Copyright | (c) Conal Elliott 2008 |
---|---|
License | BSD3 |
Maintainer | conal@conal.net |
Stability | experimental |
Safe Haskell | None |
Language | Haskell98 |
Data.Maclaurin
Contents
Description
Infinite derivative towers via linear maps, using the Maclaurin representation. See blog posts http://conal.net/blog/tag/derivatives/.
- data a :> b = D {
- powVal :: b
- derivative :: a :-* (a :> b)
- derivAtBasis :: (HasTrie (Basis a), HasBasis a, AdditiveGroup b) => (a :> b) -> Basis a -> a :> b
- type (:~>) a b = a -> a :> b
- pureD :: (AdditiveGroup b, HasBasis a, HasTrie (Basis a)) => b -> a :> b
- fmapD :: HasTrie (Basis a) => (b -> c) -> (a :> b) -> a :> c
- (<$>>) :: HasTrie (Basis a) => (b -> c) -> (a :> b) -> a :> c
- liftD2 :: (HasBasis a, HasTrie (Basis a), AdditiveGroup b, AdditiveGroup c) => (b -> c -> d) -> (a :> b) -> (a :> c) -> a :> d
- liftD3 :: (HasBasis a, HasTrie (Basis a), AdditiveGroup b, AdditiveGroup c, AdditiveGroup d) => (b -> c -> d -> e) -> (a :> b) -> (a :> c) -> (a :> d) -> a :> e
- idD :: (VectorSpace u, HasBasis u, HasTrie (Basis u)) => u :~> u
- fstD :: (HasBasis a, HasTrie (Basis a), HasBasis b, HasTrie (Basis b), Scalar a ~ Scalar b) => (a, b) :~> a
- sndD :: (HasBasis a, HasTrie (Basis a), HasBasis b, HasTrie (Basis b), Scalar a ~ Scalar b) => (a, b) :~> b
- linearD :: (HasBasis u, HasTrie (Basis u), AdditiveGroup v) => (u -> v) -> u :~> v
- distrib :: forall a b c u. (HasBasis a, HasTrie (Basis a), AdditiveGroup u) => (b -> c -> u) -> (a :> b) -> (a :> c) -> a :> u
- (>-<) :: (HasBasis a, HasTrie (Basis a), VectorSpace u) => (u -> u) -> ((a :> u) -> a :> Scalar u) -> (a :> u) -> a :> u
- pairD :: (HasBasis a, HasTrie (Basis a), VectorSpace b, VectorSpace c) => (a :> b, a :> c) -> a :> (b, c)
- unpairD :: HasTrie (Basis a) => (a :> (b, c)) -> (a :> b, a :> c)
- tripleD :: (HasBasis a, HasTrie (Basis a), VectorSpace b, VectorSpace c, VectorSpace d) => (a :> b, a :> c, a :> d) -> a :> (b, c, d)
- untripleD :: HasTrie (Basis a) => (a :> (b, c, d)) -> (a :> b, a :> c, a :> d)
Documentation
Tower of derivatives.
