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Chapter 1

Introduction

This package provides an interface between GAP 4 and the Australian National University Nilpotent

Quotient Program (ANU NQ). The ANU NQ was implemented as part of the author's work towards

his PhD at the Australian National University, hence the name of the program. The program takes

as input a �nite presentation of a group and successively computes factor groups modulo the terms

of the lower central series of the group. These factor groups are computed in terms of polycyclic

presentations.

The ANU NQ is implemented in the programming language C. The implementation has been

developed in a Unix environment and Unix is currently the only operating system supported. It runs

on a number of different Unix versions, e.g. Solaris and Linux.

For integer matrix computations it relies on the GNU MP [GMP] package and requires this pack-

age to be installed on your system.

This package relies on the functionality for polycyclic groups provided by the GAP package

polycyclic [EN02] and requires the package polycyclic to be installed as a GAP package on your

computer system.

Comments, bug reports and suggestions are very welcome, please submit them via our issue

tracker.

This manual contains references to parts of the GAP Reference Manual which are typeset in

a slightly idiosyncratic way. The following example shows how such references are printed: 'For

further information on creating a free group see FreeGroup (Reference: FreeGroup).' The text in

bold face refers to the GAP Reference Manual.

Each item in the list of references at the end of this manual is followed by a list of numbers that

specify the pages of the manual where the reference occurs.
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Chapter 2

General remarks

In this chapter we de�ne notation used throughout this manual and recollect basic facts about nilpotent

groups. We also provide some background information about the functionality implemented in this

package.

2.1 Commutators and the Lower Central Series

The commutator of two elements h1 and h2 of a group G is the element h�1
1 h�1

2 h1h2 and is denoted by

[h1;h2]. It satis�es the equation h1h2 = h2h1[h1;h2] and can be interpreted as the correction term that

has to be introduced into a word if two elements of a group are interchanged. Iterated commutators

are written in left-normed fashion: [h1;h2; : : : ;hn�1;hn] = [[h1;h2; : : : ;hn�1];hn].
The lower central series of G is de�ned inductively as g1(G) = G;gi(G) = [gi�1(G);G] for i� 2.

Each term in the lower central series is a normal (even fully invariant) subgroup of G. The factors of

the lower central series are abelian groups. On each factor the induced action of G via conjugation is

the trivial action.

The factor gk(G)=gk+1(G) is generated by the elements [g;h]gk+1(G); where g runs through a

set of (representatives of) generators for G=g2(G) and h runs through a set of (representatives of)

generators for gk�1(G)=gk(G): Therefore, each factor of the lower central series is �nitely generated

if G is �nitely generated.

If one factor of the lower central series is �nite, then all subsequent factors are �nite. Then the

exponent of the k+1-th factor is a divisor of the exponent of the k-th factor of the lower central series.

In particular, the exponents of all factors of the lower central series are bounded by the exponent of

the �rst �nite factor of the lower central series.

2.2 Nilpotent groups

A group G is called nilpotent if there is a positive integer c such that all (c+1)-fold commutators are

trivial in G: The smallest integer with this property is called the nilpotency class of G. In terms of the

lower central series a group G 6= 1 has nilpotency class c if and only if gc(G) 6= 1 and gc+1(G) = 1.

Examples of nilpotent groups are �nite p-groups, the group of unitriangular matrices over a ring

with one and the factor groups of a free group modulo the terms of its lower central series.

Finiteness of a nilpotent group can be decided by the group's commutator factor group. A nilpotent

group is �nite if and only if its commutator factor group is �nite. A group whose commutator factor

group is �nite can only have �nite nilpotent quotient groups.

5



nq 6

By re�ning the lower central series of a �nitely generated nilpotent group one can obtain a

(sub)normal series G1 > G2 > ::: > Gk+1 = 1 with cyclic (central) factors. Therefore, every �nitely

generated nilpotent group is polycyclic. Such a polycyclic series gives rise to a polycyclic generating

sequence by choosing a generator ai for each cyclic factor Gi=Gi+1. Let I be the set of indices such

that Gi=Gi+1 is �nite. A simple induction argument shows that every element of the group can be

written uniquely as a normal word a
e1
1 : : :aenn with integers ei and 0� ei < mi for i 2 I.

2.3 Nilpotent presentations

From a polycyclic generating sequence one can obtain a polycyclic presentation for the group. The

following set of power and commutator relations is a de�ning set of relations. The power relations

express a
mi

i in terms of the generators ai+1; : : : ;an whenever Gi=Gi+1 is �nite with order mi. The com-

mutator relations are obtained by expressing [a j;ai] for j > i as a word in the generators ai+1; : : : ;an.
If the polycyclic series is obtained from re�ning the lower central series, then [a j;ai] is even a word

in a j+1; : : : ;an. In this case we obtain a nilpotent presentation.
To be more precise, a nilpotent presentation is given on a �nite number of generators a1; : : : ;an.

Let I be the set of indices such that Gi=Gi+1 is �nite. Let mi be the order of Gi=Gi+1 for i 2 I. Then a

nilpotent presentation has the form

ha; : : : ;anja
mi

i = wii(ai+1; : : : ;an) for i 2 I; [a j;ai] = wi j(a j+1; : : : ;an) for 1� i< j � ni

Here, wi j(ak; : : : ;an) denotes a group word in the generators ak; : : : ;an.
In a group given by a polycyclic presentation each element in the group can be written as a normal

word a
e1
1 : : :aenn with ei 2 Z and 0 � ei < mi for i 2 I. A procedure called collection can be used to

convert an arbitrary word in the generators into an equivalent normal word. In general, the resulting

normal word need not be unique. The result of collecting a word may depend on the steps chosen

during the collection procedure. A polycyclic presentation with the property that two different normal

words are never equivalent is called consistent. A polycyclic presentation derived from a polycyclic

series as above is consistent. The following example shows an inconsistent polycyclic presentation

ha;b j a2;ba = b2i

as b= baa= ab2a= a2b4 = b4 which implies b3 = 1. Here we have the equivalent normal words b3

and the empty word. It can be proved that consistency can be checked by collecting a �nite number

of words in the given generating set in two essentially different ways and checking if the resulting

normal forms are the same in both cases. See Chapter 9 of the book [Sim94] for an introduction to

polycyclic groups and polycyclic presentations.

For computations in a polycyclic group one chooses a consistent polycyclic presentation as it of-

fers a simple solution to the word problem: Equality between two words is decided by collecting

both words to their respective normal forms and comparing the normal forms. Nilpotent groups and

nilpotent presentations are special cases of polycyclic groups and polycyclic presentations. Nilpotent

presentations allow specially ef�cient collection methods. The package Polycyclic provides algo-

rithms to compute with polycyclic groups given by a polycyclic presentation.

However, inconsistent nilpotent presentations arise naturally in the nilpotent quotient algorithm.

