StronglyStableIdeals : Index
- gotzmannDecomposition -- Compute Gotzmann's decomposition of Hilbert polynomial
- gotzmannDecomposition(ProjectiveHilbertPolynomial) -- Compute Gotzmann's decomposition of Hilbert polynomial
- gotzmannDecomposition(RingElement) -- Compute Gotzmann's decomposition of Hilbert polynomial
- gotzmannNumber -- Compute the Gotzmann number of a Hilbert polynomial
- gotzmannNumber(ProjectiveHilbertPolynomial) -- Compute the Gotzmann number of a Hilbert polynomial
- gotzmannNumber(RingElement) -- Compute the Gotzmann number of a Hilbert polynomial
- isGenSegment -- gen-segment ideals
- isGenSegment(Ideal) -- gen-segment ideals
- isGenSegment(MonomialIdeal) -- gen-segment ideals
- isHilbertPolynomial -- Determine whether a numerical polynomial can be a Hilbert polynomial
- isHilbertPolynomial(ProjectiveHilbertPolynomial) -- Determine whether a numerical polynomial can be a Hilbert polynomial
- isHilbertPolynomial(RingElement) -- Determine whether a numerical polynomial can be a Hilbert polynomial
- isHilbSegment -- hilb-segment ideals
- isHilbSegment(Ideal) -- hilb-segment ideals
- isHilbSegment(MonomialIdeal) -- hilb-segment ideals
- isRegSegment -- reg-segment ideals
- isRegSegment(Ideal) -- reg-segment ideals
- isRegSegment(MonomialIdeal) -- reg-segment ideals
- lexIdeal -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
- lexIdeal(..., CoefficientRing => ...) -- Option to set the ring of coefficients
- lexIdeal(..., OrderVariables => ...) -- Option to set the order of indexed variables
- lexIdeal(ProjectiveHilbertPolynomial,PolynomialRing) -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
- lexIdeal(ProjectiveHilbertPolynomial,ZZ) -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
- lexIdeal(RingElement,PolynomialRing) -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
- lexIdeal(RingElement,ZZ) -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
- lexIdeal(ZZ,PolynomialRing) -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
- lexIdeal(ZZ,ZZ) -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
- macaulayDecomposition -- Compute Macaulay's decomposition of Hilbert polynomial
- macaulayDecomposition(ProjectiveHilbertPolynomial) -- Compute Macaulay's decomposition of Hilbert polynomial
- macaulayDecomposition(RingElement) -- Compute Macaulay's decomposition of Hilbert polynomial
- MaxRegularity -- Option to set the maximum regularity
- OrderVariables -- Option to set the order of indexed variables
- projectiveHilbertPolynomial(RingElement)
- StronglyStableIdeals -- Find strongly stable ideals with a given Hilbert polynomial
- stronglyStableIdeals -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
- stronglyStableIdeals(..., CoefficientRing => ...) -- Option to set the ring of coefficients
- stronglyStableIdeals(..., MaxRegularity => ...) -- Option to set the maximum regularity
- stronglyStableIdeals(..., OrderVariables => ...) -- Option to set the order of indexed variables
- stronglyStableIdeals(ProjectiveHilbertPolynomial,PolynomialRing) -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
- stronglyStableIdeals(ProjectiveHilbertPolynomial,ZZ) -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
- stronglyStableIdeals(RingElement,PolynomialRing) -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
- stronglyStableIdeals(RingElement,ZZ) -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
- stronglyStableIdeals(ZZ,PolynomialRing) -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
- stronglyStableIdeals(ZZ,ZZ) -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial