions in GUAVA can be divided into three subcategories:

* Construction of codes: GUAVA can construct unrestricted, linear and cyclic codes. Information
about the code, such as operations applicable to the code, is stored in a record-like data structure
called a GAP object.

* Manipulations of codes: Manipulations transform one code into another, or construct a new
code from two codes. The new code can profit from the data in the record of the old code(s), so
in these cases calculation time often decreases.

» Computations of information about codes: GUAVA can calculate important parameters of codes
quickly. The results are stored in the codes’ object components.

Except for the automorphism group and isomorphism testing functions, which make use of J.S.
Leon’s programs (see [Leo91] and the documentation in the ’src/leon’ subdirectory of the ’guava’
directory for some details), and MinimumWeight (4.8.5) function, GUAVA is written in the GAP
language, and runs on any system supporting GAP4.4 and above. Several algorithms that need the
speed were integrated in the GAP kernel.

Good general references for error-correcting codes and the technical terms in this manual are
MacWilliams and Sloane [MS83] and also Huffman and Pless [HP03].

1.2 Installing GUAVA

The most recent version of GAP (4.8) comes complete with all of the packages — including GUAVA.
Thus the following instructions are not usually applicable but may be needed in certain circumstances.
To install GUAVA unpack the archive file in a directory in the ‘pkg’ hierarchy of your version of
GAP 4.
After unpacking GUAVA the GAP-only part of GUAVA is installed. The parts of GUAVA de-
pending on J. Leon’s backtrack programs package (for computing automorphism groups) are only
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available in a UNIX-like environment, where you should proceed as follows: Go to the newly created
‘guava’ directory and call ¢ ./configure /gappath’ where /gappath is the path to the GAP home
directory. So for example, if you install the package in the main ‘pkg’ directory call

./configure ../..

This will fetch the architecture type for which GAP has been compiled last and create a ‘Makefile’.
Now call

make

to compile the binaries and install them in the appropriate place. (For a Windows machine with
CYGWIN installed - see http://www.cygwin.com/ - instructions for compiling Leon’s binaries
are likely to be similar to those above. On a 64-bit SUSE linux computer, instead of the configure
command above - which will only compile the 32-bit binary - type

./configure ../.. --enable-libsuffix=64
make

to compile Leon’s program as a 64 bit native binary. This may also work for other 64-bit linux
distributions as well.)

If it is not already installed, you should also install the GAP package SONATA. You can download
this from the GAP website and unpack it in the ‘pkg’ subdirectory.

This completes the installation of GUAVA for a single architecture. If you use this installation
of GUAVA on different hardware platforms you will have to compile the binaries for each platform
separately.

1.3 Loading GUAVA

After starting up GAP, the GUAVA package needs to be loaded. Load GUAVA by typing at the GAP
prompt:
Example

gap> LoadPackage( "guava" );

If GUAVA isn’t already in memory, it is loaded and the author information is displayed. If you are a
frequent user of GUAVA, you might consider adding GUAVA to the "PackagesToLoad" preference in
your gap initialization file. (Usually gap.ini which should be located in your home directory.) Type
GAPInfo.UserGapRoot; at the GAP prompt to find the location of your initialization file. If none
exists, the command WriteGapIniFile(); will create a default gap.ini file which you can then
modify.


http://www.cygwin.com/

Chapter 2

A First Tutorial in GUAVA

An error-correcting code is essentially just a subset of the set of all possible messages of a given length
over some finite "alphabet."

In algebraic coding theory, the "alphabet" is usually some finite field (very often GF(2)) and
frequently the error-correcting code is chosen to be a vector subspace of the space of all row vectors
of some fixed length n. Such codes are known as Linear Codes, but, however a code is defined the
point is to have a collection of "codewords" that are said to be "in the code" and any other word (row
vectors that are not "in the code") will be assumed to be a codeword that has been mangled by the
addition of noise.

When a message is received that is not a codeword, we ask ourselves the question "Which code-
word is closest to this message I’ve received?" In other words we make the presumption that the
received message is actually a codeword that has been changed in a relatively small number of posi-
tions — and we put them back the way they were supposed to be!

That process is called "decoding." Developing codes that have efficient decoding algorithms is
one of the central problems of algebraic coding theory.

2.1 Working with codewords

So let’s play around a bit.

Start GAP in a terminal window, then issue the command
Example

gap> LoadPackage("guava");

GUAVA can construct codewords in a variety of ways. One of the most typical cases is for a
codeword to consist of binary digits. In that case we say that "the code is over GF(2)" and codewords
can be constructed as follows:

Example
gap> cl:=Codeword("101010101");

[101010101]

gap> v:=Z(2)*[1,1,1,1,1,1,1,1,1];

[ Z(2)~0, 2(2)°0, Z(2)-0, Z(2)-0, Z(2)°0, Z(2)"0, Z(2)"0, Z(2)°0, Z(2)"0 ]
gap> c2:=Codeword(v) ;

[111111111]

gap> c3:=cl+c2;

[010101010]

gap> Weight(cl);
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5
gap> Weight(c2);
9
gap> Weight(c3);
4

The previous excerpt from a GAP session shows that codewords can be constructed from quoted
strings or from vectors whose entries lie in a finite field. We also see that codewords can be added
together and that there is a function called Weight which (if it isn’t obvious) tells us how many entries
in a codeword are non-zero.

The Hamming distance is used extensively in coding theory. It tells us in how many posi-
tions two codewords differ. In GUAVA the Hamming distance is implemented by a function called

DistanceCodeword.
Example

gap> DistanceCodeword(cl, c2);
4

Note that the Hamming distance between c1 and c2 happens to give the same value as the weight
of their sum. This is no coincidence and has to do with the curious fact that in GF(2) adding and
subtracting are the same thing.

A codeword can also be constructed using a polynomial. Indeed, the internal representation of
a codeword requires either a polynomial or a vector. There are GUAVA functions that allow one to
switch back and forth between the two representations.
Example

gap> x:=Indeterminate(GF(2));

x_1

gap> c4:=Codeword (x~7+x~2+x+1);

X7 +x72 +x +1

gap> VectorCodeword(c4) ;

<an immutable GF2 vector of length 8>
gap> Display(last);

[ 2(2)°0, 2(2)°0, Z(2)°0, 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), Z(2)°0 ]
gap> c5:=Codeword([1,0,0,0,0,0,1]);
[1000001]

gap> PolyCodeword(c5h) ;

x_176+Z(2)°0

2.2 Calculations with codes

A code is fundamentally just a collection of codewords. Sometimes a code is merely a set of code-
words. Other times a code will be the vector space generated by some small set of codewords.
First let’s build a code that is merely a set:

Example

gap> 1:=["111000", "O11100", "001110", "000111", "100011", "110001", "000000",$

[ "111000", "O11100", "OO1110", "0OO111", "100011", "110001", "000000",
"111111" ]

gap> m:=Codeword(1,6,GF(2));
[[t11000],[011100],[001110],[000111],
[100011],[110001],[0000001], [1111111]1]
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gap> Cl:=ElementsCode(m, GF(2));

a (6,8,1..6)2..3 user defined unrestricted code over GF(2)
gap> IsLinearCode(C1);

false

gap> WeightDistribution(C1);

[1, 0, O, 6, 0, 0, 1]

In this example we first wrote out a list of strings, then converted them into codewords over
GF(2). The call to ElementsCode constructs a code from a list of elements. It is possible that the set
of codewords we used actually is a vector space, but the call to IsLinearCode says no. Finally the
last function tells us that there are 6 codewords of weight 3, and one each of weights 0 and 6 in this
code.

A very useful feature of GUAVA is the ability to construct random codes:

Example
gap> C:= RandomLinearCode(12,5,GF(2));
a [12,5,7] randomly generated code over GF(2)

An error-correcting code’s properties are fairly well captured by three numbers which traditionally
are referred to using the letters n, k and d. We ask for a random code by specifying n (the wordlength),
and k (the code’s dimension) as well as the field which serves as the alphabet for the code.

One of the most salient features of a code (a feature that determines how good it will be at cor-
recting errors) is its minimum weight, d. This is the smallest weight of any nonzero word in the code.
If we wish to correct m errors we will need to have a minimum weight of at least 2m + 1.

Example

gap> MinimumWeight (C);
3

This particular code would be capable of correcting single bit errors.
Finally, one might be interested in the entire distribution of the weights of the words in a code.
The weight distribution is a vector that tells us how many words there are in a code with each possible

weight between 0 and n.
Example

gap> WeightDistribution(C);
[1, 0,0, 2,3,6,7,6, 42,1, 0,01




Chapter 3

Codewords

Let GF(g) denote a finite field with ¢ (a prime power) elements. A code is a subset C of some finite-
dimensional vector space V over GF(q). The length of C is the dimension of V. Usually, V = GF(¢)"
and the length is the number of coordinate entries. When C is itself a vector space over GF(q) then it
is called a linear code and the dimension of C is its dimension as a vector space over GF(q).

In GUAVA, a ‘codeword’ is a GAP record, with one of its components being an element in V.
Likewise, a ‘code’ is a GAP record, with one of its components being a subset (or subspace with
given basis, if C is linear) of V.

Example

gap> C:=RandomLinearCode(20,10,GF(4));

a [20,10,7] randomly generated code over GF(4)

gap> c:=Random(C) ;

[1a00011a200al111a1l11l1laad0]

gap> NamesOfComponents(C) ;

[ "LeftActingDomain", "GeneratorsOfLeftOperatorAdditiveGroup", "WordLength",
"GeneratorMat", "name", "Basis", "NiceFreeLeftModule", "Dimension",

"Representative", "ZeroImmutable" ]

gap> Names0fComponents(c) ;

[ "VectorCodeword", "WordLength", "treatAsPoly" ]

gap> c!.VectorCodeword;

[ immutable compressed vector length 20 over GF(4) ]

gap> Display(last);

[ z(2~2), Z(2"2), Z2(2~2), Z(2)~0, Z2(2~2), Z(2"2)~2, 0%Z(2), Z(2"2), Z(2"2),
2(2)°0, Z(272)~2, 0%Z(2), 0%Z(2), Z(2~2), 0%Z(2), 0%xZ(2), 0%Z(2), Z(2~2)"2,
z(2)°0, 0*Z(2) ]

gap> C!.Dimension;

10

Mathematically, a ‘codeword’ is an element of a code C, but in GUAVA the Codeword and
VectorCodeword commands have implementations which do not check if the codeword belongs to
C (i.e., are independent of the code itself). They exist primarily to make it easier for the user to con-
struct the associated GAP record. Using these commands, one can enter into GAP both a codeword ¢
(belonging to C) and a received word r (not belonging to C) using the same command. The user can
input codewords in different formats (as strings, vectors, and polynomials), and output information is
formatted in a readable way.