There is an algorithm based on the test words for consistency mentioned above to modify the arising

inconsistent presentations suitably to obtain a consistent one for the same group.
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2.4 A sketch of the algorithm

The input for the ANU NQ in its simplest form is a �nite presentation hX jRi for a group G. The

�rst step of the algorithm determines a nilpotent presentation for the commutator quotient of G. This

is a presentation of the class-1 quotient of G. Call its generators a1; :::;ad . It also determines a

homomorphism of G onto the commutator quotient and describes it by specifying the image of each

generator in X as a word in the ai.

For the general step assume that the algorithm has computed a nilpotent presentation for the class-

c quotient of G and that a1; :::;ad are the generators introduced in the �rst step of the algorithm.

Furthermore, there is a map from X into the class-c quotient describing the epimorphism from G onto

G=gc+1(G).
Let b1; :::bk be the generators from the last step of the algorithm, the computation of

gc(G)=gc+1(G). This means that b1; :::bk generate gc(G)=gc+1(G). Then the commutators [b j;ai]
generate gc+1(G)=gc+2(G). The algorithm introduces new, central generators ci j into the presentation,

adds the relations [b j;ai] = ci j and modi�es the existing relations by appending suitable words in the

ci j, called tails, to the right hand sides of the power and commutator relations. The resulting pre-

sentation is a nilpotent presentation for the nilpotent cover of G=gc+1(G). The nilpotent cover is the
largest central extension of G=gc+1(G) generated by d elements. It is is uniquely determined up to

isomorphism.

The resulting presentation of the nilpotent cover is in general inconsistent. Consistency is achieved

by running the consistency test. This results in relations among the generators ci j which can be used

to eliminate some of those generators or introduce power relations. After this has been done we have

a consistent nilpotent presentation for the nilpotent cover of G=gc+1(G).
Furthermore, the nilpotent cover need not satisfy the relations of G. In other words, the epimor-

phism from G onto G=gc+1(G) cannot be lifted to an epimorphism onto the nilpotent cover. Applying

the epimorphism to each relator of G and collecting the resulting words of the nilpotent cover yields a

set of words in the ci j. This gives further relations between the ci j which leads to further eliminations

or modi�cations of the power relations for the ci j.

After this, the inductive step of the ANU NQ is complete and a consistent nilpotent presentation

for G=gc+2(G) is obtained together with an epimorphism from G onto the class-(c+1) quotient.
Chapter 11 of the book [Sim94] discusses a nilpotent quotient algorithm. A description of the

implementation in the ANU NQ is contained in [Nic96]

2.5 Identical Relations

Let w be a word in free generators x1; : : : ;xn. A group G satis�es the relation w = 1 identically if

each map from x1; : : : ;xn into G maps w to the identity element of G. We also say that G satis�es the

identical relation w = 1 or satis�es the law w = 1. In slight abuse of notation, we call the elements

x1; : : : ;xn identical generators.
Common examples of identical relations are: A group of nilpotency class at most c satis�es the

law [x1; : : : ;xc+1] = 1. A group that satis�es the law [x;y; : : : ;y] = 1 where y occurs n-times, is called

an n-Engel group. A group that satis�es the law xd = 1 is a group of exponent d.

To describe �nitely presented groups that satisfy one or more laws, we extend a common nota-

tion for �nitely presented groups by specifying the identical generators as part of the generator list,

separated from the group generators by a semicolon: For example

ha;b;c;x;yjx5; [x;y;y;y]i
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is a group on 3 generators a;b;c of exponent 5 satisfying the 3rd Engel law. The presentation above

is equivalent to a presentation on 3 generators with an in�nite set of relators, where the set of relators

consists of all �fth powers of words in the generators and all commutators [x;y;y;y] where x and y run
through all words in the generators a;b;c. The standalone programme accepts the notation introduced

above as a description of its input. InGAP 4 �nitely presented groups are speci�ed in a different way,

see NilpotentQuotient (3.1.1) for a description.

This notation can also be used in words that mix group and identical generators as in the following

example:

ha;b;c;xj[x;c]; [a;x;x;x]i

The �rst relator speci�es a law which says that c commutes with all elements of the group. The second

turns a into a third right Engel element.

An element a is called a right n-th Engel element or a right n-Engel element if it satis�es the

commutator law [a;x; :::;x] = 1 where the identical generator x occurs n-times. Likewise, an ele-

ment b is called an left n-th Engel element or left n-Engel element if it satis�es the commutator law

[x;b;b; :::b] = 1.

Let G be a nilpotent group. Then G satis�es a given law if the law is satis�ed by a certain �nite set

of instances given by Higman's Lemma, see [Hig59]. The ANU NQ uses Higman's Lemma to obtain

a �nite presentation for groups that satisfy one or several identical relations.

2.6 Expression Trees

Expressions involving commutators play an important role in the context of nilpotent groups. Ex-

panding an iterated commutator produces a complicated and long expression. For example,

[x;y;z] = y�1x�1yxz�1x�1y�1xyz:

Evaluating a commutator [a;b] is done ef�ciently by computing the equation (ba)�1ab. Therefore, for

each commutator we need to perform two multiplications and one inversion. Evaluating [x;y;z] needs
four multiplications and two inversions. Evaluation of an iterated commutator with n components

takes 2n�1 multiplications and n�1 inversions. The expression on the right hand side above needs 9

multiplications and 5 inversions which is clearly muchmore expensive than evaluating the commutator

directly.

Assuming that no cancellations occur, expanding an iterated commutator with n components pro-

duces a word with 2n+1�2n�1�2 factors half of which are inverses. A similar effect occurs whenever

a compact expression is expanded into a word in generators and inverses, for example (ab)49.
Therefore, it is important not to expand expressions into a word in generators and inverses. For this

purpose we provide a mechanism which we call here expression trees. An expression tree preserves

the structure of a given expression. It is a (binary) tree in which each node is assigned an operation

and whose leaves are generators of a free group or integers. For example, the expression [(xy)2;z]
is stored as a tree whose top node is a commutator node. The right subtree is just a generator node

(corresponding to z). The left subtree is a power node whose subtrees are a product node on the left

and an integer node on the right. An expression tree can involve products, powers, conjugates and

commutators. However, the list of available operations can be extended.