Constructors
D infixr 9 | |
Fields
|
Instances
(VectorSpace s, HasBasis s, HasTrie (Basis s), HasNormal ((:>) (Two s) (Three s))) => HasNormal (Three ((:>) (Two s) s)) # | |
(VectorSpace s, HasBasis s, HasTrie (Basis s), (~) * (Basis s) ()) => HasNormal (Two ((:>) (One s) s)) # | |
Eq ((:>) a b) # | |
(HasBasis a, (~) * s (Scalar a), HasTrie (Basis a), Floating s, VectorSpace s, (~) * (Scalar s) s) => Floating ((:>) a s) # | |
(HasBasis a, (~) * s (Scalar a), HasTrie (Basis a), Fractional s, VectorSpace s, (~) * (Scalar s) s) => Fractional ((:>) a s) # | |
(HasBasis a, (~) * s (Scalar a), HasTrie (Basis a), Num s, VectorSpace s, (~) * (Scalar s) s) => Num ((:>) a s) # | |
(AdditiveGroup b, HasBasis a, HasTrie (Basis a), OrdB b, IfB b, Ord b) => Ord ((:>) a b) # | |
Show b => Show ((:>) a b) # | |
(HasBasis a, HasTrie (Basis a), AdditiveGroup u) => AdditiveGroup ((:>) a u) # | |
(InnerSpace u, (~) * s (Scalar u), AdditiveGroup s, HasBasis a, HasTrie (Basis a)) => InnerSpace ((:>) a u) # | |
(HasBasis a, HasTrie (Basis a), VectorSpace u) => VectorSpace ((:>) a u) # | |
OrdB v => OrdB ((:>) u v) # | |
(AdditiveGroup v, HasBasis u, HasTrie (Basis u), IfB v) => IfB ((:>) u v) # | |
(HasBasis a, HasTrie (Basis a), VectorSpace v, HasCross3 v) => HasCross3 ((:>) a v) # | |
(HasTrie (Basis a), HasCross2 v) => HasCross2 ((:>) a v) # | |
(Num s, HasTrie (Basis (s, s)), HasBasis s, (~) * (Basis s) ()) => HasNormal ((:>) (Two s) (Three s)) # | |
(HasBasis s, HasTrie (Basis s), (~) * (Basis s) ()) => HasNormal ((:>) (One s) (Two s)) # | |
type Scalar ((:>) a u) # | |
type BooleanOf ((:>) a b) # | |
derivAtBasis :: (HasTrie (Basis a), HasBasis a, AdditiveGroup b) => (a :> b) -> Basis a -> a :> b #
Sample the derivative at a basis element. Optimized for partial application to save work for non-scalar derivatives.
pureD :: (AdditiveGroup b, HasBasis a, HasTrie (Basis a)) => b -> a :> b #
Constant derivative tower.
fmapD :: HasTrie (Basis a) => (b -> c) -> (a :> b) -> a :> c #
Map a linear function over a derivative tower.
(<$>>) :: HasTrie (Basis a) => (b -> c) -> (a :> b) -> a :> c infixl 4 #
Map a linear function over a derivative tower.
liftD2 :: (HasBasis a, HasTrie (Basis a), AdditiveGroup b, AdditiveGroup c) => (b -> c -> d) -> (a :> b) -> (a :> c) -> a :> d #
Apply a linear binary function over derivative towers.
liftD3 :: (HasBasis a, HasTrie (Basis a), AdditiveGroup b, AdditiveGroup c, AdditiveGroup d) => (b -> c -> d -> e) -> (a :> b) -> (a :> c) -> (a :> d) -> a :> e #
Apply a linear ternary function over derivative towers.
idD :: (VectorSpace u, HasBasis u, HasTrie (Basis u)) => u :~> u #
Differentiable identity function. Sometimes called "the derivation variable" or similar, but it's not really a variable.
fstD :: (HasBasis a, HasTrie (Basis a), HasBasis b, HasTrie (Basis b), Scalar a ~ Scalar b) => (a, b) :~> a #
Differentiable version of fst
sndD :: (HasBasis a, HasTrie (Basis a), HasBasis b, HasTrie (Basis b), Scalar a ~ Scalar b) => (a, b) :~> b #
Differentiable version of snd
linearD :: (HasBasis u, HasTrie (Basis u), AdditiveGroup v) => (u -> v) -> u :~> v #
Every linear function has a constant derivative equal to the function itself (as a linear map).
distrib :: forall a b c u. (HasBasis a, HasTrie (Basis a), AdditiveGroup u) => (b -> c -> u) -> (a :> b) -> (a :> c) -> a :> u #
Derivative tower for applying a binary function that distributes over addition, such as multiplication. A bit weaker assumption than bilinearity. Is bilinearity necessary for correctness here?
(>-<) :: (HasBasis a, HasTrie (Basis a), VectorSpace u) => (u -> u) -> ((a :> u) -> a :> Scalar u) -> (a :> u) -> a :> u infix 0 #
Specialized chain rule. See also '(@.)'
Misc
pairD :: (HasBasis a, HasTrie (Basis a), VectorSpace b, VectorSpace c) => (a :> b, a :> c) -> a :> (b, c) #
tripleD :: (HasBasis a, HasTrie (Basis a), VectorSpace b, VectorSpace c, VectorSpace d) => (a :> b, a :> c, a :> d) -> a :> (b, c, d) #