We randomly choose an r × n matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00299413, .00170192) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .0104572, .160034) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.01167, .0424543}, {.0107323, .0113998}, {.0117609, .019521}, ------------------------------------------------------------------------ {.0120387, .0327794}, {.012774, .0507646}, {.0769592, .0462744}, ------------------------------------------------------------------------ {.0085954, .0202097}, {.00912892, .0182032}, {.00855956, .0113745}, ------------------------------------------------------------------------ {.010659, .0267332}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .0172878039 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0279714 o7 : RR (of precision 53) |