Evaluation of an expression tree is done recursively and requires as many operations as there

are nodes in the tree. An expression tree can be evaluated in a speci�c group by the function

EvaluateExpTree (3.2.2).
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A presentation speci�ed by expression trees is a record with the components .generators and

.relations. See section 3.2 for a description of the functions that produce and manipulate expression

trees.
Example

gap> LoadPackage( "nq" );

true

gap> gens := ExpressionTrees( 2 );

[ x1, x2 ]

gap> r1 := LeftNormedComm( [gens[1],gens[2],gens[2]] );

Comm( x1, x2, x2 )

gap> r2 := LeftNormedComm( [gens[1],gens[2],gens[2],gens[1]] );

Comm( x1, x2, x2, x1 )

gap> pres := rec( generators := gens, relations := [r1,r2] );

rec( generators := [ x1, x2 ],

relations := [ Comm( x1, x2, x2 ), Comm( x1, x2, x2, x1 ) ] )

2.7 A word about the implementation

The ANU NQ is written in C, but not in ANSI C. I hope to make one of the next versions ANSI

compliable. However, it uses a fairly restricted subset of the language so that it should be easy to

compile it in new environments. The code is 64-bit clean. If you have dif�culties with porting it to a

new environment, let me know and I'll be happy to assist if time permits.

The program has two collectors: a simple collector from the left as described in [LGS90] and a

combinatorial from the left collector as described in [VL90]. The combinatorial collector is always

faster than the simple collector, therefore, it is the collector used by this package by default. This can

be changed by modifying the global variable NqDefaultOptions (3.4.2).

In a polycyclic group with generators that do not have power relations, exponents may become

arbitrarily large. Experience shows that this happens rarely in the computations done by the ANUNQ.

Exponents are represented by 32-bit integers. The collectors perform an over�ow check and abort the

computation if an over�ow occurred. In a GNU environment the program can be compiled using the

`long long' 64-bit integer type. For this uncomment the relevant line in src/Make�le and recompile

the program.

As part of the step that enforces consistency and the relations of the group, the ANU NQ performs

computations with integer matrices and converts them to Hermite Normal Form. The algorithm used

here is a variation of the Kanan-Bachem algorithm based on the GNU multiple precision package

GNU MP [GMP]. Experience shows that the integer matrices are usually fairly sparse and Kanan-

Bachem seems to be suf�cient in this context. However, the implementation might bene�t from a more

ef�cient strategy for computing Hermite Normal Forms. This is a topic for further investigations.

As the program does not compute the Smith Normal Form for each factor of the lower central

series but the Hermite Normal Form, it does not necessarily obtain a minimal generating set for each

factor of the lower central series. The following is a simple example of this behaviour. We take the

presentation

hx;yjx2 = yi

The group is clearly isomorphic to the additive group of the integers. Applying the ANU NQ to this

presentation gives the following nilpotent presentation:

hA;BjA2 = B; [B;A]i
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A nilpotent presentation on a minimal generating set would be the presentation of the free group on

one generator:

hAj i

2.8 The input format of the standalone

The input format for �nite presentations resembles the way many people write down a presentation

on paper. Here are some examples of presentations that the ANU NQ accepts:

< a, b | > # free group of rank 2

< a, b, c; x, y |

[a,b,c], # a left normed commutator

[b,c,c,c]^6, # another one raised to a power

a^2 = c^-3*a^2*c^3, # a relation

a^(b*c) = a, # a conjugate relation

(a*[b,(a*c)])^6, # something that looks complicated

[x,y,y,y,y], # an identical relation

[c,x,x,x,x,x] # c is a fifth right Engel element

>

A presentation starts with '<' followed by a list of generators separated by commas. Generator names

are strings that contain only upper and lower case letters, digits, dots and underscores and that do

not start with a digit. The list of generator names is separated from the list of relators/relations by

the symbol 'j'. The list of generators can be followed by a list of identical generators separated by a

semicolon. Relators and relations are separated by commas and can be mixed arbitrarily. Parentheses

can be used in order to group subexpressions together. Square brackets can be used in order to form left

normed commutators. The symbols '*' and '^' can be used to form products and powers, respectively.

The presentation �nishes with the symbol '>'. A comment starts with the symbol '#' and �nishes at

the end of the line. The �le src/presentation.c contains a complete grammar for the presentations

accepted by the ANU NQ.

Typically, the input for the standalone is put into a �le by using a standard text editor. The �le

can be passed as an argument to the function NilpotentQuotient (3.1.1). It is also possible to

put a presentation in the standalone's input format into a string and use the string as argument for

NilpotentQuotient (3.1.1).



Chapter 3

The Functions of the Package

3.1 Nilpotent Quotients of Finitely Presented Groups

3.1.1 NilpotentQuotient

. NilpotentQuotient([output-file, ]fp-group[, id-gens][, c]) (function)

. NilpotentQuotient([output-file, ]input-file[, c]) (function)

The parameter fp-group is either a �nitely presented group or a record specifying a presentation

by expression trees (see section 2.6). The parameter input-file is a string specifying the name of a

�le containing a �nite presentation in the input format (cf. section 2.8) of the ANU NQ. Such a �le

can be prepared by a text editor or with the help of the function NqStringFpGroup (3.3.2).

Let G be the group de�ned by fp-group or the group de�ned in input-file. The function

computes a nilpotent presentation for G=gc+1(G) if the optional parameter c is speci�ed. If c is not

given, then the function attempts to compute the largest nilpotent quotient of G and it will terminate

only if G has a largest nilpotent quotient. See section 3.5 for a possibility to follow the progress of the

computation.

The optional argument id-gens is a list of generators of the free group underlying the �nitely pre-

sented group fp-group. The generators in this list are treated as identical generators. Consequently,

all relations of the fp-group involving these generators are treated as identical relations for these

generators.

In addition to the arguments explained above, the function accepts the following options as shown

in the �rst example below:

� group This option can be used instead of the parameter fp-group.

� input\_string This option can be used to specify a �nitely presented group by a string in the

input format of the standalone program.

� input\_file This option speci�es a �le with input for the standalone program.

� output\_file This option speci�es a �le for the output of the standalone.

� idgens This options speci�es a list of identical generators.

� class This option speci�es the nilpotency class up to which the nilpotent quotient will be

computed.

11
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The following example computes the class-5 quotient of the free group on two generators.
Example

gap> F := FreeGroup( 2 );

<free group on the generators [ f1, f2 ]>

gap> ## Equivalent to: NilpotentQuotient( : group := F, class := 5 );

gap> ## NilpotentQuotient( F : class := 5 );

gap> H := NilpotentQuotient( F, 5 );

Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

gap> lcs := LowerCentralSeries( H );;

gap> for i in [1..5] do Print( lcs[i] / lcs[i+1], "\n" ); od;

Pcp-group with orders [ 0, 0 ]

Pcp-group with orders [ 0 ]

Pcp-group with orders [ 0, 0 ]

Pcp-group with orders [ 0, 0, 0 ]

Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]

Note that the lower central series in the example is part of the data returned by the standalone program.

Therefore, the execution of the function LowerCentralSeries takes no time.