A codeword c in a linear code C arises in practice by an initial encoding of a *block’ message m,
adding enough redundancy to recover m after c is transmitted via a ‘'noisy’ communication medium. In

11
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GUAVA, for linear codes, the map m — ¢ is computed using the command c : =m*C and recovering m
from c is obtained by the command InformationWord(C,c). These commands are explained more
below.

Many operations are available on codewords themselves, although codewords also work together
with codes (see chapter 4 on Codes).

The first section describes how codewords are constructed (see Codeword (3.1.1) and IsCodeword
(3.1.3)). Sections 3.2 and 3.3 describe the arithmetic operations applicable to codewords. Section
3.4 describe functions that convert codewords back to vectors or polynomials (see VectorCodeword
(3.4.1) and PolyCodeword (3.4.2)). Section 3.5 describe functions that change the way a codeword
is displayed (see TreatAsVector (3.5.1) and TreatAsPoly (3.5.2)). Finally, Section 3.6 describes a
function to generate a null word (see NullWord (3.6.1)) and some functions for extracting properties
of codewords (see DistanceCodeword (3.6.2), Support (3.6.3) and WeightCodeword (3.6.4)).

3.1 Construction of Codewords

3.1.1 Codeword

> Codeword(obj[, n][, FI) (function)

Codeword returns a codeword or a list of codewords constructed from obj. The object obj can
be a vector, a string, a polynomial or a codeword. It may also be a list of those (even a mixed list).

If a number n is specified, all constructed codewords have length n. This is the only way to make
sure that all elements of obj are converted to codewords of the same length. Elements of obj that are
longer than n are reduced in length by cutting of the last positions. Elements of obj that are shorter
than n are lengthened by adding zeros at the end. If no n is specified, each constructed codeword is
handled individually.

If a Galois field F is specified, all codewords are constructed over this field. This is the only way
to make sure that all elements of obj are converted to the same field F (otherwise they are converted
one by one). Note that all elements of obj must have elements over F or over ‘Integers’. Converting
from one Galois field to another is not allowed. If no F is specified, vectors or strings with integer
elements will be converted to the smallest Galois field possible.

Note that a significant speed increase is achieved if F is specified, even when all elements of obj
already have elements over F.

Every vector in obj can be a finite field vector over F or a vector over ‘Integers’. In the last case,
it is converted to F or, if omitted, to the smallest Galois field possible.

Every string in obj must be a string of numbers, without spaces, commas or any other characters.
These numbers must be from 0 to 9. The string is converted to a codeword over F or, if F is omitted,
over the smallest Galois field possible. Note that since all numbers in the string are interpreted as one-
digit numbers, Galois fields of size larger than 10 are not properly represented when using strings. In
fact, no finite field of size larger than 11 arises in this fashion at all.

Every polynomial in obj is converted to a codeword of length n or, if omitted, of a length dictated
by the degree of the polynomial. If F is specified, a polynomial in obj must be over F.

Every element of obj that is already a codeword is changed to a codeword of length n. If no n
was specified, the codeword doesn’t change. If F is specified, the codeword must have base field F.
Example

gap> ¢ := Codeword([0,1,1,1,0]);
[0o1110]
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gap> VectorCodeword( c );

[ 0xZ2(2), Z2(2)70, Z(2)"0, Z(2)~0, 0%Z(2) ]
gap> c¢2 := Codeword([0,1,1,1,0], GF(3));
[01110]

gap> VectorCodeword( c2 );

[ 0xZ(3), Z2(3)°0, Z(3)"0, Z(3)~0, 0%Z(3) ]
gap> Codeword([c, c2, "0110"]1);
[fot1t110],[01110]1,[01101]1]
gap> p := UnivariatePolynomial(GF(2), [Z(2)~0, 0%Z(2), Z(2)~0]);
Z(2)~0+x_1"2

gap> Codeword(p) ;

x"2 + 1

This command can also be called using the syntax Codeword (obj,C). In this format, the elements
of obj are converted to elements of the same ambient vector space as the elements of a code C. The
command Codeword(c,C) is the same as calling Codeword(c,n,F), where n is the word length of
C and the F is the ground field of C.

Example
gap> C := WholeSpaceCode(7,GF(5));

a cyclic [7,7,1]0 whole space code over GF(5)

gap> Codeword(["0220110", [1,1,1]1]1, C);
[[0220110]1, 111000011

gap> Codeword(["0220110", [1,1,1]], 7, GF(5));
[[f0o220110],[11100001]1

gap> C:=RandomLinearCode(10,5,GF(3));

a linear [10,5,1..3]3..5 random linear code over GF(3)
gap> Codeword("1000000000",C) ;

[1000000000]

gap> Codeword("1000000000",10,GF(3));
[1000000000]1]

3.1.2 CodewordNr

> CodewordNr(C, list) (function)

CodewordNr returns a list of codewords of C. 1ist may be a list of integers or a single integer. For
each integer of 1ist, the corresponding codeword of C is returned. The correspondence of a number
i with a codeword is determined as follows: if a list of elements of C is available, the i’ element is
taken. Otherwise, it is calculated by multiplication of the i information vector by the generator matrix
or generator polynomial, where the information vectors are ordered lexicographically. In particular,
the returned codeword(s) could be a vector or a polynomial. So CodewordNr(C, i) is equal to
AsSSortedList(C) [i], described in the next chapter. The latter function first calculates the set of
all the elements of C and then returns the i’ element of that set, whereas the former only calculates
the i’ codeword.

Example

gap> B := BinaryGolayCode();

a cyclic [23,12,7]3 binary Golay code over GF(2)

gap> ¢ := CodewordNr (B, 4);

x~22 + x720 + x717 + x714 + x713 + x712 + x711 + x710
gap> R := ReedSolomonCode(2,2);
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a cyclic [2,1,2]1 Reed-Solomon code over GF(3)
gap> AsSSortedList(R);

[[foo0], [11],[221]1

gap> CodewordNr(R, [1,3]);

Lfool, [221]1

3.1.3 IsCodeword

> IsCodeword(obj) (function)

IsCodeword returns ‘true’ if obj, which can be an object of arbitrary type, is of the codeword
type and ‘false’ otherwise. The function will signal an error if obj is an unbound variable.

Example
gap> IsCodeword(1);

false

gap> IsCodeword(ReedMullerCode(2,3));

false

gap> IsCodeword("11111");

false

gap> IsCodeword(Codeword("11111"));

true

3.2 Comparisons of Codewords

3.2.1 \= (for codewords)

> \= ( cl 5 C2) (method)

The equality operator c1 = c2 evaluates to ‘true’ if the codewords c1 and c2 are equal, and to
‘false’ otherwise. Note that codewords are equal if and only if their base vectors are equal. Whether
they are represented as a vector or polynomial has nothing to do with the comparison.

Comparing codewords with objects of other types is not recommended, although it is possible. If
c2 is the codeword, the other object c1 is first converted to a codeword, after which comparison is
possible. This way, a codeword can be compared with a vector, polynomial, or string. If c1 is the
codeword, then problems may arise if c2 is a polynomial. In that case, the comparison always yields
a ‘false’, because the polynomial comparison is called.

The equality operator is also denoted EQ, and EQ(c1,c2) is the same as c1 = c2. There is also
an inequality operator, < >, or not EQ.

Example
gap> P := UnivariatePolynomial(GF(2), Z(2)*[1,0,0,11);
Z(2)~0+x_1"3

gap> ¢ := Codeword(P, GF(2));

x"3 + 1

gap> P = c; # codeword operation

true

gap> c2 := Codeword("1001", GF(2));

[1001]

gap> c = c2;

true
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gap> C:=HammingCode(3);

a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> cl:=Random(C) ;

[1001100]1]

gap> c2:=Random(C) ;

[0100101]1]

gap> EQ(c1,c2);

false

gap> not EQ(cl,c2);

true

3.3 Arithmetic Operations for Codewords

3.3.1 \+ (for codewords)

> \+(cl1, c2) (method)

The following operations are always available for codewords. The operands must have a common
base field, and must have the same length. No implicit conversions are performed.

The operator + evaluates to the sum of the codewords c1 and c2.
Example
gap> C:=RandomLinearCode(10,5,GF(3));
a linear [10,5,1..3]3..5 random linear code over GF(3)
gap> c:=Random(C) ;
[1022221020]
gap> Codeword (c+"2000000000") ;
[0022221020]
gap> Codeword(c+"1000000000") ;

The last command returns a GAP ERROR since the ‘codeword” which GUAVA associates to
"1000000000" belongs to GF(2) and not GF(3).

3.3.2 \- (for codewords)

> \— (Cl 5 62) (method)
Similar to addition: the operator - evaluates to the difference of the codewords c1 and c2.

3.3.3 \+ (for codeword and code)

> \+(v, ©O) (method)
The operator v+C evaluates to the coset code of code C after adding a ‘codeword’ v to all code-

words in C. Note that if ¢ € C then mathematically ¢ + C = C but GUAVA only sees them equal as

sets. See CosetCode (6.1.17).
Note that the command C+v returns the same output as the command v+C.

Example
gap> C:=RandomLinearCode(10,5);
a [10,5,7] randomly generated code over GF(2)
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gap> c:=Random(C) ;

[0000000000O0]

gap> c+C;

[ add. coset of a [10,5,7] randomly generated code over GF(2) ]
gap> c+C=C;

true

gap> IsLinearCode(c+C);

false

gap> v:=Codeword("100000000") ;

[100000000]

gap> v+C;

[ add. coset of a [10,5,7] randomly generated code over GF(2) ]
gap> C=v+C;

false

gap> C := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,0] 1, GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> Elements(C) ;

tfooool, [ot1o00], 10001, [11001]

gap> v:=Codeword("0011");

[0o011]

gap> C+v;

[ add. coset of a linear [4,2,4]1 code defined by generator matrix over GF(2) ]
gap> Elements(C+v) ;

tfoot1131, 01111, 10111, [11117]

In general, the operations just described can also be performed on codewords expressed as vectors,
strings or polynomials, although this is not recommended. The vector, string or polynomial is first
converted to a codeword, after which the normal operation is performed. For this to go right, make
sure that at least one of the operands is a codeword. Further more, it will not work when the right
operand is a polynomial. In that case, the polynomial operations (FiniteFieldPolynomialOps) are
called, instead of the codeword operations (Codeword0Ops).

Some other code-oriented operations with codewords are described in 4.2.

3.4 Functions that Convert Codewords to Vectors or Polynomials
3.4.1 VectorCodeword
> VectorCodeword(obj) (function)

Here obj can be a code word or a list of code words. This function returns the corresponding

vectors over a finite field.
Example

gap> a := Codeword("011011");;
gap> VectorCodeword(a) ;
[ 0%2(2), Z(2)~0, Z(2)-0, 0%Z(2), Z(2)-0, Z(2)~0 ]

3.4.2 PolyCodeword

> PolyCodeword(obj) (function)
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PolyCodeword returns a polynomial or a list of polynomials over a Galois field, converted from
obj. The object obj can be a codeword, or a list of codewords.

Example

gap> a := Codeword("011011");;
gap> PolyCodeword(a) ;
x_1+x_1"2+x_1"4+x_1"5

3.5 Functions that Change the Display Form of a Codeword

3.5.1 TreatAsVector

> TreatAsVector (obj) (function)

TreatAsVector adapts the codewords in obj to make sure they are printed as vectors. obj may
be a codeword or a list of codewords. Elements of obj that are not codewords are ignored. After this
function is called, the codewords will be treated as vectors. The vector representation is obtained by
using the coefficient list of the polynomial.

Note that this only changes the way a codeword is printed. TreatAsVector returns nothing, it
is called only for its side effect. The function VectorCodeword converts codewords to vectors (see
VectorCodeword (3.4.1)).

Example

gap> B := BinaryGolayCode() ;

a cyclic [23,12,7]3 binary Golay code over GF(2)

gap> ¢ := CodewordNr (B, 4);

X722 + x720 + x717 + x714 + x713 + x712 + x711 + x~10
gap> TreatAsVector(c);

gap> c;
[00000000001111100100101]

3.5.2 TreatAsPoly

> TreatAsPoly(obj) (function)

TreatAsPoly adapts the codewords in obj to make sure they are printed as polynomials. obj
may be a codeword or a list of codewords. Elements of obj that are not codewords are ignored. After
this function is called, the codewords will be treated as polynomials. The finite field vector that defines
the codeword is used as a coefficient list of the polynomial representation, where the first element of
the vector is the coefficient of degree zero, the second element is the coefficient of degree one, etc,
until the last element, which is the coefficient of highest degree.

Note that this only changes the way a codeword is printed. TreatAsPoly returns nothing, it is
called only for its side effect. The function PolyCodeword converts codewords to polynomials (see
PolyCodeword (3.4.2)).

Example
gap> a := Codeword("00001",GF(2));
[000O01]
gap> TreatAsPoly(a); a;

x"4

gap> b := NullWord(6,GF(4));
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[000000O0]
gap> TreatAsPoly(b); b;
0

3.6 Other Codeword Functions

3.6.1 NullWord

> NullWord(n, F) (function)

Other uses: NullWord( n ) (default F = GF(2)) and NullWord( C ). NullWord returns a
codeword of length n over the field F of only zeros. The integer n must be greater then zero. If
only a code C is specified, NullWord will return a null word with both the word length and the Galois
field of C.

Example
gap> NullWord(8);

[0o000O0OO0O0O0]
gap> Codeword("0000") = NullWord(4);

true
gap> NullWord(5,GF(16));
[0O0O0O0O0]1]

gap> NullWord(ExtendedTernaryGolayCode());
[000000000000O0]

3.6.2 DistanceCodeword

> DistanceCodeword(cl, c2) (function)

DistanceCodeword returns the Hamming distance from c1 to c2. Both variables must be code-
words with equal word length over the same Galois field. The Hamming distance between two words
is the number of places in which they differ. As a result, DistanceCodeword always returns an integer
between zero and the word length of the codewords.

Example

gap> a := Codeword([0, 1, 2, 0, 1, 2]);; b := NullWord(6, GF(3));;
gap> DistanceCodeword(a, b);

4

gap> DistanceCodeword(b, a);

4

gap> DistanceCodeword(a, a);

0

3.6.3 Support

> Support(c) (function)

Support returns a set of integers indicating the positions of the non-zero entries in a codeword
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Example
gap> a := Codeword("012320023002");; Support(a);
[2,3,4,5,8,9, 12]

gap> Support (NullWord (7)) ;

L]

The support of a list with codewords can be calculated by taking the union of the individual supports.
The weight of the support is the length of the set.
Example
gap> L := Codeword(["000000", "101010", "222000"], GF(3));;
gap> S := Union(List(L, i -> Support(i)));

[1, 2, 3, 5]

gap> Length(S);

4

3.6.4 WeightCodeword

> WeightCodeword(c) (function)

WeightCodeword returns the weight of a codeword c, the number of non-zero entries in c. As a
result, WeightCodeword always returns an integer between zero and the word length of the codeword.

Example
gap> WeightCodeword(Codeword("22222")) ;
5
gap> WeightCodeword(NullWord(3));
0

gap> C := HammingCode(3);

a linear [7,4,3]1 Hamming (3,2) code over GF(2)

gap> Minimum(List (AsSSortedList(C){[2..8ize(C)]1}, WeightCodeword ) );
3




Chapter 4

Codes

A code is a set of codewords (recall a codeword in GUAVA is simply a sequence of elements of a
finite field GF(g), where g is a prime power). We call these the elements of the code. Depending on
the type of code, a codeword can be interpreted as a vector or as a polynomial. This is explained in
more detail in Chapter 3.

In GUAVA, codes can be a set specified by its elements (this will be called an unrestricted code),
by a generator matrix listing a set of basis elements (for a linear code) or by a generator polynomial
(for a cyclic code).

Any code can be defined by its elements. If you like, you can give the code a name.

Example
gap> C := ElementsCode(["1100", "1010", "0001"], "example code", GF(2) );
a (4,3,1..4)2..4 example code over GF(2)

An (n,M,d) code is a code with word length n, size M and minimum distance d.  If the minimum
distance has not yet been calculated, the lower bound and upper bound are printed (except in the case
where the code is a random linear codes, where these are not printed for efficiency reasons). So

a (4,3,1..4)2..4 code over GF(2)

means a binary unrestricted code of length 4, with 3 elements and the minimum distance is greater
than or equal to 1 and less than or equal to 4 and the covering radius is greater than or equal to 2 and

less than or equal to 4.

Example
gap> C := ElementsCode(["1100", "1010", "0001"], "example code", GF(2) );
a (4,3,1..4)2..4 example code over GF(2)

gap> MinimumDistance(C);

2

gap> C;

a (4,3,2)2..4 example code over GF(2)

If the set of elements is a linear subspace of GF(g)", the code is called linear. If a code is linear, it
can be defined by its generator matrix or parity check matrix. By definition, the rows of the generator
matrix is a basis for the code (as a vector space over GF(q)). By definition, the rows of the parity
check matrix is a basis for the dual space of the code,

C'={veGF(q)"|v-c=0, forall c € C}.

20
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Example
gap> G := GeneratorMatCode([[1,0,1]1,[0,1,2]], "demo code", GF(3) );
a linear [3,2,1..2]1 demo code over GF(3)

So a linear [n,k,d]r code is a code with word length n, dimension k, minimum distance d and covering
radius r.

If the code is linear and all cyclic shifts of its codewords (regarded as n-tuples) are again code-
words, the code is called cyclic. All elements of a cyclic code are multiples of the monic polynomial
modulo a polynomial x" — 1, where n is the word length of the code. Such a polynomial is called a
generator polynomial The generator polynomial must divide x" — 1 and its quotient is called a check
polynomial. Multiplying a codeword in a cyclic code by the check polynomial yields zero (modulo
the polynomial x" — 1). In GUAVA, a cyclic code can be defined by either its generator polynomial or
check polynomial.

Example
gap> G := GeneratorPolCode (Indeterminate(GF(2))+Z(2)"0, 7, GF(2) );
a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)

It is possible that GUAVA does not know that an unrestricted code is in fact linear. This situation
occurs for example when a code is generated from a list of elements with the function ElementsCode
(see ElementsCode (5.1.1)). By calling the function IsLinearCode (see IsLinearCode (4.3.4)),
GUAVA tests if the code can be represented by a generator matrix. If so, the code record and the
operations are converted accordingly.

Example
gap> L := Z(2)*[ [0,0,0], [1,0,0], [0,1,1], [1,1,1] 1;;
gap> C := ElementsCode( L, GF(2) );

a (3,4,1..3)1 user defined unrestricted code over GF(2)

# so far, GUAVA does not know what kind of code this is
gap> IsLinearCode( C );

true # it is linear

gap> C;

a linear [3,2,1]1 user defined unrestricted code over GF(2)

Of course the same holds for unrestricted codes that in fact are cyclic, or codes, defined by a generator
matrix, that actually are cyclic.

Codes are printed simply by giving a small description of their parameters, the word length, size
or dimension and perhaps the minimum distance, followed by a short description and the base field of
the code. The function Display gives a more detailed description, showing the construction history
of the code.

