There is a canonical map from a module M to its reflexification, Hom(Hom(M, R), R). This function returns that map. This is not necessary for ideals since an ideal is canonically a subsetset of its reflexification.
i1 : R = QQ[x,y]; |
i2 : m = ideal(x,y); o2 : Ideal of R |
i3 : M = m*R^1; |
i4 : f = reflexify( M, ReturnMap => true ) o4 = | x y | o4 : Matrix |
i5 : source f o5 = image | x y | 1 o5 : R-module, submodule of R |
i6 : target f 1 o6 = R o6 : R-module, free |