The next example computes the class-4 quotient of the in�nite dihedral group. The group is

soluble but not nilpotent. The �rst factor of its lower central series is a Klein four group and all the

other factors are cyclic or order 2.
Example

gap> F := FreeGroup( 2 );

<free group on the generators [ f1, f2 ]>

gap> G := F / [F.1^2, F.2^2];

<fp group on the generators [ f1, f2 ]>

gap> H := NilpotentQuotient( G, 4 );

Pcp-group with orders [ 2, 2, 2, 2, 2 ]

gap> lcs := LowerCentralSeries( H );;

gap> for i in [1..Length(lcs)-1] do

> Print( AbelianInvariants(lcs[i] / lcs[i+1]), "\n" );

> od;

[ 2, 2 ]

[ 2 ]

[ 2 ]

[ 2 ]

gap>

In the following example identical generators are used in order to express the fact that the group is

nilpotent of class 3. A group is nilpotent of class 3 if it satis�es the identical relation [x1;x2;x3;x4] = 1

(cf. Section 2.5). The result is the free nilpotent group of class 3 on two generators.
Example

gap> F := FreeGroup( "a", "b", "w", "x", "y", "z" );

<free group on the generators [ a, b, w, x, y, z ]>

gap> G := F / [ LeftNormedComm( [F.3,F.4,F.5,F.6] ) ];

<fp group of size infinity on the generators [ a, b, w, x, y, z ]>

gap> ## The following is equivalent to:
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gap> ## NilpotentQuotient( G : idgens := [F.3,F.4,F.5,F.6] );

gap> H := NilpotentQuotient( G, [F.3,F.4,F.5,F.6] );

Pcp-group with orders [ 0, 0, 0, 0, 0 ]

gap> NilpotencyClassOfGroup(H);

3

gap> LowerCentralSeries(H);

[ Pcp-group with orders [ 0, 0, 0, 0, 0 ], Pcp-group with orders [ 0, 0, 0 ],

Pcp-group with orders [ 0, 0 ], Pcp-group with orders [ ] ]

The following example uses expression trees in order to specify the third Engel law for the free group

on 3 generators.
Example

gap> et := ExpressionTrees( 5 );

[ x1, x2, x3, x4, x5 ]

gap> comm := LeftNormedComm( [et[1], et[2], et[2], et[2]] );

Comm( x1, x2, x2, x2 )

gap> G := rec( generators := et, relations := [comm] );

rec( generators := [ x1, x2, x3, x4, x5 ],

relations := [ Comm( x1, x2, x2, x2 ) ] )

gap> H := NilpotentQuotient( G : idgens := [et[1],et[2]] );

Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 2, 2,

0, 6, 6, 0, 0, 2, 10, 10, 10 ]

gap> TorsionSubgroup( H );

Pcp-group with orders [ 2, 2, 2, 2, 2, 2, 2, 10, 10, 10 ]

gap> lcs := LowerCentralSeries( H );;

gap> NilpotencyClassOfGroup( H );

5

gap> for i in [1..5] do Print( lcs[i] / lcs[i+1], "\n" ); od;

Pcp-group with orders [ 0, 0, 0 ]

Pcp-group with orders [ 0, 0, 0 ]

Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0 ]

Pcp-group with orders [ 2, 4, 2, 2, 0, 6, 6, 0, 0, 2 ]

Pcp-group with orders [ 10, 10, 10 ]

gap> for i in [1..5] do Print( AbelianInvariants(lcs[i]/lcs[i+1]), "\n" ); od;

[ 0, 0, 0 ]

[ 0, 0, 0 ]

[ 0, 0, 0, 0, 0, 0, 0, 0 ]

[ 2, 2, 2, 2, 2, 2, 2, 0, 0, 0 ]

[ 10, 10, 10 ]

The example above also shows that the relative orders of an abelian polycyclic group need not be the

abelian invariants (elementary divisors) of the group. Each zero corresponds to a generator of in�nite

order. The number of zeroes is always correct.

3.1.2 NilpotentEngelQuotient

. NilpotentEngelQuotient([output-file, ]fp-group, n[, id-gens][, c]) (function)

. NilpotentEngelQuotient([output-file, ]input-file, n[, c]) (function)
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This function is a special version of NilpotentQuotient (3.1.1) which enforces the n-th Engel

identity on the nilpotent quotients of the group speci�ed by fp-group or by input-file. It accepts

the same options as NilpotentQuotient.

The Engel condition can also be enforced by using identical generators and the Engel law and

NilpotentQuotient (3.1.1). See the examples there.

The following example computes the relatively free �fth Engel group on two generators, deter-

mines its (normal) torsion subgroup and computes the corresponding quotient group. The quotient

modulo the torsion subgroup is torsion-free. Therefore, there is a nilpotent presentation without power

relations. The example computes a nilpotent presentation for the torsion free factor group through the

upper central series. The factors of the upper central series in a torsion free group are torsion free. In

this way one obtains a set of generators of in�nite order and the resulting nilpotent presentation has

no power relations.

Example
gap> G := NilpotentEngelQuotient( FreeGroup(2), 5 );

Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 10,

0, 0, 30, 0, 3, 3, 10, 2, 0, 6, 0, 0, 30, 2, 0, 9, 3, 5, 2, 6, 2, 10, 5, 5,

2, 0, 3, 3, 3, 3, 3, 5, 5, 3, 3 ]

gap> NilpotencyClassOfGroup(G);

9

gap> T := TorsionSubgroup( G );

Pcp-group with orders [ 3, 3, 2, 2, 3, 3, 2, 9, 3, 5, 2, 3, 2, 10, 5, 2, 3,

3, 3, 3, 3, 5, 5, 3, 3 ]

gap> IsAbelian( T );

true

gap> AbelianInvariants( T );

[ 3, 3, 3, 3, 3, 3, 3, 3, 30, 30, 30, 180, 180 ]

gap> H := G / T;

Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 10,

0, 0, 30, 0, 5, 0, 2, 0, 0, 10, 0, 2, 5, 0 ]

gap> H := PcpGroupBySeries( UpperCentralSeries(H), "snf" );

Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0 ]

gap> ucs := UpperCentralSeries( H );;

gap> for i in [1..NilpotencyClassOfGroup(H)] do

> Print( ucs[i]/ucs[i+1], "\n" );

> od;

Pcp-group with orders [ 0, 0 ]

Pcp-group with orders [ 0 ]

Pcp-group with orders [ 0, 0 ]

Pcp-group with orders [ 0, 0, 0 ]

Pcp-group with orders [ 0, 0, 0, 0, 0, 0 ]

Pcp-group with orders [ 0, 0, 0, 0 ]

Pcp-group with orders [ 0, 0 ]

Pcp-group with orders [ 0, 0, 0 ]

3.1.3 NqEpimorphismNilpotentQuotient

. NqEpimorphismNilpotentQuotient([output-file, ]fp-group[, id-gens][, c]) (func-

tion)
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This function computes an epimorphism from the group G given by the �nite presentation

fp-group onto G=gc+1(G): If c is not given, then the largest nilpotent quotient of G is computed

and an epimorphism from G onto the largest nilpotent quotient of G. If G does not have a largest

nilpotent quotient, the function will not terminate if c is not given.