GUAVA doesn’t place much emphasis on the actual encoding and decoding processes; some al-
gorithms have been included though. Encoding works simply by multiplying an information vector
with a code, decoding is done by the functions Decode or Decodeword. For more information about
encoding and decoding, see sections 4.2 and 4.10.1.
Example

gap> R := ReedMullerCode( 1, 3 );

a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> w := [ 1, 0, 1, 1 ] * R;

[10011001]

gap> Decode( R, w );

[1011]
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gap> Decode( R, w + "10000000" ); # One error at the first position
[1011] # Corrected by Guava

Sections 4.1 and 4.2 describe the operations that are available for codes. Section 4.3 describe
the functions that tests whether an object is a code and what kind of code it is (see IsCode,
IsLinearCode (4.3.4) and IsCyclicCode) and various other boolean functions for codes. Sec-
tion 4.4 describe functions about equivalence and isomorphism of codes (see IsEquivalent (4.4.1),
CodeIsomorphism (4.4.2) and AutomorphismGroup (4.4.3)). Section 4.5 describes functions that
work on domains (see Chapter "Domains and their Elements" in the GAP Reference Manual). Sec-
tion 4.6 describes functions for printing and displaying codes. Section 4.7 describes functions
that return the matrices and polynomials that define a code (see GeneratorMat (4.7.1), CheckMat
(4.7.2), GeneratorPol (4.7.3), CheckPol (4.7.4), Roots0fCode (4.7.5)). Section 4.8 describes func-
tions that return the basic parameters of codes (see WordLength (4.8.1), Redundancy (4.8.2) and
MinimumDistance (4.8.3)). Section 4.9 describes functions that return distance and weight distribu-
tions (see WeightDistribution (4.9.2), InnerDistribution (4.9.3), OuterDistribution (4.9.5)
and DistancesDistribution (4.9.4)). Section 4.10 describes functions that are related to decod-
ing (see Decode (4.10.1), Decodeword (4.10.2), Syndrome (4.10.8), SyndromeTable (4.10.9) and
StandardArray (4.10.10)). In Chapters 5 and 6 which follow, we describe functions that generate
and manipulate codes.

4.1 Comparisons of Codes

4.1.1 \= (for codes)

> \=(C1, C2) (method)

The equality operator C1 = C2 evaluates to ‘true’ if the codes C1 and C2 are equal, and to ‘false’
otherwise.

The equality operator is also denoted EQ, and Eq(C1,C2) is the same as C1 = C2. There is also
an inequality operator, < >, or not EQ.

Note that codes are equal if and only if their set of elements are equal. Codes can also be compared

with objects of other types. Of course they are never equal.
Example
gap> M := [ [0, 0], [1, 0], [0, 11, [1, 11 1;;

gap> C1 := ElementsCode( M, GF(2) );

a (2,4,1..2)0 user defined unrestricted code over GF(2)

gap> M = Ci;

false

gap> C2 := GeneratorMatCode( [ [1, 0], [0, 1] 1, GF(2) );

a linear [2,2,1]0 code defined by generator matrix over GF(2)

gap> C1 = C2;

true

gap> ReedMullerCode( 1, 3 ) = HadamardCode( 8 );

true

gap> WholeSpaceCode( 5, GF(4) ) = WholeSpaceCode( 5, GF(2) );
false

Another way of comparing codes is IsEquivalent, which checks if two codes are equivalent (see
IsEquivalent (4.4.1)). By the way, this called CodeIsomorphism. For the current version of
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GUAVA, unless one of the codes is unrestricted, this calls Leon’s C program (which only works
for binary linear codes and only on a unix/linux computer).

4.2 Operations for Codes

4.2.1 \+ (for codes)

> \+(C1, C2) (method)

The operator ‘+’ evaluates to the direct sum of the codes C1 and C2. See DirectSumCode (6.2.1).
Example

gap> Cl:=RandomLinearCode(10,5);

a [10,5,7] randomly generated code over GF(2)

gap> C2:=RandomLinearCode(9,4);

a [9,4,7] randomly generated code over GF(2)

gap> C1+C2;

a linear [10,9,1]0..10 unknown linear code over GF(2)

4.2.2 \* (for codes)

> \x(C1, C2) (method)

The operator ‘*’ evaluates to the direct product of the codes C1 and C2. See DirectProductCode
(6.2.3).

Example
gap> Cl := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,0] 1, GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> C2 := GeneratorMatCode( [ [0,0,1, 1], [0,0,0, 1] 1, GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> C1x%C2;

a linear [16,4,1]4..12 direct product code

4.2.3 \* (for message and code)

> \*(m, C) (method)

The operator m*C evaluates to the element of C belonging to information word ('message’) m. Here
m may be a vector, polynomial, string or codeword or a list of those. This is the way to do encoding in
GUAVA. C must be linear, because in GUAVA, encoding by multiplication is only defined for linear
codes. If C is a cyclic code, this multiplication is the same as multiplying an information polynomial
m by the generator polynomial of C. If C is a linear code, it is equal to the multiplication of an
information vector m by a generator matrix of C.

To invert this, use the function InformationWord (see InformationWord (4.2.4), which simply
calls the function Decode).

Example
gap> C := GeneratorMatCode( [ [1, 0,0,0], [0, 1,0,0] 1, GF(2) );
a linear [4,2,1]1 code defined by generator matrix over GF(2)
gap> m:=Codeword("11");
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[11]
gap> mx*C;
[1100]

4.2.4 InformationWord

> InformationWord(C, c) (function)

Here C is a linear code and c is a codeword in it. The command InformationWord returns
the message word (or “information digits’) m satisfying c=m*C. This command simply calls Decode,
provided ¢ in Cis true. Otherwise, it returns an error.

To invert this, use the encoding function * (see \* (4.2.3)).

Example

gap> C:=HammingCode(3);

a linear [7,4,3]1 Hamming (3,2) code over GF(2)
gap> c:=Random(C) ;

[oO0OO0O1111]

gap> InformationWord(C,c);

[0o111]

gap> c:=Codeword("1111100") ;

[1111100]1]

gap> InformationWord(C,c);

"ERROR: codeword must belong to code"

gap> C:=NordstromRobinsonCode() ;

a (16,256,6)4 Nordstrom-Robinson code over GF(2)
gap> c:=Random(C) ;
[0001000100101101]1]

gap> InformationWord(C,c);

"ERROR: code must be linear"

4.3 Boolean Functions for Codes

4.3.1 in

> in(c, ©) (function)

The command ¢ in C evaluates to ‘true’ if C contains the codeword or list of codewords specified
by c. Of course, ¢ and C must have the same word lengths and base fields.

Example
gap> C:= HammingCode( 2 );; eC:= AsSSortedList( C );
(L0001, [1111]

gap> eC[2] in C;

true

gap> [ 0 ] in C;

false
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4.3.2 IsSubset

> IsSubset(C1, C2) (function)

The command IsSubset (C1,C2) returns ‘true’ if C2 is a subcode of C1, i.e. if C1 contains all
the elements of C2.

Example
gap> IsSubset( HammingCode(3), RepetitionCode( 7 ) );
true
gap> IsSubset( RepetitionCode( 7 ), HammingCode( 3 ) );
false
gap> IsSubset( WholeSpaceCode( 7 ), HammingCode( 3 ) );
true
4.3.3 IsCode
> IsCode( Obj) (function)

IsCode returns ‘true’ if obj, which can be an object of arbitrary type, is a code and ‘false’
otherwise. Will cause an error if obj is an unbound variable.

Example

gap> IsCode( 1 );

false

gap> IsCode( ReedMullerCode( 2,3 ) );
true

4.3.4 IsLinearCode

> IsLinearCode(obj) (function)

IsLinearCode checks if object obj (not necessarily a code) is a linear code. If a code has
already been marked as linear or cyclic, the function automatically returns ‘true’. Otherwise, the
function checks if a basis G of the elements of obj exists that generates the elements of obj. If so,
G is recorded as a generator matrix of obj and the function returns ‘true’. If not, the function returns
‘false’.

Example
gap> C := ElementsCode( [ [0,0,0],[1,1,1] 1, GF(2) );

a (3,2,1..3)1 user defined unrestricted code over GF(2)
gap> IsLinearCode( C );

true

gap> IsLinearCode( ElementsCode( [ [1,1,1]1 1, GF(2) ) );
false

gap> IsLinearCode( 1 );

false

4.3.5 IsCyclicCode

> IsCyclicCode(obj) (function)



GUAVA 26

IsCyclicCode checks if the object obj is a cyclic code. If a code has already been marked as
cyclic, the function automatically returns ‘true’. Otherwise, the function checks if a polynomial g
exists that generates the elements of obj. If so, g is recorded as a generator polynomial of obj and
the function returns ‘true’. If not, the function returns ‘false’.

Example
gap> C := ElementsCode( [ [0,0,0], [1,1,1] 1, GF(2) );

a (3,2,1..3)1 user defined unrestricted code over GF(2)

gap> # GUAVA does not know the code is cyclic

gap> IsCyclicCode( C ); # this command tells GUAVA to find out
true

gap> IsCyclicCode( HammingCode( 4, GF(2) ) );

false

gap> IsCyclicCode( 1 );

false

4.3.6 IsPerfectCode

> IsPerfectCode(C) (function)

IsPerfectCode(C) returns ‘true’ if C is a perfect code. If C C GF(g)" then, by definition, this
means that for some positive integer 7, the space GF(q)" is covered by non-overlapping spheres of
(Hamming) radius ¢ centered at the codewords in C. For a code with odd minimum distance d =2¢+-1,
this is the case when every word of the vector space of C is at distance at most ¢ from exactly one
element of C. Codes with even minimum distance are never perfect.

In fact, a code that is not "trivially perfect” (the binary repetition codes of odd length, the codes
consisting of one word, and the codes consisting of the whole vector space), and does not have the
parameters of a Hamming or Golay code, cannot be perfect (see section 1.12 in [HPO3]).

Example

gap> H := HammingCode(2);

a linear [3,1,3]1 Hamming (2,2) code over GF(2)

gap> IsPerfectCode( H );

true

gap> IsPerfectCode( ElementsCode([[1,1,0],[0,0,1]1]1,GF(2)) );
true

gap> IsPerfectCode( ReedSolomonCode( 6, 3 ) );

false

gap> IsPerfectCode( BinaryGolayCode() );

true

4.3.7 IsMDSCode

> IsMDSCode ( C) (function)

IsMDSCode (C) returns true if C is a maximum distance separable (MDS) code. A linear [n,k,d]-
code of length n, dimension k£ and minimum distance d is an MDS code if k =n—d + 1, in other words
if C meets the Singleton bound (see UpperBoundSingleton (7.1.1)). An unrestricted (n,M,d) code
is called MDS if k = n—d + 1, with k equal to the largest integer less than or equal to the logarithm
of M with base g, the size of the base field of C.
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Well-known MDS codes include the repetition codes, the whole space codes, the even weight
codes (these are the only binary MDS codes) and the Reed-Solomon codes.

