i5 : symmetricAlgebra(M, Variables=>{x,y,z})
QQ [p , p , p , p , p , p , p ]
0 1 2 3 4 5 6
o5 = ---------------------------------------
(p p - p p , p p - p p , p p - p p )
1 3 0 4 2 4 1 5 2 3 0 5
o5 : QuotientRing
|
i6 : symmetricAlgebra(M, VariableBaseName=>G, MonomialSize=>16)
QQ [G , G , G , G , G , G , G ]
0 1 2 3 4 5 6
o6 = ---------------------------------------
(G G - G G , G G - G G , G G - G G )
1 3 0 4 2 4 1 5 2 3 0 5
o6 : QuotientRing
|
i7 : symmetricAlgebra(M, Degrees=> {7:1})
QQ [p , p , p , p , p , p , p ]
0 1 2 3 4 5 6
o7 = ---------------------------------------
(p p - p p , p p - p p , p p - p p )
1 3 0 4 2 4 1 5 2 3 0 5
o7 : QuotientRing
|