The optional argument id-gens is a list of generators of the free group underlying the �nitely pre-

sented group fp-group. The generators in this list are treated as identical generators. Consequently,

all relations of the fp-group involving these generators are treated as identical relations for these

generators.

If identical generators are speci�ed, then the epimorphism returned maps the group generated by

the `non-identical' generators onto the nilpotent factor group. See the last example below.

The function understands the same options as the function NilpotentQuotient (3.1.1).

Example

gap> F := FreeGroup(3);

<free group on the generators [ f1, f2, f3 ]>

gap> phi := NqEpimorphismNilpotentQuotient( F, 5 );

[ f1, f2, f3 ] -> [ g1, g2, g3 ]

gap> Image( phi, LeftNormedComm( [F.3, F.2, F.1] ) );

g12

gap> F := FreeGroup( "a", "b" );

<free group on the generators [ a, b ]>

gap> G := F / [ F.1^2, F.2^2 ];

<fp group on the generators [ a, b ]>

gap> phi := NqEpimorphismNilpotentQuotient( G, 4 );

[ a, b ] -> [ g1, g2 ]

gap> Image( phi, Comm(G.1,G.2) );

g3*g4

gap> F := FreeGroup( "a", "b", "u", "v", "x" );

<free group on the generators [ a, b, u, v, x ]>

gap> a := F.1;; b := F.2;; u := F.3;; v := F.4;; x := F.5;;

gap> G := F / [ x^5, LeftNormedComm( [u,v,v,v] ) ];

<fp group of size infinity on the generators [ a, b, u, v, x ]>

gap> phi := NqEpimorphismNilpotentQuotient( G : idgens:=[u,v,x], class:=5 );

[ a, b ] -> [ g1, g2 ]

gap> U := Source(phi);

Group([ a, b ])

gap> ImageElm( phi, LeftNormedComm( [U.1*U.2, U.2^-1,U.2^-1,U.2^-1,] ) );

id

Note that the last epimorphism is a map from the group generated by a and b onto the nilpotent

quotient. The identical generators are used only to formulate the identical relator. They are not

generators of the group G. Also note that the left-normed commutator above is mapped to the identity

as G satis�es the speci�ed identical law.

3.1.4 LowerCentralFactors

. LowerCentralFactors(...) (function)
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This function accepts the same arguments and options as NilpotentQuotient (3.1.1) and returns

a list containing the abelian invariants of the central factors in the lower central series of the speci�ed

group.

Example
gap> LowerCentralFactors( FreeGroup(2), 6 );

[ [ 0, 0 ], [ 0 ], [ 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ]

3.2 Expression Trees

3.2.1 ExpressionTrees

. ExpressionTrees(m[, prefix]) (function)

. ExpressionTrees(str1, str2, str3, ...) (function)

The argument m must be a positive integer. The function returns a list with m expression tree

symbols named x1, x2,... The optional parameter prefix must be a string and is used instead of x if

present.

Alternatively, the function can be executed with a list of strings str1, str2, .... It returns a list of

symbols with these strings as names.

The following operations are de�ned for expression trees: multiplication, inversion, exponentia-

tion, forming commutators, forming conjugates.

Example
gap> t := ExpressionTrees( 3 );

[ x1, x2, x3 ]

gap> tree := Comm( t[1], t[2] )^3/LeftNormedComm( [t[1],t[2],t[3],t[1]] );

Comm( x1, x2 )^3/Comm( x1, x2, x3, x1 )

gap> t := ExpressionTrees( "a", "b", "x" );

[ a, b, x ]

gap> tree := Comm( t[1], t[2] )^3/LeftNormedComm( [t[1],t[2],t[3],t[1]] );

Comm( a, b )^3/Comm( a, b, x, a )

3.2.2 EvaluateExpTree

. EvaluateExpTree(tree, symbols, values) (function)

The argument tree is an expression tree followed by the list of those symbols symbols from

which the expression tree is built up. The argument values is a list containing a constant for each

symbol. The function substitutes each value for the corresponding symbol and computes the resulting

value for tree.
Example

gap> F := FreeGroup( 3 );

<free group on the generators [ f1, f2, f3 ]>

gap> t := ExpressionTrees( "a", "b", "x" );

[ a, b, x ]

gap> tree := Comm( t[1], t[2] )^3/LeftNormedComm( [t[1],t[2],t[3],t[1]] );

Comm( a, b )^3/Comm( a, b, x, a )

gap> EvaluateExpTree( tree, t, GeneratorsOfGroup(F) );
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f1^-1*f2^-1*f1*f2*f1^-1*f2^-1*f1*f2*f1^-1*f2^-1*f1*f2*f1^-1*f3^-1*f2^-1*f1^

-1*f2*f1*f3*f1^-1*f2^-1*f1*f2*f1*f2^-1*f1^-1*f2*f1*f3^-1*f1^-1*f2^-1*f1*f2*f3

3.3 Auxiliary Functions

3.3.1 NqReadOutput

. NqReadOutput(stream) (function)

The only argument stream is an output stream of the ANU NQ. The function reads the stream

and returns a record that has a component for each global variable used in the output of the ANU NQ,

see NqGlobalVariables (3.4.3).

3.3.2 NqStringFpGroup

. NqStringFpGroup(fp-group[, idgens]) (function)

The function takes a �nitely presented group fp-group and returns a string in the input format of

the ANU NQ. If the list idgens is present, then it must contain generators of the free group underly-

ing the �nitely presented group FreeGroupOfFpGroup (Reference: FreeGroupOfFpGroup). The

generators in idgens are treated as identical generators.

Example

gap> F := FreeGroup(2);

<free group on the generators [ f1, f2 ]>

gap> G := F / [F.1^2, F.2^2, (F.1*F.2)^4];

<fp group on the generators [ f1, f2 ]>

gap> NqStringFpGroup( G );

"< x1, x2 |\n x1^2,\n x2^2,\n x1*x2*x1*x2*x1*x2*x1*x2\n>\n"

gap> Print( last );

< x1, x2 |

x1^2,

x2^2,

x1*x2*x1*x2*x1*x2*x1*x2

>

gap> PrintTo( "dihedral", last );

gap> ## The following is equivalent to:

gap> ## NilpotentQuotient( : input_file := "dihedral" );

gap> NilpotentQuotient( "dihedral" );

Pcp-group with orders [ 2, 2, 2 ]

gap> Exec( "rm dihedral" );

gap> F := FreeGroup(3);

<free group on the generators [ f1, f2, f3 ]>

gap> H := F / [ LeftNormedComm( [F.2,F.1,F.1] ),

> LeftNormedComm( [F.2,F.1,F.2] ), F.3^7 ];

<fp group on the generators [ f1, f2, f3 ]>

gap> str := NqStringFpGroup( H, [F.3] );

"< x1, x2; x3 |\n x1^-1*x2^-1*x1*x2*x1^-1*x2^-1*x1^-1*x2*x1^2,\n x1^-1*x\

2^-1*x1*x2^-1*x1^-1*x2*x1*x2,\n x3^7\n>\n"
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gap> NilpotentQuotient( : input_string := str );

Pcp-group with orders [ 7, 7, 7 ]

3.3.3 NqStringExpTrees

. NqStringExpTrees(fp-group[, idgens]) (function)

The function takes a �nitely presented group fp-group given in terms of expression trees and

returns a string in the input format of the ANU NQ. If the list idgens is present, then it must contain

a sublist of the generators of the presentation. The generators in idgens are treated as identical

generators.

