i1 : X1 = hirzebruchSurface 2; |
i2 : assert(isNef X1_0 and not isAmple X1_0) |
i3 : assert(not isNef X1_1) |
i4 : assert(isNef X1_2 and not isAmple X1_2) |
i5 : assert(isNef X1_3 and not isAmple X1_3) |
i6 : X2 = weightedProjectiveSpace {2,3,5}; |
i7 : D = X2_1-X2_0 o7 = - X2 + X2 0 1 o7 : ToricDivisor on X2 |
i8 : assert(isNef D and HH^0(X2, OO D) == 0) |
i9 : assert all(dim X2, i -> HH^i(X2, OO D) == 0) |
i10 : assert not isCartier D |
i11 : assert isCartier (30*D) |
i12 : HH^0(X2, OO (30*D)) 21 o12 = QQ o12 : QQ-module, free |
i13 : assert all(dim X2 -1, i -> HH^(i+1)(X2, OO (30*D)) == 0) |
i14 : X3 = normalToricVariety({{1,0,0},{0,1,0},{0,0,1},{0,-1,2},{0,0,-1},{-1,1,-1},{-1,0,-1},{-1,-1,0}},{{0,1,2},{0,2,3},{0,3,4},{0,4,5},{0,1,5},{1,2,7},{2,3,7},{3,4,7},{4,5,6},{4,6,7},{5,6,7},{1,5,7}}); |
i15 : assert(isComplete X3 and not isProjective X3) |
i16 : assert not any(#rays X3, i -> isNef X3_i) |
i17 : assert isNef (0*X3_1) |
i18 : assert( nefGenerators X3 == 0) |
i19 : X4 = kleinschmidt(9,{1,2,3}); |
i20 : assert(isNef X4_0 and not isAmple X4_0) |
i21 : assert all(dim X4 - 1, i -> HH^(i+1)(X4, OO X4_0) == 0) |
i22 : D = X4_0+X4_4 o22 = X4 + X4 0 4 o22 : ToricDivisor on X4 |
i23 : assert(isNef D and isAmple D) |
i24 : assert all(dim X4 - 1, i -> HH^(i+1)(X4, OO D) == 0) |