next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
ConformalBlocks :: isSymmetricFDivisor

isSymmetricFDivisor -- checks whether a symmetric divisor intersects all the F-curves nonnegatively

Synopsis

Description

We say a symmetric divisor on M0,n is a symmetric F-divisor if D . FI1,I2,I3,I4 ≥0 for every F curve.

In the example below, we see that for n=8, the divisor 3B2+2B3+4B4 is a symmetric F-divisor, while the divisor B2 is not.

i1 : D=symmetricDivisorM0nbar(8,3*B_2+2*B_3+4*B_4)

o1 = SymmetricDivisorM0nbar{2 => 3             }
                            3 => 2
                            4 => 4
                            NumberOfPoints => 8

o1 : SymmetricDivisorM0nbar
i2 : isSymmetricFDivisor(D)

o2 = true
i3 : D=symmetricDivisorM0nbar(8,B_2)

o3 = SymmetricDivisorM0nbar{2 => 1             }
                            NumberOfPoints => 8

o3 : SymmetricDivisorM0nbar
i4 : isSymmetricFDivisor(D)
This divisor has negative intersection with the F curve F_{3, 2, 2, 1} (and maybe others too)

o4 = false

Ways to use isSymmetricFDivisor :