Example

gap> x := ExpressionTrees( 2 );

[ x1, x2 ]

gap> rels := [x[1]^2, x[2]^2, (x[1]*x[2])^5];

[ x1^2, x2^2, (x1*x2)^5 ]

gap> NqStringExpTrees( rec( generators := x, relations := rels ) );

"< x1, x2 |\n x1^2,\n x2^2,\n (x1*x2)^5\n>\n"

gap> Print( last );

< x1, x2 |

x1^2,

x2^2,

(x1*x2)^5

>

gap> x := ExpressionTrees( 3 );

[ x1, x2, x3 ]

gap> rels := [LeftNormedComm( [x[2],x[1],x[1]] ),

> LeftNormedComm( [x[2],x[1],x[2]] ), x[3]^7 ];

[ Comm( x2, x1, x1 ), Comm( x2, x1, x2 ), x3^7 ]

gap> NqStringExpTrees( rec( generators := x, relations := rels ) );

"< x1, x2, x3 |\n [ x2, x1, x1 ],\n [ x2, x1, x2 ],\n x3^7\n>\n"

gap> Print( last );

< x1, x2, x3 |

[ x2, x1, x1 ],

[ x2, x1, x2 ],

x3^7

>

3.3.4 NqElementaryDivisors

. NqElementaryDivisors(int-mat) (function)

The function ElementaryDivisorsMat (Reference: ElementaryDivisorsMat) only returns the

non-zero elementary divisors of an integer matrix. This function computes the elementary divisors

of int-mat and adds the appropriate number of zeroes in order to make it easier to recognize the

isomorphism type of the abelian group presented by the integer matrix. At the same time ones are

stripped from the list of elementary divisors.
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3.4 Global Variables

3.4.1 NqRuntime

. NqRuntime (global variable)

This variable contains the number of milliseconds of runtime of the last call of ANU NQ.
Example

gap> NilpotentEngelQuotient( FreeGroup(2), 5 );

Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 10,

0, 0, 30, 0, 3, 3, 10, 2, 0, 6, 0, 0, 30, 2, 0, 9, 3, 5, 2, 6, 2, 10, 5, 5,

2, 0, 3, 3, 3, 3, 3, 5, 5, 3, 3 ]

gap> NqRuntime;

18200

3.4.2 NqDefaultOptions

. NqDefaultOptions (global variable)

This variable contains a list of strings which are the standard command line options passed to the

ANU NQ in each call. Modifying this variable can be used to pass additional options to the ANU NQ.
Example

gap> NqDefaultOptions;

[ "-g", "-p", "-C", "-s" ]

The option -g causes the ANU NQ to produce output in GAP-format. The option -p prevents the

ANU NQ from listing the pc-presentation of the nilpotent quotient at the end of the calculation. The

option -C invokes the combinatorial collector. The option -s is effective only in conjunction with

options for computing with Engel identities and instructs the ANU NQ to use only semigroup words

in the generators as instances of an Engel law.

3.4.3 NqGlobalVariables

. NqGlobalVariables (global variable)

This variable contains a list of strings with the names of the global variables that are used in the

output stream of the ANU NQ. While the output stream is read, these global variables are assigned

new values. To avoid overwriting these variables in case they contain values, their contents is saved

before reading the output stream and restored afterwards.

3.5 Diagnostic Output

While the standalone program is running it can be asked to display progress information. This is done

by setting the info class InfoNQ to 1 via the function SetInfoLevel (Reference: SetInfoLevel).
Example

gap> NilpotentQuotient(FreeGroup(2),5);

Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

gap> SetInfoLevel( InfoNQ, 1 );

gap> NilpotentQuotient(FreeGroup(2),5);
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#I Class 1: 2 generators with relative orders 0 0

#I Class 2: 1 generators with relative orders: 0

#I Class 3: 2 generators with relative orders: 0 0

#I Class 4: 3 generators with relative orders: 0 0 0

#I Class 5: 6 generators with relative orders: 0 0 0 0 0 0

Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

gap> SetInfoLevel( InfoNQ, 0 );



Chapter 4

Examples

4.1 Right Engel elements

An old problem in the context of Engel elements is the question: Is a right n-Engel element left n-

Engel? It is known that the answer is no. For details about the history of the problem, see [NN94]. In

this paper the authors show that for n > 4 there are nilpotent groups with right n-Engel elements no

power of which is a left n-Engel element. The insight was based on computations with the ANU NQ

which we reproduce here. We also show the cases 5> n.
Example

gap> LoadPackage( "nq" );

true

gap> ## SetInfoLevel( InfoNQ, 1 );

gap> ##

gap> ## setup calculation

gap> ##

gap> et := ExpressionTrees( "a", "b", "x" );

[ a, b, x ]

gap> a := et[1];; b := et[2];; x := et[3];;

gap>

gap> ##

gap> ## define the group for n = 2,3,4,5

gap> ##

gap>

gap> rengel := LeftNormedComm( [a,x,x] );

Comm( a, x, x )

gap> G := rec( generators := et, relations := [rengel] );

rec( generators := [ a, b, x ], relations := [ Comm( a, x, x ) ] )

gap> ## The following is equivalent to:

gap> ## NilpotentQuotient( : input_string := NqStringExpTrees( G, [x] ) )

gap> H := NilpotentQuotient( G, [x] );

Pcp-group with orders [ 0, 0, 0 ]

gap> LeftNormedComm( [ H.2,H.1,H.1 ] );

id

gap> LeftNormedComm( [ H.1,H.2,H.2 ] );

id

This shows that each right 2-Engel element in a �nitely generated nilpotent group is a left 2-Engel

element. Note that the group above is the largest nilpotent group generated by two elements, one of

21
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which is right 2-Engel. Every nilpotent group generated by an arbitrary element and a right 2-Engel

element is a homomorphic image of the group H.
Example

gap> rengel := LeftNormedComm( [a,x,x,x] );

Comm( a, x, x, x )

gap> G := rec( generators := et, relations := [rengel] );

rec( generators := [ a, b, x ], relations := [ Comm( a, x, x, x ) ] )

gap> H := NilpotentQuotient( G, [x] );