Example

gap> Cl1 := ReedSolomonCode( 6, 3 );

a cyclic [6,4,3]2 Reed-Solomon code over GF(7)
gap> IsMDSCode( C1 );

true # 6-3+1 = 4

gap> IsMDSCode( QRCode( 23, GF(2) ) );

false

4.3.8 IsSelfDualCode

> IsSelfDualCode(C) (function)

IsSelfDualCode(C) returns ‘true’ if C is self-dual, i.e. when C is equal to its dual code (see also
DualCode (6.1.14)). A code is self-dual if it contains all vectors that its elements are orthogonal to. If
a code is self-dual, it automatically is self-orthogonal (see IsSelfOrthogonalCode (4.3.9)).

If C is a non-linear code, it cannot be self-dual (the dual code is always linear), so ‘false’ is
returned. A linear code can only be self-dual when its dimension & is equal to the redundancy r.
Example
gap> IsSelfDualCode( ExtendedBinaryGolayCode() );
true
gap> C := ReedMullerCode( 1, 3 );

a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2)
gap> DualCode( C ) = C;
true

4.3.9 IsSelfOrthogonalCode

> IsSelfOrthogonalCode (C) (function)

IsSelfOrthogonalCode(C) returns ‘true’ if C is self-orthogonal. A code is self-orthogonal if
every element of C is orthogonal to all elements of C, including itself. (In the linear case, this simply
means that the generator matrix of C multiplied with its transpose yields a null matrix.)

Example

gap> R := ReedMullerCode(1,4);

a linear [16,5,8]6 Reed-Muller (1,4) code over GF(2)
gap> IsSelfOrthogonalCode(R);

true

gap> IsSelfDualCode(R);

false

4.3.10 IsDoublyEvenCode

> IsDoublyEvenCode (C) (function)
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IsDoublyEvenCode (C) returns ‘true’ if C is a binary linear code which has codewords of weight
divisible by 4 only. According to [HP03], a doubly-even code is self-orthogonal and every row in its
generator matrix has weight that is divisible by 4.
Example

gap> C:=BinaryGolayCode() ;

a cyclic [23,12,7]13 binary Golay code over GF(2)
gap> WeightDistribution(C);

[1, 0, O, O, O, O, O, 253, 506, O, O, 1288, 1288, O, O, 506, 253, 0, O, O, O, O, |0,
gap> IsDoublyEvenCode(C) ;

false

gap> C:=ExtendedCode(C);

a linear [24,12,8]4 extended code
gap> WeightDistribution(C);

[t o, 0, 0, 0, 0, O, O, 759, 0, O, O, 2576, O, O, O, 759, 0, O, O, O, O, O, O, 1]
gap> IsDoublyEvenCode(C) ;
true

4.3.11 IsSinglyEvenCode

> IsSinglyEvenCode(C) (function)

IsSinglyEvenCode (C) returns ‘true’ if C is a binary self-orthogonal linear code which is not
doubly-even. In other words, C is a binary self-orthogonal code which has codewords of even weight.

Example
gap> x:=Indeterminate(GF(2));

x_1

gap> C:=QuasiCyclicCode( [x~0, 1+x~3+x~5+x"6+x~7], 11, GF(2) );

a linear [22,11,1..6]4..7 quasi-cyclic code over GF(2)

gap> IsSelfDualCode(C); # self-dual is a restriction of self-orthogonal
true

gap> IsDoublyEvenCode(C) ;

false

gap> IsSinglyEvenCode(C);

true

4.3.12 IsEvenCode

> IsEvenCode(C) (function)

IsEvenCode (C) returns ‘true’ if C is a binary linear code which has codewords of even weight—
regardless whether or not it is self-orthogonal.

Example

gap> C:=BinaryGolayCode() ;

a cyclic [23,12,7]3 binary Golay code over GF(2)
gap> IsSelfOrthogonalCode(C);

false

gap> IsEvenCode(C);

false
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gap> C:=ExtendedCode(C) ;

a linear [24,12,8]4 extended code
gap> IsSelfOrthogonalCode(C);

true

gap> IsEvenCode(C);

true

gap> C:=ExtendedCode (QRCode(17,GF(2)));
a linear [18,9,6]3..5 extended code
gap> IsSelfOrthogonalCode(C);

false

gap> IsEvenCode(C);

true

4.3.13 IsSelfComplementaryCode

> IsSelfComplementaryCode (C) (function)

IsSelfComplementaryCode returns ‘true’ if
veC=1—veC

where 1 is the all-one word of length n.

Example
gap> IsSelfComplementaryCode( HammingCode( 3, GF(2) ) );
true

gap> IsSelfComplementaryCode( EvenWeightSubcode(

> HammingCode( 3, GF(2) ) ) );

false

4.3.14 IsAffineCode

> IsAffineCode(C) (function)

IsAffineCode returns ‘true’ if C is an affine code. A code is called affine if it is an affine space.
In other words, a code is affine if it is a coset of a linear code.

Example
gap> IsAffineCode( HammingCode( 3, GF(2) ) );

true

gap> IsAffineCode( CosetCode( HammingCode( 3, GF(2) ),
>[1,0,0,0,0,0,01));

true

gap> IsAffineCode( NordstromRobinsonCode() );

false




GUAVA 30

4.3.15 IsAlmostAffineCode

> IsAlmostAffineCode(C) (function)

IsAlmostAffineCode returns ‘true’ if C is an almost affine code. A code is called almost affine
if the size of any punctured code of C is ¢" for some r, where ¢ is the size of the alphabet of the code.
Every affine code is also almost affine, and every code over GF(2) and GF(3) that is almost affine is
also affine.

Example
gap> code := ElementsCode( [ [0,0,0], [O0,1,1], [0,2,2], [0,3,3],
> (1,0,11, [1,1,01, [1,2,3], [1,3,2],
> [2,0,2], [2,1,3], [2,2,0], [2,3,1],
> (3,0,31, [3,1,2]1, [3,2,1], [3,3,0] 1,
> GF(4) )3;
gap> IsAlmostAffineCode( code );
true
gap> IsAlmostAffineCode( NordstromRobinsonCode() );
false

4.4 Equivalence and Isomorphism of Codes

4.4.1 IsEquivalent

> IsEquivalent(C1, C2) (function)

We say that C1 is permutation equivalent to C2 if C1 can be obtained from C2 by carrying out
column permutations. IsEquivalent returns true if C1 and C2 are equivalent codes. At this time,
IsEquivalent only handles binary codes. (The external unix/linux program DESAUTO from J. S.
Leon is called by IsEquivalent.) Of course, if C1 and C2 are equal, they are also equivalent.

Note that the algorithm is very slow for non-linear codes.

More generally, we say that C1 is equivalent to C2 if C1 can be obtained from C2 by carrying out
column permutations and a permutation of the alphabet.

Example
gap> x:= Indeterminate( GF(2) );; pol:= x~3+x+1;

Z(2)"0+x_1+x_1"3

gap> H := GeneratorPolCode( pol, 7, GF(2));

a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> H = HammingCode (3, GF(2));

false

gap> IsEquivalent(H, HammingCode(3, GF(2)));

true # H is equivalent to a Hamming code
gap> CodeIsomorphism(H, HammingCode(3, GF(2)));

(3,4)(5,6,7)

4.4.2 Codelsomorphism

> CodeIsomorphism(C1, C2) (function)
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If the two codes C1 and C2 are permutation equivalent codes (see IsEquivalent (4.4.1)),
CodeIsomorphism returns the permutation that transforms C1 into C2. If the codes are not equiv-
alent, it returns ‘false’.

At this time, IsEquivalent only computes isomorphisms between binary codes on a linux/unix
computer (since it calls Leon’s C program DESAUTO).

Example
gap> x:= Indeterminate( GF(2) );; pol:= x~3+x+1;

Z(2)~0+x_1+x_1"3

gap> H := GeneratorPolCode( pol, 7, GF(2));

a cyclic [7,4,1..3]1 code defined by generator polynomial over GF(2)
gap> CodeIsomorphism(H, HammingCode(3, GF(2)));

(3,4)(5,6,7)

gap> PermutedCode(H, (3,4)(5,6,7)) = HammingCode(3, GF(2));

true

4.4.3 AutomorphismGroup

> AutomorphismGroup (C) (function)

AutomorphismGroup returns the automorphism group of a linear code C. For a binary code,
the automorphism group is the largest permutation group of degree n such that each permutation
applied to the columns of C again yields C. GUAVA calls the external program DESAUTO written
by J. S. Leon, if it exists, to compute the automorphism group. If Leon’s program is not com-
piled on the system (and in the default directory) then it calls instead the much slower program
PermutationAutomorphismGroup.

See Leon [Leo82] for a more precise description of the method, and the guava/src/leon/doc
subdirectory for for details about Leon’s C programs.

The function PermutedCode permutes the columns of a code (see PermutedCode (6.1.4)).

Example

gap> R := RepetitionCode(7,GF(2));
a cyclic [7,1,7]13 repetition code over GF(2)
gap> AutomorphismGroup(R);
Sym( [ 1 ..71)
# every permutation keeps R identical
gap> C := CordaroWagnerCode(7);
a linear [7,2,4]3 Cordaro-Wagner code over GF(2)
gap> AsSSortedList(C);
(foooooo0o0J,[0011111]1,[1100011],[11111001]
gap> AutomorphismGroup(C) ;
Group([ (3,4), (4,5), (1,6)(2,7), (1,2), (6,7) 1)
gap> C2 := PermutedCode(C, (1,6)(2,7));
a linear [7,2,4]3 permuted code
gap> AsSSortedList(C2);
(foooooo0oo0J,[0011111]1,[1100011],[11111001]
gap> C2 = C;
true




GUAVA 32

4.4.4 PermutationAutomorphismGroup

> PermutationAutomorphismGroup (C) (function)

PermutationAutomorphismGroup returns the permutation automorphism group of a linear code
C. This is the largest permutation group of degree n such that each permutation applied to the columns
of C again yields C. It is written in GAP, so is much slower than AutomorphismGroup.

When C is binary PermutationAutomorphismGroup does not call AutomorphismGroup, even
though they agree mathematically in that case. This way PermutationAutomorphismGroup can be
called on any platform which runs GAP.

The older name for this command, PermutationGroup, will become obsolete in the next version
of GAP.

Example

gap> R := RepetitionCode(3,GF(3));

a cyclic [3,1,3]2 repetition code over GF(3)

gap> G:=PermutationAutomorphismGroup(R) ;

Group([ O, (1,3), (1,2,3), (2,3), (1,3,2), (1,2) 1
gap> G=SymmetricGroup(3);

true

4.5 Domain Functions for Codes

These are some GAP functions that work on ‘Domains’ in general. Their specific effect on ‘Codes’ is
explained here.