Pcp-group with orders [ 0, 0, 0, 0, 0, 4, 2, 2 ]

gap> LeftNormedComm( [ H.1,H.2,H.2,H.2 ] );

id

gap> h := LeftNormedComm( [ H.2,H.1,H.1,H.1 ] );

g6^2*g7*g8

gap> Order( h );

4

The element h has order 4. In a nilpotent group without 2-torsion a right 3-Engel element is left

3-Engel.
Example

gap> rengel := LeftNormedComm( [a,x,x,x,x] );

Comm( a, x, x, x, x )

gap> G := rec( generators := et, relations := [rengel] );

rec( generators := [ a, b, x ], relations := [ Comm( a, x, x, x, x ) ] )

gap> H := NilpotentQuotient( G, [x] );

Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 12, 0, 5, 10, 2, 0, 30,

5, 2, 5, 5, 5, 5 ]

gap> LeftNormedComm( [ H.1,H.2,H.2,H.2,H.2 ] );

id

gap> h := LeftNormedComm( [ H.2,H.1,H.1,H.1,H.1 ] );

g9*g10^2*g11^10*g12^5*g13^2*g14^8*g15*g16^6*g17^10*g18*g20^4*g21^4*g22^2*g23^2

gap> Order( h );

60

The previous calculation shows that in a nilpotent group without 2;3;5-torsion a right 4-Engel element

is left 4-Engel.
Example

gap> rengel := LeftNormedComm( [a,x,x,x,x,x] );

Comm( a, x, x, x, x, x )

gap> G := rec( generators := et, relations := [rengel] );

rec( generators := [ a, b, x ], relations := [ Comm( a, x, x, x, x, x ) ] )

gap> H := NilpotentQuotient( G, [x], 9 );

Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 30,

0, 0, 30, 0, 3, 6, 0, 0, 10, 30, 0, 0, 0, 0, 30, 30, 0, 0, 3, 6, 5, 2, 0,

2, 408, 2, 0, 0, 0, 10, 10, 30, 10, 0, 0, 0, 3, 3, 3, 2, 204, 6, 6, 0, 10,

10, 10, 2, 2, 2, 0, 300, 0, 0, 18 ]

gap> LeftNormedComm( [ H.1,H.2,H.2,H.2,H.2,H.2 ] );

id

gap> h := LeftNormedComm( [ H.2,H.1,H.1,H.1,H.1,H.1 ] );;

gap> Order( h );

infinity

Finally, we see that in a torsion-free group a right 5-Engel element need not be a left 5-Engel element.
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Installation of the Package

Installation of the ANU NQ is done in two steps.

5.1 Con�guring for compilation

First the con�gure script is run:
Installation

./configure

If you installed the package in another �pkg� directory than the standard �pkg� directory in your

GAP 4 installation, then you have to do two things. Firstly during compilation you have to use the

option �with-gaproot=PATH of the configure script where �PATH� is a path to the mainGAP root

directory (if not given the default �../..� is assumed). That is, run
Installation

./configure --with-gaproot=PATH

Secondly you have to specify the path to the directory containing your �pkg� directory to GAP's list

of directories. This can be done by starting GAP with the �-l� command line option followed by

the name of the directory and a semicolon. Then your directory is prepended to the list of directories

searched. Otherwise the package is not found by GAP. Of course, you can add this option to your

GAP startup script.

Another issue that can occur when running configure is that it may fail to locate the the GNU

multiple precision library (GMP [GMP]) which ANU NQ requires to work. This library is also used

byGAP and hence normally should be available on your system anyway. But if this is not the case for

some reason, it has to be installed �rst. A copy of GMP can be obtained from http://gmplib.org/.

In order for the configure script to �nd your copy of GMP, you may have tell it where to �nd it

via �with-gmp=PATH, where �PATH� is the path where GMP was installed:
Installation

./configure --with-gmp=PATH

Yf necessary, you may combine �with-gmp and �with-gaproot.

5.2 Compiling the nq binary

If configure reports no problems, the next step is to start the compilation:
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Installation
make

A compiled version of the program named nq is then placed into the directory bin/<complicated

name>. The <complicated name> component encodes the operating system and the compiler used.

This allows you to compile NQ on several architectures sharing the same �les system.

If there are any warnings or even fatal error messages during the compilation process, please

submit a bug report about that following the instructions in Section 5.4

5.3 Testing

After the compilation is �nished you can check if the ANU NQ is running properly on your system.

Simply type

Installation
make test

This runs some computations and compares their output with the output �les in the directory

examples. If any errors are reported, please follow the instructions below.

5.4 Feedback

If you encounter problems with any of the above steps, please do not hesitate to contact us

about this. You can either use the nq issue tracker or contact the GAP support group via

support@gap-system.org. Please make sure to include information about the speci�c issue you

encountered (e.g. steps to reproduce it, the speci�c error message), your operating system, the com-

piler you used and also the versions of GAP and this package that were involved.

https://github.com/gap-system/nq/issues
mailto://support@gap-system.org


Appendix A

The nq command line interface

A.1 How to use the ANU NQ

If you start the ANU NQ by typing
interactive

nq -X

you will get the following message:
interactive

unknown option: -X

usage: nq [-a] [-M] [-d] [-g] [-v] [-s] [-f] [-c] [-m]

[-t <n>] [-l <n>] [-r <n>] [-n <n>] [-e <n>]

[-y] [-o] [-p] [-E] [<presentation>] [<class>]

All parameters in square brackets are optional. The parameter <presentation> has to be the name

of a �le that contains a �nite group presentation for which a nilpotent quotient is to be calculated.

This �le name must not start with a digit. If it is not present, nq will read the presentation from

standard input. The parameter <class> restricts the computation of the nilpotent quotient to at most

that (nilpotency) class, i.e. the program calculates the quotient group of the (c+ 1)-th term of the

lower central series. If <class> is omitted, the program computes successively the factor groups of the

lower central series of the given group. If there is a largest nilpotent quotient, i.e., if the lower central

series becomes constant, the program will eventually terminate with the largest nilpotent quotient. If

there is no largest nilpotent quotient, the program will run forever (or more precisely will run out of

resources). On termination the program prints a nilpotent presentation for the nilpotent quotient it has

computed. The options -l, -r and -e can be used to enforce Engel conditions on the nilpotent quotient

to be calculated. All these options have to be followed by a positive integer <n>. Their meaning is the

following:

-n <k>

This option forces the �rst k generators to be left or right Engel element if also the option -l or

-r (or both) is present. Otherwise it is ignored.

-l <n>

This forces the �rst k generators g1; :::;gk of the nilpotent quotient Q to be left n-Engel elements,

i.e., they satisfy [x; :::;x;gi] = 1 (x occurring n-times) for all x in Q and 1 <= i <= k. If the

option -n is not used, then k = 1.

25
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-r <n>

This forces the �rst k generators g1; :::;gk of the nilpotent quotient Q to be right n-Engel ele-

ments,i.e., they satisfy [gi;x; ::;x] = 1 (x occurring n-times) for all x in Q and 1 <= i <= k. If

the option -n is not used, then k = 1.

-e <n>

This enforces the n-th Engel law on Q, i.e., [x;y; ::;y] = 1 (y occurring n-times) for all x,y in Q.

-t <n>

This option speci�es how much CPU time the program is allowed to use. It will terminate after

<n> seconds of CPU time. If <n> is followed (without space) by one of the letters m, h or d,

<n> speci�es the time in minutes, hours or days, respectively.

The other options have the following meaning. Care has to be taken when the options -s or -c are used

since the resulting nilpotent quotient need NOT satisfy the required Engel condition. The reason for

this is that a smaller set of test words is used if one of these two options are present. Although this

smaller set of test words seems to be suf�cient to enforce the required Engel condition, this fact has

not been proven.

-a For each factor of the lower central series a �le is created in the current directory that contains

an integer matrix describing the factor as abelian group. The �rst number in that �le is the

number of columns of the matrix. Then the matrix follows in row major order. The matrix for

the i-th factor is put into the �le <presentation>.abinv.<i>.

-p toggles printing of the pc presentation for the nilpotent quotient at the end of a calculation.

-s This option causes the program to check only semigroup words in the generating set of the

nilpotent quotient when an Engel condition is enforced. If none of the options -l, -r or -e are

present, it is ignored.

-f This option causes to check semiwords in the generating set of the nilpotent quotient �rst and

then all other words that need to be checked. It is ignored if the option -s is used or none of the

options -l, -r or -e are present.

-c This option stops checking the Engel law at each class if all the checks of a certain weight did

not yield any non-trivial instances of the law.

-d Switch on debug mode and perform checks during the computation. Not yet implemented.

-o In checking Engel identities, instances are process in the order of increased weight. This �ag

reverses the order.

-y Enforce the identities x8 and [[x1;x2;x3]; [x4;x5;x6]] on the nilpotent quotient.

-v Switch on verbose mode.

-g Produce GAP output. Presently the GAP output consists only of a sequence of integer matrices

whose rows are relations of the factors of the lower central series as abelian groups. This will

change as soon as GAP can handle in�nite polycyclic groups.

-E the *last* n generators are Engel generators. This works in conjunction with option -n.
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-m output the relation matrix for each factor of the lower central series. The matrices are written

to �les with the names 'matrix.<cl>' where <cl> is replaced by the number of the factor in

the lower central series. Each �le contains �rst the number of columns of the matrix and then

the rows of the matrix. The matrix is written as each relation is produced and is not in upper

triangular form.

-M output the relation matrix before and after relations have been enforced. This results in two

groups of �les with names '<pres>.nilp.<cl>' and '<pres>.mult.<cl>' where <pres> is the name

of the input �les and <cl> is the class. The matrices are in upper triangular form.

A.2 The input format for presentations

The input format for �nite presentations resembles the way many people write down a presentation

on paper. Here are some examples of presentations that the ANU NQ accepts:

< a, b | > # free group of rank 2

< a, b, c | [a,b,c], # a left normed commutator

[b,c,c,c]^6, # another one raised to a power

a^2 = c^-3*a^2*c^3, # a relation

a^(b*c) = a, # a conjugate relation

(a*[b,(a*c)])^6 # something that looks complicated

>

A presentation starts with '<' followed be a list of generators separated by commas. Generator names

are strings that contain only upper and lower case letters, digits, dots and underscores and that do not

start with a digit. The list of generator names is separated from the list of relators/relations by the

symbol '|'. Relators and relations are separated by commas and can be mixed arbitrarily. Parentheses

can be used in order to group subexpressions together. Square brackets can be used in order to form left

normed commutators. The symbols '*' and '^' can be used to form products and powers, respectively.

The presentation �nishes with the symbol '>'. A comment starts with the symbol '#' and �nishes at

the end of the line. The �le src/presentation.c contains a complete grammar for the presentations

accepted by the ANU NQ.

A.3 An example

Let G be the free group on two generators x and y. The input �le (called free2.fp here) contains the

following:

< x, y | >

Computing the class 3 quotient with the ANU NQ by typing
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nq free2.fp 3

produces the following output:

#

# The ANU Nilpotent Quotient Program (Version 2.3)

# Calculating a nilpotent quotient

# Input: free2.fp

# Nilpotency class: 3

# Program: nq

# Size of exponents: 8 bytes

#

# Calculating the abelian quotient ...

# The abelian quotient has 2 generators

# with the following exponents: 0 0

#

# Calculating the class 2 quotient ...

## Sizes: 2 3

# Layer 2 of the lower central series has 1 generators

# with the following exponents: 0

#

# Calculating the class 3 quotient ...

## Sizes: 2 3 5

# Layer 3 of the lower central series has 2 generators

# with the following exponents: 0 0

#

# The epimorphism :

# x |---> A

# y |---> B

# The nilpotent quotient :

<A,B,C,D,E

|

B^A =: B*C,

B^(A^-1) = B*C^-1*D,

C^A =: C*D,

C^(A^-1) = C*D^-1,

C^B =: C*E,

C^(B^-1) = C*E^-1 >

# Class : 3

# Nr of generators of each class : 2 1 2
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# The definitions:

# C := [ B, A ]

# D := [ B, A, A ]

# E := [ B, A, B ]

# total runtime : 1 msec

# total size : 0 byte

## Total time spent on integer matrices: 0

Most of the comments are fairly self-explanatory. One note of caution is necessary: The number

of generators for each factor of the lower central series is not the minimal number possible but is

the number of generators that the ANU NQ chose to use. This will be improved in one of the future

version of the program. The epimorphism from the original group onto the nilpotent quotient is printed

in a somewhat confusing way. The generators on the left hand side of the arrows correspond to the

generators in the original presentation but are printed with different names. This will be �xed in one

of the next version.

A.4 Some remarks about the algorithm

The implementation of the algorithm is fairly straight forward. The program uses a weighted nilpotent

presentation with de�nitions to represent a nilpotent group. Calculations in the nilpotent group are

done using a collector from the left without combinatorial collection. Generators for the c-th lower

central factor are de�ned as commutators of the form [y;x], where x is a generator of weight 1 and y is
a generator of weight c�1. Then the program calculates the necessary changes (tails) for all relations

which are not de�nitions, runs through the consistency check and evaluates the original relations on

the polycyclic presentation. This gives a list of words, which have to be made trivial in order to obtain

a consistent polycyclic presentation representing a nilpotent quotient of the given �nitely presented

group. This list is converted into a integer matrix, which is transformed into upper triangular form

using the Kannan-Bachem algorithm. The GNU multiple precision package is used for this.
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