4.5.1 IsFinite

> IsFinite(C) (function)

IsFinite is an implementation of the GAP domain function IsFinite. It returns true for a code

C.
Example
gap> IsFinite( RepetitionCode( 1000, GF(11) ) );
true
4.5.2 Size
> Size (C) (function)

Size returns the size of C, the number of elements of the code. If the code is linear, the size of the
code is equal to ¢¥, where g is the size of the base field of C and k is the dimension.
Example
gap> Size( RepetitionCode( 1000, GF(11) ) );
11
gap> Size( NordstromRobinsonCode() );
256
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4.5.3 LeftActingDomain

> LeftActingDomain(C) (function)

LeftActingDomain returns the base field of a code C. Each element of C consists of elements
of this base field. If the base field is F, and the word length of the code is n, then the codewords are
elements of F". If C is a cyclic code, its elements are interpreted as polynomials with coefficients over
F.

Example
gap> Cl := ElementsCode([[0,0,0], [1,0,1], [0,1,0]1], GF(4));
a (3,3,1..3)2..3 user defined unrestricted code over GF(4)
gap> LeftActingDomain( C1 );

GF(2"2)

gap> LeftActingDomain( HammingCode( 3, GF(9) ) );

GF(3~2)

4.5.4 Dimension

> Dimension(C) (function)

Dimension returns the parameter k£ of C, the dimension of the code, or the number of information
symbols in each codeword. The dimension is not defined for non-linear codes; Dimension then
returns an error.

Example
gap> Dimension( NullCode( 5, GF(5) ) );

0

gap> C := BCHCode( 15, 4, GF(4) );

a cyclic [15,9,5]3..4 BCH code, delta=5, b=1 over GF(4)

gap> Dimension( C );

9

gap> Size( C ) = Size( LeftActingDomain( C ) ) ~ Dimension( C );
true

4.5.5 AsSSortedList

> AsSSortedList (C) (function)

AsSSortedList (as strictly sorted list) returns an immutable, duplicate free list of the elements
of C. For a finite field GF (q) generated by powers of Z(g), the ordering on

GF(q) ={0,Z(¢)°,Z(q),Z(q)*, .. Z(q)"*}

is that determined by the exponents i. These elements are of the type codeword (see Codeword
(3.1.1)). Note that for large codes, generating the elements may be very time- and memory-consuming.
For generating a specific element or a subset of the elements, use CodewordNr (see CodewordNr
(3.1.2)).

Example
gap> C := ConferenceCode( 5 );
a (5,12,2)1..4 conference code over GF(2)
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4.6 Printing and Displaying Codes

4.6.1 Print

> Print (C) (function)

Print prints information about C. This is the same as typing the identifier C at the GAP-prompt.
If the argument is an unrestricted code, information in the form

a (n,M,d)r ... code over GF(q)

is printed, where n is the word length, M the number of elements of the code, d the minimum distance
and r the covering radius.
If the argument is a linear code, information in the form

a linear [n,k,d]r ... code over GF(q)

is printed, where n is the word length, k the dimension of the code, d the minimum distance and r
the covering radius.

Except for codes produced by RandomLinearCode, if d is not yet known, it is displayed in the
form

lowerbound. .upperbound

and if r is not yet known, it is displayed in the same way. For certain ranges of n, the values of
lowerbound and upperbound are obtained from tables.

The function Display gives more information. See Display (4.6.3).
Example
gap> Cl1 := ExtendedCode( HammingCode( 3, GF(2) ) );
a linear [8,4,4]2 extended code
gap> Print( "This is ", NordstromRobinsonCode(), ". \n");
This is a (16,256,6)4 Nordstrom-Robinson code over GF(2).

4.6.2 String

> String (9] (function)

String returns information about C in a string. This function is used by Print.
Example
gap> x:= Indeterminate( GF(3) );; pol:= x"2+1;
x_172+Z(3)"0

gap> Factors(pol);

[ x_1°2+Z(3)~0 ]
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gap> H := GeneratorPolCode( pol, 8, GF(3));

a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)
gap> String(H);

"a cyclic [8,6,1..2]1..2 code defined by generator polynomial over GF(3)"

4.6.3 Display

> Display €9 (function)

Display prints the method of construction of code C. With this history, in most cases an equal or
equivalent code can be reconstructed. If C is an unmanipulated code, the result is equal to output of
the function Print (see Print (4.6.1)).
Example
gap> Display( RepetitionCode( 6, GF(3) ) );
a cyclic [6,1,6]4 repetition code over GF(3)
gap> Cl := ExtendedCode( HammingCode(2) );;
gap> C2 := PuncturedCode( ReedMullerCode( 2, 3 ) );;
gap> Display( LengthenedCode( UUVCode( C1, C2 ) ) );
a linear [12,8,2]2..4 code, lengthened with 1 column(s) of
a linear [11,8,1]1..2 U U+V construction code of
U: a linear [4,1,4]2 extended code of

a linear [3,1,3]1 Hamming (2,2) code over GF(2)
V: a linear [7,7,1]0 punctured code of

a cyclic [8,7,2]1 Reed-Muller (2,3) code over GF(2)

4.6.4 DisplayBoundsInfo

> DisplayBoundsInfo (bds) (function)

DisplayBoundsInfo prints the method of construction of the code C indicated in bds:=
BoundsMinimumDistance( n, k, GF(q) ).

Example
gap> bounds := BoundsMinimumDistance( 20, 17, GF(4) );

gap> DisplayBoundsInfo(bounds) ;

an optimal linear [20,17,d] code over GF(4) has d=3

Lb(20,17)=3, by shortening of:

Lb(21,18)=3, by applying contruction B to a [81,77,3] code

Lb(81,77)=3, by shortening of:

Lb(85,81)=3, reference: Ham

Ub(20,17)=3, by considering shortening to:
Ub(7,4)=3, by considering puncturing to:
Ub(6,4)=2, by construction B applied to:
Ub(2,1)=2, repetition code

Reference Ham:

%T this reference is unknown, for more info
%T contact A.E. Brouwer (aeb@cwi.nl)
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4.7 Generating (Check) Matrices and Polynomials

4.7.1 GeneratorMat

> GeneratorMat (C) (function)

GeneratorMat returns a generator matrix of C. The code consists of all linear combinations of
the rows of this matrix.

If until now no generator matrix of C was determined, it is computed from either the parity check
matrix, the generator polynomial, the check polynomial or the elements (if possible), whichever is
available.

If C is a non-linear code, the function returns an error.

Example
gap> GeneratorMat( HammingCode( 3, GF(2) ) );
[ [ an immutable GF2 vector of length 7],
[ an immutable GF2 vector of length 7],
[ an immutable GF2 vector of length 7],
[ an immutable GF2 vector of length 7] ]
gap> Display(last);
111.
1. .11..
10101,
11.1. .1
gap> GeneratorMat( RepetitionCode( 5, GF(25)
[ [ z2(5)~0, 2(5)~0, Z(5)~0, Z(5)~0, Z(5)~0 ]
gap> GeneratorMat( NullCode( 14, GF(4) ) );
L1

) )
]

4.7.2 CheckMat

> CheckMat (C) (function)

CheckMat returns a parity check matrix of C. The code consists of all words orthogonal to each
of the rows of this matrix. The transpose of the matrix is a right inverse of the generator matrix. The
parity check matrix is computed from either the generator matrix, the generator polynomial, the check
polynomial or the elements of C (if possible), whichever is available.

If C is a non-linear code, the function returns an error.

Example
gap> CheckMat ( HammingCode (3, GF(2) ) );
[ [ 0%xZ(2), 0%Z(2), 0*Z(2), Z(2)"0, Z(2)~0, Z(2)~0, z(2)"0 1,
[ 0xZ(2), Z(2)-0, Z(2)~0, 0*xZ(2), 0*Z(2), Z(2)-0, Z(2)~0 1,
[ Z(2)~0, 0%Z(2), Z(2)~0, 0%Z(2), Z(2)~0, 0*Z(2), Z(2)~0 ]
gap> Display(last);
.1111
.11 .0 .11
1 .1.1.1
gap> CheckMat( RepetitionCode( 5, GF(25) ) );
[ [ z(56)~0, Z(5)~2, 0%Z(5), 0*xZ(5), 0%Z(5) 1,
[ 0xZ(5), z(5)~0, Z(5)~2, 0%Z(5), 0*xz(5) 1,
[ 0xZ(5), 0%Z(5), Z(5)~0, Z(5)~2, 0*Z(5) 1,

]
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[ 0%Z(5), 0%Z(5), 0%Z(5), Z(5)~0, Z(5)~2 ] ]
gap> CheckMat ( WholeSpaceCode( 12, GF(4) ) );
L 1]

4.7.3 GeneratorPol

> GeneratorPol (C) (function)

GeneratorPol returns the generator polynomial of C. The code consists of all multiples of the
generator polynomial modulo x" — 1, where n is the word length of C. The generator polynomial is
determined from either the check polynomial, the generator or check matrix or the elements of C (if
possible), whichever is available.

If C is not a cyclic code, the function returns ‘false’.
Example
gap> GeneratorPol (GeneratorMatCode([[1, 1, 0], [0, 1, 111, GF(2)));
Z(2)~0+x_1
gap> GeneratorPol( WholeSpaceCode( 4, GF(2) ) );

Z(2)-0
gap> GeneratorPol( NullCode( 7, GF(3) ) );
-Z(3)~0+x_1"7

4.7.4 CheckPol

> CheckPol (C) (function)

CheckPol returns the check polynomial of C. The code consists of all polynomials f with
f-h=0(modx"—1),

where £ is the check polynomial, and » is the word length of C. The check polynomial is computed
from the generator polynomial, the generator or parity check matrix or the elements of C (if possible),
whichever is available.

If C if not a cyclic code, the function returns an error.

Example
gap> CheckPol (GeneratorMatCode([[1, 1, 0], [0, 1, 111, GF(2)));
Z(2)~0+x_1+4x_1"2

gap> CheckPol(WholeSpaceCode(4, GF(2)));

Z(2)"0+x_1"4

gap> CheckPol (NullCode(7,GF(3)));

Z(3)°0

4.7.5 RootsOfCode
> Roots0fCode (C) (function)
Roots0fCode returns a list of all zeros of the generator polynomial of a cyclic code C. These are

finite field elements in the splitting field of the generator polynomial, GF (¢™), m is the multiplicative
order of the size of the base field of the code, modulo the word length.
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The reverse process, constructing a code from a set of roots, can be carried out by the function
RootsCode (see RootsCode (5.5.3)).

Example
gap> Cl1 := ReedSolomonCode( 16, 5 );

a cyclic [16,12,5]3..4 Reed-Solomon code over GF(17)
gap> Roots0fCode( C1 );

[ z7), zQA7~2, 2(17)~3, 2(17)~4 ]

gap> C2 := RootsCode( 16, last );

a cyclic [16,12,5]3..4 code defined by roots over GF(17)
gap> C1 = C2;

true

4.8 Parameters of Codes

4.8.1 WordLength

> WordLength ) (function)

WordLength returns the parameter n of C, the word length of the elements. Elements of cyclic
codes are polynomials of maximum degree n — 1, as calculations are carried out modulo x" — 1.
Example

gap> WordLength( NordstromRobinsonCode() );
16

gap> WordLength( PuncturedCode( WholeSpaceCode(7) ) );

6

gap> WordLength( UUVCode( WholeSpaceCode(7), RepetitionCode(7) ) );
14

4.8.2 Redundancy

> Redundancy(C) (function)

Redundancy returns the redundancy r of C, which is equal to the number of check symbols in
each element. If C is not a linear code the redundancy is not defined and Redundancy returns an error.
If a linear code C has dimension k and word length n, it has redundancy r = n — k.

Example

gap> C := TernaryGolayCode();

a cyclic [11,6,5]2 ternary Golay code over GF(3)
gap> Redundancy(C) ;

5

gap> Redundancy( DualCode(C) );

6

4.8.3 MinimumDistance

> MinimumDistance (C) (function)



GUAVA 39

MinimumDistance returns the minimum distance of C, the largest integer d with the property that
every element of C has at least a Hamming distance d (see DistanceCodeword (3.6.2)) to any other
element of C. For linear codes, the minimum distance is equal to the minimum weight. This means
that d is also the smallest positive value with w[d + 1] # 0, where w = (w[1],w[2],...,w[n]) is the
weight distribution of C (see WeightDistribution (4.9.2)). For unrestricted codes, d is the smallest
positive value with w[d + 1] # 0, where w is the inner distribution of C (see InnerDistribution
(4.9.3)).

For codes with only one element, the minimum distance is defined to be equal to the word length.

For linear codes C, the algorithm used is the following: After replacing C by a permutation equiva-
lent C”, one may assume the generator matrix has the following form G = (I;|A), for some k x (n —k)
matrix A. If A = 0 then return d(C) = 1. Next, find the minimum distance of the code spanned by the
rows of A. Call this distance d(A). Note that d(A) is equal to the the Hamming distance d(v,0) where
v is some proper linear combination of i distinct rows of A. Return d(C) = d(A) + i, where i is as in
the previous step.

This command may also be called using the syntax MinimumDistance(C, w). In this form,
MinimumDistance returns the minimum distance of a codeword w to the code C, also called the
distance from w to C. This is the smallest value d for which there is an element ¢ of the code C which
is at distance d from w. So d is also the minimum value for which D[d + 1] # 0, where D is the
distance distribution of w to C (see DistancesDistribution (4.9.4)).

Note that w must be an element of the same vector space as the elements of C. w does not
necessarily belong to the code (if it does, the minimum distance is zero).

Example
gap> C := MOLSCode(7);; MinimumDistance(C);
3

gap> WeightDistribution(C);

[ 1, 0, 0, 24, 24 ]

gap> MinimumDistance( WholeSpaceCode( 5, GF(3) ) );

1

gap> MinimumDistance( NullCode( 4, GF(2) ) );

4

gap> C := ConferenceCode(9);; MinimumDistance(C);
4

gap> InnerDistribution(C);
[1, 0, O, O, 63/5, 9/5, 18/5, 0, 9/10, 1/10 ]
gap> C := MOLSCode(7);; w := CodewordNr( C, 17 );

[3362]

gap> MinimumDistance( C, w );

0

gap> C := RemovedElementsCode( C, w );; MinimumDistance( C, w );
3 # so w no longer belongs to C

See also the GUAVA commands relating to bounds on the minimum distance in section 7.1.

4.8.4 MinimumDistanceLeon

> MinimumDistanceLeon (C) (function)

MinimumDistanceLeon returns the “probable” minimum distance dj.,, of a linear binary code
C, using an implementation of Leon’s probabilistic polynomial time algorithm. Briefly: Let C be a
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linear code of dimension k over GF(q) as above. The algorithm has input parameters s and p, where
s is an integer between 2 and n — k, and p is an integer between 2 and k.

* Find a generator matrix G of C.
* Randomly permute the columns of G.

* Perform Gaussian elimination on the permuted matrix to obtain a new matrix of the following
form:
G=(k|Z|B)

with Z a k x s matrix. If (Z,B) is the zero matrix then return 1 for the minimum distance. If
Z =0 but not B then either choose another permutation of the rows of C or return ‘method fails’.

* Search Z for at most p rows that lead to codewords of weight less than p.
* For these codewords, compute the weight of the whole word in C. Return this weight.

(See for example J. S. Leon, [Leo88] for more details.) Sometimes (as is the case in GUAVA)
this probabilistic algorithm is repeated several times and the most commonly occurring value
is taken. (This function actually has two optional arguments: p and num. The command
MinimumDistanceLeon(C,p,num) allows a bit more flexibility for the user - see the GAP code in
codeops.gi for details.)

Example
gap> C:=RandomLinearCode(50,22,GF(2));

a [50,22,7] randomly generated code over GF(2)
gap> MinimumDistanceLeon(C); time;

6

211

gap> MinimumDistance(C); time;

6

1204

4.8.5 MinimumWeight

> MinimumWeight (C) (function)

MinimumWeight returns the minimum Hamming weight of a linear code C. At the moment,
this function works for binary and ternary codes only. The MinimumWeight function relies on an
external executable program which is written in C language. As a consequence, the execution time of
MinimumWeight function is faster than that of MinimumDistance (4.8.3) function.

The MinimumWeight function implements Chen’s [Che69] algorithm if C is cyclic, and Zimmer-
mann’s [Zim96] algorithm if C is a general linear code. This function has a built-in check on the
constraints of the minimum weight codewords. For example, for a self-orthogonal code over GF(3),
the minimum weight codewords have weight that is divisible by 3, i.e. 0 mod 3 congruence. Simi-
lary, self-orthogonal codes over GF(2) have codeword weights that are divisible by 4 and even codes
over GF(2) have codewords weights that are divisible by 2. By taking these constraints into account,
in many cases, the execution time may be significantly reduced. Consider the minimum Hamming
weight enumeration of the [151,45] binary cyclic code (second example below). This cyclic code is
self-orthogonal, so the weight of all codewords is divisible by 4. Without considering this constraint,
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the computation will finish at information weight 10, rather than 9. We can see that, this 0 mod 4 con-
straint on the codeword weights, has allowed us to avoid enumeration of 5(45,10) = 3,190, 187,286
additional codewords, where b(n,k) = n!/((n—k)!k!) is the binomial coefficient of integers n and k.
Note that the C source code for this minimum weight computation has not yet been optimised,
especially the code for GF(3), and there are chances to improve the speed of this function. Your
contributions are most welcomed.
If you find any bugs on this function, please report it to ctjhai @plymouth.ac.uk.

Example
gap> # Extended ternary quadratic residue code of length 48
gap> n := 47;;
gap> x := Indeterminate(GF(3));;
gap> F := Factors(x"n-1);;
gap> v := List([1..n], i->Zero(GF(3)));;
gap> v := v + MutableCopyMat(VectorCodeword( Codeword(F[2]) ));;
G

gap> := CirculantMatrix(24, v);;
gap> for i in [1..Size(G)] do; s:=Zero(GF(3));
> for j in [1..Size(G[i])] do; s:=s+G[i][j]; od; Append(G[il, [ s 1);
> od;;
gap> C := GeneratorMatCodeNC(G, GF(3));
a [48,24,7] randomly generated code over GF(3)
gap> MinimumWeight (C);
[48,24] linear code over GF(3) - minimum weight evaluation
Known lower-bound: 1
There are 2 generator matrices, ranks : 24 24
The weight of the minimum weight codeword satisfies O mod 3 congruence
Enumerating codewords with information weight 1 (w=1)

Found new minimum weight 15
Number of matrices required for codeword enumeration 2
Completed w= 1, 48 codewords enumerated, lower-bound 6, upper-bound 15
Termination expected with information weight 6 at matrix 1
Enumerating codewords with information weight 2 (w=2) using 2 matrices
Completed w= 2, 1104 codewords enumerated, lower-bound 6, upper-bound 15
Termination expected with information weight 6 at matrix 1
Enumerating codewords with information weight 3 (w=3) using 2 matrices
Completed w= 3, 16192 codewords enumerated, lower-bound 9, upper-bound 15
Termination expected with information weight 6 at matrix 1
Enumerating codewords with information weight 4 (w=4) using 2 matrices
Completed w= 4, 170016 codewords enumerated, lower-bound 12, upper-bound 15
Termination expected with information weight 6 at matrix 1
Enumerating codewords with information weight 5 (w=5) using 2 matrices
Completed w= 5, 1360128 codewords enumerated, lower-bound 12, upper-bound 15
Termination expected with information weight 6 at matrix 1
Enumerating codewords with information weight 6 (w=6) using 1 matrices
Completed w= 6, 4307072 codewords enumerated, lower-bound 15, upper-bound 15
Minimum weight: 15
15
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gap>

gap> # Binary cyclic code [151,45,36]
gap> n := 151;;
gap> x := Indeterminate(GF(2));;
gap> F := Factors(x™n-1);;
gap> C := CheckPolCode(F[2]*F[3]*F[3]*F[4], n, GF(2));
a cyclic [151,45,1..50]31..75 code defined by check polynomial over GF(2)
gap> MinimumWeight (C);
[151,45] cyclic code over GF(2) - minimum weight evaluation
Known lower-bound: 1
The weight of the minimum weight codeword satisfies O mod 4 congruence
Enumerating codewords with information weight 1 (w=1)
Found new minimum weight 56
Found new minimum weight 44
Number of matrices required for codeword enumeration 1
Completed w= 1, 45 codewords enumerated, lower-bound 8, upper-bound 44
Termination expected with information weight 11

Enumerating codewords with information weight 2 (w=2) using 1 matrix
Completed w= 2, 990 codewords enumerated, lower-bound 12, upper-bound 44
Termination expected with information weight 11
Enumerating codewords with information weight 3 (w=3) using 1 matrix

Found new minimum weight 40

Found new minimum weight 36
Completed w= 3, 14190 codewords enumerated, lower-bound 16, upper-bound 36
Termination expected with information weight 9
Enumerating codewords with information weight 4 (w=4) using 1 matrix
Completed w= 4, 148995 codewords enumerated, lower-bound 20, upper-bound 36
Termination expected with information weight 9
Enumerating codewords with information weight 5 (w=5) using 1 matrix
Completed w= 5, 1221759 codewords enumerated, lower-bound 24, upper-bound 36
Termination expected with information weight 9
Enumerating codewords with information weight 6 (w=6) using 1 matrix
Completed w= 6, 8145060 codewords enumerated, lower-bound 24, upper-bound 36
Termination expected with information weight 9
Enumerating codewords with information weight 7 (w=7) using 1 matrix
Completed w= 7, 45379620 codewords enumerated, lower-bound 28, upper-bound 36
Termination expected with information weight 9
Enumerating codewords with information weight 8 (w=8) using 1 matrix
Completed w= 8, 215553195 codewords enumerated, lower-bound 32, upper-bound 36
Termination expected with information weight 9
Enumerating codewords with information weight 9 (w=9) using 1 matrix
Completed w= 9, 886163135 codewords enumerated, lower-bound 36, upper-bound 36

Minimum weight: 36

42
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36

4.8.6 DecreaseMinimumDistanceUpperBound

> DecreaseMinimumDistanceUpperBound(C, t, m) (function)

DecreaseMinimumDistanceUpperBound is an implementation of the algorithm for the mini-
mum distance of a linear binary code C by Leon [Leo88]. This algorithm tries to find codewords with
small minimum weights. The parameter t is at least 1 and less than the dimension of C. The best
results are obtained if it is close to the dimension of the code. The parameter m gives the number of
runs that the algorithm will perform.

The result returned is a record with two fields; the first, mindist, gives the lowest
weight found, and word gives the corresponding codeword. (This was implemented before
MinimumDistanceLeon but independently. The older manual had given the command incor-
rectly, so the command was only found after reading all the *.gi files in the GUAVA li-
brary. Though both MinimumDistance and MinimumDistanceLeon often run much faster than
DecreaseMinimumDistanceUpperBound, DecreaseMinimumDistanceUpperBound appears to be

more accurate than MinimumDistanceLeon.)
Example

gap> C:=RandomLinearCode(5,2,GF(2));
a [5,2,7] randomly generated code over GF(2)
gap> DecreaseMinimumDistanceUpperBound(C,1,4);
rec( mindist := 3, word := [ 0%Z(2), Z(2)°0, Z(2)"0, 0*Z(2), Z(2)"0 ] )
gap> MinimumDistance(C);
3
gap> C:=RandomLinearCode(8,4,GF(2));
a [8,4,7] randomly generated code over GF(2)
gap> DecreaseMinimumDistanceUpperBound(C,3,4);
rec( mindist := 2,
word := [ Z(2)°0, 0%Z(2), 0%Z(2), 0%Z(2), 0%*Z(2), 0%Z(2), 0%Z(2), Z(2)°0 1 )
gap> MinimumDistance(C) ;
2

4.8.7 MinimumDistanceRandom

> MinimumDistanceRandom(C, num, s) (function)
MinimumDistanceRandom returns an upper bound for the minimum distance d,q,40,; Of a linear

binary code C, using a probabilistic polynomial time algorithm. Briefly: Let C be a linear code of

dimension k over GF(q) as above. The algorithm has input parameters num and s, where s is an
integer between 2 and n — 1, and num is an integer greater than or equal to 1.

* Find a generator matrix G of C.

* Randomly permute the columns of G, written G,..

G = (A,B)

with A a k X s matrix. If A is the zero matrix then return ‘method fails’.
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» Search A for at most 5 rows that lead to codewords, in the code C4 with generator matrix A, of
minimum weight.

* For these codewords, use the associated linear combination to compute the weight of the whole
word in C. Return this weight and codeword.

This probabilistic algorithm is repeated num times (with different random permutations of the rows of
G each time) and the weight and codeword of the lowest occurring weight is taken.

Example
gap> C:=RandomLinearCode(60,20,GF(2));

a [60,20,7] randomly generated code over GF(2)

gap> #mindist(C) ;time;

gap> #mindistleon(C,10,30) ;time; #doesn’t work well

gap> a:=MinimumDistanceRandom(C,10,30);time; # done 10 times -with fastest time!!

This is a probabilistic algorithm which may return the wrong answer.

[12, [0000001010000000110010001000000100
1000000000100010000100001011

130

gap> al2] in C;

true

gap> b:=DecreaseMinimumDistanceUpperBound(C,10,1); time; #only done once!

rec( mindist := 12, word := [ 0*Z(2), 0%Z(2), 0*Z(2), 0xZ(2), 0*Z(2), 0xZ(2),
Z(2)°0, 0%Z(2), Z(2)~0, 0%Z(2), 0%Z(2), 0%Z(2), 0%*Z(2), 0%Z(2), 0%Z(2),
0%Z(2), 2(2)°0, Z(2)°0, 0%Z(2), 0%Z(2), Z(2)~0, 0%*Z(2), 0%Z(2), 0%Z(2),
Z(2)°0, 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), Z(2)"0, 0%Z(2),
0%Z(2), Z(2)°0, 0*Z(2), 0%Z(2), 0%Z(2), 0*Z(2), 0*Z(2), 0%Z(2), 0*Z(2),
0%Z(2), 0%Z(2), Z(2)°0, 0%Z(2), 0%Z(2), 0%Z(2), Z(2)~0, 0*Z(2), 0%Z(2),
0*Z(2), 0%Z(2), Z(2)~0, 0%Z(2), 0*Z(2), 0%Z(2), 0*Z(2), Z(2)~0, 0*Z(2) 1)

649

gap> Codeword(b!.word) in C;

true

gap> MinimumDistance(C) ;time;

12

196

gap> c:=MinimumDistanceLeon(C) ;time;

12

66

gap> C:=RandomLinearCode(30,10,GF(3));

a [30,10,7] randomly generated code over GF(3)

gap> a:=MinimumDistanceRandom(C,10,10) ;time;

This is a probabilistic algorithm which may return the wrong answer.
[13, [00010000001022110220102100010211]
229
gap> al[2] in C;
true
gap> MinimumDistance(C) ;time;

9
45
gap> c:=MinimumDistanceLeon(C);
Code must be binary. Quitting.
0
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gap> a:=MinimumDistanceRandom(C,1,29) ;time;

This is a probabilistic algorithm which may return the wrong answer.
[10, [0010202010000001010010000022201]1]
53

4.8.8 CoveringRadius

> CoveringRadius(C) (function)

CoveringRadius returns the covering radius of a linear code C. This is the smallest number r
with the property that each element v of the ambient vector space of C has at most a distance r to the
code C. So for each vector v there must be an element ¢ of C with d(v,c) < r. The smallest covering
radius of any [n, k| binary linear code is denoted #(n,k). A binary linear code with reasonable small
covering radius is called a covering code.

If C is a perfect code (see IsPerfectCode (4.3.6)), the covering radius is equal to ¢, the num-
ber of errors the code can correct, where d = 2t + 1, with d the minimum distance of C (see
MinimumDistance (4.8.3)).

If there exists a function called SpecialCoveringRadius in the ‘operations’ field of the code,
then this function will be called to compute the covering radius of the code. At the moment, no
code-specific functions are implemented.

If the length of BoundsCoveringRadius (see BoundsCoveringRadius (7.2.1)), is 1, then the
value in

C.boundsCoveringRadius
is returned. Otherwise, the function
C.operations.CoveringRadius

is executed, unless the redundancy of C is too large. In the last case, a warning is issued.

The algorithm used to compute the covering radius is the following. First, CosetLeadersMatFFE
is used to compute the list of coset leaders (which returns a codeword in each coset of GF(gq)"/C of
minimum weight). Then WeightVecFFE is used to compute the weight of each of these coset leaders.
The program returns the maximum of these weights.

Example
gap> H := RandomLinearCode (10, 5, GF(2));
a [10,5,7] randomly generated code over GF(2)
gap> CoveringRadius (H);
3
gap> H := HammingCode(4, GF(2));; IsPerfectCode(H);
true
gap> CoveringRadius(H);
1 # Hamming codes have minimum distance 3
gap> CoveringRadius(ReedSolomonCode(7,4));
3
gap> CoveringRadius( BCHCode( 17, 3, GF(2) ) );
3
gap> CoveringRadius( HammingCode( 5, GF(2) ) );
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1

gap> C := ReedMullerCode( 1, 9 );;

gap> CoveringRadius( C );

CoveringRadius: warning, the covering radius of
this code cannot be computed straightforward.

Try to use IncreaseCoveringRadiusLowerBound( code ).
(see the manual for more details).

The covering radius of code lies in the interval:

[ 240 .. 248 ]

See also the GUAVA commands relating to bounds on the minimum distance in section 7.2.

4.8.9 SetCoveringRadius

> SetCoveringRadius(C, intlist) (function)

SetCoveringRadius enables the user to set the covering radius herself, instead of letting GUAVA
compute it. If intlist is an integer, GUAVA will simply put it in the ‘boundsCoveringRadius’ field.
If it is a list of integers, however, it will intersect this list with the ‘boundsCoveringRadius’ field, thus
taking the best of both lists. If this would leave an empty list, the field is set to intlist. Because
some other computations use the covering radius of the code, it is important that the entered value is
not wrong, otherwise new results may be invalid.

Example
gap> C := BCHCode( 17, 3, GF(2) );;

gap> BoundsCoveringRadius( C );

[3..4]

gap> SetCoveringRadius( C, [ 2 .. 31 );
gap> BoundsCoveringRadius( C );

[[2..31]1

4.9 Distributions
4.9.1 MinimumWeightWords

> MinimumWeightWo